Fraunhofer Institut

Experimentelles
Software Engineering

Using Simulation to Analyse the Impact of
Software Requirement Volatility on Project
Performance

Authors:
Dietmar Pfahl
Karl Lebsanft'

! Siemens AG, ZT SE 3, Munich, Germany

Submitted for publication in
Proceedings of the ESCOM'2000

IESE-Report No. 003.00/E
Version 1.0
January 25, 2000

A publication by Fraunhofer IESE






Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.

The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6

D-67661 Kaiserslautern






Abstract

During the last decade, software process simulation has been used to address a
variety of management issues and questions. These include: understanding;
training and learning; planning; control and operational management; strategic
management; process improvement and technology adoption.

This paper presents a simulation model that was developed by Fraunhofer IESE
for Siemens Corporate Technology. The purpose of this simulation model was
to demonstrate the impact of unstable software requirements on project dura-
tion and effort, and to analyse how much money should be invested in stabi-
lising software requirements in order to achieve optimal cost effectiveness.

The paper reports in detail on the various steps of model building, discusses all

major design decisions taken, describes the structure of the final simulation
model, and presents the most interesting simulation results of a case study.

Copyright © Fraunhofer IESE 2000






Table of Contents

Copyright © Fraunhofer IESE 2000

4.1
4.1.1
4.1.2
4.2

5.1
52
5.3
54
55

Introduction
Background and motivation
Model building

Design decisions

Reference mode

Dynamics of product evolution
Dynamics of requirements generation
Base Mechanisms

Model structure

Module 1: software development

Module 2: workforce allocation and adjustment
Module 3: effort and cost calculations

Module 4: new requirements generation
Module 5: co-ordination of increments

Model calibration and validation

Case study results

Conclusions

References

o Oy OY U1 U

— O O WO 00

_

12

14

15

16

Vii






Introduction

1 Introduction

Software industry is constantly facing increasing demands for quality, produc-

tivity, and time-to-market. At the same time, increasing complexity of software
products and projects makes it ever more difficult for software developers and
managers to improve performance.

One reaction to this challenge has been the - now widely accepted - practice of
initiating and conducting continuous software process improvement pro-
grammes. Often, these improvement programmes are based on the recom-
mendations received from regularly conducted software process assessments
[1-2]. However, whether the suggested improvement actions are actually (cost-)
effective in a given software development environment is usually hard to say.
This is due to the high dynamic complexity of software development, which
takes place in environments that are determined by products, processes, meth-
ods, techniques, technologies, tools, and people (customers, managers, project
leaders, developers, etc.). All these entities interrelate through a network of
dependencies, thus forming a software development system. The adequate ap-
proach for assessing (cost-) effectiveness of improvement actions would be to
set up a measurement program, to conduct pilot projects, and to evaluate the
impact of the improvement effort based on the analysis of empirical data [3-5].

Unfortunately, in large-scale industrial software production environments it is
very time-consuming and costly to experiment with alternative development
technologies (and processes) on real projects. When experimentation on the
real system happens to be unfeasible, a common engineering practice consists
of building a model that can be studied by simulation. The method System Dy-
namics, originated by Forrester at MIT during the 1950s to analyse the behav-
iour of socio-economic systems [6-7], provides the means for this kind of simu-
lation-based analysis. System Dynamics (SD) modelling is based on expert
knowledge elicitation and (if available) empirical data [8]. An SD model cap-
tures the underlying cause-effect structure of a software development system
and translates it into functional relationships formally represented by mathe-
matical equations, which are then the basis for running computer simulations
that can be used as a first plausibility check on the (cost-) effectiveness of sug-
gested improvement actions.

In a recent survey [9], several promising application areas for simulation-based
analysis in software organisations have been listed, including: understanding,
training and learning, planning, control and operational management, strategic
management, process improvement and technology evaluation. Published ex-
amples of SD applications in software development cover a variety of issues

Copyright © Fraunhofer IESE 2000 1



Introduction

such as software project management [10-12], the impact of process improve-
ments on cycle-time [13], concurrent software engineering [14], effects of
software quality improvement activities [15-16], software reliability manage-
ment [17], software maintenance [18], and software evolution [19].

This paper presents a simulation model that was developed by Fraunhofer IESE
for Siemens Corporate Technology (Siemens CT). The purpose of this simulation
model was a) to demonstrate the impact of unstable software requirements on
project duration and effort, and b) to analyse how much effort should be in-
vested in stabilising software requirements in order to achieve optimal cost ef-
fectiveness.

The paper provides background information on the reasons for conducting the
study presented (Section 2), and then reports in detail on the various steps of
model building (Section 3), discusses all major design decisions taken (Section
4), describes the structure of the final simulation model (Section 5), sketches
the process of model calibration and validation (Section 6), and presents the
most interesting simulation results of the case study conducted (Section 7).
Based on the lessons learned from the case study, conclusions are drawn about
the suitability of System Dynamics simulation models for analysing software de-
velopment projects and processes (Section 8).

Copyright © Fraunhofer IESE 2000



Background and motivation

2 Background and motivation

The starting point for developing the simulation model was a CMM-compatible
software process assessment [20-22], which Siemens CT had conducted within
a Siemens Business Unit (Siemens BU). Usually, the main result of a software
process assessment is a list of suggested changes to the software processes. In
this case, the assessors’ observations indicated that the software development
activities were strongly affected by software requirement volatility. Moreover,
due to the type of products developed by Siemens BU, i.e. products consisting
of hardware (e.g. micro-controllers) and embedded software, the definition of
software requirements was under direct control of systems engineering, and
thus not totally under responsibility of the software department. During the as-
sessment, the assessors observed that many system requirements that had al-
ready been addressed by software development were changed by the cus-
tomer, or replaced by new requirements defined by systems engineering late in
the project. In addition, there were many cases where system requirements that
originally had been passed to software development eventually were realised by
hardware, and vice versa. Based on these observations, the assessors expected
that improvement suggestions that exclusively focused on software develop-
ment processes (e.g., introduction of software design or code inspections)
would not help stabilise software requirements. Since the software department
that had ordered the process assessment strongly requested improvement sug-
gestions that could be implemented under their responsibility, there was a need
to find means that helped convince decision makers that first systems engi-
neering had to be improved before improvements in software development
could become effective. Hence the decision was made to charge Fraunhofer
IESE with developing a simulation model that clarified the situation, and that
investigated the cost-effectiveness of improvements in systems engineering
with regards to software development.

Copyright © Fraunhofer IESE 2000 3



Model building

3 Model building

The simulation model was developed using the System Dynamics method. A
detailed model building process previously defined by Fraunhofer IESE guided
the modelling activities [8].

The model building process was highly iterative. 13 increments were needed to
come up with a base model that was able to capture the software development
behaviour mode of interest, and which contained all relevant factors governing
observed project behaviour. After two additional iterations, the simulation
model was ready to be used for its defined purpose.

In total, 5 persons were involved in model building (4 persons at Siemens CT, 1

person at Fraunhofer IESE). Overall, model building and documentation con-
sumed less than 2 person months of effort.

4 Copyright © Fraunhofer IESE 2000



Design decisions

4 Design decisions

Besides the definition of the model boundaries and model granularity, the most
important design decisions were related a) to the typical observable dynamics
(“reference mode”) of development projects at Siemens BU that the model
should be able to reproduce through simulation, and b) to the assumptions
about the most significant cause-effect relationships (“base mechanisms”) gov-
erning the observed project dynamics.

4.1 Reference mode

The reference (behaviour) mode was determined by the dynamics of product

evolution (i.e. a product is developed in three increments) and the dynamics of
requirements generation (i.e. each product increment implements certain types
of requirements) that typically can be observed during project performance (cf.

Figure 1).
A
Requirements
/ f’ h
Rhewc Reo s _-
A
Rneva /',”
A -
R 1 Pl
BO - RC
R //A
A 4
new. / i Rg
K ///
e 4 RA
Rao | +7
7 .
\ 14 A 4 A 4 \ 4 ‘Tlme
al a2 a3 p bl b2 B cl 2 c
I-Cycles
Figure 1: Typical pattern of product evolution during project performance.

Copyright © Fraunhofer IESE 2000 5



Design decisions

4.1.1 Dynamics of product evolution

The growth of the software product is shown with a dashed line in Figure 1.
The development of the software product is done in three subsequent, ap-
proximately equally long periods. During each period one increment is devel-
oped. The contents of the respective increments can be characterised as fol-
lows:

e Increment A: implements the base functionality (prototype)
* Increment B: implements all important requirements

* Increment C: implements all requirements (incl. customer-specific adapta-
tions)

During the development of an increment, usually several releases that are sub-
ject to customer examination are created. The development cycles that are
needed to create a release are called improvement cycles (I-Cycles).

4.1.2 Dynamics of requirements generation

At the beginning of each development period of an increment, a fixed set of
requirements to start with is known (R,o, Rgo, Reo). During the development of
an increment, new requirements are usually received from the customer (mostly
as a result from the examination of releases). Typically, the number of new re-
quirements shows a ceiling effect. More formally, the following properties can
be observed:

* Number of software requirements at project start: Rao

e Cumulated number of requirements for increment A: R, = Rag + Rrena

» Cumulated number of requirements for increment B: Ry = R, + Rgg + Roeus
e Cumulated number of requirements for increment C:  Rc = Ry + Reg + Rieuc

» Relationship between number of new requirements at start of an increment
development: Ry; > Rgy > Reg

It should be noted that only those requirements are shown in Figure 1 that ac-
tually will be contained in the final product. Alterations in the total number of
requirements due to modification or replacement of requirements are not
shown.

4.2 Base Mechanisms

For building the SD model it is necessary to identify the most important causal
relationships that are supposed to generate the typical project behaviour. Based

Copyright © Fraunhofer IESE 2000



Design decisions

on the insights that the Siemens CT experts gained during process assessment,
the following six base mechanisms were identified:

Copyright © Fraunhofer IESE 2000

The average productivity of the workforce, measured as the number of im-
plemented requirements per effort unit, is constant during the development
of a product increment |, (j = A, B, C). Between increments the following re-
lations hold: prod (l,) > prod (Ig) > prod ().

If requirements that have already been implemented are replaced by new
requirements, rework cycles have to be conducted.

The more rework cycles occur, the smaller is the average development pro-
ductivity of the related increment. This affects effort consumption and proj-
ect duration in addition to the fact that more requirements have to be de-
veloped than originally planned.

Unstable definition of software requirements increases the number of re-
work cycles.

Stability of software requirements definition is a measure of systems engi-
neering quality. Systems engineering quality can be increased, if effort is in-
vested for improvement actions.

Generally, holding the project deadline has highest priority, i.e. if the project
schedule is at risk, more manpower will be added to the project.



Model structure

5 Model structure

The simulation model was implemented in a modular way using the System
Dynamics tool Vensim® [23]. The main module represents the software devel-
opment with its interface to systems engineering from which the software re-
guirements are received. Four additional modules describe certain aspects of
software development in more detail, namely: manpower allocation and pro-
ductivity, effort and cost calculation, generation of new software requirements,
and control of incremental software development. The following sub-sections
provide rough descriptions of each model module.

5.1 Module 1: software development

The module “software development” represents all relevant elements of the
software development process and its interface to systems engineering. In sys-
tems engineering, all customer requirements are collected and analysed. Those
requirements that shall be implemented in the software product are filtered out
and passed over to the software development process. Generally, there are
three types of software requirements: those that are known at project start,
those that are newly received in addition to the existing requirements during
project performance, and those that are newly received in order to replace ex-
isting (and already implemented) requirements during project performance. Re-
placing requirements can be received at any time during project performance.
The number of replacing requirements per period (e.g. per week) is propor-
tional to the number of requirements known at project start. The factor that
determines the number of replacing requirements (variable weekly_ replace _
factor) depends on the quality of systems engineering, i.e. the lower the sys-
tems engineering quality the greater the proportionality factor (cf. Section 5.3).

At project end, all software requirements are implemented in the software
product. The speed with which a certain number of requirements can be im-
plemented depends on the size of the workforce and the average productivity.
Since the software product is implemented in three increments, and each in-
crement is different in nature, there is a dedicated level of average productivity
assigned to each increment. Typically, the productivity is such that the devel-
opment periods of the increments are equally long. The average productivity is
affected by the variable weekly_replace_factor, i.e. the greater the proportion-
ality factor, the lower is the average productivity. This dependency relationship
is justified by the observation that an increase in requirement replacements in-
creases the amount of rework (represented by an increased number of I-
Cycles).

Copyright © Fraunhofer IESE 2000



Model structure

5.2  Module 2: workforce allocation and adjustment

The module “workforce allocation and adjustment” represents all relevant ele-
ments of the software development process relevant for allocating software
developers and adjusting their number during project performance (if neces-
sary). The initial number of software developers is calculated based on the
number of initial requirements according to the typical manpower allocation
pattern at Siemens BU. Workforce adjustments during project performance be-
come necessary when continuously calculated projections of the probable proj-
ect termination (which are based on the current workforce size, the current de-
velopment productivity, and the number of remaining requirements to be im-
plemented) significantly differ from the planned overall project duration. Ac-
cording to nature and extent of the divergence, developers are added or taken
away from the team, the adjustment being subject to realistic delay.

5.3 Module 3: effort and cost calculations

Based on the actual project duration and the workforce allocation, the module
“effort and cost calculation” calculates the overall effort used to develop the
software product. In parallel, the development cost is calculated by multiplica-
tion with a cost factor.

This module also determines the effort for conducting the systems engineering
task using the variable effort_provided_for_systems_engineering as a policy pa-
rameter when running simulations. It is assumed that the quality of the systems
engineering, and thus the stability of the requirements (expressed through the
variable weekly_replace_factor) is a direct function of the effort invested. The
assumed relationship between effort provided for systems engineering and the
variable weekly_replace_factor is shown in Figure 2 below.

Copyright © Fraunhofer IESE 2000 9



Model structure

Graph for weekly_replace_factor

0.06)

0.054

0.044

0.043 . 1 :

weekly_ replace_factor=Min.5, - - — 7

0.034 (2+effort_ provided_for _systems_ engineeriny) [
0.03 \

0.02 \

0.014 \
0.014 \

\ Effort provided for
0.004 N systems engineering
S [Person weeks]

0O 10 20 30 40 50 60 70 80 90 100110120130 140150160170 180 190 200

Figure 2: Relation between variable weekly_replace_factor and systems engineering effort.

5.4  Module 4: new requirements generation

The module “new requirements generation” determines the number of new
requirements received during the development of increments A, B, and C
(Roewar Reo + Riewss Rco + Roewc). The calculations are based on typical patterns
observed at Siemens BU. Figure 3 shows the behaviour of the new require-
ments generation rate for increment A, adjusted to an initial number of re-
quirements of 1000 (R,o).

Requirements [Functional Graph for new_  requ _A

200
180
160
140

\
120\
\
\
\

new_ requiremerts_ fraction[Re qu_start

new_requ_A = -
(1 +Increment_A _ durahon)2

100
80
60
40

20 \

0 — Time [Weeks:
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 3: Relation between variable new_requ_A and time.

1 O Copyright © Fraunhofer IESE 2000



Model structure

5.5 Module 5: co-ordination of increments
The module “co-ordination of increments” is needed for synchronising the

model calculations related to the development of the respective software in-
crements.

Copyright © Fraunhofer IESE 2000

11



Model calibration and validation

6

Table 1:

12

Model calibration and validation

The model was calibrated based on the knowledge of Siemens CT about the
behaviour patterns of typical development projects at Siemens BU (baseline).
Siemens CT gained their knowledge mainly through the process assessment
previously conducted within the software organisation of Siemens BU. It should
be noted that most of the information about software projects at Siemens BU
was qualitative of nature (with the exception of effort data). Therefore, only
relations between major variables were used to calibrate the model. Based on
these relations, a normalised baseline project was defined through the model
constants listed in Table 1.

Model constants used for calibration.

Description Unit Value
Number of requirements at project start (R,) functional unit 1000
New requirements fraction (needed to calculate | dimensionless 0.15
RneV\/A' RneV\/B' RneWC)

Initial requirements fraction for increment B dimensionless 1.8

(needed to calculate Rg,)

Initial requirements fraction for increment C dimensionless 0.5
(needed to calculate Rep)

Target project completion time week 100

Nominal average productivity for increment A functional unit / person week | 11

Nominal average productivity for increment B functional unit / person week | 4

Nominal average productivity for increment C functional unit / person week | 2.5

Cost per effort unit money unit / person week 2000

Model validation was mainly based on plausibility checks conducted by Siemens
CT experts. In addition, an important necessary condition for model validity, i.e.
the ability to reproduce the reference mode, was strictly fulfilled (for details on
techniques for model validation cf. [24-25]). The patterns of software product
growth (variable: SW_product) and generation of actually implemented re-
quirements (variable: actual_all_SW_requirements) as produced by the simula-
tion model are shown in Figure 4 for two different values of the policy variable
effort_provided_for_systems_engineering (simulation runs n1 and n2). Note
that the number of replaced requirements (variable: SW_replace_requ) and
thus the total number of received requirements during project performance
(variable: all_SW_requirements) varies as a result of the variation of the effort
invested in systems engineering.

Copyright © Fraunhofer IESE 2000



Model calibration and validation

SW Development and Requirements Generation (run: n1)

4,000

.,’______1__'_'_'_'_'

3,600 L~

3,200
b

2,800 P

2,400 7

2,000 ’J\{ y/_. C [ L. L.

1,600 = X e

\
\
.’|

1,200 v A

800 // F,J"'— N
200 / - C

7y Bl

7
0 /’ Y
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Time (Weeks)

SW Development and Requirements Generation (run: n2)

4,000

3,600

3,200

2,800 b 4y /’__,_______1___________
y

~R

2,400

Q
Q.
yi
\
\
\

2,000 \<

1,600 l

1,200 v

CH
800 /

Y Ry s s I S
400 / c-r=T"T

7 _—
-

(!
\

-

0 =
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Time (Weeks)

SW product (a) all SWrequirements (b) = ======-=---
SWreplacerequ (¢) =====-- actual all SW requirements (d)
Figure 4: Reproduction of the reference behaviour (a: SW product — d: SW requirements).

Copyright © Fraunhofer IESE 2000 1 3



Case study results

7 Case study results

Table 2:

14

The question that had to be answered with help of the simulation model was:
“How much effort should be invested into systems engineering in order to im-
prove (software) requirements analysis and thus minimise the overall software
development cost?” To answer this question, an equivalent mathematical
minimisation problem was formulated:

.
total _effort = x + Z y(t)00 - min

with:

t.  elapsed time (weeks)

T: project termination (weeks)

x: effort for systems engineering (person weeks)

y:  weekly effort consumption for software development (person weeks /
week)

The solution to this problem was found through variation of the policy variable
x (model parameter: effort_provided_for_systems_engineering) and by using
the built-in optimisation function of the simulation tool Vensim®, which applies
the Fletcher-Powell algorithm [26]. The most important results are summarised
in Table 2.

Summary of simulation results.

Simulation run ni n2 n3 n5 optimal n6
(baseline)

Syst. Eng. effort [person weeks] 5 10 15 30 42 50

SW dev. effort [person weeks] 875 586 499 452 420 416

Total effort [person weeks] 880 596 514 482 462 466

Cost-effectiveness - 0| 0.138 | 0.191 0.225 | 0.218

AARR per week [%] 1.83 0.73 0.40 0.14 0.08 0.06

It turned out, that an increase of the systems engineering effort share from
1.7% of the total effort (baseline situation) to 9.1% of the total effort (optimal
situation) will reduce the overall cost for systems engineering and software de-
velopment by more than 20% (from 596 to 462 person weeks). This effect is
mainly due to the stabilisation of requirements, which is expressed in terms of
the actual average requirements replacement (AARR) per week. In the optimal
case, on average only 0.08% of the currently known (and yet implemented) re-
quirements were replaced per week, adding up to a total of 29 replaced re-
quirements during project performance.

Copyright © Fraunhofer IESE 2000



Conclusions

8 Conclusions

Based on the simulations it was possible to demonstrate that software require-
ments volatility is extremely effort consuming for the software development or-
ganisation and that investments in systems engineering in order to stabilise re-
quirements definition would well pay off. Of course, it must be pointed out
that all results produced by the simulation model are based on qualitatively
formulated assumptions underlying the model structure. Without thorough re-
view of the model structure by experts of Siemens BU, and without a calibra-
tion of the model parameters and model functions to empirical data, the model
cannot be used for precise point estimates in the sense of a predictive model.

However, having such a simulation model at hand makes it quite easy to visu-
alise the critical project behaviour and to discuss the assumptions about the
cause-effect relationships that are supposed to be responsible for the gener-
ated behaviour. In that sense, experts at Siemens CT felt that building the SD
model was a useful exercise, and that similar models can help them in future
process improvement projects with Siemens business units.

Copyright © Fraunhofer IESE 2000 1 5



References

9 References

[1]  Paulk, M. C., Curtis, B., Chrissis, M. B., and Weber, C. V., “Capability
Maturity Model, Version 1.1", IEEE Software, July 1993, pp. 18-27.

[2]  Kuvaja, P., Simila, J., Krzanik, L., Bicego, A., Saukkonen, S., and Koch, G.,
“Software Process Assessment & Improvement — The BOOTSTRAP Ap-
proach”, Blackwell Publishers, 1994

[3] Basili, V.R., Caldiera G., "Improve Software Quality by Reusing Knowl-
edge and Experience”, Sloan Management Review, Fall 1995, pp. 55-64.

[4]  van Solingen, R., Berghout, E., “The Goal/Question/Metric method: A
practical guide for quality improvement of software development”,
McGraw-Hill Publishers, 1999.

[5] Birk, A, Jarvinen, J., Komi-Sirvio, S., Kuvaja, P., Oivo, M., Pfahl, D.,
“PROFES - A product driven process improvement methodology”, Pro-
ceedings of the European Conference on Software Process Improvement
(SPI), Monaco, 1 - 4 Dec. 1998.

[6] Forrester, JW., “Industrial Dynamics”, Productivity Press, 1961.
[7]  Forrester, JW., “Principles of Systems”, Productivity Press, 1971.

[8] Lebsanft K, Pfahl D, “Knowledge Acquisition for Building System Dy-
namics Simulation Models: An Experience Report from Software Indus-
try”. Proceedings of the 11th Int’'| Conference on Software and Knowl-
edge Engineering (SEKE), Kaiserslautern, June 1999, pp. 378-387.

[9] Kellner, M.I., Madachy, R.J., Raffo, D.M., “Software process simulation
modeling: Why? What? How?", Journal of Systems and Software
46(2/3), 1999, pp. 91-105.

[10] Abdel-Hamid, T.K., Madnick, S.E., “Software Projects Dynamics — an In-
tegrated Approach”, Prentice-Hall, 1991.

[11] Lin, C. Y., Abdel-Hamid, T. and Sherif, J. S., “Software-Engineering Pro-
cess Simulation Model (SEPS)”, Journal of Systems and Software 38,
1997, pp. 263-277.

[12] Cooper, K.G. and Mullen, T., “Swords and Ploughshares: the Rework
Cycles of Defence and Commercial Software Development Projects”,
American Programmer 6(5), 1993, pp. 41-51.

[13] Tvedt, J.D., Collofello, J.S., "Evaluating the Effectiveness of Process Im-
provements on Development Cycle Time via System Dynamics Modeling".
Proceedings of the Computer Science and Application Conference
(COMPSAC), 1995, pp. 318-325.

1 6 Copyright © Fraunhofer IESE 2000



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Copyright © Fraunhofer IESE 2000

References

Powell, A., Mander, K., and Brown, D., “Strategies for lifecycle
concurrency and iteration: A system dynamics approach”, Journal of Sys-
tems and Software 46(2/3), 1999, pp. 151-162.

Aranda, R.R., Fiddaman, T., and Oliva, R., "Quality Microworlds: model-
ing the impact of quality initiatives over the software product life cycle”,
American Programmer, May 1993, pp. 52-61.

Madachy, R., "System Dynamics Modeling of an Inspection-Based Proc-
ess", Proceedings of the 18th International Conference on Software En-
gineering (ICSE), Berlin, Germany, IEEE Computer Society Press, March
1996.

Rus, I., Collofello, J., and Lakey, P., “Software process simulation for reli-
ability management”, Journal of Systems and Software 46(2/3), 1999,
pp. 173-182.

Cartwright, M., Shepperd, M., “On building dynamic models of mainte-
nance behaviour”, in Project Control for Software Quality (Kusters, R.,
Cowderoy, A., Heemstra, F., and van Veenendaal, E., eds.), Shaker Pub-
lishing, 1999.

Lehman, M.M. and Ramil, J.F., “The impact of feedback in the global
software process”, Journal of Systems and Software 46(2/3), 1999, pp.
123-134.

Volker, A., “Software Process Assessments at Siemens as a Basis for Pro-
cess Improvement in Industry”, Proceedings of the ISCN, Dublin, Ireland,
1994,

Mehner, T., Messer, T., Paul, P., Paulisch, F., Schless, P., Volker, A.,
"Siemens Process Assessment and Improvement Approaches: Experiences
and Benefits", Proceedings of the 22nd Computer Software and Applica-
tions Conference (COMPSAC), Vienna, 1998.

Lebsanft, K., “Das Siemens Process Assessment”, in Evaluation und
Evaluationsforschung in der Wirtschaftsinformatik (Heinrich, L.J. and Han-
tschel, 1., eds.), Oldenbourg Verlag, 2000, pp.175-188.

“Ventana Simulation Environment (Vensim®) - Reference Manual, Ver-
sion 3.0", Ventana Systems, Inc., 1997.

Richardson, G.P. and Pugh, A.L., “Introduction to System Dynamics
Modeling with DYNAMO", Productivity Press, Cambridge, 1981.

Barlas, Y., "Multiple Tests for Validation of System Dynamics Type of
Simulation Models", European Journal of Operational Research, Vol. 42,
1989, pp. 59-87.

Fletcher, R. and Powell, M.J.D., "A rapidly convergent descent method
for minimization". Computing, Vol. 6, 1963, pp. 163-168.

17






Document Information

Title:

Date:
Report:
Status:

Distribution:

Using Simulation to Analyse
the Impact of Software
Requirement Volatility on
Project Performance

January 25, 2000
[ESE-003.00/E
Final

Public

Copyright 2000, Fraunhofer IESE.

All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial

purposes.



