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PO.Box-600, Mappin Street, S1 3JD, UK

Abstract

The representation of nonlinear dynamic wavelet models in the form of an equiva-
lent global model which is valid over the operating range of the system is investigated.
The results are used to analyse and interpret the nonlinear wavelet models using non-
linear frequency response functions.

1 Introduction

Discrete-time multiresolution wavelet models can be used as a basis for the identifi-
cation of complex nonlinear systems. However these models are piece-wise polynomial and
many of the well established procedures of nonlinear model analysis and interpretation,
which are available only for global models defined over an operating range, can no longer
be applied. This inhibits the interpretation of these models in both the time and frequency
domain, makes it difficult to compare the results with other model forms, and complicates
attempts to relate the models to the physical systems under study.

In the class of global models, polynomial models have been extensively studied and
many procedures for system analysis and interpretation have been derived [Marmarelis and
Marmarelis, 1978], [Schetzen, 1980], [Rugh, 1981]. The main objective of the present paper
is to investigate the existence of global equivalents for discrete wavelet models which can
then be interpreted using existing techniques.

The paper is organised as follows: section 2 provides a brief overview of the discrete-
time wavelet model developed by Billings and Coca [1997]. In section 3 the wavelet model
is analysed and a global approximation is derived. The existence of nonlinear transfer
functions for the wavelet model is discussed in section 4. An experimental example is
described in section 5 and the results are summarised in section 6.

2  The discrete-time wavelet model - brief overview

System modelling is an important prerequisite to nonlinear systems analysis. There
are many ways of modelling but it can be shown that under two very mild assumptions,
the input/output behaviour of a wide class of nonlinear discrete-time systems can be rep-
resented by a NARX (Nonlinear AutoRegressive model with eXogenous inputs) model of
the form [Leontaritis and Billings, 1985]:

y(k) = Fly(b = 1)y, y(h = ) u(k = 1), ... u(k = )] (1)




where F[-] is some nonlinear function, u and y are the system input and output, anq i
and n, represent the associated lags. s

A means of approximating F[-] in equation (1) using known functions is desirable
and the polynomial functions have been extensively studied in terms of interpretation and
identification.

More recently many authors have proposed wavelet expansions [Chui and Wang,
1992], [Zhang and Beneviste, 1992], [Zhang, 1994]. In the present study an expansion of
F[] as a B-spline wavelet series, which was introduced by Billings and Coca [1997], will
be investigated. In this section the wavelet expansion will be briefly presented with an
emphasis on the type and constituents of the model.

The discrete-time multiresolution wavelet model proposed by Billings and Coca
[1997] for a discrete-time dynamical system & = (7,%,), f), where 7 € Z is a dis-
crete set, i and ) are the discrete input and output spaces and f : (T,U,Y) — Y is the
response map of X, is represented as:

) = 30 85(X) = 30 | T s s(X) + 3050 d () (2)
i=1 i=1 | % k =4

where ny is the number of s;-dimensional additive submodels and 7: and js are the initial
and final scale respectively. The s;-dimensional regression vector X; € U can be represented
as Xi = [{ Zaim, where zz, € {y(k=1),...,y(k—ny),u(k-1),...,u(k—n,)} is the vector

dim=1
of regression variables consisting of past outputs and inputs. The s;-dimensional submodel

S;*(X;) is implemented as the tensor-product of one-dimensional submodels [Billings and
Coca, 1997):

SHX) =TI Si*(zaim) - (3)
dim=1

The function @; «x(z) is the B-spline scaling function of degree n, given by ¢; i(z) =

29/24(2% z — k) and the function Pik(z) is the wavelet function of degree n given by v, x(z) =

M2 (2z — k). The functions ¢(z) and ¢(z) are the corresponding mother scaling and

wavelet functions which define the multiresolution approximation.

The explicit B-spline function ¢"(z) of degree n is given by [Chui, 1992]:

W (-1y ( n+1

Ploj=3 = ) o~ It (4)

i=g n! J
. 2+ 20
(=]} = { 0 otherwise (5)

where the truncated powers [z]} are defined by (5). The scaling function ¢™(z) is symmet-
ric, has compact support [0,n + 1] and consists of n + 1 polynomial pieces of degree n for
every interval [j,j + 1), for j < n. The wavelet function ¥™(z) of degree n is defined in
terms of the scaling function ¢™(z) of degree n, by:

3n+1

PMz) = V2 Y e (22 — k) (6)

A=0

where
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—
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The wavelet function 9™(z) is symmetric for n even and anti-symmetric for n odd, it has

compact support [0,2n + 1] and consist of 3n + 4 polynomial pieces of degree n for every
interval [£, 2], for k < 2(2n —1).

3 Wavelet model analysis

The wavelet model has been successfully used to model various dynamical systems
including both simulated and real systems [Billings and Coca, 1997]. The results show
[Billings and Coca, 1997] that the wavelet models obtained produce excellent predictions
and are qualitatively valid. They can also faithfully reproduce the bifurcation and Poincare
map of the original dynamical system. The largest Lyapunov exponent and the correlation
dimension are also closely matched by the estimated model. These results would be further
enhanced if the wavelet model could be analysed using existing nonlinear analysis methods.

In this section it is shown that the wavelet model is equivalent to a spline function
and therefore the wavelet model is a local model. In the present context the terminology
local model will be used to mean a model identified for a particular system which is valid
for a sub-range of the operational values, as opposed to a global model which will be used
to refer to a model which is valid over the operating range used in the system identification.
The local character of the wavelet model is the price paid for the flexibility and accuracy
of the model. A global equivalent of the wavelet model will also be derived, expressed as a
polynomial approximation. 2

The definition of a spline function is reviewed first:

Definition 3.1 [Braess, 1980] A polynomial spline of order n with simple nodes
on the interval [e; 8] is defined by:

n k

s(m) —= Z bjIj T Z CE:‘[-I — Tir.;: (8)

F=0 i=1

where @ < 1y < 72... < 7% < ( and the truncated powers are defined by (5). The restriction
of the spline function (8) to every interval (a,71), (11,72) , ..., (7%, 8) is a polynomial of
order n, n — 1 times continuously differentiable at the nodes. If Cla. 5] denotes the class of
functlons that are continuous and have n continuous derivatives on ‘the domain (e ] the
family of spline functions of order n, defined on the interval [@; 8] is included in C’[a A"

An equivalent representation, which shows explicitly the continuity of the first n —1
derivatives at the nodes, is given by:

n k
Z b,z z [z — 7L
3=0 =1
i bjIL‘j
7=0
Y bz’ + colz — )"
7=0
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where ¢;, —¢,,_, = a; for i € {2; k} and ¢, = a;. This representation provides more insight
and is useful in spline function generation because the coefficients {c;|j = o, 74, ..., 7%, B}
are independent, while the coefficients {a;} in Definition 3.1 are connected through conti-
nuity conditions for the first (n — 1)-order derivatives.

The wavelet model (2) is a linear combination of B-spline scaling and wavelet func-
tions. Therefore the wavelet model is also expected to be a spline model. The following
theorem shows the relationship between the equivalent spline model and the corresponding
wavelet model.

Theorem 3.1  Consider the discrete-time dynamical system ¥ = (7,U, ), f),
where 7 € Z is a discrete set, I and ) are the discrete input and output spaces and
f:(T,U,Y)— ) is the response map of I If the response map representation f is given
by the multivariable multiresolution wavelet model:

X)= g:Sf‘(X- Z [Z ¢, kBic(Xi) + Z Z d} pbr(X } (10)

consisting of ny additive s;-dimensional submodels, with the notation defined in section 2,
then the submodels S*(X;) are represented by tensor-product polynomial spline functions:

Si S - 1 r "
53 ( H S H Z &5 [«f"idm - 53:;L (11)

dim=1 dim=1 e/
where r represents the nodes of the spline model, j; 1s the final scale, s; is the dimension

of the submodel S*(X;), X; = [l Zim and Tam € {y(k = 1),...,y(k — ny),u(k —
dim=1

1),...,u(k — n.,)} as defined for equation (2). The proof is given in Appendix A.

Theorem 3.1 provides a new description of the wavelet model (10), which now can
be seen as a sum of spline functions (11) defined for each regression vector X;. In other
words the model is a family of locally polynomial models. Each of the individual locally
polynomial models is independent and has no influence on any other polynomial model.
There 1s a fairly large number of locally polynomial models which may be necessary to
characterise the nonlinear system. This number increases exponentially as the number of
nodes of the spline functions is increased. For example, a 4-dimensional regression variable

Taim and spline functions with 4 intervals (or 3 nodes) results in 4* = 256 locally polynomial
models.

The following theorem derives a very compact, equivalent model for the wavelet
model (10) based on the modulus function of the nodes. The proof for this theorem is
given in Appendix B.

Theorem 3.2 If the s;-dimensional submodel S;*(z) is represented by the tensor-
product polynomial spline functions:

Sy S5y M

, N ”
S5(X,) = H S (Zaim) = H Z e [wgm - W} (12)
dim=1 dim=17=m ¥
then:
3 - | : AN
P (X)) = [I 8F(waim) = H Za Taim T Z & |3Cdm T g | (T T i
dim=1 dim=1 -
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Theorem 3.2 states that for each submodel and each regression variable z4,, €
{ylk=1),...,y(k—ny),u(k—1),...,u(k—ny)}, the equivalent model consists of a sum of
an n-order polynomial and a sum of modulus terms of the type |z — E%ﬂ(:c - ;f+1 1 for

_ each node of the spline model. For an nth-order spline function with N — 1 distinct nodes

the model will have n + N — 1+ 1 = n+ N terms for each regression variable z4;,, in the
submodel.

In conclusion, Theorem 3.1 gives the mathematical description of the wavelet model
(2) as a sum of locally polynomial models and Theorem 3.2 finds an equivalent for this as
a sum of polynomial and modulus functions.

In fact there is a high resemblance between the wavelet model (2) expressed in the
form of (13) and the extended model set introduced by Billings and Chen [1989]. For the
extended model set, the nonlinear function F[-] in the NARX model (1) contains, besides
monomials of the lagged input and output, other nonlinear functions such as exponentials,
hyperbolic functions sinh(-), cosh(:) and tanh(-), the inverse trigonometric function atan(-),
coulomb friction sgn(-), saturation, etc. The extended model set was found to give a richer
description of non-linear systems and a more effective modelling was achieved.

The idea of local modelling for nonlinear systems is not new. There are several
possible ways in which nonlinear systems can be approximated by locally linear models
(e.g. [Billings and Voon, 1987]), or locally nonlinear models (e.g. [Billings and Chen, 1989]).
Billings and Chen [1989] also discuss the local-global modelling alternative. A nonlinear
global model is often desirable for analysing the dynamic behaviour of the system using
existing methods over a large range of operation and to design a control law that is valid
for the whole operating range. One simple and practical way to obtain a global description
of the nonlinear system from locally linear models is to use a least-squares polynomial
approximation [Billings and Voon, 1987].

Theorem 3.2 states that the wavelet model consists of a sum of a polynomial and
modulus functions. A global approximation of the s;-dimensional submodel S}, given by

equation (13), is obtained by approximating the modulus functions |zgim — ;%Tl(md«;m -
zjfﬂ)”_l with a polynomial least-squares approximator. The approximation is applied
to all N — 1 nodes, for each regression variable z4im € {y(k —1),...,y(k — ny),u(k —

1),...,u(k — n,)} in the submodel 5;*(Z4m) in equation (13).

For example, in a wavelet model defined in terms of B-spline functions (4) of 2nd-
degree (n = 2), the least-squares polynomial approximating model on the interval [—1;1]
is obtained by replacing |Zgim — zj—f‘ﬁﬁi(mdim - 2,),%) modulus functions in (13) with the

approximation:
2 k
(mdm _ .2_”+_1) ~ 0.3075 (mdim = —*—le) +

k5" EoO\° b OAf
10.8461 (mdm - ga—fﬁ) —(.1834 (:c,_,im = 2”+1> +0.0196 (a:g-m — QJM) (14)

As noted in [Billings and Chen, 1989], some nonlinear systems with strong nonlin-
earities cannot always be modelled by a globally unique model. The model approximation
presented above will therefore be applied if 1t passes the model validity tests.

k

mdlm - 2jf+1

In conclusion the existence of a global model valid over the operating range, which is
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equivalent to the wavelet model, has been investigated in this section. The global equivalent
is a polynomial approximating function, which is easier to interpret and to analyse using the
nonlinear transfer function, which are introduced for the wavelet model in the next section.
The theoretical results derived above are analysed and assessed for an experimental example
in the Section 5.

4 The wavelet model and the nonlinear transfer func-
tion

The frequency domain representation of nonlinear systems can be very useful for
analysis and interpretation. The system representations in the frequency domain are asso-
ciated with nonlinear transfer functions and the existence of a these for the wavelet model
will be studied in this section.

The nonlinear transfer functions are defined as the Laplace transform of the kernels
in the Volterra series representation of the nonlinear system. The question of existence of
a nonlinear transfer function is therefore intimately connected to the question of existence
and convergence of the Volterra series representation. During the 1980’s issues such as
the existence and uniqueness of Volterra series were theoretically and practically debated

[Lesiak and Krener, 1978], [Sandberg, 1983], [Boyd et al, 1984], [Boyd and Chua, 1985].

Sandberg [1983] established that for a wide class of systems a Volterra series rep-
resentation will exist providing the nonlinearities are analytic. A later result obtained by
Boyd and Chua [1985] led to the introduction of the fading memory concept. Boyd and
Chua [1985] showed that even if a system has non-analytic nonlinearities but has the prop-
erty of fading memory, the response can be approximated with arbitrary precision for all
bounded input functions, by a Volterra series operator. They also proved that the Volterra
series representation is unique.

Boyd and Chua give an example of a control system containing an ideal saturator,
which is not analytic [Boyd and Chua, 1985]:

Sat(a) ={ Z—"’”(‘I) 12} zi (15)

The nonlinearity in (15) is not analytic and therefore this system does not have an
exact Volterra representation. However, it can be shown that (15) has a fading memory
and therefore a Volterra series approximation can be found via a polynomial approximation
[Boyd and Chua, 1985]. Not all systems have a fading memory, for example systems with
multiple equilibria or systems with subharmonics are not members of this class [Boyd et

al, 1984].

In fact the concept of a Volterra series representation is related to the concept of a
unique or global polynomial model discussed in the previous section. If a nonlinear system
has fading memory, there is a polynomial approximating Volterra series which models the
system, in other words the system can be represented by a unique, global polynomial model.
Therefore fading memory is a sufficient condition for the global model existence. It 1s not
a necessary condition though.

The wavelet model, which is composed of a sum of polynomial and modulus func-
tions, is not analytic because the modulus functions are not analytic. If however the system,




for which the wavelet model has been derived or identified, has fading memory, the exis-
tence theorem stated by Boyd and Chua [1985] ensures the existence of an approximating
Volterra series which is unique.

The existence of a Volterra series expansion determines the existence of the nonlinear
transfer functions which are also unique. Therefore, a wavelet model can be mapped to
the nonlinear transfer functions only if the system has fading memory. In this case, the
nonlinear transfer functions of the wavelet model should be computed for an approximating
global model.

The global polynomial approximating model derived in the previous section for the
wavelet model corresponds to a polynomial expansion of F[]. The method of Peyton-Jones

and Billings [1989] can therefore be applied to directly compute the nonlinear frequency
response functions.

5 A case study

In the previous section it was shown that a dynamic wavelet model can be rep-
resented by a dynamic spline model, which can be further approximated by a dynamic
polynomial model. The main application of this result will be in the interpretation of the
identified wavelet models. Previous studies have shown that identified wavelet models have
excellent qualitative validation properties and that they can capture the dynamical prop-
erties of the underlying system [Billings and Coca, 1997]. However in order to analyse and
interpret these results using the well known methods derived mainly for analytic models,
they have to be mapped into an analytic polynomial form. In this section the polynomial
approximation of the wavelet model is exemplified for an experimental example.

5.1 Experimental example: Nonlinear Wave Force Data

An accurate prediction of wave forces on offshore structures that are subjected to
random ocean waves is essential for safety and design. Recently extensive studies have
been applied on a variety of experimental data, in order to assess traditional analysis
methods and to derive new modelling procedures. Wave forces on structures composed of
slender members are traditionally calculated on the basis of Morison’s equation which was
introduced by Morison et al [1950]:

du(t)
dt

where F(¢) is the force per unit axial length, u(t) is the instantaneous flow velocity, and
K, and K, are parameters which depend on the flow. Various attempts to determine new
model structures to predict wave forces have been made. Stansby et al [1992] introduced
the Morison-Duffing equation:
d*F(¢) dF(t) du(t)
+ + a3 F ()| F(t)| + F(t) = K;
1™ @ dt a3 F (1) F(1)] (t) dt
Recently Swain et al [1998] proposed the Dynamic Morison equation, which has a simpler
form than the Morison-Duffing equation and is capable of generating all the relevant features

P(t) = Ko 4 Kau(t)lu(t)] (16)

+ Kqu(t)u(t)] (17)

of the wave force mechanism:

d*F(t dF(t) " 5 N
o dt‘g ) + as di -+ F(t) = K; It =+ Kau(t)|u(t)| (18)
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All the wave force models proposed (16), (17) and (18) contain the term w(t)|u(z)|.
The same type of term is present in the equivalent representation of the B-spline wavelet
model. It should be possible therefore to identify a very good B-spline wavelet model from
the wave force data. In all previous attempts to identify a wave force model [Worden et al,
1994], [Swain et al, 1998] polynomial NARX models were estimated.

In this case study the Salford data set was identified and analysed in both the time
- and frequency domain and the results obtain by Swain et al [1998] are used for comparison.
The Salford data set relates to a fixed vertical cylinder in random waves where the force
and velocity data are obtained for a small spanwise element. The data was obtained in a
laboratory wave flume for unidirectional waves with rectangular velocity spectra.

The input and output data represent horizontal water particle velocity and the inline
force. The data were decimated by a factar of 2, giving an effective sampling frequency
of 25 Hz and 1000 points of input-output data were generated. The wavelet identification
procedure was applied by selecting n, = 3, n, = 3 with 2nd-order wavelet and scaling
functions and scale values j; = 75 = 0. The estimated model was given by 4° = 4096 locally
polynomial models. The equivalent representation of the wavelet model from equation (13)
was:

y(k) = 0.0073
+ 0.8216u(k — 1) — 6.8499u(k — 1)? + 7.4894(u(k — 1) + 0.0786)|u(k — 1) + 0.0786]
—  5.7309(u(k — 1) + 0.0168)|u(k — 1) + 0.0168|
+ 1.9424(u(k — 1) — 0.0451)|u(k — 1) — 0.0451]
4+ 3.1200u(k — 2) 4 12.5462u(k — 2)* — 17.3698(u(k — 2) + 0.0786)|u(k — 2) + 0.0786|
+ 12.2655(u(k — 2) 4+ 0.0168)|u(k — 2) + 0.0168]

I

6.8426(u(k — 2) — 0.0451)|u(k — 2) — 0.0451|

3.9041u(k — 3) — 6.7669u(k — 3)? + 9.3520(u(k — 3) + 0.0786)|u(k — 3) + 0.0786]
—  3.5621(u(k — 3) + 0.0168)|u(k — 3) + 0.0168|

+ 4.0900(u(k — 3) — 0.0451)[u(k — 3) — 0.0451]

+ 0.6145y(k — 1)+ 0.1915y(k — 1)% 4+ 0.2126(y(k — 1) + 0.4604)|y(k — 1) + 0.4604]
+ 0.1220(y(k — 1) — 0.0648)|y(k — 1) — 0.0648|

+ )

+

|

0.3987(y(k — 1) — 0.5901)[y(k — 1) — 0.5901]

0.9417y(k — 2) — 0.2469y(k — 2)* — 0.4025(y(k — 2) + 0.4604)|y(k — 2) + 0.4604]
— 0.1341(y(k — 2) — 0.0648)[y(k — 2) — 0.0648|
— 0.6351(y(k — 2) — 0.5901)|y(k — 2) — 0.5901]
— 0.5919y(k — 3) + 0.0836y(k — 3)* + 0.1664(y(k — 3) + 0.4604)|y(k — 3) + 0.4604]
+ 0.0218(y(k — 3) — 0.0648)|y(k — 3) — 0.0648|
+ 0.2340(y(k — 3) — 0.5901)|y(k — 3) — 0.5901] (19)

The polynomial approximation equation (14) was applied and the relevant terms were
selected using the Error Reduction Rate (ERR) [Korenberg et al, 1988], which measures the
contribution of each term to the overall output variance. After selecting the most relevant
terms the final model found was given by:

y(k) = 0.0033 + 1.8262u(k — 1) + 0.5636u(k — 2) — 2.3631u(k — 3) (20)
+13.3654u(k — 3)* + 1.2532y(k — 1) + 0.3300y(k — 1)* — 0.1068y(k — 2)

Figure 1 shows the model predicted output generated over the test data set, for the
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wavelet model and the polynomial approximating model (20). A metric which measures the
closeness of fit between the predicted output and the measured output is the normalised
root mean square error defined as:

Z(yest(k) i y(k)2
S (Y(k) = Ymean(k))? (21)

NMSE = J

* where y.s(k) is the model predicted output and ymean(k) is the mean value of the data set
y(k). The normalised mean square errors were 0.0115 for the wavelet model and 0.0177 for
the polynomial approximation (20).

The polynomial NARX model identified by Swain et al [1998] for the same data set

was!

y(k) = 1.2829u(k — 1) — 1.195Tu(k — 3) + 4.8262u(k — 3)°
+1.5593y(k — 1) — 0.44738y(k — 2) — 0.15585y(k — 3) (22)

Figure 1-(c) illustrates the predicted output of the model equation (22) over the same

”w Testau - Wavel moce . \li __ Testoutput . Approximatng model Oni_:{ __ Testouput ... Modal output

d o) | N .
g_d;fll ﬂ‘l (\ r\r‘ i Dll" A 111 f’*l !'\ . \‘ | aarjl A :'ll A ; !! lij
Al WA Al
S HATRVATRTRVATANATH I i) r-!\, a[“m,':mk\mei
SN Y 2R
arfl ¥V i R | RS A

(a) (b) (c)

Figure 1: Model predicted output over the test set for (a) the wavelet model (b) the
approximating polynomial model (20) and (c) the estimated model (22) [Swain et al, 1998]

test data set. The normalised mean square error was 0.0575. The polynomial approximating
model equation (20) therefore predicts new data extremely well, even better than the model
found by Swain et al [1998]. Although both models have a similar structure, model (20)
found via the B-spline wavelet model identification gives significantly improved predictions
over the test data set.

This result confirms the initial expectations, that the identification of a B-spline
wavelet model is more suitable in wave force modelling. Another example of a system with
a modulus type of nonlinearity is Chua’s circuit, where the B-spline wavelet identification
method also provided very good results [Billings and Coca, 1997].

The nonlinear transfer functions can now be computed for the model (20) and (22)
by directly applying the method of Peyton-Jones and Billings (1989]. The first order and
third order transfer functions are represented in Figures 2 and 3. The second order transfer
functions are equal to zero in both cases. The first order transfer functions in Figure 2
show that the system exhibits a single resonance. The third order transfer functions in
Figure 3 exhibit two highly dominant ridges which reveal the energy transfer phenomena
associated with wave force systems.
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Figure 2: The linear transfer function for (a) polynomial approximating model (20) and
(b) model (22) [Swain et al, 1998]
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Figure 3: The third order transfer function for (a) polynomial approximating model (20)
and (b) model (22) [Swain et al, 1998]

In this section the main theoretical issues presented in Section 3 have been analysed
for sampled experimental wave force data. The results show that very accurate B-spline
wavelet models of real systems can be readily identified and mapped into the frequency
domain using the new results derived in Section 3. The equivalent representation for the
wavelet model provides a compact model expression. Because the B-spline wavelet model
1s composed of polynomial and modulus type terms, it gives very good results in the
identification of systems with a polynomial or modulus type model terms.

6 Conclusions

The existence of a global model which is valid over the system operating range and
which is equivalent to identified nonlinear wavelet models has been investigated. The ad-
vantages of wavelet model identification, which include excellent predictive and qualitative
model properties can therefore be augmented by interpretation of the model in both the
time and frequency domain using traditional nonlinear model analysis procedures.
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The equivalent expression which was derived for the B-spline wavelet model gives
a clear representation of the type of nonlinearities which are present in the model. The
polynomial approximation of the B-spline wavelet model therefore provides an alternative
to polynomial model identification of nonlinear systems.
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Appendix A

Y _ Proof (Theorem 3.1): The one-dimensional case will be analysed initially. When
’ S; = 1, the submodel S}, or simply S;, is a linear combination of B- -spline scaling and
wavelet functions, in a one-dimensional regression vector X,:

Z Ci kBl Z Z d?;ﬂ/)i k(X ( X))+ SH(X) (23)

By using the B-spline scaling ¢;, x(z) and wavelet function ¥;4(z) expressions given in sec-
tion 2, a general formula is given for the sub-model S;(X;) in (23). The linear combination
of B-Spline scaling functions S¥(X;) is given by:

S-:I(XI) = ZCJ k(if).? X)’—

- T4, zz'Tf(‘) (”jl ){zﬂ-x - (24)

n!

where it can easily be shown that:

(25)

n T 5 k T l :
2 X — k=11 =27 [Xi "o }

The linear combination of spline functions is therefore given by a polynomial spline
function with the node values determined by the translations k¥ and the initial resolution
Jit

W g n+1 k+1]"
0 - B e
k ' g

=0
i D
= Tl [Xi- 2—} (26)
where p=k+1 (27)
, . —1)!
and s, =20 Zcﬁx,(p—z)( ﬁ:) ( n_; l ) (28)
=0 :

The spline function corresponding to the wavelet function is found in a similar man-
ner. The linear combination of B-Spline wavelet functions S//(X;) is defined as:

SH(X:) = sz mPrm(X

mo = J't
LN e o S CO 0 SO [ A 1 (k47 "
= szg,m(zqk (Z% o ( 7 o(i+1)(3+n) }{1#5 gt
b m i:j{ - j= . .

_ : r 1" (
= ;tm [Xi_gml .
(

where r:k—l—j-l—Qm'

min(r—2min+41) N n-+1
and 22 1+1)(3 +"F)Zd’ Z Qf_zm—j( n!) ( ] ) (31)

=5 =0
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The coefficients a; and by, where 2 € {0;...;n} and k£ € {m;...; M}, can be de-
termined by equating coefficients of every z* from the expansions (35) and (36) on each
interval f;ﬁﬁ, 5’3‘}%) In this manner a homogeneous system of linear (n+1) x (M —m+2)
equations with n +1 4+ M — m + 1 unknowns is generated. It can easily be verified that
n+)x(M-m+1+1l)=n+l14+M-m+14+n(M-m+1)+1>n+1+M-m+1
and therefore the system of equations is over-determined. This system always has a unique

solution.

By subtracting any two consecutive lines in (35) and (36) respectively, the coefficients
by are determined as:

Continuity conditions for n — 1 derivatives for every node are also imposed. These
conditions transform the over-determined system of equations into a determined system
with a unique solution. The coefficients a; are also uniquely determined. By equating the

coefficients of every z* on the interval (—oo; 2;}% ;

oot | p—id ) ok

By equating the coefficients of every z* on subsequent intervals, the values found for
the coefficients a; are also given by (38), providing the continuity conditions are fulfilled.

Consider now the multi-dimensional case, when S; > 1. The s;-dimensional spline
model is given by a tensor-product of one-dimensional sub-models:

i n M n—1
; . - ; ok k
57 (X;) = dII—1 S (i) = dl—[—1 ['—e aiT g, T ;; b | B i, — S (%m - ﬁ) }

(39)

Note that for the s;-dimensional case, the exact order of approximation does not
change when the approximations for all nodes 53}%, where k € {m; M} are added together
or when the submodels are multiplied using the tensor-product, providing the approxima-
tion is made on the interval [—1;1].
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