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Abstract

Current software development methods do not provide adequate means to model inconsistencies and therefore force software engineers to
resolve inconsistencies whenever they are detected. Certain kinds of inconsistencies, however, are desirable and should be maintained as long
as possible. For instance, when multiple conflicting solutions exist for the same problem, each solution should be preserved to allow further
refinements along the development process. An early resolution of inconsistencies may result in loss of information and excessive restriction
of the design space. This paper aims to enhance the current methods by modeling and controlling the desired inconsistencies through the
application of fuzzy logic-based techniques. It is shown that the proposed approach increases the adaptability and reusability of design

models. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Due to size and complexity of today’s applications,
developing cost-effective software systems is a difficult
task. Further, software engineers generally have to deal
with various kinds of inconsistencies that may originate
from requirement specifications, involvement of multiple
persons in the same project, errors in the software develop-
ment process, alternative solutions, etc. [14]. Certain kinds
of inconsistencies are inevitable, for instance, in case multi-
ple persons working independently of each other within the
same project [30]. Some inconsistencies are desirable when,
for instance, alternative solutions exist for the same
problem, and these solutions have to be preserved to allow
further refinement along the development process [27]. In
particular, alternative solutions manifest themselves in soft-
ware systems affected by continuously changing require-
ments. This paper focuses on modeling and handling
desirable inconsistencies.

During the last decade, a considerable number of soft-
ware development methods have been introduced [26,31].
Methods aim to create software artifacts through the appli-
cation of a number of rules. For example, the OMT method
[26] introduces rules for identifying and discarding object-
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oriented artifacts such as classes, associations, and part-of
and inheritance relations. These methods do not define
means to model the desired inconsistencies and, therefore,
aim to resolve inconsistencies whenever they are detected.
For example, in object-oriented methods a candidate class is
generally identified by applying the rule: If an entity in a
requirement specification is relevant and can exist autono-
mously in the application domain then select it as a candi-
date class. While applying the object-oriented intuition of
what a class should be, this rule follows the consistency
constraint ‘an entity is either a candidate class or not a
candidate class but not partially both’. In this example, the
software engineer has to determine whether the entity being
considered is relevant or not for the application domain. The
software engineer can perceive that the entity partially
fulfils the relevance criterion and may conclude that the
entity is, for instance, substantially relevant. This definition
would imply the classification of the entity as a partial class,
which is considered as an inconsistent class definition by the
current object-oriented methods. Therefore, the consistency
constraints force the software engineer to take abrupt deci-
sions, such as accepting or rejecting the entity as a class.
This results in loss of information because the information
about the partial relevance of the entity is not modeled and
therefore cannot be considered explicitly in the subsequent
phases [22].

In this paper, we propose a fuzzy logic-based software
development technique for coping with inconsistencies.
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This technique increases the adaptability and reusability of
design models and is not specific to a particular method.
Fuzzy logic can express uncertainty and imprecision.
Further, fuzzy logic provides a sound framework to define
a language, to associate a meaning with each expression of
the language and to compute these expressions. These
features make fuzzy logic more advantageous than other
approaches in representing naturally qualitative aspects of
data and heuristic rules generated from the experience
[8,33]. A software engineer can describe his/her perception
using his/her natural language and this perception can be
modeled and maintained along the overall development
process. Thus, an entity can, for instance, be considered
both as a weak class and as a substantial attribute. Although
class and attribute are two conflicting design alternatives for
an entity, fuzzy logic allows managing this inconsistency.
The linguistic expressions used to qualify the object-
oriented concepts (weak and substantial in the previous
example) can be considered as measures of each alternative.
These measures prove to be particularly useful in selecting
the best alternative in a set of possible conflicting design
alternatives. Capturing as much as possible the perception
of the software engineer reduces the loss of information and,
consequently, improves the quality of the software develop-
ment process.

2. Early resolution of inconsistency
2.1. Methodological rules

Methods create software artifacts by exploiting the under-
lying concepts' through the application of heuristic rules.
Each rule is derived from a particular intuition of the artifact
being developed. For instance, a candidate class is identified
as an entity, which is relevant and can exist autonomously in
the application domain. Further, the intuition of the artifact
candidate class expresses that the more an entity is relevant
and can exist autonomously, the more the entity matches the
concept of candidate class. The intuition, therefore, involves
a gradation of matching. With respect to relevance and
autonomy in the application domain, an entity can be
considered as a partial candidate class. From the software
engineer’s perspective, a partial classification means that
there is not sufficient evidence to take an abrupt decision
such as to accept or reject the entity as a class. Relevance
and autonomy are only a view of the concept of class: each
view expresses its opinion and this opinion can reinforce a
design alternative (the entity is a class) with respect to the
other (the entity is not a class), or vice versa. Only when all
the relevant opinions are collected, the entity can be
accepted or rejected as a class. In the mean time, the possi-
ble conflicting design alternatives have to be maintained.

! For example, object-oriented methods exploit the concepts like object,
class, aggregation and inheritance.

On the contrary, current methodological rules impose to
each view to express not an opinion, but an abrupt classifi-
cation. Consider, for instance, the following rule Candidate
Class Identification used by some popular object-oriented
methods? to identify candidate classes:

IF AN ENTITY IN A REQUIREMENT SPECIFICATION IS
RELEVANT AND CAN EXIST AUTONOMOUSLY IN THE
APPLICATION DOMAIN THEN SELECT IT AS A CANDI-
DATE CLASS.

Here, an entity in a requirement specification and a
candidate class are the two object-oriented artifact types
to be reasoned. If the antecedent of the rule is frue, then
the result of this rule is the classification of an entity in a
requirement specification as a candidate class. This rule
does not consider gradation in perception: an entity is either
a candidate class or not. It follows that a unique view of the
concept of class completely decides whether an entity can
be accepted or rejected as a class. Once an artifact has been
classified, for instance, into the rejected set of a rule, it is not
considered anymore by the rules that apply to the accepted
set of that rule. Of course, a rejected entity can be consid-
ered by another rule, which applies to the entities in a
requirement specification. Consider, for example, rule
Candidate Attribute Identification:

IF AN ENTITY IN A REQUIREMENT SPECIFICATION IS
RELEVANT AND CANNOT EXIST AUTONOMOUSLY IN
THE APPLICATION DOMAIN, THEN IDENTIFY IT AS A
CANDIDATE ATTRIBUTE

This rule can be applied to the entities in a requirement
specification, which are rejected by rule Candidate Class
Identification. If all the rules, which are applicable to an
entity in a requirement specification, reject that entity,
then the entity is practically discarded. Here, the rule
follows the consistency constraint imposed by the artifact
type Candidate Attribute: ‘an entity is either a candidate
attribute or not’. Further, it is obvious that if an entity is a
candidate class, it cannot be a candidate attribute and vice
versa.

Enforcing consistency constraints do not allow software
engineers to reason on different design solutions concur-
rently. New properties corresponding to different views of
concepts can only cause the conversion from a design solu-
tion to a conflicting design solution. For instance, when
investigating the functional view, an attribute can be
converted to a class by rule Attribute to Class Conversion:

IF A CANDIDATE ATTRIBUTE IS RESPONSIBLE FOR THE
REALIZATION OF FUNCTIONS THEN CONVERT THE
CANDIDATE ATTRIBUTE TO CLASS.

% The approach proposed in this paper is not restricted to object-oriented
methods. We adopted an object-oriented method because of our back-
ground.
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Similarly, a class may be converted to an attribute by rule
Class to Attribute Conversion.

IF A CANDIDATE CLASS IS NOT RESPONSIBLE FOR THE
REALIZATION OF ANY FUNCTION THEN CONVERT THE
CANDIDATE CLASS TO ATTRIBUTE.

In case candidate classes and attributes are not converted,
they are selected as classes and attributes, respectively.
After identifying classes, inheritance and aggregation rela-
tions are determined, for example, based on the following
rules:

Aggregation ldentification

IF CLASS A CONTAINS CLASS B, THEN CLASS A AGGRE-
GATES CLASS B.

Inheritance Identification:

IF CLASS A IS A KIND OF CLASS B, THEN CLASS A
INHERITS FROM CLASS B.

Despite reduced number of rules, the example method
shown in this section highlights how methodological rules
are chained with each other, that is, the output of a rule is
input to another rule. This implies that bad decisions taken
in the first levels of the rule chain have repercussions on the
subsequent levels. For instance, when identifying inheri-
tance or aggregation relations, if entities have been misclas-
sified as classes or as non-classes, inheritance and
aggregation relations will not be defined correctly in their
turn.

In the later phases of the development process, when the
final structure of the software is almost defined, heuristics
can be based on more precise and objective inputs than in
the first phases. The application of these heuristics can vali-
date the design choices or trigger a reevaluation of these
choices. For instance, class hierarchy can be modified
using the following rule Inheritance Modification:

IN THE CLASS HIERARCHY, IF THE NUMBER OF IMMEDI-
ATE SUBCLASSES SUBORDINATED TO A CLASS IS LARGER
THAN 5, THEN THE INHERITANCE HIERARCHY IS
COMPLEX.

This rule is extracted by the metrics proposed in Ref. [7].
If this rule concludes that the inheritance hierarchy is
complex, then the hierarchy may be modified.

For the sake of brevity, in this section we have introduced
only a subset of the heuristics composing a method. We
would like to point out, however, that the solutions proposed
in the next sections can easily be extended to a complete set
of heuristics.

2.2. Quantization error

The consistency constraints enforced in current meth-
ods impose abrupt classifications. For instance, rule
Candidate Class Identification asks a software engineer
to classify the entities as relevant or not relevant enti-

ties. Although the software engineer may perceive that
an entity partially fulfils the relevance criterion, the rule
imposes her/him to take an abrupt decision: to accept or
reject the entity as a candidate class. In general, there-
fore, application of a rule quantizes a set of object-
oriented artifacts into two subsets: accepted or rejected.
If on the one side this strategy reduces the complexity
of the design process, on the other side it generates the
so-called quantization error [22].

To make the concept of quantization error clear we can
refer to the area of digital signal processing. Here, quantiza-
tion process consists of assigning the amplitudes of a
sampled analog signal to a prescribed number of discrete
quantization levels. This results in loss of information
because the quantized signal is an approximation of the
analog signal. Quantization error is defined as the difference
between an analog and the corresponding quantized signal
sample. The less the number of quantization levels, the
higher the quantization error.

To enforce consistency constraints, in current methodo-
logical rules, high quantization errors arise from the fact that
rules adopt only two quantization levels. Here, the quantiza-
tion error is the difference between the perception of the
software engineer and the two ‘quantization levels’ imposed
by methodological rules.

One of the dramatic effects of the quantization error on
the development process is early elimination of artifacts.
Each decision taken by a rule is based on the available
information up to that phase. For the early phases, there
may not be sufficient amount of information available to
take abrupt decisions like discarding an entity. Such an
abrupt decision must be taken only if there is sufficient
evidence that the entity is indeed irrelevant. In most
object-oriented methods, however, each identification
process is followed by an elimination process. For example,
the OMT method [26] proposes a process that includes class
identification and elimination, association identification and
elimination, and so on. Now, assume that a software engi-
neer discards an entity because it is considered non-relevant.
The discarded entity, however, could have been included as
a class, if the software engineer had gathered more informa-
tion about its structure and operations. During the later
phases, this would be practically impossible because the
discarded entity could not be considered further. Early elim-
ination of artifacts in current methods is practically inevi-
table.

If, at the end of the development process, the soft-
ware engineer realizes that the resulting object model is
not satisfactory, there are two possible options: improv-
ing the model by applying subsequent rules and/or by
iterating the process. The application of subsequent
rules may not adequately improve the model because
of the loss of information due to quantization errors.
The iteration of the process still suffers from the quan-
tization error problem. Moreover, managing iterations
remains as a difficult task.
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3. Requirements for improving current methods

We propose the following requirements for improving
current methods:

® Reducing the quantization error: To reduce the quantiza-
tion error and its negative effects, desired inconsistencies
should be preserved and resolved only when it is neces-
sary. Such an inconsistency resolution, for instance, may
be requested by the language compiler. A demand for
resolving an inconsistency therefore may be context or
language dependent. For example, the C++ language
allows multiple inheritance specification whereas the
Smalltalk language forbids it. The objective of preser-
ving inconsistencies, however, has not to be achieved
to the detriment of the intuitiveness of the methods.
Indeed, software development process is a highly labor
intensive work and therefore the adopted rules, alterna-
tives and measures must be expressed in an intuitive way.
Preferably, well-established rules and heuristics of the
current methods must be respected.

e Provide a measure for alternatives: Preserving alterna-
tive solutions does not mean that all the alternatives are
equally valid. Consider for example that an entity may be
classified as an attribute and a class at the same time. To
be able to reason about the alternatives, there is a need to
give a measure for each alternative. The software engi-
neer, for instance, may classify an entity more like a class
than an attribute and give a higher measure to it.

e Manage complexity: Deferring consistency enforcement
decreases the loss of information but increases the
complexity of design. There is a need for introducing
appropriate techniques to manage this increased
complexity without necessarily giving up the design flex-
ibility. In particular, the trade-off between flexibility and
complexity should be controlled by the software engi-
neer.

4. Using fuzzy logic in modeling inconsistencies
4.1. Modeling artifacts

Denote each artifact type as [T, (Py, Dy), (P, D»),...,
(P,, D,)], where T is the artifact type name, P; is a property
of T and D; is the definition domain of P;. An example of an
artifact type is [Entity,(Relevance,{True, False}), (Autono-
my,{True, False})]. Here, True and False are the only two
values that Relevance and Autonomy can assume in current
methodological rules. A software artifact is an instantiation
of its type and can be expressed as Name — [T, (P; :
Vi), (Py:V3),....(P,:V,)], where T is the artifact type,
Name is the name of the artifact, and V; is a value defined
on domain D; of property P;. In the following example,

Square is an instance of artifact type Entity:

Square «— [Entity, (Relevance : True), (Autonomy : True)]

Depending on the values of the properties, an artifact can
‘evolve’ and become an instance of another artifact type.
For instance, if the values of properties Relevance and
Autonomy are set to True, artifact Square becomes an
instance of Candidate Class. Let us denote an artifact type
A whose properties are used to determine the set of instances
of an artifact type B as pre-artifact type of B. In our example,
Entity is a pre-artifact type of Candidate Class. An artifact
type can have one or more pre-artifact types. For instance,
Candidate Class and Candidate Attribute are both pre-arti-
fact types of Class (see rule Attribute to Class Conversion).

The transformation process from instance of an artifact
type into instance of another artifact type is controlled by
the methodological rules. For instance, rule Candidate
Class Identification defines the transformation from Entity
into Candidate Class. Rules can be expressed using the
notation introduced to represent artifacts in the following
way:

P «— [Entity, (Relevance : True), (Autonomy : True))
= P «— [CandidateClass]

Here, P indicates a variable, which is instantiated to the
artifact being reasoned on, and = represents the classical
implication operator.

The group of rules, which have an artifact type in their
consequent part, determines the set of instances of that arti-
fact type. The set of instances x of an artifact type 7 can be
defined as {x: Cy{(x) holds}, where C(x) are the conditions
an artifact has to satisfy to be a member of the set. Condi-
tions Cy(x) correspond to the antecedents of rules which
have T in their consequent part, and are typically expressed
as logical expressions of properties of one or more pre-arti-
fact types of T. For instance, the set of instances cc of
Candidate Class is {cc: cc < [Entity, (Relevance :
True), (Autonomy : True)]}. Similarly, the set of instances
a of Candidate Attribute is {a : a < [Entity, (Relevance :
True), (Autonomy : False)]}.

We define two artifact types A and B to be conflicting if
there exists no artifact which can be an instance of both. Let
{x: Cs(x) holds} and {x: Cp(x) holds} be the sets of instances
of artifact types A and B. Then, A and B are conflicting if
there exists no artifact x such that Cy(x) & Cp(x) = true,
where & stands for the logical and.

From this definition, it can be deduced that artifact types
Candidate Class and Candidate Attribute, and Class and
Attribute are conflicting artifact types. Further, an artifact
cannot be an instance and, at the same time, a non-instance
of an artifact type. The conflict is caused from the conditions
Cy(x), which trace out abrupt boundaries between instances
and non-instances of an artifact type. When method
developers define rules, however, they intuit, for instance,
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Table 1
Some popular triangular norms and corresponding conorms

T T(a, b) T"(a,b)
Minimum min(a, b) max(a, b)
Product ab a+b—ab
Bounded product max(0,a +b —1) min(1l,a + b)

Drastic product { min(a,b) if max(a,b) =1

0 otherwise

max(a,b) if min(a,b) =0

otherwise

that entities can be partially relevant and autonomous, and a
partially relevant and autonomous entity should be selected as
a partial member of both Candidate Class and Candidate Attri-
bute. Nevertheless, they are forced to quantize their intuition
of partial relevance and autonomy so as to create a sharp
boundary between instances and non-instances of an artifact
type. There exists a semantic gap between method developers’
intuition of an artifact type and actual representation of this
intuition by means of two-valued logic-based rules.

Also, the abrupt boundaries traced out by the conditions do
not allow capturing completely software engineers’ perception
of an artifact. Software engineers, for instance, can perceive
different grades of relevance of an entity in their turn, but they
are required to quantize their perception in order to match input
values permitted by rule Candidate Class Identification. There
exists a semantic gap between the software engineers’ percep-
tion and the input required by the rule.

As observed in Lakoff [18], some sets appear to be
graded sets, that is, they show a fuzzy boundary whose
‘width’ is defined by a linear scale of values between 0
and 1, with 1 at the interior and O at the exterior. Artifact
types seem to identify graded sets rather than classical
sets [23]: a development process element such as an entity
in a requirement specification can be an instance of an
artifact type at a certain degree. To reason on graded sets,
an appropriate logic has to be used. If n is the number of
membership degrees, extensions of two-valued logic to n-
valued logics are needed to manage the possible n truth
levels. When the number of degrees tends to infinity,
graded sets become fuzzy sets and n-valued logic degen-
erates to an infinite-valued logic. The term infinite-valued
logic is usually used in the literature to indicate a logic
whose truth-values are represented by all the real numbers
in the interval [0,1]. Infinite-valued logic is isomorphic to
fuzzy set theory in the same way as the two-valued logic
is isomorphic to the crisp set theory [17]. The isomorph-
ism follows from the fact that the logic operations have
the same mathematical form as the corresponding opera-
tions on fuzzy sets. As the set of fuzzy operations can be
implemented in different ways, a variety of fuzzy set
theories and therefore of infinite logics (or fuzzy logics)
can be derived. In Section 4.2, we will introduce some
basic aspects of fuzzy set and fuzzy logic theories to allow
readers non-familiar with these concepts to -easily
comprehend the approach presented in Section 4.3.

4.2. Fuzzy logic

A fuzzy set S of a universe of discourse U is characterized
by a membership function which associates with each
element u of U a number in the interval [0,1] which repre-
sents the grade of membership of u in S [32].

Several operations are defined on fuzzy sets. Given two
fuzzy sets A and B in a universe of discourse U, some basic
operations are the following:

e Complement = A = [ (1 — py(u))/u;
e Intersection A N B = [ T(wa(u), pp(u))/u;
e Union AU B = [ T"(us(u), up(u))/u.

where the integral sign [, u(u)/u stands for the union of the
points u at which u(u) is positive and T and T" identify a
triangular norm and the corresponding conorm, respec-
tively. The definitions of some popular triangular norms
and corresponding conorms are given in Table 1.

Relations can be defined among fuzzy sets. A fuzzy rela-
tion R(xy,...,xy) is a fuzzy subset of the Cartesian product
Uy X+ XUy, where U; X--- X Uy 1is the collection of
ordered tuples uy,...,uy, with uy € Uyq,...,uy € Uy. R is
characterized by a multivariate membership function
Mr(uy, ..., uy) and is expressed as:

J MRy, o uy)uy...uy (D
Uy XX Uy

Finally, relations can be composed. Let R and S be fuzzy
relations in U X V and V X W, respectively. The composi-
tion of R and § is a fuzzy relation denoted by RoS =
[ uxw sup,ey T (g, v), ps(v, w)/(u,w). R or S can be
unary relations. The sup-T operator is called composition
operator.

Based on the definition of fuzzy set, Zadeh introduced the
concept of linguistic variable [32]. A linguistic variable is a
variable whose values, called linguistic values, have the
form of phrases or sentences in a natural or artificial
language. For instance, possible linguistic values of linguis-
tic variable Temperature might be low, medium and high.
The meaning of a linguistic value v is the fuzzy set M(v) of
universe U for which v serves as label. For instance, the
three fuzzy sets shown in Fig. 1 express the meaning of
low, medium and high temperature. Here, universe U is
defined on the scale of degrees centigrade between 0 and
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Membership Value
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Fig. 1. Linguistic variable Temperature.

40. Each degree of the scale belongs to the fuzzy set asso-
ciated with a linguistic value at a different grade. For
instance, the temperature 29°C belongs to medium and
high with membership value 0.5 and to low with member-
ship value 0.

Syntactically, a linguistic value is a composition of the
following atomic terms:’

1. Primary terms, which are labels of specified fuzzy sets in
the universe of discourse. For instance, low, medium and
high for the linguistic variable Temperature;

2. Negation not and connectives and and or;

3. Markers such as parentheses.

All possible values of a linguistic variable can be gener-
ated by a context-free grammar G = (T, N, P), where T and
N are the terminal and non-terminal symbols, respectively,
and P is the production system. The terminal symbols are
the atomic terms. The meaning associated with each possi-
ble linguistic value is determined by a semantic rule R,
which maps each linguistic expression into an operation
on fuzzy sets. For instance, negation not complements the
corresponding fuzzy set, connectives and and or are defined
as the intersection and the union between fuzzy sets, respec-
tively. The markers change the normal sequence of the
operations.

It follows that a linguistic variable is characterized by a
quintuple (x, TN(x), U, G, R) where x is the name of the
variable, TN(x) is the term set of x, that is, the union of
terminal and non terminal symbols of x with each value
being a fuzzy set defined on universe U, G is the context
free grammar for generating the symbols of x, and R is the
semantic rule. The definition of G and R is shared among all
the linguistic variables except for the primary terms and
their meanings. In general, therefore, a linguistic variable
is completely characterized by defining the universe, the
labels representing the primary terms and their meanings.

® For the sake of simplicity, we do not consider modifiers in the atomic
terms. Modifiers are linguistic expressions such as more or less, very,
minus, plus, which modify the meaning of the atomic term which they
are applied to.

Linguistic variables allow expressing rules in a natural
way and the meaning associated with each linguistic value
permits to reason on these rules. A fuzzy rule is typically
expressed as IF X, is A; AND...AND Xy is Ay THEN Y is
B, or for short I(A; A ... A Ay, B), where X;, withi = 1...N,
and Y are linguistic variables defined on the universes U;
and V, respectively, A; and B are linguistic values of X; and
V, respectively, and I is a fuzzy implication operator. The
connective AND and the fuzzy implication are implemented
as fuzzy relations. For the connective AND, A; A ... A
Ay = [y, xxuvy T, s -es o, Mty ...y, with T a triangu-
lar norm and w,, the membership function associated with
the primary term A;. A fuzzy implication is defined for all
tET and v E V by I(A,B) = [ 1,0y F(ua(0), ms)/(1,v),
where F may be each function from [0, 1] X [0, 1] to [0, 1]
that satisfies the boundary conditions F(0,0) = F(0,1) =
F(1,1) =1and F(1,0) = 0. Several families of fuzzy
implication operators have been proposed in literature.
Comparative studies can be found in Ref. [17].

Given a fuzzy rule IF X, is A; AND...AND Xy is Ay
THEN Y is B and a fact X, is A; AND...AND Xy is Ay, the
inference mechanism used to infer a conclusion B’ is
normally implemented by a generalization of the modus
ponens, called generalized modus ponens or compositional
rule of inference. Conclusion B’ is computed as B’ = (A A
. NANI(A| A ... A Ay, B), where o denotes the composi-
tion operator and I a fuzzy implication operator [32]. The
conclusion B’ is therefore obtained by first computing the
fuzzy sets corresponding to the fact and to the rules, and
then composing these fuzzy sets by the composition opera-
tor. It follows that in fuzzy logic a reasoning tool like the
generalized modus ponens is implemented as a sequence of
operations on fuzzy sets. Notice that the generalized modus
ponens allows inferring conclusions also if the fact corre-
sponds only approximately to that expected in the antece-
dent part of the rule.

As noted in Ref. [29], the causal relationship between the
variables, which define a real system, cannot be expressed
by only one rule. So, typically we should deal with a set of
rules: the conclusion inferred from all the rules will be
obtained by aggregating the conclusions inferred by the
single rules. Aggregation is generally implemented as a
fuzzy intersection or union. The choice of the type of aggre-
gation operation depends on the type of fuzzy implication
and composition operators. In general, the criterion adopted
in the choice is the fundamental requirement for fuzzy
reasoning, i.e. given a fact that matches the antecedent of
a rule, the conclusion has to match the consequent part of
that rule. A detailed analysis on the relationships among
types of aggregation, implication and composition opera-
tors, and partitions of the input and output spaces for satis-
fying the fundamental requirement for fuzzy reasoning can
be found in Ref. [19].

A conclusion is expressed as a fuzzy set. If we are inter-
ested in a crisp value, we can defuzzify the conclusion by a
defuzzification strategy [32]. A defuzzification strategy is
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aimed at producing the crisp value that best represents the
linguistic value. At present, the commonly used strategies
may be described as the mean of maxima and the center of
area. The crisp value produced by the mean of maxima
strategy represents the mean value of the elements, which
belong to the fuzzy set characterizing the conclusion with
maximum grade. The center of area strategy produces the
center of gravity of the fuzzy set characterising the conclu-
sion.

4.3. Fuzzy artifacts

Artifacts can be instances of an artifact type at different grades.
To take this membership gradation into account the notation of
artifact type introduced in Section 4.1 has to be changed into
[T, (MemberShip’ DM)a (Plv Dl)’ (P25 DZ)»-H»(Pn’ Dn)]y
where T is the artifact type name, Membership contains the
membership value, Dy, is the definition domain of Member-
ship, P; is a property of T and D; is the definition domain of
P;. A software artifact can be expressed as Name — [T,
(Membership: Vy), (P : Vi), (P2 : V,),....,(P,: V,)]. The
membership values depend on the truth-values of antece-
dents of rules, which have the artifact type in their conse-
quent part. For instance, the membership value of entity to
the set of instances of artifact type Candidate Class depends
on the values of Relevance and Autonomy.

Let us assume Relevance and Autonomy vary in the inter-
val [0,1]. As the heuristic corresponding to rule Candidate
Class Identification suggests that the more an entity is rele-
vant and autonomous, the more the entity is an instance of
Candidate Class, we could define the membership value of
the entity to Candidate Class as the product of relevance and
autonomy values. Though this definition is logically correct,
it requires a software engineer to input numerical values for
properties that cannot be easily quantified. For instance,
with respect to Relevance, a software engineer can only
express a qualitative evaluation such as weakly relevant or
strongly relevant: A possible numerical input value would
be very questionable and scarcely reliable. Fuzzy logic
seems to have the ideal solution to this problem. As is
well known in the literature, fuzzy logic is ideal for forma-
lizing incomplete and vague information [17].

The most natural manner to express qualitative informa-
tion is to represent properties as linguistic variables. To
make the interaction between a software engineer and the
method as friendly as possible it is crucial to investigate
how many and which primary terms would be meaningful
for these linguistic variables. To this aim, we adopt the
following method: we select a pool of software engineers
and ask them to define the linguistic variables. Then, we
stimulate a revision process within the pool aimed at reach-
ing an agreement. Concerning Relevance and Autonomy of
an entity, for instance, the pool concluded that property
Relevance can be expressed as weakly, slightly, fairly,
substantially and strongly relevant, and property Autonomy
as dependent, partially dependent and autonomous. Figs. 2

Membership Value
A

lWeakly Slightly  Fairly Substantially Strongly

T Y
05 ';.". "-‘ £

0 0.25 05 0.75 1 Relevance

Fig. 2. Linguistic variable Relevance.

and 3 show the meaning associated with the primary terms
of Relevance and Autonomy. Here, standard piecewise
quadratic functions are used to define membership func-
tions. Consequently, artifact type Entity can be defined as:

Name — [Entity, (Membership, [0, 1]), (Relevance,
{Weakly, Slightly, Fairly, Substantially, Strongly}),
(Autonomy, {Dependent, Partially Dependent,

Autonomous})]

In general, we observed that software engineers tend to
partition uniformly the universe of discourse and to use
smooth membership functions to describe fuzzy sets.

4.4. Fuzzy methodological rules

Methodological rules have now to be reformulated as
fuzzy rules. To express fuzzy rules in a convenient form,
Membership is also transformed into a linguistic variable.
The primary terms of Membership and the meanings asso-
ciated with them are the same as those of property Rele-
vance.

Consider the modified version of rule Candidate Class
Identification:

IF AN ENTITY IN A REQUIREMENT SPECIFICATION IS
RELEVANCE VALUE RELEVANT AND CAN EXIST AUTON-
OMY VALUE AUTONOMOUS IN THE APPLICATION

Membership Value

A Partially
Aut
Dependent Dependent utonomous
1 = —~
\‘ I/
\\‘ y
\ /
0.5 y &
\ /
\ ;
\ ,/
L >
0 Emmmmm el
0 0.5 1 Autonomy

Fig. 3. Linguistic variable Autonomy.
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Table 2
Sub-rules of rule Candidate Class Identification

P — [Entity, (Relevance:

P «— [Candidate Class: Weakly Slightly Fairly Substantially Strongly
(Membership

Dependent Weakly Weakly Weakly Weakly Slightly
Partially dependent Weakly Slightly Slightly Fairly Fairly
Autonomous Weakly Slightly Fairly Substantially Strongly

P — [Entity, (Autonomy:

DOMAIN THEN IT IS MEMBERSHIP VALUE A CANDIDATE
CLASS.

Here, an entity and a candidate class are the artifact types
to be reasoned, Relevance and Autonomy are the properties,
and relevance value and autonomy value indicate the
domains of these properties. Each combination of relevance
and autonomy values of an entity has to be mapped into one
of the five membership values to artifact type Candidate
Class. The resulting 15 sub-rules are shown in Table 2.
Each element of the table, shown in italics, represents the
consequent part of the sub-rule. For example, if the rele-
vance and autonomy values are respectively strongly and
autonomous, then membership value to Candidate Class is
strongly. Adopting the same notation as in Section 4.1, this
sub-rule can also be represented as:

P — [Entity, (Membership : 1) (Relevance
: Strongly), (Autonomy : Strongly)] ='p
«— [CandidateClass, (Membership : Strongly)]

Here, P indicates a variable, which is instantiated to the
artifact being reasoned on, and =/ represents a fuzzy
implication operator. The value of Membership to Entity
is 1 because Entity is considered as the starting artifact type.

The choice of the values shown in Table 2 is based on our
intuition and knowledge of object-oriented methods [1-4].
Intuitively, the more an entity is autonomous and relevant,
the more the entity is a candidate class. We can suppose that
the membership value to Candidate Class can be computed
as product of the relevance and autonomy values. The sub-
rules shown in Table 2 have been generated based on this
observation and on the meaning associated with each

Table 3
Sub-rules of rule Candidate Attribute Identification

linguistic value. For instance, when an entity is weakly
relevant and dependent on another entity, the entity has
weakly the characteristics to be identified as a candidate
class. With the increase of relevance and autonomy, the
entity is more and more characterized as a candidate class.

In the following, we illustrate how the other classical
methodological rules shown in Section 2.1 can be trans-
formed into fuzzy rules. The fuzzy version of rule Candi-
date Attribute Identification is as follows:

IF AN ENTITY IN A REQUIREMENT SPECIFICATION IS
RELEVANCE VALUE RELEVANT AND CAN EXIST AUTON-
OMY VALUE AUTONOMOUS IN THE APPLICATION
DOMAIN, THEN IT IS MEMBERSHIP VALUE A CANDIDATE
ATTRIBUTE.

The sub-rules corresponding to the rule are shown in
Table 3 and are derived from the following intuition of
artifact type Candidate Attribute: the more an entity is rele-
vant and its existence is dependent on another entity, the
more the entity is a candidate attribute.

As discussed in Section 4.2, if an appropriate combina-
tion of fuzzy implication, composition and aggregation
operators, and suitable partitions of input and output spaces
are chosen, the conclusion inferred from a set of fuzzy rules
corresponds to the consequent part of the rule whose ante-
cedent matches the fact. We would like to point out that the
partitions shown in Figs. 2 and 3 are suitable partitions. If a
software engineer inputs primary terms, the conclusion
inferred from the rules is a primary term in its turn. For
instance, if the software engineer decides that an entity is
strongly relevant and autonomous, the entity is strongly a
candidate class. This primary term may fire a chained rule
(for instance, one of the conversion rules) and produce
primary terms in its turn.

P — [Entity, (Relevance:

P «— [Candidate Weakly Slightly Fairly Substantially Strongly
Attribute, (Membership:

Dependent Weakly Slightly Fairly Substantially Strongly
Partially dependent Weakly Slightly Slightly Fairly Fairly
Autonomous Weakly Weakly Weakly Weakly Slightly

P — [Entity, (Autonomy:




Table 4

Sub-rules of rule Attribute to Class Conversion
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P — [Candidate Class, (Cohesion:, P < [Candidate Attribute, (Cohesion:

P «— [Class, (Membership: Weakly Slightly Fairly Substantially Strongly
{Weakly, Weakly} Weakly Slightly Fairly Substantially Substantially
{Weakly, Slightly} Weakly Slightly Fairly Substantially Substantially
{Weakly, Fairly} Weakly Slightly Fairly Substantially Strongly
{Weakly, Substantially} Weakly Slightly Fairly Substantially Strongly
{Slightly, Weakly} Weakly Weakly Slightly Fairly Substantially
{Slightly, Slightly} Weakly Slightly Fairly Fairly Substantially
{Slightly, Strongly} Weakly Slightly Fairly Substantially Strongly
{Fairly, Weakly} Weakly Weakly Slightly Fairly Substantially
{Fairly, Fairly} Weakly Slightly Fairly Substantially Strongly
{Substantially, Weakly} Weakly Slightly Fairly Substantially Substantially
{Strongly, Slightly} Weakly Slightly Fairly Fairly Substantially
{P «— [Candidate

Attribute, (Membership:,

P «— [Candidate Class,

(Membership: }

To transform the two conversion rules, we need to
analyze their meaning in detail. Let us consider rule Aztri-
bute to Class Conversion. This rule reasons on the property
of an artifact of being responsible for a set of functions, but
captures only the following part of the intuition derivable
from this property: The more an attribute is responsible for
a set of functions, the more it is a class. There exists,
however, another part of intuition concerning the property:
the more an artifact is a candidate class and the more is
responsible for functions, the more it is a class. As in
current methods, an artifact is either a candidate class or
a candidate attribute or neither, this part of intuition is not
relevant. Indeed, if the artifact is already a candidate class,
to be responsible for a set of functions can only confirm
that the artifact is a class. If the artifact is a candidate
attribute, a part of intuition is implemented by rule Aztri-
bute to Class Conversion. If it is neither a candidate attri-
bute nor a candidate class, the artifact is practically
discarded and therefore its responsibility for functions is
not evaluated. On the contrary, in the fuzzy method, an
artifact can be a partial instance of both candidate attribute
and candidate class at the same time. It follows that the
overall intuition can be captured and modeled. Thus, the
fuzzy version of rule Attribute to Class Conversion has the
membership values to both candidate class and candidate
attribute as inputs. The fuzzy version of rule Attribute to
Class Conversion is as follows:

IF P IS MEMBERSHIP VALUE A CANDIDATE ATTRIBUTE
AND P IS MEMBERSHIP VALUE A CANDIDATE CLASS AND
OPERATIONS BELONG TO P COHESION VALUE THEN P IS
MEMBERSHIP VALUE A CLASS

Property Cohesion has the same primary terms as
Membership. The antecedent of this rule has three input
linguistic variables. To represent the sub-rules of this rule,

we still adopt a tabular representation, but each row of the
table corresponds to one of the possible combinations of the
primary terms of two input linguistic variables, and each
column to one of the primary terms of the remaining linguis-
tic variable. To reduce the number of rows and simplify the
representation, we suppose that a software engineer can
input only primary terms for rules Candidate Attribute Iden-
tification and Candidate Class Identification. This implies
that the conclusions inferred from these rules are primary
terms of Membership to candidate attribute and candidate
class. From the definitions given in Tables 2 and 3, it can be
deduced that only 11 combinations of membership values to
candidate class and candidate attribute are possible. Table 4
defines the sub-rules of rule Attribute to Class Conversion
under this assumption. Here, the rows indicate the pairs of
possible membership values to candidate attribute and
candidate class, and the columns the values of property
Cohesion. Note that Cohesion is a property of both Candi-
date Class and Candidate Attribute. Actually, property
Cohesion is one of those properties that determine the
inconsistency between Class and Attribute. The definition
of the sub-rules takes the following intuitive aspects into
account.

1. The more a set of functions belongs to P, the more P is a
class independently of the membership value of P to
candidate attribute.

2. The more P is a candidate class, the more P is a class.

The first aspect enables the functional view to possibly
reverse the judgment expressed by the relevance and auton-
omy view analyzed by the first two rules. Although an entity
can be considered to be weakly relevant in the application
domain and judged to be both weakly a candidate attribute
and weakly a candidate class, the functional view can
reverse that initial judgment and transform the entity into
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Table 5
Sub-rules of rule Class to Attribute Conversion

P — [Candidate Class, (Cohesion:, P < [Candidate Attribute, (Cohesion:

P — [Attribute, (Membership: Weakly Slightly Fairly Substantially Strongly
{Weakly, Weakly} Weakly Weakly Weakly Weakly Weakly
{Weakly, Slightly} Slightly Slightly Weakly Weakly Weakly
{Weakly, Fairly} Fairly Slightly Weakly Weakly Weakly
{Weakly, Substantially} Substantially Fairly Slightly Weakly Weakly
{Slightly, Weakly} Slightly Slightly Slightly Weakly Weakly
{Slightly, Slightly} Slightly Slightly Slightly Weakly Weakly
{Slightly, Strongly} Substantially Substantially Fairly Weakly Weakly
{Fairly, Weakly} Fairly Fairly Slightly Slightly Weakly
{Fairly, Fairly} Substantially Fairly Fairly Slightly Weakly
{Substantially, Weakly} Substantially Substantially Fairly Slightly Weakly
{Strongly, Slightly} Strongly Substantially Fairly Slightly Weakly

{P «— [Candidate Attribute,
(Membership:,

P — [Candidate Class,
(Membership: }

a substantial class. We observe that non-relevant entities are
discarded in current methods without any further investiga-
tion.

Let us consider now rule Class to Attribute Conversion.
This rule reasons on the property of an artifact of being
responsible for a set of functions, but captures only the
following part of the intuition derivable from this property:
The less a class is responsible for a set of functions, the more
it is an attribute. There exists, however, another part of
intuition concerning the property: the more an artifact is a
candidate attribute and the less is responsible for functions,
the more it is an attribute. As explained above, the overall
intuition cannot be implemented in current methods due to
consistency constraints. This intuition can successfully be
modeled in fuzzy logic. The fuzzy version of rule Class to
Attribute Conversion is as follows:

IF P IS MEMBERSHIP VALUE A CANDIDATE ATTRIBUTE
AND P IS MEMBERSHIP VALUE A CANDIDATE CLASS AND
OPERATIONS BELONG TO P COHESION VALUE THEN P IS
MEMBERSHIP VALUE AN ATTRIBUTE

Table 5 defines the sub-rules of rule Class to Attribute
Conversion. The definition of the sub-rules takes the follow-
ing aspects into account.

1. The less a set of functions belongs to P and the more P is
a candidate class, the more P is an attribute.

2. The less a set of functions belongs to P and the more P is
a candidate attribute, the more P is an attribute.

3. The less P is a candidate class and a candidate attribute,
the less P is an attribute independently of how much a set
of functions belongs to P.

After identifying classes, rules Aggregation Identification
and Inheritance Identification determine whether and which
relation exists between classes. Obviously, the value of

membership of a relation to the set of aggregation or inheri-
tance relations depends on the values of membership of the
artifacts being reasoned to class. The fuzzy version of rule
Aggregation Identification is as follows:

IF P; IS MEMBERSHIP VALUE A CLASS AND P, IS MEMBER-
SHIP VALUE A CLASS AND P; CONTAINMENT VALUE
CONTAINS P, THEN RELATION BETWEEN P; AND P, IS
MEMBERSHIP VALUE AN AGGREGATION.

Property Containment has the same primary terms as
Membership. As the antecedent of this rule has three input
linguistic variables, we adopt the tabular representation with
each row that corresponds to one of the possible combina-
tions of primary terms of two input linguistic variables.
Table 6 shows the sub-rules of rule Aggregation Identifica-
tion. Here, the rows indicate the pairs of possible member-
ship values of P, and P, to Class, and the columns the values
of property Containment. Sub-rules are defined based on the
following intuition: the more P; and P, are classes and P,
contains P,, the more the relation between P; and P, is an
aggregation.

Similar to rule Aggregation Identification, the fuzzy
version of rule Inheritance Identification is as follows:

IF P, IS MEMBERSHIP VALUE A CLASS AND P, IS MEMBER-
SHIP VALUE A CLASS AND P, IS-A-KIND-OF VALUE IS-A-
KIND-OF P; THEN RELATION BETWEEN P; AND P, IS
MEMBERSHIP VALUE AN INHERITANCE.

Property Is-a-kind-of has the same primary terms as
Membership. The definition of the sub-rules of rule Inheri-
tance Identification can be obtained replacing the property
Containment with the property Is-a-kind-of in Table 6.

Rule Inheritance Modification is applied to verify the
complexity of a hierarchy. Here, we suppose that the
hierarchy has been already defined and the number of
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Table 6
Sub-rules of rule Aggregation Identification

735

P, — [Class, (Containment:

P; — [Inheritance, Weakly Slightly Fairly Substantially Strongly
(Membership:

{Weakly, Weakly} Weakly Weakly Weakly Weakly Weakly
{Weakly, Slightly} Weakly Weakly Weakly Weakly Weakly
{Weakly, Fairly} Weakly Weakly Weakly Weakly Weakly
{Weakly, Substantially} Weakly Weakly Weakly Weakly Weakly
{Weakly, Strongly} Weakly Weakly Weakly Weakly Weakly
{Slightly, Weakly} Weakly Weakly Weakly Weakly Weakly
{Slightly, Slightly} Weakly Slightly Slightly Slightly Slightly
{Slightly, Fairly} Weakly Slightly Slightly Slightly Slightly
{Slightly, Substantially } Weakly Slightly Slightly Slightly Slightly
{Slightly, Strongly} Weakly Slightly Slightly Slightly Slightly
{Fairly, Weakly} Weakly Weakly Weakly Weakly Weakly
{Fairly, Slightly} Weakly Slightly Slightly Slightly Slightly
{Fairly, Fairly} Weakly Slightly Fairly Fairly Fairly
{Fairly, Substantially } Weakly Slightly Fairly Fairly Fairly
{Fairly, Strongly} Weakly Slightly Fairly Fairly Fairly
{Substantially, Weakly} Weakly Weakly Weakly Weakly Weakly
{Substantially, Slightly} Weakly Slightly Slightly Slightly Slightly
{Substantially, Fairly} Weakly Slightly Fairly Fairly Fairly
{Substantially, Substantially} Weakly Slightly Fairly Substantially Substantially
{Substantially, Strongly} Weakly Slightly Fairly Substantially Substantially
{Strongly, Weakly} Weakly Weakly Weakly Weakly Weakly
{Strongly, Slightly} Weakly Slightly Slightly Slightly Slightly
{Strongly, Fairly} Weakly Slightly Fairly Fairly Fairly
{Strongly, Substantially } Weakly Slightly Fairly Substantially Substantially
{Strongly, Strongly} Weakly Slightly Fairly Substantially Strongly

{P; — [Class, (Membership:,
P, —[Class, (Membership:

immediate subclasses can be quantified. The fuzzy version
of rule Inheritance Modification is as follows:

IN THE CLASS HIERARCHY, IF THE NUMBER OF IMMEDI-
ATE SUBCLASSES SUBORDINATED TO A CLASS IS
SUBCLASSES NUMBER, THEN THE INHERITANCE HIER-
ARCHY IS COMPLEXITY VALUE.

The primary terms of linguistic variables Subclasses
Number and Complexity are low, medium and high. Fig. 4
shows the definition of Subclasses Number and Complexity.
Table 7 shows the three sub-rules derived from this rule.

Membership Value

A .
Law Medium High

0.5 ; .

0 5 10

Subclasses Number

While in the first phases of the development process, the
software engineer can input only qualitative information; in
the later phases, this information can be more precise. The
software engineer can, for instance, input crisp values to
rule Inheritance Modification. In this case, the generalized
modus ponens discussed in Section 4.2 can be still applied
by considering the crisp value as a fuzzy set which is char-
acterized by a membership value equal to 1 in correspon-
dence to the crisp value itself and 0 otherwise. It follows that
fuzzy logic can manage both crisp and linguistic values

within the same framework.

Membership Value

A .
Law Medium High

0.5 \ !

Complexity

Fig. 4. Linguistic variables Subclasses Number and Complexity.
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Table 7
Sub-rules of rule Inheritance Modification

P «— [Inheritance, (Subclasses

Number:
Low Medium High
P — [Inheritance, (Complexity: Low Medium High

In conclusion, the use of fuzzy methodological rules
seems to be very natural and software engineers should
not have a lot of trouble to migrate to this new approach.
This conviction is supported by the rapid success that
fuzzy logic has reached in other fields. For instance, in
control applications, where fuzzy logic has been widely
and successfully used in the last years, control engineers
consider very natural to codify their experience using
fuzzy rules [20]. As methodological rules are quite
close to control rules, we expect that software engineers
feel the same naturalness as control engineers in using
fuzzy logic. Further, software engineers do not need to
know specific details of fuzzy inference, but they need
only to be conscious that approximate reasoning is able
to reproduce quite faithfully their reasoning. Finally, soft-
ware engineers should be particularly stimulated by the
possibility to express their perception of an artifact using
their natural language without being repressed by the
necessity to fit restrictive input values imposed by meth-
odological rules.

If fuzzy logic-based methodological rules are applied, no
alternative design solutions are theoretically eliminated.
Software engineers are not forced to take abrupt decisions,
but are encouraged to express their perception of artifacts in
their natural language. This reduces the loss of information
and increases the quality of the whole development process.
Further, perceptions expressed as linguistic expressions can
be used as measures of alternatives and exploited to resolve
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inconsistencies whenever it is necessary. The complexity
of this concurrent analysis of multiple alternative
solutions is managed by using an appropriately designed
CASE environment.

5. CASE environment

Our CASE environment is based on Rational Rose™ [25]
because of its availability in our laboratory. We developed a
separate repository to store the extended artifacts. We linked
these artifacts to the Rational Rose™ environment using the
OLE™ technology. A version of this tool is presented in
Ref. [28].

We built tools to support method engineers in codifying
properties of artifact types as linguistic variables and in
defining fuzzy rules. To define a linguistic variable, the
method engineer is required to input the universe of
discourse, the set of the primary terms and the membership
functions associated with each primary term. At the present,
our tool allows a method engineer to define rectangular,
trapezoidal, triangular and standard piecewise quadratic
membership functions. The linguistic variables are used to
define the fuzzy rules. The rule editor is shown in Fig. 5.
Here, the definition of the fuzzy rule Candidate Class Iden-
tification is illustrated. A rule is defined by providing its
name, the table that describes the sub-rules, and the para-
meters to select an appropriate implementation of fuzzy
reasoning. The menu Rule Class allows selecting the type
of implication operator. The most used types of implication
operators have been implemented in the tool: for each type,
four different implication operators can be derived by
selecting one of the four different triangular norms (T-
norms) shown in Table 1 in the ‘Implication’ menu of
section ‘T-norm classes’. In this section, the menus ‘Sup’
and ‘Conclusion’ allow a method engineer to select the

ﬁ Rule editor | _ O] X]
Name: | R1: Candidate Class Identification Selected sub-rule with values:
Comment: | Figure 5 x|IF entity Autonomy = autonomaous T+
%1 |AND  entity Relevance = strongly
THEN didate cl Rel = st I -
Rule class: | OptimizedGeneralizationModusPonensRule | # Eandifaie Llacs e\ alNee = eleng's +
T-norm classes: candidate class Relevance = | X:l 2 entity Relevance L!"
Conclusion: | Minimum * weakly slightly fairly substantially  strongly
Sup: | Minimum 3 dependent |weakly weakly weakly weakly slightly L+
Implication: | Minimum 21 hlyDependent [weakly slightly slightly fairly fairly
autonomous [weakly shightly fairly substantially [Etgltsig

*]

-

Y:|1 entity Autonomy

[+

Fig. 5. Tool for defining the fuzzy rules.
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T-norm adopted in the composition and aggregation opera-
tors, respectively. For each combination of the primary
terms of the properties involved in the antecedent of the
rule, the method engineer can choose one of the primary
terms of the property involved in the consequent part. The
properties used in the rules have to be preliminarily defined
as linguistic variables. Although Fig. 5 shows the definition
of rules with antecedents composed only by two proposi-
tions, the tool allows defining antecedents with any number
of propositions. In this case, the method engineer can define
the sub-rules for each possible combination of the primary
terms of the input linguistic variables in the following way:
from time to time, if N is the number of input linguistic
variables, he/she fixes the values of N — 2 linguistic vari-
ables and defines all sub-rules generated by the possible
combinations of the primary terms of the remaining two
linguistic variables using the rule editor in Fig. 5.

During the execution of the rules, the software engineer
interacts with the tool, which is shown in Fig. 6. Here, the
software engineer is requested to provide the Relevance
value used in fuzzy rule Candidate Class Identification.
The software engineer can select one of the primary
terms, input a linguistic value among those allowed by the
grammar described in Section 4.2, or input a numerical
value. To ‘tune’ the software engineer’s interpretation of
each primary term to the method engineer’s interpretation,
the tool shows the membership functions, which define the
primary terms. Each new input provided by the software
engineer infers a number of sub-rules: for instance, the
value of Relevance of an entity in the requirement specifi-
cation infers both the sub-rules defined for instantiating the
entity as a candidate class and those for instantiating the
entity as a candidate attribute. In this way, each path of
the development process is investigated concurrently and
different design solutions can be analyzed at the same time.

To reduce the complexity of the development process, the
tool allows a software engineer to fix a threshold on the

Linguistic value Ed ] [ [O] x]
Enter linguistic value for L
Relevance
o weakly 1
= *
> |
slightly 0 slightly 1
fairly %
substantially /—\
+
a fairly 1
0 1 0 substantially 1
| Tems | [ ok ] /_
0 strongly 1

Fig. 6. Tool for providing the linguistic values.

membership values: if an artifact is an instance of an
artifact type with membership value below the thresh-
old, then the reasoning paths involving that artifact type
are not investigated for that artifact. The value of the
threshold can be numeric or linguistic. For example, a
software engineer could decide that instances belonging
less than slightly to an artifact type are discarded in the
development process. Thus, if an entity is selected as
weakly an attribute, no rule, which reasons on artifact
type Attribute, will be inferred for that entity. In addi-
tion, the tool allows a software engineer to fix priorities
in investigating conflicting alternatives. For instance, the
software engineer can establish to be guided to work
first on the alternative with the highest measure and
then on the others. These options allow software engi-
neers to reach a compromise between complexity and
accuracy.

6. Inconsistency resolution

During the development process, each software develop-
ment element (SDE) involved in the inference process main-
tains its story, that is, the values of membership to each
artifact type reasoned so far. Each SDE knows which arti-
fact types are in conflict: for instance, an SDE knows that it
cannot be a class and an attribute at the same time. Conflict-
ing artifact types are identified by using the definition given
in Section 4.1. Inconsistencies are not resolved until expli-
citly requested. This occurs, for instance, when the product
of a development phase has to be released. When such a
request is made, each SDE applies an inconsistency resolu-
tion policy. Policies depend on the inconsistency type and
may be affected by contextual factors such as application
type, sensibility and experience of the software engineer and
desired level of quality. Typically, an inconsistency resolu-
tion policy is implemented as comparing defuzzified
membership values and selecting the artifact corresponding
to the highest value. If the highest value is above an ‘exis-
tence’ threshold (typically fixed to 0.5), the artifact is
included into final product; otherwise it is eliminated. The
existence threshold allows eliminating for example classes
or attributes which derive from weakly or slightly relevant
entities, and are not revalued by the application of the
conversion rules shown in Section 4.4. Optionally, before
the selection or the elimination is made the software engi-
neer may be consulted.

In our CASE tool, this consulting is activated if the
compared defuzzified values are close to each other or if
the value of the winning artifact type is close to the exis-
tence threshold. Software engineers may take a decision
based on their experience and perception of the application
domain. Let us suppose, for instance, that the fuzzy logic-
based method has selected an entity both as a class and as an
attribute with similar membership degree. If conceptual
modeling is considered important, then the software
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engineer may decide to implement the entity as an attribute.
If reusability is the main concern, then class may be the
choice. In this case, the goal of the application and the
experience of the software engineer affect the resolution
policy.

Resolution of an inconsistency may trigger a ‘chain
reaction’ of revisions of membership values. Let us
suppose that an entity A has been considered as slightly
an attribute and substantially a class. Let us assume that
the adopted resolution policy is to select an artifact as
instance of the artifact type corresponding to the highest
membership value. Entity A is, therefore, selected as a
class. This implies that the membership value of A to
artifact type Class is now 1. All membership values that
depend on this value have to be revalued. For instance,
all values of membership to Inheritance or Aggregation
relations, which involve A, will be recomputed. The
new membership values may affect the result of the
inconsistency resolution policy applied to Inheritance
and Aggregation relations. It is obvious that the order
of application of inconsistency resolution policies is
critical to obtain meaningful products. This order has
to follow the order defined by the methodological
rules and used to identify artifacts during the develop-
ment process.

7. Evaluation with respect to the requirements

In this section we evaluate our approach with respect to
the requirements presented in Section 3.

e Reducing the quantization error: Increasing the number
of possible values for properties of artifact types and
consequently the number of quantization levels, fuzzy
logic methodological rules reduce the quantization
error [22]. Further, in the fuzzy logic-based method, the
accumulation of the quantization error during the soft-
ware development process is much less than the accumu-
lation of error in the classical logic-based method [23].
The improvement is achieved by capturing as much as
possible the software engineer’s perception.

In the current methods, inconsistencies are resolved
during the application of each rule. It follows that the
resulting object model is less adaptable to changes and
will not adapt itself to the new information available
during the software development process. In the fuzzy
logic-based method, inconsistencies are left and there-
fore, in principle, none of the artifacts is eliminated.
The fuzzy logic-based method can be considered as a
learning process; a new aspect of the problem being
considered is learned after the application of each rule.
Obviously, a new aspect can modify the previously gath-
ered property values. The fuzzy logic theory provides
techniques to reason and compose the results of the

rules. Clearly, software development through learning
creates very adaptable and reusable design models.

e Provide a measure for the alternatives: The fuzzy logic-
based method allows inconsistencies and associates a
measure for each inconsistent alternative. Measures can
be expressed as linguistic or crisp values and are useful
when the inconsistencies have to be resolved. Artifact
measures are adapted through various phases. In the
end, these measures are used to resolve inconsistencies.

e Manage complexity: In our approach, leaving inconsis-
tency allows to investigate design alternatives concur-
rently. This improves the quality of the software
development process but also increases its complexity.
The software engineer, however, can establish a thresh-
old on membership values of an artifact to an artifact
type: artifacts which have a membership value to an arti-
fact type below the threshold do not trigger the rules
which reason on that artifact type. This reduces the
design space. As described in Section 5, various auto-
matic control mechanisms can be established to manage
the complexity. For example, in case of inconsistent
alternatives, the software engineer may be guided to
work on the alternative with the highest measure. If
this measure decreases in the subsequent phases, other
alternatives can be automatically brought to the attention
of the software engineer. Our experience with the experi-
mental CASE environment shows that being able to
process rules and inconsistencies automatically hides
the internal complexity. Concluding, the fuzzy logic-
based approach provides a unique opportunity to tune
the quality of CASE environments with respect to the
memory and processing costs.

8. Related work

In the following, we briefly present the related work on
inconsistency management and application of fuzzy logic to
software engineering.

8.1. Inconsistency management

The need of tolerating inconsistencies during software
development has been pioneered in Ref. [5]. Here, incon-
sistent data are automatically marked by means of pollution
markers. A pollution marker makes the inconsistent data
known to procedures or human agents, which are responsi-
ble for solving the inconsistency. Further, it protects the
inconsistent data from the action of other procedures sensi-
tive to the inconsistency.

In Ref. [14], inconsistency handling in multi-perspective
specifications is studied by using the ViewPoint framework
[24]. In this framework, each developer specifies the system
by using a representation language and a development
process according to his/her own viewpoint. The consis-
tency rules are expressed in terms of classical logic and



F. Marcelloni, M. Aksit / Information and Software Technology 43 (2001) 725-741 739

represent some of the implicit assumptions and integrity
constraints used in controlling and coordinating a set of
viewpoints. A meta-language based on linear-time
temporal logic is used to specify the actions necessary
to cope with inconsistency. In Ref. [15,16], the
approach of inconsistency handling shown in Ref. [14]
is further developed by introducing quasi-classical logic.
Unlike classical logic, quasi-classical logic permits the
derivation of non-trivial inferences from inconsistent
information. In the presence of inconsistencies, this
allows limited reasoning and consequently the possibi-
lity of analyzing such inconsistencies. The analysis may
identify the sources of inconsistency and qualify the
inconsistent information.

By analogy with the viewpoints for multi-perspective
specifications discussed above, in Ref. [27] the authors
propose process viewpoints to manage process inconsis-
tency. Process inconsistencies are interpreted as differ-
ences of various kinds in the ways in that different
people perceive or execute a process. Viewpoints
provide multi-perspective descriptions of software
processes and allow highlighting different perceptions
of a software process. Process inconsistencies can there-
fore be detected and used to stimulate a resolution
process, which can either remove the inconsistencies,
or flag them and ensure that the reason for their exis-
tence is understood by the process participants.

In Ref. [11], inconsistencies, which occur between defi-
nition and actual instance of a development process, have
been studied in human-centered systems. It is argued that
processes defining the interaction between humans and
computerized tools have to tolerate, control and support
inconsistencies and deviations of real-world behaviors
with respect to the process model. This is necessary to
maintain an effective flexibility and adaptability to the
evolving needs and preferences of the humans. They
propose a framework for formally defining the concepts
of inconsistency and deviation between a human-
centered-system and its process support system. Devia-
tions are tolerated as long as they do not affect the
correctness of the system. Then, a reconciling sequence
of feasible events starting from an inconsistent state and
ending in a consistent state has to be executed. An evolu-
tion of this work coping with the ability of tolerating
deviations from the process model during enactment and
supporting users in reconciling the process model with
actual process is described in Ref. [12].

Our work is similar to the related work presented in this
section in that tolerating and coping with inconsistency are
considered important in creating flexible software systems.
Further, several analogies exist with respect to the classical
logic-based techniques used to detect inconsistencies.
Differences may be perceived on the semantics of the incon-
sistencies taken into account, on how the inconsistencies are
handled during the development process and on how they
are resolved when a product has to be released.

8.2. Applications of fuzzy logic to software engineering

To the best of our knowledge, a few papers have inves-
tigated the use of fuzzy logic in software engineering. In
Ref. [13], fuzzy techniques are used to handle the uncer-
tainty arisen from the classification of components and their
retrieval for reuse according to software behavioral proper-
ties.

Benedicenti et al. exploit fuzzy logic for coping with
unreliable data in a business process modeling method [6].
Fuzzy logic is employed to attribute resources to activities,
determine activity cost driver and resource (per activity)
cost driver.

Liu and Yen propose a systematic approach for specify-
ing and analyzing imprecise requirements [21]. The
constraint imposed by an imprecise requirement R is repre-
sented as a satisfaction function that maps an element of R’s
domain D to a number in [0,1]. In practice, the satisfaction
function defines a fuzzy subset of D that satisfies the impre-
cise requirement. Requirements are expressed in the cano-
nical form of Zadeh’s test core semantics. Based on different
impact of satisfying a requirement on the satisfaction degree
of another requirement, four types of relationships between
requirements are introduced: conflicting, cooperative,
mutually exclusive and irrelevant. For instance, two impre-
cise requirements are said to be conflicting with each other
if an increase in the satisfaction degree of one requirement
decreases the satisfaction degree of the other. These formal
definitions permit to develop knowledge-based techniques,
which allow assessing the impact of requirement changes
and inferring relationships between requirements in order to
detect implicit conflicts. Detected conflicts are therefore
resolved based on the priority associated with each require-
ment: satisfaction of requirements with high priority is
preferred to the satisfaction of requirements with low prior-
ity. The priority is assigned based on the marginal rate of
substitution, i.e. the maximal amount of a decision attribute
a customer decides to sacrifice for a unit increase in another
decision attribute.

Cimpman and Oquendo propose to use fuzzy logic to
monitor software processes [§—10]. The monitoring process
focuses on the detection of deviations between the actual
enacting process and the process enactment plan. The level
of deviation is computed for different aspects of the process
like progress, cost, structure (order between activities), etc.
and varies from total conformance to no conformance at all.
The monitoring system is a part of a qualitative control
system, which assists the process manager during the
process evolution: the control system detects deviations
and indicates possible corrective actions. Fuzzy logic is
used to represent possible imprecise and uncertain informa-
tion handled by the monitoring system, and to reason on it.
Similarly to our approach, the use of fuzzy logic is justified
by its ability to naturally represent uncertain and imprecise
information, and to constitute a good framework for approx-
imate reasoning. Whereas our approach, however, focuses
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on managing inconsistencies of software products, the
monitoring system focuses on handling deviations of soft-
ware processes: the two approaches therefore act at two
different abstraction levels.

9. Conclusions

Due to growing complexity of the today’s software
systems, identifying and managing inconsistencies are
becoming crucial issues in software development. Current
software development methods consider inconsistencies
undesirable and try to resolve them whenever they are
detected. To enforce consistency at all times in the devel-
opment process can, however, result in loss of information
and excessive restriction of the design space. Based on this
observation, new approaches have been proposed in the last
years. They consider inconsistencies as useful components
of the development process and therefore adopt techniques
to tolerate them as long as needed.

Within such a context, we have proposed a fuzzy logic
based approach to model inconsistencies during the soft-
ware development process. We have shown that fuzzy
logic-based techniques could model inconsistencies effec-
tively without altering the intuitive expressiveness of the
current methods. Unlike other techniques used successfully
to cope with inconsistencies, fuzzy logic offers a unique
opportunity to model methodological rules and handle
inconsistencies within the same framework. Linguistic vari-
ables allow capturing as much as possible the software engi-
neer’s perception in a natural way. Approximate reasoning
permits to reason on the linguistic expressions to deduce
conclusions and conduct the development process. Each
rule determines to which extent an artifact is an instance
of an artifact type and this membership degree can be
considered as a measure of each alternative. Such a measure
is useful in providing the software engineer with a means to
control the complexity of the development process, and in
defining policies for resolving inconsistencies when needed.

A small fuzzy logic-based method has been implemented
using our experimental CASE environment and tested on an
example problem [2]. We have observed that effectively the
resulting object model is more adaptable than the one devel-
oped by using standard methods. We are currently develop-
ing a fuzzy logic-based method derived from the heuristics
of the most popular object-oriented methods such as OMT
[26]. The transformation of the heuristics into fuzzy meth-
odological rules is based on our experience in developing
object-oriented systems [1-4] and on interviews with
experienced software engineers.
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