
SIMULATION
PRACTICE = THEORY

Simulation Practice and Theory 6 (1998) 119-147

The effectiveness of domain balancing strategies on
workstation clusters demonstrated by viscous flow problems

Martin Streng a,l, Eric (H.H.) ten Cate ‘v*, Bernard J. Geurts b,
Hans (J.G.M.) Kuerten b

a Hollandse Signaalapparaten BV, Zuidelijke Havenweg 40, 7554 RR Hengelo, The Netherlands
b Faculty of Applied Mathematics, University of Twente, P. 0. Box 217, 7500 AE Enschede,

The Netherlands
’ Department of Ministry of Transport, Public Works and Water Management,

National Institute for Coastal and Marine Management (RIKZ), P. 0. Box 20907,
2500 EX The Hague, The Netherlands

Received 3 January 1997; revised 18 September 1997

Abstract

We consider several aspects of efficient numerical simulation of viscous compressible flow
on both homogeneous and heterogeneous workstation-clusters. We consider dedicated sys-
tems, as well as clusters operating in a multi-user environment. For dedicated homogeneous
clusters, we show that with respect to the turn-around time, there is an optimal number of
workstations to solve a given flow-problem. This number depends on the actual implementa-
tion of the solver. For non-dedicated heterogeneous clusters we apply dynamic domain-
balancing techniques in order to obtain an optimal turn-around time for the flow-simulation

job only, taking into account the activities on the cluster arising from the other applications.
We show that the decision which technique should be used depends on various aspects, such
as the character of the load-fluctuations arising from the other applications, whether the flow-
simulation job is computationally intensive, and the underlying hardware. The effects of these
aspects on this decision are analyzed. Although it can be concluded that no domain-balancing

technique is the best under arbitrary circumstances, such an analysis may guide the decision
for a particular load-situation. Moreover, we indicate how such a decision can be supported
by a comparison of the various balancing strategies using a simulation study. This is illustrated
for a specific load-situation. 0 1998 Published by Elsevier Science B.V.

Keywords: Dynamic load-balancing; Parallel computing; Distributed computing; Workstation
clusters; Domain-decomposition; Navier-Stokes equations

* Corresponding author. E-mail: h.h.tcate@rikz.rws.minvenw.nl.
‘M. Streng was supported by NWO-grant nr. 610-02-100.

092%4869/98/$19.00 0 1998 Published by Elsevier Science B.V. All rights reserved.

PII SO928-4869(97)00035-9

120 M. Srreng et al. / Simulation Practice and Theory 6 (1998) 119-147

1. Introduction

One of the most important developments in high-performance computation of
flow-simulations is the efficient use of parallel platforms. Although nowadays power-
ful parallel machines become available, they are still rather expensive. In many
production environments, however, a cluster of workstations is present, which in
principle can serve as a parallel platform. The advantage of this approach is that
high-performance computing is possible at very low cost. However, besides the fact
that parallel programming is, for many applications, often more involved on a
cluster than on an integrated parallel machine, there are three other problems that
should be addressed. Firstly, since parallelism can only be achieved by message-
passing, messages must be sent over the network, which is a slow process. Hence
the speed-up may be affected. Secondly, most existing clusters are heterogeneous,
i.e. not all workstations in the cluster have the same capacity. This unbalance should
be properly taken into account in order to reduce the turn-around time of a given
application. In the third place, (some of) the workstations may simultaneously be
used for other applications, and in most cases it will not be possible to schedule all
jobs arising from the various other activities in such a way that the cluster can be
made dedicated for a long-running parallel job.

The effects of these ‘disadvantages’ on the performance of an application depend
on the algorithmic details of the application. In this paper we consider several
strategies aimed at a reduction of the turn-around time for time-accurate numerical
simulation of compressible viscous flow. However, the results of these investigations
can be used for several other applications as well. The parallelization of such flow-
simulations is usually achieved by domain-decomposition techniques, resulting in
block-structured algorithms. In these algorithms, each workstation or processing
element (PE) advances the solution in one block of the flow-domain over one time-
step. For the computation of the solution in the next time-step, information is needed
which is allocated on processors dealing with neighboring blocks in the flow-domain.
Therefore, essentially a global synchronization takes place every time-step, which
implies a certain amount of communication between the PE’s. In large-scale applica-
tions the computations for one block are quite time-consuming, and the communica-
tion can be ‘hidden’ behind these computations, i.e. scheduled in the algorithm such
that the computations are not interfered. In the case of a dedicated cluster, as long
as the network is not saturated, the only overhead arising from the parallelization
is ideally due to the encoding and decoding of the messages. Depending on the
speed of the network, the speed of the PE’s and the amount of memory per
workstation, bounds can be given on the maximal attainable speed-up, and the
optimal number of work stations to be used for the simulation of a given flow-
problem. In an example it is shown that this number, as well as the maximal
attainable speed-up and the minimal turn-around time depend strongly on the actual
implementation of the spatial discretization of the flow equations.

The progress of a flow-simulation with a block-structured parallel flow-solver
depends on the differences in the size of the individual blocks in relation to the
speed of the PE’s on which they are allocated. Because of the global synchronization

M. Streng et al. / Simulation Prartice and Theory 6 (1998) 119-147 121

step, the calculation-time is dominated by the speed of the slowest PE. The ability
of the PE’s to contribute to the flow-simulation can be different due to the inhomo-
geneity of the cluster, but also because a PE may be involved in the processing of
other jobs. Especially in a parallel production environment both effects will almost
inevitably occur in practical situations, where a production run will make use of a
number of PE’s and still can last for several (many) hours. Therefore, the most
desirable situation would be that slower PE’s are assigned less work (smaller blocks)
than faster ones, and that most of the work in the flow-simulation is done on PE’s
which are least claimed by other jobs. In order to achieve this situation, some form
of dynamic load-balancing should be employed.

Dynamic load-balancing has been discussed in literature quite frequently. We will
only refer to the following restrictive list of review-like papers: Refs. [l-5]. Most
authors are mainly concerned either with the optimal redistribution of all running
jobs on a multicomputer, or with migration of data associated with one particular
job on a dedicated system. Here, we consider the redistribution of work associated
with one particular job on a non-dedicated heterogeneous cluster. This is consider-
ably more complex than the cases mentioned above, since the interaction of the
load-balancing of our job with the other tasks has to be taken into account, in order
to judge the effectivity of the method.

We modify and extend three existing load-balancing algorithms for this case, viz.
the diffusion method (cf. Ref. [6]), the generalized dimension-exchange method (cf.
Ref. [7]), and a multilevel method (cf. Ref. [8]). Moreover, we present a new family
of global redistribution methods, and indicate the similarities between all these
strategies.

The decision which technique should be preferred depends much on the character
of the load-fluctuations, on whether the flow-simulation job is computationally
intensive, and on the underlying hardware. Therefore, no single domain-balancing
technique is the best under arbitrary circumstances. For any particular load-situation,
an educated guess has to be made. In order to guide such a guess, we analyze the
influence of the above mentioned effects on the performance of a balancing strategy
and we show that the choice for one of the strategies can be supported by a
simulation study. In such a study the performance of the CFD-computations result-
ing from the balancing strategy in combination with the CFD-algorithm, the under-
lying hardware and the presumed load-situation is simulated. In this way the most
suitable balancing strategy can be determined without actually performing a real
(time-consuming) flow-simulation. This is illustrated by a comparative study of the
various techniques for a special load-situation.

As a side result, we show that the characteristics of the diffusion algorithm can
be extended to massively parallel systems. In this way we obtain a description of
the behavior of this algorithm on large clusters or MPP systems. It turns out that
this behavior is described by a partial differential equation of the Fokker-Planck
type, in which the unknown is the load per processor on every time-step.

The set-up of the paper roughly follows these lines. In Section 2, a representative
simple flow problem is presented. In Section 3 an algorithm for the parallel solution

122 44. Streng et al. J Simulation Practice and Theory 6 (1998) 119p147

of this problem is given. We deal with dedicated clusters in Section 4, and consider
the optimal number of workstations to solve a given problem, both for our model
problem and for the solution of the 3d Navier-Stokes equations. Moreover, we
determine the optimal block-sizes in a domain-decomposition. The last two sections
are devoted to non-dedicated clusters. In Section 5 the various balancing algorithms
are presented. In Section 6 the effectiveness of these algorithms is discussed.

Because many of our considerations in this paper are also applicable for distributed
systems other than workstation-clusters, we will use the term processing element
(PE) rather than workstation. We will use the notational convention that quantities
which are considered to belong to R” for some n are denoted in boldface. The
components of such a quantity are denoted by the same symbol, but in roman, with
an index. So if e.g. x E R2, then x =(x1, x2). The symbols xi and xij represent
indexed vectors.

2. A prototype flow problem

In this section we introduce - for future reference - some basic concepts through
a detailed definition of a simple flow problem. Let A = (0, 1) x (0, I), I= [0, co),
and u: Ix A-J%. A point in Ix A is denoted by (t, x1, x,), or (t, x). As a model
problem we consider the 2d scalar Burgers equation on Z x A:

au 1 au2 au

at 2 ax, _9
+--++=pAu, (1)

with ZJ E (0, co), and with boundary conditions u(t, 0, x2)=3/2, u(t, 1, x,)= - l/2,
u(t, xi, 0) =3/2-2x, and &/ax, (t, x1, 1) =O. Moreover, there is an initial condition
~(0, x1, x,)=3/2-2x,.

In order to solve the system (1) numerically, given initial and boundary conditions,
we endow our domain A with an orthogonal grid, with mesh-sizes hl, hz (such that
l/hi =Nr E N, and l/h2=ZVN2 E NY). The grid is denoted by A, and the points in 2 by
xij:

a= {xij E R21xij=(ih1,jh2) for some i, j with O<i<N,, O<j<N,),

For i = 1, . . , N,, Let z;. denote the set given by

~i={Xij EAli=O, ...) N2).

This set is called the i-th column of A. For a function u: Ix A+R we will shorthand

and we will often omit the parameter t for the sake of brevity.
Using a second order accurate finite volume spatial discretization on a 3 x 3

stencil, and following the method of lines, we end up with a discrete version of our

M. Streng et al. J Simulation Practice and Theory 6 (I 998) 119-147 123

original problem, which is a system of ordinary differential equations

d
-&Uij(f)=!Bij, i=l, N,-l,j=l, . ..) N2-1, (2)

where 4pij represents the discretized flux, which depends on the values of

uijy ui+l,j, ui,j+l and Uikl,jfi (cf. Ref. [9]). The values ZQ,,(~), UN,j(t) and udt) are
determined by the discretization of the boundary-conditions, and u E ,(t) is obtained
by linear extrapolation. The Uij fulfill an initial condition which results from the
discretization of the original initial condition.

Eq. (2) is integrated with an explicit Runge-Kutta (RK) method. If the time-step
is denoted by At, we consider s-stage RK integration methods of the following form:

~~j =Uij(O), and for n= 1, 2,

nap’ =uij(nAt),

n;jk =uij(nAt)+akAt@yjk-‘, k= 1, s,

uij((n+ 1)At) =u$‘,

for some coefficients ak, k = 1, . . . , s. Introducing the time-level T =sn + k - 1 and (by
abuse of notation) denoting ~3” by uij, this takes the general form

uij
T div s

‘+I =F_(utj, uI*l,j, U~,j+1Uf*l,jf19 uij)3

where rdivs=sn+kdivs=sn.

3. Parallel processing of the prototype problem

In this section we discuss an algorithm for solving the prototype problem on a
distributed memory parallel computer, using a simple domain-decomposition.

If the prototype problem is to be solved on a parallel computer, we have to
distribute the work over the PE’s. Distributing the work will, in this paper, be
considered equivalent to distributing the data. We will use the convention that if we
speak about allocating part of the grid to a PE, we imply that the necessary storage
for all associated quantities (e.g. the flow field and the fluxes) is allocated on that
PE as well. In principle, the calculation of ~4;: 1 out of z4ij for a given time-level r
and one pair (i, j) can be regarded as one unit of work. However, this calculation
uses e.g. the values ~;~i,~+i for the computation of the discrete flux mij. Therefore,
distributing the data uij arbitrarily over all the PE’s would lead to excessive communi-
cation overhead.

It is better to allocate a contiguous block of the grid on each PE. Then only the
calculation of ~ij for xij on the boundaries of the blocks requires communication.
For a square 2d grid, the blocks which have the smallest ratio of boundary-points
to interior points and still fill up the whole grid, are squares. However, in later
sections, where we discuss non-dedicated clusters, we will have to redistribute the
blocks over the PE’s in such a way that not all blocks have equal size. Using the

124 M. Streng et al. / Simulation Practice and Theory 6 (I 998) 119-147

Fig. 1. Decomposition of a square computational space into equal squares (a) and slices (c). In the pictures
(b) and (d), one block is resized.

decomposition into squares, this can lead to complicated neighborhood structures
(cf. Fig. la, b). Moreover, both for vector processors and for most RISC-processors
used in present day computers, the availability of long contiguous arrays containing
the data corresponding to one spatial dimension of the physical problem is beneficial
for the performance, due to the mechanisms of vector- or software pipelining. For
these reasons we will consider a decomposition into slices. In this decomposition,
which is also used by e.g. Ferraro et al. [lo] for a different physical problem, resizing
of the blocks will result in an unaltered neighborhood structure (cf. Fig. lc, d). Note
that, in contrast with the situation occurring in the context of unstructured grids,
the neighborhood structure of this problem is quite obvious and has been chosen
by simple arguments. We next describe this structure in detail.

For n-, n, E N, let

L+ ={Xij Er?ln_ liln+ >.

The points x~~E&_,~+ with n_ <i<n+ are called the bulk-points, and those with
i=n _ or i= n + are the dummy-points. In the dummy-points, values to be received
from the PE’s dealing with the adjacent blocks are stored. Suppose we have P PE’s.
Let n-(p), n+(p), p= 1, P be natural numbers such that

n-(1)=0,

n+(p)=n_(p+l)+l, p=l, . ..) P-l,

n+(P)=N,,

n+(p)--n_(p)>2, p=l, P.

Then

A= u J,_(,,,,+(,,.
p=1,...,P

We will frequently abbreviate

d,=d “-(An + (PI.

Note that

M. Streng et al. 1 Simulation Practice and Theory 6 (1998) 119-147 125

Now we want PE p to perform the calculations for the solution of the differential
equations for the bulk-points in A,. Therefore we allocate each A,, on one PE p.
The columns cn+(p,, p=l, P-l and en_,,,,, p=2, P are allocated on two
PE’s. Given the values of Ut for n_(p) <i <n +(p) and 0 <j< N2 for a given time-
level Z, processor p can compute the discrete fluxes mij for n_(p) < i < n +(p), and
hence the values z$ 1 on time-level r + 1. In order to calculate uij’j” for
i=n_(p)+l and i=n+(p)-1, the values of u;,+’ for i=n_(p) resp. i=n+(p) need
to be transferred from processor p - 1 resp. p + 1. Note that (for 1 <p < P),

%I+ W.j = I.4 n_(p+l)+l,j? and un_(p),j =~~+c~-wl,j. An exception occurs if p =0 resp.
p=P, since then uh:’ resp. uh:,: are determined by the boundary conditions.

Since we are using a distributed platform, we have to employ message-passing to
transfer the dummy-points. If we use asynchronous (non-blocking) send operations
and synchronous (blocking) receive operations, it is efficient to advance the solution
for the columns II-(~) + 1 and n+(p) - 1 first, send the results to the neighboring
PE’s, and then continue with the other bulk-points of Ap. In this way, most of the
communication can be hidden behind the computations. This is confirmed by Cap
and Strumpen [1 I], where experiments are reported concerning a similar problem.
So, all processors p, p = 1, . . . , P will run the following algorithm:

T=;O
Initialize U& n-(p)liln+(p), OljlN,
repeat
Calculate U: L :,, + 1 ,j, 0 <j I N2
ifpfl then send ~~‘:,r+i,~, O<j<N, to processorp-1
Calculate u;:& l,j, 0 <jl N,
ifp#P then send ~~‘,&_i,~, OljlN, to processorpfl
Calculate utj”, n_(p)+l<i<n+(p)-1, OljlN,
If p # 1 then receive ~,_(p),~, 0 <jr N2 from processor p - 1
If p # P then receive u,+(~),~, 0 <j I N2 from processor p + 1
r=r+l
until some stop criterion.
For simplicity, we will allow n_(p), n+(p) to be real-valued, rather than integer

in the rest of the paper. This greatly simplifies the analysis, and since in a real
application N, BP, this is not unreasonable. In a real application, these values
should be rounded.

4. Dedicated systems

In this section we consider the interplay of the CFD-problem size, the memory
sizes and processor speeds of the workstations, and the bandwidth of the interconnec-
tion network, for dedicated systems. In the first subsection we will show in two
examples that there is an optimal number of PE’s given the hardware characteristics
and the actual implementation of the discrete flux calculations. It is shown that the
optimal implementation for this kind of platforms is different from the implementa-
tion which is traditionally used for vector-computers. To illustrate the point it is

126 M. Streng et al. / Simulation Practire and Theory 6 (1998) 119-147

sufficient to consider homogeneous clusters. In the second subsection the optimal
block-decomposition for heterogeneous clusters is derived.

4.1. The optimal number of workstations

In this subsection we will assume for simplicity that the workstation-cluster is
homogeneous and dedicated, and consists of P PE’s, each with A4 words of memory
and a sustained speed of S floating-point operations per second (Flops). Further,
the network connecting these PE’s is shared by all PE’s and has a sustained band-
width of B words per second.

In particular, we wish to determine the optimal number of PE’s to solve a given
CFD-problem. In order to motivate this, consider e.g. Burgers’ equation of Section 2.
Intuitively, one expects that with a few PE’s this problem can be solved in less time
than by using only one. However, if the number of PE’s is too large, the problem
is decomposed into too many tiny pieces, so the network-traffic due to the communi-
cation between the PE’s may be so large that the network becomes saturated. The
optimal situation hence is obtained as a ‘balance’ between these effects.

We will consider two examples. The first deals with Burgers’ equation of Section 2.
In this example the memory of the workstations is not considered a critical issue.
The second example is devoted to integration of the three-dimensional Navier-Stokes
equations for direct numerical simulation of compressible viscous flow, where a
fourth order spatial discretization is used. Here the amount of memory of the
workstations is a critical issue, which has consequences for the implementation of
the algorithm. In these examples we assume that the grid is sufficiently fine, i.e.
N,, N, >> 1. In the Navier-Stokes case, the same is assumed to hold for the number
N3 of grid cells in the third coordinate direction, i.e. N3>> 1. Moreover we assume
that the number of PE’s, P, is much smaller than N,.

4.1. I. Example I
Suppose we want to compute the solution to Burgers’ equation on a grid contain-

ing N, x N2 grid-cells, using the time-stepping method and spatial discretization as
mentioned in Section 2. We assume that we need f floating-point operations in order
to compute u:,?’ out of U~j. Further, we assume that each PE deals with an equally
sized part of the flow-domain. Then, if we use P PE’s, for each Runge-Kutta stage,
the time spent in computation TflOp is, to a good approximation, given by

T
N, Nzf --

flop - sp .

The communication time is the sum of the times needed for encoding and packing
the data, the time necessary for the actual transmission of the data and the time
needed for decoding and unpacking the data after receiving. For the partition of the
flow-domain as described in the previous section, each PE has to send approximately
2N, words of data, except for the PE’s dealing with the first and the last block. The
packing and unpacking of the data can be done in parallel, and is assumed to be

M. Streng et al. / Simulation Practice and Theory 6 (1998) 119-147 127

possible in a negligible amount of time. The total transmission time Ttrans, is given

by

T
2(P - 1)N2

trans =
B

Using asynchronous send operations, the transmission can be done during the
computation if Ttrans< Tflop. This leads to

This implies that the total turn-around time for the calculation of one stage is

N, Nzf
if PIP*

SP

2(P- l)N,
if P>P*

B

The smallest turn-around time occurs for P= rnd(P*) PE’s, where rnd(x) denotes
the value of x rounded to the nearest integer. A typical situation is the case where
Nr=N,=300, f=40, S=lOx 106, B=0.15 x 106. Then rnd(P*)=lO (cf. Fig. 2).
Note that in the limit for vanishing bandwidth B or infinite computing speed S,
p*+1.

4.1.2. Example 2
The second example concerns the direct numerical simulation of 3d compressible

viscous flow. In this case, instead of Burgers’ equation, the full Navier-Stokes
equations are integrated, using the same Runge-Kutta time-stepping algorithm as
described in Section 2, and with a 5 x 5 x 5 stencil for the (fourth order) spatial

Fig. 2. Turn-around time for parallel execution on P PE’s of one Runge-Kutta stage for Burgers’ equation.

128 M. Streng et al. / Simulation Practice and Theory 6 (1998) 119-147

discretization. In this case the analogue of a column is a slab, which we denote by
the same symbol:

~ii{~ijk101jIN2, O~klN,}.

Assume that we have a block-shaped grid with N, x N2 x N3 grid-cells, which we
partition into slabs of each (N,/P) x N, x Nj cells. Then, using the same notation as
in the previous example, at each Runge-Kutta stage 2 layers of dummy-points per
processor must be transferred to each of its neighbors. Note that the processors
dealing with the first and the last slab only have one neighbor. Per dummy-point
there are five words to transmit, corresponding to the five dependent variables, e.g.
mass-density, energy and the 3d momentum vector. So the total network-traffic for
each stage is approximately

(P-~)x~x~x~xN,xN, words.

The total computation time is

T
N, NzNsf

flop =
SP .

Hence communication will be the bottleneck if

2O(P- l)NzN3 N,N,N,f
>

B SP

Again, the turn-around time is optimal if P=rnd(P*). In this example however, it
is not realistic to ignore the memory of the PE’s. Suppose we have an algorithm
which needs mN,N,N, words of memory. In practice, m will be at least 10, since we
need 5 points per grid-point to store the flow-quantities, and we must keep U:jk as
well as uijp ‘. Usually, the number f depends on m, since often temporary storage
can be used to decrease this number by reuse of calculated quantities. Therefore,
we use the notationf, to express this dependency.

If each PE has A4 words of memory, we need at least

PnCn = r mNl N2 N3
M-4N,N3’

workstations to solve the flow-problem, where ix1 denotes the smallest integer larger
than x. The term 4N2N3 arises from the storage needed for the dummy-points of
each block. So if P,,,in> P*, the turn-around time for a Runge-Kutta stage is
dominated by the communication.

We will illustrate this for two practical cases. In both cases we use
N,=Nz=N,=256, S=25x lo6 flops, B=0.15 x lo6 words per second,
M=32 x lo6 word. The main difference between these cases lies in the implementa-
tion of the flux-calculation.

Case 2. This is the typical vector-computer implementation. Now the flux is not
calculated for each grid-point individually, but is instead generated in several sweeps

M. Streng et al. 1 Simulation Practice and Theory 6 (1998) 119-147 129

through the whole part of the flow-domain which is allocated on one PE, where in
every sweep a partial flux for all grid-points is calculated. The total flux is then some
accumulation of these partial fluxes. A common property of this type of implementa-
tion is a rather large amount of temporary storage and a fairly low number of
floating-point operations. A typical case is m = 30, f, = 50. Then rnd(P*) = 4 and
Pmin = 16, so the total turn-around time for one Runge-Kutta stage is (neglecting
encoding and decoding times) 131 s. In this case the turn-around time is dominated
by the communication.

Case 2. In this case the flux-calculations are done for each grid-point individually,
resulting in modest storage-requirements, but also in inefficient vector-code.
However, for parallel computing this method is in some cases favorable. Assume
m = 15, Jm= 500. Then rnd(P*) = 10, P,, =8, and the turn-around time for one
Runge-Kutta stage is 84 s.

The reason that the second case has a smaller turn-around time is roughly speaking
that - to a certain extent - extra floating-point operations are cheaper than
communication. This implies that the traditional trade-off between memory usage
and number of floating point operations is for parallel computing to be extended to
a trade-off between memory usage, number of floating point operations and
communication.

4.2. Optimal block-sizes for heterogeneous clusters

In this subsection we show how to determine the optimal block-sizes for a
heterogeneous cluster. In literature this is usually referred to as static load-balancing.
Again we take our prototype flow-problem as a case study. We assume that the
communication can be hidden behind the computation (i.e. P < P* in the case of a
homogeneous cluster, cf. also Remark 4.1). First we introduce some notation.

We define-T, as the time needed by PE p to compute z$j” out of ut for all bulk-

points xij E &(p,,"t(pp Let clp be the time needed by PE p to compute z$ ’ out of
uij for one column Ct. Further, let X, = n + (p) -n -(p) - 1. Then

T, =cxpXp.

The total turn-around time Ttotal for one time-level is then

T total = max T, .
P

In order to find the optimal block-sizes, we should solve the following optimization
problem

min max cl,X, subject to i X, =N,
x,,....xp p p=l

It can be proved that the solution of this problem equals the solution of the system

MpXp=c(p+lXp+l, p=l, . ..) P-l, i X,=N,,
p=l

130 M. Streng et al. /Simulation Practice and Theory 6 (1998) 119-147

which is intuitively clear, since now none of the PE’s will be idle. With the notation

1 1
--+...+i,

A-a, QP

this leads to

Remark 4. I. The optimal time needed to compute one RK-stage for the whole
flow-domain is NJ. If there are P PE’s, the communication can be hidden behind
the computation if

N,A>
2(P- l)N,

B ’

Remark 4.2. We observe a striking analogy with the situation occurring in the
theory of electrical networks. Consider a circuit consisting of P parallel resistances
R,, . . ., R,, which carries a total current I. The total resistance R of the circuit
satisfies

1 1

i - R,
--+...+$

P

and the current Zp through resistor p is given by

So the analogy is that X, corresponds with the current through resistor p, a, with
the resistance of resistor p, and A corresponds with the total resistance of the circuit.
Further, T, corresponds with the voltage over R,, which is equal for all p in the
steady-state.

Remark 4.3. Note that we have obtained the optimal block-sizes given the shape
of the blocks (i.e. given the communication structure of the parallel algorithm). This
is much more complicated in the context of unstructured grids, where the determina-
tion of the best communication structure is part of the balancing problem. This is
also a little more complicated in the case of extra work generation by means of grid
refinement for example, which is briefly considered in Section 5.6. Then N, and N,
vary in time, which makes the optimization problem more difficult.

5. Non-dedicated systems

5.1. Introduction

In this section and the following we consider non-dedicated clusters. In this
situation, the CFD job we are running will be called our job, and besides our job

M. Streng et al. / Simulation Practice and Theory 6 (1998) 119-147 131

there are some other tusks running on the cluster. We are interested in ways to
ensure that the turn-around time for our job is minimal, taking into account the
work that has to be done on the cluster for the other tasks. This can be done by
allocating smaller blocks on PE’s which are heavily loaded and/or slow, and bigger
blocks on PE’s which are relatively unloaded and/or fast. Because the load on the
PE’s changes in time, this allocation has to be renewed frequently. In our particular
case, we will consider a reallocation of the domain after each Runge-Kutta stage.

For this purpose we consider dynamic load-balancing strategies. Dynamic load-
balancing has been mentioned in literature quite frequently. We will only refer to
the following restrictive list of review-like papers: Refs. [l-5]. Most authors are
concerned with either one of the following two cases:

(i) Distributing all tasks in the cluster such that the cluster as a whole is used
optimally. This especially occurs in the context of distributed operating systems. See
Schabemack [2] for a survey.

(ii) Distributing the work of one particular job optimally over all PE’s in a cluster
which is dedicated to that job. In the context of CFD-computations, this is usually
related to adaptive unstructured meshes (cf. e.g. Williams [4]).

In this paper we will consider the case where the cluster is not dedicated, but one
also does not want to install some form of a distributed operating system. There
are several reasons for not installing a distributed operating system. In a production
environment, many other applications are running, which possibly make use of the
existing operating system, or are licensed to one particular machine. Further, using
all the features of a distributed operating system may decrease the portability of the
software. Finally, the transition to a new operating system is usually quite involved,
and affects all users of the cluster.

These assumptions are quite realistic for many production environments. However,
our aim is considerably more complex than the cases mentioned above, since now
we have to take the interaction of the load-balancing of our job with the other tasks
into account, in order to judge the effectivity of the method. Some related work in
this direction, from the viewpoint of developing data-parallel programming lan-
guages, has recently been undertaken by Nedeljkovic and Quinn [121.

Because only the work/data associated with our job is reallocated, we will speak
about domain-balancing in order to avoid confusion. Of course domain-balancing is
closely related to load-balancing in the traditional sense. In particular, various load-
balancing techniques can be modified to domain-balancing. In literature several
types of load-balancing strategies are mentioned. Roughly speaking, we distinguish
between local and global strategies. In local strategies there is only migration of
work between neighboring PE’s. We refer to Willebeek-Lemair and Reeves [1] for
a survey of local strategies. The most well-known are diffusive methods (cf. the
classical paper by Cybenko [6]) and dimension exchange methods (cf. e.g. Xu and
Lau [7]). Local strategies are fully distributed in the sense that each PE decides
itself, based on information from adjacent PE’s only, whether or not to participate
in the process of load-balancing. Usually, these strategies require less synchronization
than global methods, but they react slowly on variable load. It will appear, however,
that in the presence of rapidly fluctuating loads, this can be a good property. In

132 M. Streng et al. 1 Simulation Practice and Theory 6 (1998) 119-147

global strategies the load-characteristics of all PE’s are collected, and a new distribu-
tion of the data is calculated. These methods can react fast on load-variations, but
require much stricter synchronization than local methods. Well-known methods of
this kind are e.g. the various spectral bisection methods, cf. e.g. the paper by
Williams [4], and the gradient model algorithms, as described by e.g. Lin and Keller
[131. We will study one particular type of global methods already known from
literature, namely the multilevel methods. In these methods the available PE’s are
split into a hierarchy of sub-clusters. Balancing is done between sub-clusters which
have the same level in the hierarchy, see e.g. the paper by Horton [8].

Since we want to balance the load of one particular job (viz. our job) on a non-
dedicated system, we cannot directly apply the methods described above. However,
for representative methods from each of these categories, we show that it is possible
to modify them in an appropriate way. Moreover, we will give a new global method,
based on the fact that the static domain-balancing can be achieved very easily.

In order to judge the effectiveness of these methods, we have to consider the
interaction with the other tasks. We are interested in a heuristic indicating which
type of method should be used given the characteristics of the other tasks, in order
that the turn-around time for our job is minimal. In this respect, there are two
effects that should be taken into account.

(i) Due to a domain-imbalance the turn-around time is larger than optimal, since
some of the PE’s cannot advance the solution of their part of the flow problem
further, because they are waiting for the dummy-points from their neighboring PE’s.

(ii) Due to a redistribution of the work (in order to obtain a balanced domain),
we have to make some communication costs, which slows down the execution of
our job.

In fact, at each domain-balancing step, it should be decided whether it is (in the
long run) better to balance or not, and, if appropriate, which method should be
used. This, however, is impossible to do optimally, since the load due to the other
tasks may be changing in an unpredictable way.

Hence, the decision which method should be used depends on the (statistical)
distribution of the other tasks. But even then it is mathematically very hard, if not
impossible, to predict the expected turn-around time of our job, given this distribu-
tion and given a load-balancing method. In this paper we confine ourselves to a
model study. This will show that there is no method which performs best under all
circumstances. Moreover, we will obtain an understanding of the behavior of the
strategies in relation to the varying load of the other tasks, and provide heuristics
to guide the decision for application of one of the strategies. It is indicated that, for
a given load-situation, these heuristics can be confirmed by a simulation of the
progress of a CFD-calculation in combination with the balancing-method in the
presence of the particular load-situation.

Before presenting the various dynamic domain-balancing strategies, we introduce
some notation. Because n_(p), n+(p) are assumed to vary every time-level, we
denote them by n\(p) and n:(p), p=l, P, z=O, 1, 2, For p=l, P, let
_.Y; = n’+ (p) - nY (p) - 1, and let ,Y~ be the time needed by workstation p to calculate
UT: l out of uij for one column Ci in a situation where PE p is dedicated to this task,

M. Streng et al. J Simulation Practice and Theory 6 (1998) II 9-147 133

i.e. there are no other jobs running on this workstation. In general, in a heterogeneous
cluster, yp will be different for each p. The number of other jobs which are running
on workstation p at time-level z is denoted by I;. Then, because of timesharing, the
real time needed by workstation p to calculate z$’ out of uTj for one column Ci is
given by

where we assumed a times-lice which is small compared to y&i. We put

a; =yp(l +Q,

which reduces to the definition given in Section 4.2 if Ip=O.
In all strategies given below we determine xpp+i, p = 1, . , P as the solution or an

approximation to the solution of the system

cZ;x;+‘=t1;+J;‘,:, p=l, . ..) P-l

i x;+i= 5 x;,
(4)

p=l p=l

where ai = T’,IXi, for p = 1, . . . , P. We explicitly solve these equations for the case
P=2, and for future reference express the results somewhat more generally. We
obtain after some manipulations (in our case p = 1)

On substituting p = 1, it can be seen after some elementary calculations that this
equals Eq. (3).

We will present two local strategies, the generalized dimension exchange method
(GDE) and a diffusive method. The latter will be given first for the discrete case of
a finite number of PE’s. Then we give a description for the continuous case that the
number of processors tends to infinity. This will provide a motivation for the multi-
level strategy to be presented in Section 5.4. In Section 5.5 we give a global strategy.
In the last subsection we spend some words on partial balancing and grid-refinement.

Remark 5.1. In the rest of this work we assume that all domain-distributions
obtained in the process of domain-balancing can actually be allocated on the PE
under consideration. In practice, this may lead to complications, since it may happen
that not enough memory is available on PE p to store Fp+l.

5.2. The generalized dimension exchange method

In the generalized dimension exchange method (GDE) (introduced by Xu and
Lau [7] for the case of homogeneous dedicated clusters) the processor topology is
considered a graph with vertices the PE’s and edges connecting those PE’s which

134 M. Streng et al. / Simulation Practice and Theory 6 (1998) 119-147

have to exchange information during the computation (in our case: which have to
exchange information concerning the update of the dummy-points). These edges are
colored in such a way that no two equally colored edges leave one vertex. The
number of colors is called the dimension of the graph.

Domain-balancing is obtained by - successively for each color - exchange of
columns between processors connected by an edge of that particular color. In our
case of a linear PE-array, we need only two colors. The domain-balancing alternately
involves exchange of columns between PE’s belonging to the pairs

2p+l and 2p+2, p=O, L fl, (the odd phase)

and

2p+2 and 2p+3, p=O, L :1-l, (the even phase).

Here LxJ denotes the largest integer smaller than x. Because in each phase of the
balancing only pairs of two neighboring PE’s balance their domain, this can be done
using Eq. (5). It is easily verified that this reduces to the GDE method of Xu
and Lau [7] for the case of a linear PE-array. (Indeed, reformulation of Eq. (5)
in J$+l= (l-~)X;+nxr,+, (the form as used in Ref. [7]) shows that
;I = c$/(c$ + i + c$) depends on p as it should for a heterogeneous workstation-cluster.)
A moment of reflection shows that this method can be written as

X’+ 1 = aIa;X’, (6)

where a1 and a, correspond to the two colors. Both are P x P block-diagonal
matrices, with block-sizes 1 and 2, depending on whether P is even or odd. The
(tridiagonal) matrix ala2 has the following properties:

(i) The column-sums are all equal to 1, since this holds for a, and az.
(ii) The entries are all strictly positive.
(iii) It is irreducible.
Standard Perron-Frobenius theory reveals that in the static case (i.e. al, a2 not

dependent on z), the iteration Eq. (6) converges to the eigenvector corresponding
to eigenvalue 1. Direct inspection shows that the components of this eigenvector
correspond to the optimal distribution for a dedicated cluster, as given by Eq. (3).
Note that several generalizations are possible, e.g. the k-step GDE method, where

X r+1=(ala2)kXr.

5.3. DifSusion method

5.3.1. The discrete case
Motivated by Eq. (5), in the general case we put for 1 <p <P,

(7)

M. Streng et al. J Simulation Practice and Theory 6 (1998) II 9-147 135

and for p = 1 resp. p = P,

(8)

Here /I is some parameter, which is specified later. Eqs. (7))(9) can be cast into the
following shorthand form:

X r+ l =a?(fl)X’, (10)

where czr(/?) is a P x P tridiagonal matrix. More generally, we can introduce the

k-step diffusion method as

However, for a convergence analysis it suffices to consider the case k = 1. The matrix

ar(fi) satisfies the following properties:
(i) the column-sums are all equal to 1,
(ii) if /)’ < f, all entries are positive,

(iii) it is irreducible, since all a; > 0.
Again, by standard Perron-Frobenius theory, the eigenvalues of Al lie within the

unit circle; the only eigenvalue on the unit circle is 1. If c1 does not depend on 7

(stationary load due to the other tasks) the iteration Eq. (10) converges towards the
eigenvector corresponding to eigenvalue 1. Direct verification yields that this eigen-

vector is precisely the static optimal distribution as given by Eq. (3). The convergence

speed is determined by the second largest eigenvalue. A straightforward analysis of
the case P= 3 reveals that a=$ is optimal, if we take into account that the loads

X; are positive, leading to the requirement p<f. So in the sequel we take b =i and

denote c#) by ~2. Concerning this second largest eigenvalue, Boillat [141 has shown

for a homogeneous cluster and a slightly different strategy that this eigenvalue
converges essentially as (1 - l/P’) for P-+co, which means that the convergence
towards the optimal distribution becomes very slow. For our strategy a similar result

will hold (no proof).

For that reason, Horton [S] proposed a multi-level strategy. We will present a
modified version of this in the next subsection. First, for the sake of motivation,

and because it is a nice result in itself, we will give a description of the behavior of
the local strategy for large P.

Remark 5.2. The GDE method and the diffusion method can be implemented in

both a synchronous and an asynchronous way. In the synchronous way, all PE’s do
the balancing simultaneously. In the asynchronous implementation, each PE does a
balancing at the moment that it reaches a balancing statement and finds (by exchang-
ing timings with its neighbors) that a balancing has to take place.

136 M. Streng et al. / Simulation Practice and Theory 6 (1998) 119-147

5.3.2. The continuous case
Put h= l/P, and let X,,, a,:(t, 5) E Iw+ x [0, I]--48 be interpolating functions such

that

X,,

and

p=l, P, z=O, 1, 2,

Al,,

Then,

=cc;, p=l, P, z=O, 1, 2,

where 8f denotes differentiation with respect to < of J Further,

a;+,+LY;~ 2%(, ;, (p+ $9.

So, after some manipulations we obtain from Eq. (7) (with /?= l/2),

which happens to be the Euler discretization with step-length h2/4 of the
Fokker-Planck equation

where we have put

X=lim X,,, and cr=lim xh.
h+O h+O

Note that in this derivation we assumed that these limits exist, which need not be
the case for arbitrary sequences X,, xh.

In order to conclude the continuous formulation, we have to supply Eq. (11) with
boundary conditions for X(. , 0) and X(. , 1). A natural boundary condition can
be obtained from the discrete case for p = 1 resp. p = P. From Eq. (8) it follows that
e.g.

This is consistent with Eq. (11) if this is an Euler discretization with step-size h2/4.

M. Streng et al. J Simulation Practice and Theory 6 (1998) 119-147 137

But then

lim +(&%)(r(~2/4)? 0)

h-0 h

must exist, which is the case if

a,Gw , 0) =o,
and similarly

a,(%)(., l)=O.

We check that the total load is conserved, i.e.

(12)

(13)

s 1

4 X(., r)d5:=0.
0

This follows from Eq. (1 1), since

s 1

4
0

xc., r)d~=(a,x+x~)l~=~ II=o,
by the boundary conditions Eqs. (12) and (13).

Let us consider some examples.
Example I. First we consider the stationary state of Eq. (11). Then 8,X= 0, and

from Eq. (11) and the boundary condition Eq. (12) it follows that Xa =/c(t) for
some function k(t), which represents the optimal situation where each PE finishes
its part of our job in an equal amount of time. Note that the case of time-dependent
a(t, <) is allowed. This corresponds e.g. to a situation where another balanced job
starts or finishes on the cluster during the run of our job.

Example 2. For a dedicated homogeneous cluster, Eq. (11) reduces to the diffusion
equation,

a,x=a;x, a,x(., o)=a,x(., i)=o.

The general solution of this equation can be obtained by separation of variables.
Putting X(t, 5) = T(t).?(r), we obtain a Sturn-Liouville problem for Z. This provides
us with the existence of the characteristic times I,, = krc, k = 0, 1, 2, The general
solution is a superposition

z Bke-@ cos(l,5),
k=O

where the constants B, are determined from the initial condition at r = 0.
For a heterogeneous cluster and a not dependent on t, Eq. (11) with boundary

conditions Eqs. (12) and (13) can also be solved by separating variables, resulting
again in a Sturn-Liouville problem for Z. So in that case as well there exist
characteristic times &, k=O, 1, 2, . . . and characteristic functions Zk such that the

138 hf. Srreng et al. / Simulation Practice and Theory 6 (1998) 119-147

solution can be written as

B,e-“k’Ek(().
k=O

Remark 5.3. Example 2 seems to be in contradiction with the result obtained by
Boillat concerning the convergence of the discrete case. iFrom example 2 it follows
that the convergence of the continuous case is not worse than e-*‘, whereas in the
discrete case the convergence-speed tends to zero if P+ co. The reason is that the
discrete case in fact is a discretization of the continuous case. For such discretizations
it is well-known that the low-frequency components of the discretization error are
only very slowly damped. In fact, this is precisely the motivation for the development
of multigrid methods for the numerical solution of PDE’s (cf. Ref. [151). In these
methods, the low-frequency components of the error are reduced using coarser grids.
The application of multigrid methods to dynamic load-balancing results in the
multilevel strategy of the following section.

5.4. Multilevel strategy

The multilevel method is based on the following reasoning. Suppose we have an
unbalanced work-distribution. Partition the set 9 = { 1, . ., P} into two subsets pi
and p2. In general we can assume that

max T, > max T,.
PE91 PE.YZ

We now transfer some columns from 9, to Ypz, which are redistributed over the
PE’s in Y1 and YZ in such a way that each of the PE’s decreases or increases its
load X, linearly. More precisely, if x1 is the new number of columns in Y1 and the
new domain-distribution is denoted by 2, then for all p E 9,:

?lp= x1 c XP

x,,
PE=+-l

and we define

The number of columns to be transferred is determined by the requirement that

max pp = max fp.
PEBl PE.92

Now we apply the same procedure to Y1 and .Y,, with X, replaced by Tp, for p=

1 3 ..*, P. This results in a globally balanced state after a finite number of steps, as
is proved in Theorem 5.1 below.

We need one more notation: if X= (Xk, , . . . , Xkz), then the length of X is denoted

M. Streng et al. / Simulation Practice and Theory 6 (1998) 119-147 139

by llxll:

Now we give the multilevel balancing method as a recursive procedure, and prove
its convergence.

procedure balance(pr, p[, X”ld, X”““, a)
if pr =p, then YPyw = Xzy

else
Partition 9’= {pr, pt} into PI and Y2, where
Y1= {p,, P,), 8,= {p,+ 1, Pi }, with P,,, = I(pt - ~J/21.
Determine numbers x1 and x2 such that

~IlllX,II maxP.9, ~,~,=-4&11 maxP..y, aJ,
x1+x,= IIXIII + ll-ul.
forpEp put ~p=hlll~~II)~p
for p E p2 put ~,=C~2111X211 Ix,
balance(p,, pm, X, ly_‘+‘, a)
balance(p, + 1, pt, X, X”““, a)
endif
end

Theorem 5. I. Let X, be arbitrary, and let X,, l= 1, 2, . . ., be given by

balance(1, P, Xlel, X,, a).

Then for I = [log,(P)1 the domain distribution X, equals the globally balanced state
$, which satisfies

xLpXp=ap+lXp+Ir p=l, . ..) P-l

IIXII = IIxll~
Proof. The proof rests on two observations. First notice that if in the partition

step, 9, and g2 happen to be such that

~pXp=~,+IX,+I~ P=Pf 3pm-1

@pXp=~p+lXp+lr P’Pm, . ..1 Pl-1,

then also - since %p is a multiple (independent of p) of X, -
I

a,x,=a 8 p+l p+1, P=Pf, pm-l and ~l~~~=~~+~~~+,, P=P,,,, pt-1,

and so Xnp”“=tp, P=Pf, p,, and by construction of x1 and x2,

Xp~W=tlp+lY~C:WL, p=pr, pt-1.

Second, after one call balance(1, P, X0, X,, a), the subsets consisting of 1 or 2
consecutive PE’s are balanced. By induction it follows that after [log,(P)1 calls the
globally balanced state is obtained.

The actual domain-balancing is done by

140 M. Streng et al. / Simulation Practice and Theory 6 (1998) 119-I 47

x,=x7
do i= 1, 1 balance(1, P, X, _ I, X,, CC) enddo
r+‘=x,.
This strategy will be referred to as the l-sweep multilevel strategy.
Remark 5.4. This multilevel method is different from the one proposed by Horton

[8]. 1% fact, the latter method amounts to determination of the ideally balanced
state X satisfying

Gl;lyrp=cI;+l~~+l, p=l, . ..) P-l.

However, we can determine p explicitly, by using Eq. (3). This is the basis of the
global method presented in the next subsection.

5.5. The global strategy

Besides the iterative methods mentioned so far, there is a direct method to obtain
the globally balanced state.

Let F be the solution of

The solution _%? is given by Eq. (3), the computation of which requires a global
sum, showing the global character of the method. This method will be called the
exact global method.

5.6. Full andpartial balancing, grid refinement

All methods mentioned above have the following general form:

xr+l=Fk(xr), (14)

where the symbol Fk refers to e.g. the k-step diffusion method, etc. (For the exact
global method, k = 1.) For all these methods

lim Fk(X1)=p,
k-a,

and hence they all reduce to the exact global method if k-+co.
Under some circumstances, it is better to do a partial balancing, because all

balancing methods rely on an estimate for CL’+ ‘. If CC is rapidly fluctuating in time,
these estimates are likely to be inaccurate. Therefore we introduce the one-parameter
families of balancing methods given by

X’+‘=(l -i)Xr+#k(X’), (15)

where 0 515 1, and denote them by the terms partial balancing k-step dzjiision
method, etc. Note that if 1 =O, no balancing is done. If ;I = 1 we speak of full
balancing.

We finally spend some words on grid refinement. Due to the general form

M. Streng et al. / Simulation Practice and Theory 6 (1998) 119-147 141

(Eq. (14)), a grid refinement consisting of adding or deleting some extra columns
of grid-points to computational space can be easily incorporated. If e.g. 4’; is the
number of extra columns inserted in 2, on processor p at time-level r, we obtain

X r+l=Fk(Xr+p) and N’,+‘=N; + i i’,.
p=l

Note that adding or deleting rows leads to a change in N2, and not to a change in
the column-distribution X.

6. Performance of the load-balancing methods

In this section we consider the effectivity of the domain-balancing methods men-
tioned in the previous section.

6.1. Introduction

In the application of domain-balancing, for all methods the following phases can
be distinguished:

(i) Computation step: perform a Runge-Kutta stage for time-level r with the given
domain-distribution X’.

(ii) Statistics step: measure F,, p = 1, . . ., P, and determine I$,, p = 1, . . ., P.
(iii) Decision step: decide whether or not to redistribute the domain and if appro-

priate, which method to use.
(iv) Balancing step: Calculate the new domain-distribution X+’ by application of

the chosen method.
(v) Redistribution step: Redistribute the domain over the PE’s.
In a practical situation, the execution of our job can be delayed on the one hand

in the computation step due to a non-optimal domain distribution, and on the other
hand due to the communication and synchronization costs required in the redistribu-
tion step. Therefore, the most important step is the decision step, where this trade-
off must be analyzed. Suppose at time-level r we have a domain-distribution x’,
and a load given by CI’. By domain-balancing, we obtain a distribution Xf’, which,
in general, will not be balanced with respect to ar+‘. Due to the fact that the next
time-level is calculated with the unbalanced domain, we obtain a throughput-delay
of

camp = (max a;+‘X;+’ --c$+~F~+~,
p= l,...,P)

where X + ’ is the balanced domain w.r.t. a’+‘. However, also the balancing costs
time, which we will denote by Cba,. The total delay arising at time-level r is then

A’ = C:omp + Cr,,, . (16)

142 M. Streng et al. 1 Simulation Practice and Theory 6 (1998) lIY-147

In fact, a domain-balancing method must minimize

c A’. (17)

In the rest of this section, we will first analyze Eq. (16) somewhat further, and focus
on the effect of the CFD problem-size, the actual implementation of the algorithm,
and the characteristics of the workstation-cluster on the choice of a domain-balancing
method. Next we will discuss the influence of the statistical nature of cx’ on the
performance of the domain-balancing strategies. We introduce the balancing effi-
ciency and the balancing speedup in order to quantify this performance. Finally, we
will give an example illustrating these points.

6.2. Analysis of the deluy at one time-level

In this subsection we analyze Eq. (16), in order to obtain an impression of the
influence of the problem-parameters (f, N,, N,, N3), the hardware-characteristics
(B, S) and the load-variations (I;) on the delay A’ at time-level z. First we derive an
algorithm for the computation of Cba,.

Theorem 6.1. Let X = Xi, . . , X,, and Y = Yi, . . . , Y,, with l[Xll = /IY 11. The number
of columns to be transferred to redistribute X into Y is at most

Proof. In order to obtain Y, from Xi we have to transfer C= IX, - Y,l columns
from PE 1 to PE 2. After this transfer, we have on PE 2 some intermediate number
of columns _%?Z = X, + Xi - Y,. So the number of columns to be transferred to PE 3
is I%Z- Y,l. On PE 3 we then obtain the intermediate number of columns
_?j = X, + zZ - Y,. By induction, the total number C of columns to be transferred is
obtained by the following algorithm:

C=lX,- Y,l
zi==i
dop=2, P-l

&=X,+&-,-Y,_,
c=c+jr,-&I

end do
In the p-th step we get

c=c+~Y,-x,+Y,_,-~~_,~=c+~Y,-x,+Y,_,-x,_,

+ Y,_, -xp_, +... + Y, -x,1,

proving the theorem.
For the case of Navier-Stokes equations we obtain

NzN,
C;,,(NS) = -

B d(x” Xr+1)’

M. Streng et al. 1 Simulation Practice and Theory 6 (1998) 119-147 143

Now we consider the term Ccomp in Eq. (16), again for the Navier-Stokes equations
(the Burgers case is treated similarly). Since

r+ 1 _ N2N3f
UP - ~ (1+1;+l),

SP

we obtain

Cc_, (NS) = N, N3 f
1+1;+1

max ~ (A-;’ l -Fp”).
p=1,...,P SP

For a homogeneous cluster, Eq. (16) becomes

_max (l+I;+‘)(X;+‘-A$+‘)+d(Xr, Xr+l)
p l,....P

(18)

which will be written as

A’=yPi_ (camp +Gba1 . s)
We can draw the following conclusions related to the decision which balancing
method must be used:

(i) (Concerning the problem-size.) The problem-size is not important. Note that
this is due to the linearity of the balancing methods (ensuring independence of N,)
and to the fact that both the transfer of a slab of the computational space and the
computation of ~:,$i out of uijk for all j, k are proportional to N2N3.

(ii) (Concerning the computational intensity 5) If the number f increases, it is
increasingly better to do a full domain-balancing aiming at X’i%*+i. If the
number f is rather low, and the load-fluctuations are high, partial balancing will be
preferable.

(iii) (Concerning the hardware-characteristics.) If the ratio of the bandwidth to
computation speed decreases, domain-balancing might not be a good idea, since for
low enough B/S the balancing costs become dominant in Eq. (18). However, partial
balancing might still diminish A’.

6.3. Performance of the balancing methods

In order to quantify the performance of the various balancing methods, we
introduce the balancing speedup 0. Given a; for some time-level z, the ideal comple-
tion time for Runge-Kutta stage z is

144 M. Streng et al. / Simulation Practice and Theory 6 (1998) 119-147

So if we have a run of, say, k time-levels, the ideal completion time Tide,,(k) is

However, due to the time spent in the domain-balancing, the real completion time
T,,,,(k) will be larger. If balancing is successful, Trea, should be smaller than the
time Tno_ib used for completion of k time-levels without balancing. The balancing
speedup a(k) is defined as

o(k) =
Tno-n, (4

T,,,(k)

6.4. Simulation of the balancing methods

Suppose we want to carry out a CFD-simulation on a given cluster, and assume
that we have some information about the nature of the load-fluctuations on the
cluster. Given the information of the previous subsections, some insight might
already be present about which balancing methods can be used. For example, if the
load-fluctuations are very rapid, partial balancing is probably to be preferred above
full balancing. Or, if the load fluctuates only slowly, and/or the number f is very
large, full balancing can be considered. However, even if the nature of the load-
fluctuations is known quite well, it is very likely that a priori determination of an
optimal balancing method is hardly possible. In a practical situation, it is of course
not possible to run a CFD-job with each of the balancing methods, since the time
needed to run such a job can be rather large. Therefore, we propose to simulate the
combination of the CFD-computation and the balancing methods, to find the
optimal one.

We will illustrate this by an example of a cluster with a very simple fluctuating
load. We will consider both the solution of Burgers’ equation and the integration
of the 3d Navier-Stokes equations, as considered in Section 4.2. In the first case, f
is rather small, so A’ is most likely to be dominated by the balancing term, whereas
in the latter casef is large, so the computation term will be most important.

We use the following simplifying assumptions:
(i) The cluster is homogeneous.
(ii) The communication of the dummy-points is hidden by the computation (i.e.
PC P* in the notation of Section 4.1).
(iii) The statistics, decision and balancing-step cost a negligible amount of time.
(iv) The redistribution step cannot be hidden by the computation step.
(v) The other jobs do not cause paging or saturation of the network.

Recall that Z, is the number of other jobs running on PE p. For simplicity we will
only consider synchronous implementations of the local balancing strategies. Then
the time to complete one Runge-Kutta stage and to perform the load-balancing (if

M. Streng et al. 1 Simulation Practice and Theory 6 (1998) 119-147 145

applied) is

max x,X, + Tlbr
p=1,...,P

where Tlb is the time for the redistribution, and up is given by

(1 +~pPLf-
up =

SP ’
in the Burgers case, and by

(1 + l,)N,NJ”
cl* =

s, ’

in the Navier-Stokes case.
The balancing time Tlb is assumed to be the total number of bytes transferred

over the network divided by the bandwidth. We will calculate the throughput-time
for 1000 Runge-Kutta stages on a homogeneous cluster with P= 6 workstations,
each with a sustained speed of S,= 10 Mflops, connected on a network with a
sustained bandwidth of B = 0.15 Mword per second. In the case of Burgers’ equation,
we choose an algorithm requiring f= 40 floating point operations in order to calcu-
late z.$j” out of uij. Further N,=300, and we take Ni =300. In the Navier-Stokes
case, we choose f= 500, N, = N2 = N3 = 128. In both cases P < P*.

In the example each PE of the cluster is used by one other user for half of the
number of time-levels. The load-functions 1; differ only in the length of the time-
intervals at which the other user is active, and are given by

0, l’ = z mod r2oom < r 100/d
P

1, otherwise
(19)

With this load, Tildeal =90 s for the Burgers case, and Tideal =26214 s for the
Navier-Stokes case.

The performance of the various domain-balancing strategies is summarized in
Fig. 3 for the Burgers case (left picture), and for the Navier-Stokes case (right
picture).

It can be seen that in the case of a small f domain-balancing will not give
considerable speed-up. On the contrary: application of domain balancing may even
slow down the execution of the CFD-job. In the case of Navier-Stokes equations,
where we need a rather high numberf, domain-balancing may speed up the calcula-
tions in this case by some 25% (which, for this run, implies a saving in wall-clock
time of about 2 hours).

Further it can be deduced that for both cases the family of global methods can
provide best results, provided the optimal value for the parameter 1 is chosen. From
the simulations we conclude for the Navier-Stokes equations that, given the load
on this cluster, domain-balancing is advisable; the recommended method in this case
would be the exact global method.

For other load-situations, a simulation like the one we performed will result in a

146 M. Srreng et al. 1 Simulation Practice and Theory 6 (1998) I 19-147

Fig. 3. Speed-up of the various l-step domain-balancing strategies for the case of Burgers’ equation (left
picture) and Navier-Stokes equations (right picture). Shown are the speed-ups for the family of partially
balancing methods. Lambda (A) is the parameter in Eq. (15) which denotes the amount of balancing. The
line-styles refer to the global method (solid), the diffusion method (dotted), the GDE method (dash-dot-
ted) and the multilevel method (dashed).

recommendation on whether to employ domain-balancing, and if so, which method
should be used. Concerning all methods, the results presented here suggest that there
is an optimal 1, depending on the nature of the load-fluctuations. One might get the
impression that this optimum is 2 = 1 in the case of the global method, but simulations
for other load-situations revealed that this is not generally true. Estimation of this
optimal 3, will be the subject of future research.

In the limit for k+co, all methods should perform equally well. In Fig. 4 it is
shown for the diffusion method that if k-co, the behavior of the family of partially
balanced k-step methods approaches that of the family of global methods.

Fig. 4. Speed-up for the family of partially balanced k-step diffusion methods applied to the Navier-Stokes
equations for k= I (dashed), k=6 (dash-dotted), k= 16 (thin dots) and k= co (and global method)
(solid).

M. Streng et al. / Simulation Practice and Theory 6 (1998) I1 9-147 147

7. Conclusions

We have considered the application of domain-decomposition techniques for flow-
simulation of workstation clusters. We studied dynamic adaptation of the sizes of
the domains, depending on the activities on the cluster. We have discussed several
dynamic load-balancing algorithms known from literature and adapted them for
this case. Moreover, we introduced a new one-parameter family of load-balancing
methods. According to a model study of the performance none of these algorithms
is the best under arbitrary load-circumstances. If the amount of computational work
in the flow-simulation per time-step is small, then dynamic load-balancing will not
give reasonable speedup, whereas it may give some speedup in the case of much
computational work per time-step. Therefore, dynamic load-balancing has to be
applied with some care.

References

[I] H.M. Willebeek-Le Mair, A.P. Reeves, IEEE Trans. Parallel Distr. Syst. 4 (1993) 979-993
[2] J. Schabernack, lnformationstechnik (IT) 34 (1992) 280-295.
[3] A.Y. Grama, V. Kumar, N.R. Vempaty, J. Parallel Distr. Comput. 22 (1994) 60-79.
[4] R.D. Williams, Concurrency: Practice Experience 3 (1991) 4577481.
[5] C.Z. Xu, F.C.M. Lau, J. Operational Res. Sot. 45 (1994) 786-796.
[6] G. Cybenko, J. Parallel Distr. Comput. 7 (1989) 279-301.
[7] C.Z. Xu, F.C.M. Lau, J. Parallel Distr. Comput. 16 (1992) 3855393.
[S] G. Horton, Parallel Comput. 19 (1993) 208-218.
[9] B.J. Geurts, H. Kuerten, J. Eng. Math. 27 (1993) 293-307.

[IO] R.D. Ferraro, P.C. Liewer, V.K. Decyk, J. Comput. Phys. 109 (1993) 329-341.
[1 I] C.H. Cap, V. Strumpen, Parallel Comput. 19 (1993) 1221-1234.
[121 N. Nedeljkovic, M.J. Quinn, Concurrency: Practice Experience 5 (1993) 257-268.
[13] F.C.H. Lin, R.M. Keller, IEEE Trans. Software Eng. 13 (1987) 32-38.
[141 J.E. Boillat, Concurrency: Practice Experience 2 (1990) 2899313.
[151 P. Wesseling, An Introduction to Multigrid Methods, John Wiley, 1992.

