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Abstract
The spread of cancer is a non-deterministic dynamic process. As a

consequence, the design of an assistant system for the diagnosis and prog-
nosis of the extent of a cancer should be based on a representation method
that deals with both uncertainty and time. The ultimate goal is to know
the stage of development of a cancer in a patient before selecting the
appropriate treatment. A network of probabilistic events in discrete time
(NPEDT) is a type of Bayesian network for temporal reasoning that mod-
els the causal mechanisms associated with the time evolution of a process.
This paper describes NasoNet, a system that applies NPEDTs to the di-
agnosis and prognosis of nasopharyngeal cancer. We have made use of
temporal noisy gates to model the dynamic causal interactions that take
place in the domain. The methodology we describe is general enough to
be applied to any other type of cancer.

Key words: cancer diagnosis and prognosis, Bayesian networks, causal-
ity, probabilistic temporal reasoning, temporal noisy gates

1 Introduction

The diagnosis and prognosis of the extent of a cancer are tasks full of uncer-
tainty. This is due, on the one hand, to the deeply non-deterministic nature
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of this disease and, on the other hand, to the incomplete, imprecise, or erro-
neous information that the oncologist may obtain. This situation is even more
complicated in the case of nasopharyngeal cancer, since the nasopharynx is a
hidden and difficult to enter cavity located in the highest part of the pharynx.
Therefore, early detection of a malignant nasopharyngeal tumor is not com-
mon. Generally, patients only seek medical attention at advanced stages, when
symptoms become evident.

1.1 Bayesian networks for cancer diagnosis

Bayesian networks [21, 24] are a probability-based knowledge representation
method, appropriate for the modeling of causal processes with uncertainty, such
as those determining the evolution of a cancerous disease. A Bayesian network
is an acyclic directed graph whose nodes represent random variables and whose
links define probabilistic dependences between variables. These relations are
quantified by associating a conditional probability table with each node. Each
conditional probability table contains the probability of a node, given any pos-
sible configuration of values for its parents. For root nodes, only their a priori
probabilities are needed. Bayesian networks allow probabilistic dependence and
independence relations to be specified in a natural way through the network
topology. Diagnosis or prediction with Bayesian networks consists of fixing the
values of the observed variables and computing the posterior probabilities of
some of the unobserved variables. Some applications of Bayesian networks to
oncological domains are:

• PATHFINDER [12, 13], an expert system for the diagnosis of lymph node
diseases. PATHFINDER makes use of the so-called probabilistic similarity
network, which represents the possible diagnoses in only one node. More-
over, the patient is supposed to suffer from a unique disease, which is a
reasonable hypothesis in this domain.

• MammoNet [16], a Bayesian network to assist in the detection of breast
cancer, which integrates mammographic findings, demographic factors,
and physical examination to determine the probability of malignancy.

• DynaMoL [19], a general dynamic decision framework based partially on
the formalism of dynamic influence diagrams [27]. This framework is
applied to a case study on deciding the optimal follow-up schedule of
colorectal cancer patients who have undergone surgery [5].

Neither PATHFINDER nor MammoNet make use of an explicit representa-
tion of time, whereas in DynaMoL the time horizon is defined as a set of discrete
time points, each corresponding to a certain decision stage.

1.2 Probabilistic temporal reasoning

Time is a fundamental factor in cancer, since it usually determines the stage of
the disease and, consequently, the type of treatment to be applied. Modeling the
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process that begins when a malignant tumor arises and ends with the appear-
ance of several typical symptoms, metastasis, or affected lymph nodes, requires
representing the causal mechanisms that control this process over time. Some of
the most widespread methods for modeling dynamic processes with uncertainty
in medical domains [2, 6, 15, 19, 20, 25] are based on the formalism of dynamic
Bayesian networks [7, 8, 17, 23] or their extension: dynamic influence diagrams
[27]. These formalisms have the disadvantage of generating highly complex net-
works, since time is discretized and a node is created for each random variable
associated with each time instant. Usually, a copy of a static network is gen-
erated for each time point and links are established between nodes in adjacent
static networks. In this way, Markovian processes can be modeled so that the
future is conditionally independent of the past given the present.

Other extensions of Bayesian networks for temporal reasoning have been
proposed over the last few years. Aliferis and Cooper [1] develop the language
of modifiable temporal belief networks as a structural and temporal extension of
Bayesian networks. Ngo et al. [22] define a context-sensitive temporal probabil-
ity logic for representing classes of dynamic Bayesian networks. Arroyo-Figueroa
and Sucar [3] propose a model called temporal nodes bayesian network, in which
each temporal node represents an event or state change of a variable and arcs
represent causal-temporal relations between nodes; however, this model lacks a
formalization of canonical models (noisy OR-gate, noisy AND-gate, and others)
for temporal processes.

A network of probabilistic events in discrete time (NPEDT) [11] is a Bayesian
network for temporal reasoning that leads to less complex networks than those
obtained from the formalism of dynamic Bayesian networks, for domains in-
volving temporal fault diagnosis and prediction. Under the NPEDT approach,
time is discretized, nodes are associated with events, and each value of a node
represents the occurrence of an event at a particular instant. In our domain,
an event is a change of state provoked by an anomaly. The improvement in
complexity with respect to dynamic Bayesian networks is a consequence of as-
suming that each event occurs only once. The value taken on by a variable
indicates the time at which the event has occurred. Reversible processes can be
represented through multiple events. The links in the network represent tempo-
ral causal mechanisms between neighboring nodes. Therefore, each conditional
probability table expresses the most probable delays between parent events and
the corresponding child event. Two major advantages of an NPEDT are that
this model is not restricted to Markovian processes, and that we can make
use of different temporal noisy gates [11] that facilitate knowledge acquisition
and representation. Temporal noisy gates (temporal noisy OR-gate, temporal
noisy AND-gate, and others) constitute a generalization for temporal processes
of traditional canonical models. The process of cancer spread, previous to the
application of therapy, is formed by a set of irreversible events. Each of these
events can be represented by a node in an NPEDT. In this work, we show the
application of the NPEDT approach to the modeling of nasopharyngeal cancer
evolution. The network assists the clinician in the diagnosis and prognosis of
the extent of this disease in a patient.
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The rest of this paper is organized as follows. Section 2 describes the domain
of nasopharyngeal cancer. Section 3 deals with the characteristics of NasoNet.
Specifically, Section 3.1 is devoted to the details of representation of NasoNet as
an NPEDT, Section 3.2 considers the process of data acquisition carried out to
complete NasoNet, Section 3.3 presents an example of application of NasoNet,
and Section 3.4 describes the evaluation of the model. Section 4 discusses the
advantages and disadvantages of an NPEDT with respect to other types of
Bayesian networks for temporal reasoning. Finally, we conclude with some
additional remarks.

2 Nasopharyngeal cancer

The nasopharynx is the highest part of the pharynx, which receives the air
breathed through the nose. The nasopharyngeal cavity has a cuboidal shape:
the lateral walls are formed by the Eustachian tube and the fossa of Rosenmuller,
at the front are the posterior choanae and the nasal cavity, the roof has the
base of the skull above, the posterior boundary is formed by the muscles of the
posterior pharyngeal wall, and below are the upper surface of the soft palate
and the posterior pharyngeal wall

The patient profile that we are interested in corresponds to those patients
coming from the Department of Otorhinolaryngology of a hospital, who are
admitted to the Department of Radiation Oncology; specifically, our work has
been carried out in collaboration with oncologists from San Carlos University
Clinical Hospital in Madrid.

A cancer of the nasopharynx [18, 26] appears as a malignant primary tu-
mor localized on one of the nasopharyngeal walls (see Fig. 1). Primary tumors
on lateral walls are the most frequent, whereas those on anterior and poste-
rior walls are less likely. As time goes by, an initial primary tumor may either
infiltrate the adjacent tissue (infiltrating tumor) or grow in volume inside the
nasopharynx (vegetating tumor). Accordingly, any part surrounding the na-
sopharynx, or even any nasopharyngeal wall, may be affected by the tumor
growth. Generally, vegetating tumors may obstruct the ducts connecting the
nasopharynx to some of its surrounding parts: nasal cavity, ear, or soft palate.
Infiltrating tumors may reach parts of vital importance, like the base of the
skull and the cranial nerves. Infiltrating tumors in the nasopharynx are more
invasive than vegetating ones, although the latter require a shorter period of
time to spread. The usual symptoms of nasopharyngeal cancer are dysfunctions
associated with breathing, speech, vision, hearing, and sense of smell, among
others. It is therefore crucial to detect the disease at early stages; otherwise,
the consequences could be irreversible for the patient. As any other kind of
cancer, there is the possibility of regional (lymph node involvement) or distant
metastases. The appearance of nasopharyngeal hemorrhage or infection is also
evidence of cancer.

The diagnosis of nasopharyngeal cancer consists of three phases:

• Registration of the patient’s medical history.
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Figure 1: Overview of the evolution of a nasopharyngeal cancer

• Visual examination of the nasopharynx (by mirror or endoscopy) and doc-
umentation of the size and location of neck nodes.

• Complementary tests, such as evaluation of hearing and cranial nerve func-
tion, biopsy, hemogram, complete computer tomographic (CT) scan or
magnetic resonance imaging (MRI) with views delineating the upper and
lower extent of the lesion.

Each of the previous phases produces new evidence to assist the oncologist
in determining the extent and malignancy of the disease.

Once the diagnosis has been completed, the stage of the cancer can be defined
by means of the TNM codification, where T stands for primary tumor, N for
regional lymph nodes, and M for distant metastasis. For example, T1N0M1
means “tumor confined to the nasopharynx, no regional lymph node metastasis,
and distant metastasis present”. The appropriate treatment (radiation therapy,
chemotherapy, surgery, and others) depends on the stage of the cancer.

3 Overview of NasoNet

3.1 Description of the model

NasoNet is an NPEDT that models the process of progression of a nasopharyn-
geal cancer. The final model assists oncologists in the diagnosis and prognosis
of the extent of this type of cancer in a patient.

A primary tumor on any of the nasopharyngeal walls may spread and invade
adjacent parts. It may also provoke distant metastases, and hemorrhage or
infection in the nasopharynx. The previous processes are characterized by the
occurrence of a series of events. These events —before treatment is applied—
are generally irreversible, and causally interrelated. For example, a primary
vegetating tumor on the anterior wall of the nasopharynx may occupy the nasal
fossae and produce anosmia (loss of the sense of smell); a primary infiltrating
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tumor on the superior wall of the nasopharynx may spread to the right lateral
wall, then to the cavernous sinus, later invade the right inner ear, and finally
produce symptoms like tinnitus (ringing in the ears), autophony (resonance
of one’s voice), and hypoacusis (diminished acuteness of hearing), associated
with abnormalities in the ear. Some examples of relevant events in our domain
are: “appearance of a primary vegetating tumor on the posterior wall of the
nasopharynx”, “spread of an infiltrating tumor to the left cavernous sinus”,
“appearance of rhinolalia”, “appearance of Gradenigo syndrome on the right
side”, “appearance of abnormal cervical lymph nodes on the left side”, etc.
In NasoNet, these events and all of those causally related to the spread of a
nasopharyngeal cancer are represented as nodes in a Bayesian network.

If we had decided not to represent time explicitly in the Bayesian network,
each random event variable could take on the values present or absent ; accord-
ingly, we would have only needed binary random variables. On the contrary,
as the causal processes we are modeling are not instantaneous and there is un-
certainty as to their duration, we need to represent time explicitly. To this
end, we consider the instant at which the primary tumor may appear as the
initial or reference instant, and we define the occurrence time of any other event
with respect to the mentioned initial instant. We suppose there is only one
primary tumor, which is a reasonable hypothesis. According to expert opinion,
the temporal range of interest in our domain are the three years following the
appearance of the primary tumor. We divide this period into trimesters, accord-
ing with the expert. The final time range and the final time unit were selected
as a result of taking into account both computational tractability and temporal
expressiveness of the model. Each event represented in the network has its own
typical period of occurrence. All these different periods are within the three-
year term we have selected as time horizon. As an example, lung metastasis
may arise during the second or third year, and abnormal cervical lymph nodes
may appear during the first semester.

The approach of NPEDTs allows absolute time to be used as an alternative to
time instants relative to the occurrence of a determined initial event (appearance
of the primary tumor, in the case of NasoNet). With this new option, each value
taken on by a variable represents an absolute time instant at which its associated
event may occur. An advantage of using absolute time is that scenarios (see
Section 3.3) are not required. However, when using absolute time, each event
in the network can take place at any of the instants belonging to the temporal
range of interest (3 years for NasoNet). Therefore, all of the variables can take
on the same number of values (13 in our domain). Consequently, a more complex
network than in the case of relative time would be obtained. This is the reason
why we decided to use relative time in NasoNet.

Given an event node E with its occurrence period divided into trimesters, the
random variable associated with E can take on the values {e[a], . . . , e[b], e[never]}
where a, b ∈ {1, . . . , 12} and a ≤ b. E = e[j], with j ∈ {a, . . . , b}, means that
event E takes place in the j-th trimester after the appearance of the primary
tumor, and E = e[never] means that E does not take place. For example,
Anosmia = anosmia[3] expresses the appearance of anosmia during the third
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trimester. As each random variable can take on a set of exclusive values, each
event associated with a variable can occur only once over time. This condition
is satisfied in our domain, since the processes involved, prior to treatment, are
irreversible. (Reversible processes could be represented by multiple events but
we do not have them in NasoNet.) The current version of NasoNet contains
15 nodes associated with tumors confined to the nasopharynx, 23 nodes rep-
resenting the spread of tumors to nasopharyngeal surrounding sites, 4 nodes
symbolizing distant metastases, 4 nodes related to abnormal lymph nodes, 11
nodes expressing nasopharyngeal hemorrhages or infections, and 50 nodes refer-
ring to symptoms or syndromes (combinations of symptoms). The root nodes
in the network correspond to events related to the appearance of primary infil-
trating or vegetating tumors on each wall of the nasopharynx. As we assume
that there is one primary tumor at most, the probabilities of the root nodes
should add up to 1. To this end, we introduce an additional parent node for
the previous root nodes. The leaf nodes in the network represent the appear-
ance of different symptoms or syndromes. Finally, the intermediate nodes are
events related to the spread of the tumor to parts adjacent to the nasopharynx,
infections, and metastases.

NasoNet models the evolution of a nasopharyngeal cancer so that each arc
represents a causal relation between one parent event and one child event. For
instance, in Fig. 2, the appearance of infection in the nasopharynx may produce
rhinorrhea (excessive mucous secretion from the nose). If these causal relations
were static, we could apply the noisy OR-gate [24] to model the interactions
between an effect and its causes. In the noisy OR model, each cause acts
independently of the remaining causes to produce a determined effect. This
independence of causal interactions is satisfied in our domain, according to
expert opinion. For example, the appearance of anosmia (see Fig. 2) may be
provoked by either a vegetating tumor occupying the right nasal fossa or by the
spread of an infiltrating tumor to that fossa; both processes act independently
of each other. In a family of nodes with N parents interacting through the noisy
OR model, we only need to specify N independent parameters. This number
rises to 2N in the case of a family of nodes with N parents interacting through
the general case.

As the causal relations in our domain are not instantaneous and, further-
more, the nodes in the network correspond to temporal events, we use the
temporal noisy OR-gate [11] as a model of causal interaction in the network.
The temporal noisy OR-gate represents the case in which the effect is present
as soon as any of its causes provokes it to be present. According to Fig. 2, if
a primary vegetating tumor on the right lateral wall provoked the appearance
of nasopharyngeal infection at trimester i, and a primary infiltrating tumor
provoked the same infection at trimester j, with i 6= j, then the event “appear-
ance of infection in the nasopharynx” would be considered to occur at trimester
min(i, j). For this reason, a temporal noisy OR-gate becomes a noisy MIN-gate
[10].

Let us consider a family of nodes with n causes X1, . . . , Xn and one effect Y .
In principle, each of these event nodes may take place at any of the trimesters
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Figure 2: Part of the Bayesian network modeling the evolution of a cancer of
the nasopharynx

{1, . . . , 12}. For each cause, in the temporal noisy OR model it is necessary to
specify the parameters:

c
xi[ji]
y[ki]

i ∈ {1, . . . , n}, ji ∈ {1, . . . , 12, never}, ki ∈ {1, . . . , 12} (1)

Each parameter is defined as the probability of Y taking place at ki, given that
Xi takes place at ji, and the rest of the causes are absent. The conditional
probability table for Y can be computed as follows (see Fig. 3 for a family with
two causes):

P (y[k]|x1[j1], . . . , xn[jn]) =
∑

(k1,...,kn)|min(k1,...,kn)=k

∏

i

c
xi[ji]
y[ki]

k, j1, . . . , jn ∈ {1, . . . , 12, never} (2)

By ordering temporal indices from future to past (never, 12, . . . , 2, 1), just as
illustrated in Fig. 3, a noisy MAX-gate [9, 14] leads to a temporal noisy OR-
gate.

If there are non-explicit causes of Y in the model, they can be grouped
together and represented through a vector of leaky parameters:

c∗y[k] k ∈ {1, . . . , 12} (3)

Each leaky parameter is the probability of the effect Y occurring at k, given
that all the explicit causes are absent.
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Figure 3: Temporal noisy OR-gate for two causes (n = 2) and one effect

3.2 Data acquisition

In principle, each arc forming part of a temporal noisy OR-gate in NasoNet
requires (12 + 1) · 12 = 156 independent parameters. Among these parameters,
those satisfying

c
xi[ji=never]
y[k] k ∈ {1, . . . , 12} (4)

are zero because the effect cannot take place if none of its causes are present.
Furthermore, among the remaining 144 parameters, if ji > k then the corre-
sponding parameter is zero because the effect cannot precede the cause. Finally,
the remaining 78 independent parameters can be reduced to 12, since in our do-
main, according to expert opinion, it is reasonable to assume the property of
time invariance:

c
xi[ji+∆t]
y[k+∆t] = c

xi[ji]
y[k] ∀ji, k, ji + ∆t, k + ∆t,∈ {1, . . . , 12} (5)

This property expresses that if we consider a constant delay, k − ji, between
cause Xi and effect Y , the parameters defining the arc Xi → Y are invariant,
independently of the times Xi and Y take place. To summarize, computing
the conditional probability table associated with a family of nodes in NasoNet
just requires specifying one parameter for each possible delay between cause
and effect. Therefore, for a family of nodes with N parents, 12 ·N independent
parameters are needed at most in NasoNet. (Note that in the case of general
interaction among the parent nodes this number would rise to 12 · (12 + 1)N ).
The questions that the knowledge engineer has to ask the oncologists are:

Given that Xi takes place in a certain trimester, what is the prob-
ability of its effect Y occurring in the same trimester, if the rest of
its causes are absent? And what is the probability of Y occurring in
the next trimester? And so on.

It was difficult for the oncologists to answer these questions. They ar-
gued that the answers depend on the cause event occurring in the early or
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late trimester. However, they felt more confident when answering the following
questions:

Given that Xi takes place in a certain instant, what is the probabil-
ity of its effect Y occurring in the next trimester, if the rest of its
causes are absent? And what is the probability of Y occurring in
the trimester after the next trimester? And so on.

Let the parameters for these latter questions be:

c̃Xi

Y (∆t) ∆t ∈ {1, . . . , 12} (6)

Using a continuous representation of time, if Xi = xi[1] then we can associate
to Xi the probability density function f1, depicted in Fig. 4. The integral

 

… 

f1 

1 

0 

1 2 3 12 

t (trimesters) 

Figure 4: Probability density function for Xi when Xi = xi[1]

of the probability density function between two instants is the probability of
occurrence of the corresponding event between those instants. Suppose

c̃Xi

Y (∆t) =
{

k ∆t = 1
0 ∆t = {2, . . . , 12} (7)

where 0 ≤ k ≤ 1. These parameters given by the medical experts define a
probability transfer function f2, between Xi and Y (see Fig. 5), which represents
the effect of Xi on Y . The probability density function f for Y (see Fig. 6) is
obtained by calculating the convolution of f1 and f2(cf. [28], Section 4.2):

f(t) =
∫ ∞

−∞
f1(τ) · f2(t− τ) dτ (8)

If from Fig. 6 we return to our division of time into trimesters, we obtain:

c
xi[1]
y[1] =

∫ 1

0

f dt =
k

2
(9)

c
xi[1]
y[2] =

∫ 2

1

f dt =
k

2
(10)
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Figure 5: Probability transfer function between Xi and Y
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Figure 6: Probability density function for Y

We can conclude that, once we know that Xi has occurred at ji, each delay ∆t
contributes the same probability to trimesters ji+∆t−1 and ji+∆t. Therefore,

c
xi[ji]
y[ji+∆t] =

c̃Xi

Y (∆t)
2

+
c̃Xi

Y (∆t + 1)
2

(11)

In this way, we can compute the conditional probability tables in the network
from the knowledge provided by the medical expert.

To cite an example, in the connection Infiltrating tumor spread to anterior
wall → Infiltrating tumor spread to right nasal fossa (see Fig. 2), the informa-
tion provided by the expert is

c̃Xi

Y (∆t) =





0.48 ∆t = 1
0.24 ∆t = 2
0.12 ∆t = 3
0.06 ∆t = 4
0 ∆t = {5, . . . , 12}

(12)

The final parameters for this arc are shown in Table 1.
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c
xi[ji]
y[k] xi[1] xi[2] xi[3] xi[4] xi[never]

y[1] 0.48/2 0 0 0 0
y[2] (0.48 + 0.24)/2 0.24 0 0 0
y[3] (0.24 + 0.12)/2 0.36 0.24 0 0
y[4] (0.12 + 0.06)/2 0.18 0.36 0.24 0
y[5] 0.06/2 0.09 0.18 0.36 0
y[6] 0 0.03 0.09 0.18 0
y[7] 0 0 0.03 0.09 0
y[8] 0 0 0 0.03 0

y[never] 0.1 0.1 0.1 0.1 1

Table 1: Example of parameters for an arc Xi → Y in NasoNet

3.3 Example

Oncologists make use of the following information sources: the patient’s med-
ical history, visual examination of the nasopharynx, and the result of differ-
ent complementary tests. A finding involves determining the occurrence of an
event represented by means of a node in NasoNet, and establishing the time
it occurred. NasoNet determines, from the available findings, both posterior
probabilities and occurrence times for the rest of the events in the network. In
order to simplify the example, we will suppose that our aim is twofold: firstly,
we want to know whether the primary tumor is vegetating or infiltrating and,
secondly, we are interested in finding out on which wall the primary tumor is
located. Note that we are assuming that there is one primary tumor at most in
the patient.

Consider the portion of NasoNet shown in Fig. 7. Any primary vegetating
tumor may grow in volume inside the nasopharyngeal cavity and occupy the
nasal fossae. This may produce rhinolalia (nasal voice produced by an alter-
ation in the nasal fossae resonance). The appearance of a primary vegetating
tumor may also provoke abnormal cervical lymph nodes on the right side. The
parameters of the network in Fig. 7 are shown in Table 2.

Physicians know from the patient’s medical history that on 9/20/99 the
patient began suffering from rhinolalia. With this unique finding, there are
as many possible scenarios as possible delays between the appearance of the
primary tumor and the appearance of rhinolalia, 12 in this case. For each
scenario, the posterior probabilities that appear in Table 3 can be obtained in
NasoNet. The complexity of the network prevented us from performing evidence
propagation through exact algorithms. This fact became evident once we had
introduced an explicit representation of time equivalent to nearly a third of the
nodes in NasoNet’s graph. The previous result is a consequence of the way
development environments for building Bayesian networks deal with evidence
propagation through exact algorithms in networks with noisy gates: first, the
noisy gate is transformed into a family interacting through the general model,
and then an exact algorithm is applied. Note that in the general model both
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Figure 7: NasoNet subnetwork

the number of conditional probabilities and the time for evidence propagation
are exponential with the number of parents. A solution to this problem would
be the use of specific exact algorithms for evidence propagation in networks
with noisy gates. Anyhow, stochastic simulation algorithms allow acceptable
approximate results to be obtained in a few minutes in NasoNet.

On 12/30/99, the patient detects neck nodes on the right side and is received
in the Department of Radiation Oncology, where oncologists establish by pal-
pation the presence of abnormal cervical lymph nodes on the right side. Since
the presence of abnormal cervical lymph nodes can only occur during the next
semester to the appearance of the primary tumor (see Table 2), only one sce-
nario is possible: rhinolalia[1], clnrs[2] (see Table 4). Therefore, we can suspect
that the primary tumor is located on the nasopharyngeal anterior wall. This is a
valuable result that permits a better interpretation of the information obtained
from subsequent complementary tests.

The process of determining the resulting scenarios from a set of findings
requires: establishing for each finding a time period (divided into trimesters)
for primary tumor appearance according to the finding, calculating the inter-
section of the previous periods and, finally, selecting the possible scenarios
within the intersection. Fig. 8 illustrates a case with three findings corre-
sponding to events: A = {a[1], a[2], a[3], a[4], a[never ]}, B = {b[1], b[2], b[3],
b[never ]}, and C = {c[1], c[2], c[never ]}. The following four scenarios are ob-
tained: sc1≡ {a[2],b[2],c[2]}, sc2≡ {a[1],b[2],c[2]}, sc3≡ {a[1],b[1],c[2]}, and
sc4≡ {a[1],b[1],c[1]}. If in our example the patient had begun suffering from
rhinolalia after the appearance of abnormal cervical lymph nodes, new scenar-
ios involving primary tumor on other walls than the anterior one could explain
the evidence. This fact demonstrates the importance of using an explicit rep-
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Xi Y c̃Xi

Y (∆t)
Pvtaw Vtornf 0.225 for ∆t ∈ {1, . . . , 4}
Pvtaw Vtolnf 0.225 for ∆t ∈ {1, . . . , 4}
Pvtaw Clnrs 0.27 for ∆t = 1, 0.13 for ∆t = 2
Pvtrlw Vtornf 0.175 for ∆t ∈ {3, . . . , 6}
Pvtrlw Vtolnf 0.05 for ∆t ∈ {3, . . . , 6}
Pvtrlw Clnrs 0.27 for ∆t = 1, 0.13 for ∆t = 2
Pvtllw Vtornf 0.05 for ∆t ∈ {3, . . . , 6}
Pvtllw Vtolnf 0.175 for ∆t ∈ {3, . . . , 6}
Pvtllw Clnrs 0.14 for ∆t = 1, 0.07 for ∆t = 2
Pvtpw Vtornf 0.00625 for ∆t ∈ {5, . . . , 12}
Pvtpw Vtolnf 0.00625 for ∆t ∈ {5, . . . , 12}
Pvtpw Clnrs 0.27 for ∆t = 1, 0.13 for ∆t = 2
Pvtsw Vtornf 0.175 for ∆t ∈ {3, . . . , 6}
Pvtsw Vtolnf 0.175 for ∆t ∈ {3, . . . , 6}
Pvtsw Clnrs 0.27 for ∆t = 1, 0.13 for ∆t = 2
Vtornf Rhinolalia 0.2, instantaneous
Vtolnf Rhinolalia 0.2, instantaneous

Table 2: Parameters of the network in Fig. 7

Pvtaw Pvtrlw Pvtllw Pvtpw Pvtsw
sc12: rh[12] 0 0 0 1 0 Á09/20/96

...
...

...
...

...
...

...
...

sc7: rh[7] 0 0 0 1 0 Á12/20/97

sc6: rh[6] 0 0.4059 0.4072 0.0089 0.1778 Á03/20/98

sc5: rh[5] 0 0.3817 0.386 0.0088 0.2233 Á06/20/98

sc4: rh[4] 0.022 0.364 0.3629 0 0.2509 Á09/20/98

sc3: rh[3] 0.0401 0.3434 0.3477 0 0.2686 Á12/20/98

sc2: rh[2] 1 0 0 0 0 Á03/20/99

sc1: rh[1] 1 0 0 0 0 Á06/20/99

Á09/20/99

Table 3: Posterior probabilities for primary vegetating tumors with temporal
localization for each scenario

Pvtaw Pvtrlw Pvtllw Pvtpw Pvtsw
sc1’: rh[1], clnrs[2] 1 0 0 0 0 Á06/30/99

Á09/20/99

Table 4: New posterior probabilities
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A B C

t

sc1 sc2 sc3 sc4

Figure 8: Possible scenarios from three findings

resentation of time in this domain, since the same type of events can produce
different diagnoses depending on their occurrence times.

3.4 Evaluation of NasoNet

As a previous step towards the final construction of NasoNet, we developed an
atemporal Bayesian network in which each node represents the occurrence or
nonoccurrence of a certain event. The graph of this network is the same as
that of NasoNet and the type of causal interaction for each family of nodes is
modeled through the noisy OR-gate. We checked that the set of nodes in the
network described the disease with the appropriate degree of detail. After a
number of interviews with the medical experts, we decided to simplify certain
parts of the graph and to enlarge others. For example, the initial model detailed
the spread of the tumor to each of the skull openings that the cranial nerves
pass through. Later, we decided to group together these openings to form more
significant parts. Also in the beginning, we only considered the general concept
of “primary tumor in the nasopharynx”. Later, a differentiation of primary
tumors by walls was necessary. The initial graph was designed following a
breadth-first strategy; that is to say, for each cause at a determined depth, all
its effects were generated. This way of depicting the graph is analogous to the
way cancer spreads over time. The verification of the arcs in the network was
carried out following a different strategy. The nodes were ordered alphabetically
and each node was associated with its possible causes. The oncologists were thus
forced to consider the graph bottom-up. Additionally, the alphabetical order
obliged the oncologists to reason locally in the network because each node had
nothing to do with its previous one. The atemporal network consists of 276 arcs
with multiple loops. Once prior and conditional probabilities were introduced
in the network, evidence propagation from clustering algorithms took about one
second.

The introduction of an explicit representation of time prompted the use of
both multivalued variables and the temporal noisy OR model. The average
number of values each variable in the temporal version of NasoNet could take
on increased to 9.6. The verification of the parameters in this version of NasoNet
was facilitated by the previous construction of the atemporal network, in which
a conditional probability was established for each arc. However, the temporal
network associated a vector of conditional probabilities with each arc, and each
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conditional probability was related to a delay between cause and effect. For
each arc, the consistency of the system required the sum of the components of
its vector of conditional probabilities in the temporal network to be equal to the
conditional probability in the atemporal network.

We have made a preliminary evaluation of NasoNet from eight medical his-
tories, which were contrasted with the results given by the network for each
case. The following steps were taken for each particular case:

• Introduction of the available evidence in the network. Generally, between
four and eight temporal findings.

• Evidence propagation in the network.

• Comparison of the rest of the information present in the medical history
with the posterior probabilities obtained in NasoNet.

For each patient, NasoNet provides us with a set of posterior probabilities
{p∗(e[tEi ]), . . . ,p∗(e[tEf ]),p∗([never])}, where tEi and tEf represent the limits of
the temporal range for event E. E is any event not included as evidence in the
patient’s medical history. The information about when event E really happened
(tEreal ∈ {tEi , . . . , tEf , never}) is obtained from the medical history and compared
with the posterior probabilities, following three different methods:

1. For each event E, we establish whether

p∗(e[tEreal]) = max
j∈{tE

i ,...,tE
f ,never}

{p∗(e[j])} (13)

and calculate the percentage of events in the network for which this iden-
tity holds.

2. Another option is to consider in the previous method, not just the value
with highest posterior probability, but the pair of values with highest
posterior probabilities.

3. Finally, it is interesting to study the percentage of events correctly diag-
nosed of predicted by NasoNet, independently of the time they occurred.
In this case, we only consider whether or not events happen. Now, an
event E is correctly diagnosed or predicted when





(
tE
f∑

j=tE
i

p∗(e[j])

)
> p(e[never]) if tEreal 6= never

(
tE
f∑

j=tE
i

p∗(e[j])

)
< p(e[never]) otherwise

(14)

Table 5 summarizes the results obtained from each of the three methods.
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Method 1 Method 2 Method 3
patient 1 90.1% 92.8% 93.9%
patient 2 84% 92% 90%
patient 3 82.7% 89.5% 87.5%
patient 4 87% 92.5% 91%
patient 5 83.5% 90% 88.3%
patient 6 90% 92.5% 92%
patient 7 86% 91% 92.7%
patient 8 85.2% 90.1% 89.2%

Table 5: Percentage of events correctly diagnosed or predicted

4 Discussion

Under the NPEDT approach, time is discretized and each value of a variable
represents the instant at which a certain event may occur. This is the main
difference with respect to dynamic Bayesian networks, in which the value of a
variable Vi represents the state of a real-world property at time ti. Therefore,
an NPEDT is more appropriate for temporal fault diagnosis because only one
variable is necessary for representing the occurrence of a fault and, as a conse-
quence, the networks involved are much simpler than those obtained by using
dynamic Bayesian networks. In contrast, dynamic Bayesian networks are more
appropriate for monitoring tasks, since they explicitly represent the state of the
system at each moment. An example of this kind of tasks is therapy planning
in diabetes.

Dynamic Bayesian networks have the disadvantage of generating highly com-
plex networks [4]. If we had applied this formalism to our domain, it would have
been necessary to copy NasoNet’s causal graph —with more than one hundred
nodes— twelve times. However, only one copy is needed if an NPEDT is used.
Moreover, the application of dynamic Bayesian networks is usually restricted to
Markovian processes in which the future is conditionally independent of the past
given the present, i.e., only connections between random variables within the
same or adjacent time slices are allowed. In our domain, in contrast, a causal
mechanism can in general take one trimester, two trimesters, or even years.

NPEDTs are similar to Arroyo-Figueroa and Sucar’s temporal nodes Bayesian
networks [3], although the latter lack a formalization of canonical models for
temporal processes. In the general case, it is necessary to assign each node of
a Bayesian network a set of conditional probabilities that grows exponentially
with the number of parents. This complicates the acquisition of the parameters,
their storage, and the propagation of evidence. For these reasons, new causal
interactions models —called canonical models [24, 10]— were developed in order
to simplify both Bayesian network construction and probability computation. In
a family of nodes interacting through a canonical model, the number of required
parameters grows linearly with the number of parents. The construction of Na-
soNet led us to developing temporal canonical models [11] within the NPEDT
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approach. There are nodes in NasoNet whose number of parents rises to ten. It
would have been impossible to use the general model of causal interactions for
such families, while the elicitation of the numerical parameters for NasoNet’s
temporal links was relatively easy.

5 Conclusions

We have presented NasoNet, a network of probabilistic events in discrete time
for the diagnosis and prognosis of the extent of a nasopharyngeal cancer.

The spread of cancer is a process full of uncertainty, where time must be
taken into account. NasoNet makes use of the temporal noisy OR-gate to model
the different dynamic causal interactions that take place during the spread of
cancer. NasoNet is the first system to apply the approach of network of proba-
bilistic events in discrete time (NPEDT) to a real-world domain. In comparison
with other kinds of Bayesian networks that introduce an explicit representation
of time, this approach offers important advantages for the representation and
management of irreversible processes, like those occurring during the spread of
cancer before the appropriate treatment is applied. We have explained how
to calculate the numerical parameters needed in NasoNet from the parameters
elicited from the oncologists.

Several issues regarding knowledge representation, knowledge acquisition,
inference, and verification of the system have been discussed. Testing of clinical
cases is the main task to be carried out in the future, in order to perform a
thorough evaluation of the system. Another future task is to extend NasoNet
to cope with cancer evolution after treatment.
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