
Extending the ODMG Standard with Views
Jesús García-Molina, María-José Ortín-Ibáñez, Ginés García-Mateos

Departamento de Informática y Sistemas. Universidad de Murcia
30071 Campus de Espinardo, Murcia, Spain

{ jmolina, mjortin, ginesgm }@um.es

Abstract. Views are an important functionality provided by the relational database systems. However, commercial

object-oriented database systems do not support a view mechanism because defining the semantics of views in the

context of an object-oriented model is more difficult than in the relational model. Indeed, views are not included in

the ODMG standard. In this paper, we present a proposal aimed at including views in the ODMG, by extending the

object model and the object definition language (ODL). We consider object-oriented views as having the same func-

tionality as relational views. Views are included in the object model in such a way that i) views are a new kind of data

type definition, just as are classes, interfaces and literals, ii) an IS-VIEW relationship is introduced in order to specify

the derivation of a view from its base class, and iii) a view instance preserves the identity of its base instance. A view

can import attributes, relationships and operations from its base class, and it can also add new operations, derived at-

tributes and derived relationships. The extent of the view is defined by an object query language (OQL) predicate.

We also describe a C++ binding showing the practicability of the proposed model.

Keywords. View model. View management. Object-oriented database system. ODMG standard.

1. Introduction

Since the object-oriented (OO) data model is more complex than the relational model, commercial object-oriented data-

base management systems (OODBMS) do not provide some of the important functionalities supported by relational

database systems. This fact has contributed to OODBMS not achieving the success expected [4]. Views are an example

of such functionalities which have not been made available in OODBMS. In the past decade, a lot of effort has been

devoted to defining the view concept for OO data model and several OO view models have been proposed [1,6,7-11].

However, despite this research, today the commercial systems do not support views and the ODMG standard [5] does

not include views, although they are recognized as an indispensable functionality in OODBMS.

In this paper, we present a proposal to include views in the ODMG and in such a way that they preserve the same

functionality as relational views. The inclusion of views in the standard requires extending its components: the object

model, the object definition language (ODL) and the binding to the programming languages. In our proposal, views are

a new kind of data type added to the types already existing in the ODMG object model: classes, interfaces and literals.

Views are types which are defined by an IS-VIEW relationship applied to a base class (or view). The instances of a view

preserve the identity of the instances of the base class and thus a view does not generate new instances. The definition

of a view is made up of three components: i) list of features (attributes, relationships and operations) imported from its

base class, ii) list of additional features (operations, derived attributes and derived relationships) and iii) an object query

language (OQL) predicate that determines the extent of the view. Any proposal for extending the ODMG has to show

how the extensions are mapped into the programming languages. In our case, the proposed view model has been

mapped into the C++ language.

Other proposals for extending the ODMG standard have been published. In [2,3] the ODMG object model is ex-

tended with time and composite objects respectively. To our knowledge, the object-oriented view models proposed to

date have not been defined in the context of the ODMG standard. Moreover, little work has been done with regard to

the implementation aspects of OO view models. Therefore, the contribution of our work is twofold: we have defined a

view model for the ODMG and we have dealt with implementation issues by defining a C++ binding which shows the

practicability of the proposed view model.

The rest of this paper is organized as follows. In Section 2, we present our main design choices. Next, we summarize

the basic concepts of the ODMG object model. In section 4, we describe the features of the proposed view model by

showing how to extend the ODMG object model and the ODL to include the definition of views. In Section 5, we ex-

plain the binding between ODL specifications including views and C++. In Section 6, we describe how to access the

objects stored in the database through views. Finally, in Section 7, we present our conclusions and future work is out-

lined.

2. Main Design Choices

Throughout this paper we use the following terminology. The term base class denotes the class (or view) from which a

view is derived. The global database schema contains all the classes, whereas an external schema contains a set of

views and a set of classes imported from the global schema. We distinguish between stored objects (instances of a

class) and view instances (instances of a base class which also belong to the view).

As is indicated in [6,7], the two main dimensions in the design of an OO view mechanism are the placement of

views in the database schema (a class hierarchy), and the nature of view instances. The design choices in each dimen-

sion are influenced by the data model and the view functionality chosen. Obviously, our data model is the ODMG ob-

ject model. With regard to the view functionality, we consider it appropriate that OO views can be used for the same

purposes as relational views, that is: i) definition of external schemas (data independence), ii) content-based authoriza-

tions (data protection), and iii) shorthand for queries.

Some proposals have explored the applicability of views to the simulation of database schema evolution [7,8,9,11].

However, as is pointed out in [8], we think that only a range of changes to a database schema should be simulated by

views. Since a view is a mechanism for deriving data from the stored database, the simulation of changes involving

database restructuring –such as the definition of new attributes not derived from existing data– complicates the view

model excessively. These modifications are expensive and make the dynamic addition and removal of views very diffi-

cult, whereas such operations are common in relational systems. We think that a view model should preserve the inde-

 2

pendence between the conceptual schema and the view mechanism, that is, the structure of objects stored in the data-

base should not be modified when new views are defined.

A view mechanism supporting the definition of external schemas upon which it is possible to develop OO applica-

tions, requires OO views to have the same nature as classes and interfaces, just as a relational view can be used as a

table. Therefore, a view should be a new kind of data type. In this way, a view can be used in any context on which a

class or interface may appear, for example, if static typed is assumed, then the type of a program entity (attribute, pa-

rameter or local variable) could be a view.

2.1 Placement of Views in the Database Schema

Since a view is a data type and the database schema is a type hierarchy, when solving the view placement problem the

semantic of the subtype/supertype inheritance-based relationships has to be kept in mind. A detailed discussion about

possible solutions is presented in [7], where a new view hierarchy, separated from the class hierarchy, is put forward as

the most appropriate solution; each view is connected to its base class by the view derivation relationship defined in [1]

and a view inheritance relationship, similar to the class inheritance relationship, is introduced. This approach has also

been considered in other models [8,11]. In our proposal, we introduce both the view derivation relationship and the

view inheritance relationship in the ODMG object but only one single class hierarchy is obtained in the C++ binding

and there is no separated hierarchy for views.

2.2 Nature of the View Instances

As is indicated in [7,10], two kinds of views can be identified: object-preserving views, whose instances have the same

object identifier as the base instances from which they have been generated, and object-generating views, which create

new instances, generating new object identifiers. Object-preserving views facilitate the implementation of the view

mechanism and the convenience of using them is described in [10], where it is indicated that object preservation is cru-

cial for a flexible and straightforward view definition facility. In fact, in an OO model the view update problem is

closely related to the nature of view instances [7,8,10] because of the existence of object identifiers (object identity). In

an object-preserving model, an update on a view instance is automatically propagated to the base instance, whereas in

an object-generating model, it is necessary to hold the correspondence between every generated view instance and its

base instances, and some updates are not possible. Obviously, object-generating views are necessary for supporting the

simulation of the complete range of database schema changes. Bearing in mind the view functionality that we have

chosen, our proposal includes object-preserving views and so, a view can add only operations, derived attributes and

derived relationships.

 3

3. The ODMG 3.0 Object Model

In this section we summarize the basic concepts of the ODMG 3.0 object model. In the following section, we describe

how views can be included in this object model. A detailed description of the ODMG 3.0 standard, including the Object

Definition Language (ODL) and the Object Query Language (OQL), can be found in [5].

Objects and Literals. The basic modeling primitives are the object and the literal. An object has a state, defined by the

values of its properties, and a behavior, defined by the set of operations that can be invoked on the object. Each object

has a unique object identifier which does not change for the entire object lifetime, even if its attribute values or relation-

ships do. A literal does not have identifier and its value cannot change. Both objects and literals are categorized by their

types.

Literal Types and Object Types. The ODMG object model defines literal types and object types. Atomic object types

are user-defined types, defined by type specifications. A type specification may be either an interface, defining only the

abstract behavior of an object type, or a class, defining both abstract behavior and abstract state of an object type. By

contrast, a literal definition defines only the abstract state of a literal type.

Throughout this paper we use as running example a database schema representing employees’ information managed

by a company (i.e. a university); this schema could include the Person interface and Department, Employee and Profes-

sor classes, whose ODL declarations are shown in Fig.s 1 and 2.

interface Person {
 attribute string name;
 attribute string address;
 attribute enum gender { male, female };
 attribute set<string> phones;
 unsigned short age ();
};

class Department
(extent departments)
{
 attribute string name;
 attribute string officeId;
 relationship set<Employee> workers
 inverse Employee::works_for;
};

Figure 1. ODL Specifications of Person and Department types

A type specification defines the external characteristics of the object type –visible to users of the type– as the opera-

tions that can be invoked on its instances, and the properties whose values can be accessed. The ODMG object model

defines two kinds of properties: attributes and relationships. As is shown in the example, attribute declarations may

appear in either a class or an interface specification. In a class, attribute declarations define the abstract state of its in-

stances, whereas in an interface defines only abstract behavior. Relationships are defined between two object types –n-

ary relationships are not supported– and may be one-to-one, one-to-many or many-to-many, depending on how many

instances of each type participate in the relationship. The definition of a one-to-many relationship between Department

and Employee types is shown in Fig.s 1 and 2: each employee is associated to a single department via works_for tra-

versal path, and each department is connected with a set of employees via the workers traversal path. A relationship

declaration in a class defines the abstract state for storing and the set of operations for accessing the relationship,

 4

whereas within an interface it defines only the operations of the relationship, not the state.

Subtyping and Inheritance of State and Behavior. The ODMG object model defines two subtype/supertype relation-

ships: IS-A and EXTENDS. The IS-A relationship defines the inheritance of behavior between object types. Only inter-

faces and classes can inherit from interfaces. The object model supports multiple inheritance of object behavior. On the

other hand, the EXTENDS relationship defines the inheritance of state and behavior between classes and it is a single

inheritance relationship. In our running example, the class Employee IS-A Person and the class Professor EXTENDS

Employee, as is shown in Fig. 2.

class Employee : Person
(extent employees)
{
 attribute Date birthDate;
 attribute float salary;
 attribute Date hireDate;
 attribute Employee manager;
 relationship Department works_for
 inverse Department::workers;
 void raiseSalary (in float amount);
 unsigned short yearsInCompany ();
};

class Professor extends Employee
(extent professors)
{
 attribute enum rank {full, assoc, assist};
 attribute set<string> degrees;
 short grant_tenure ();
};

Figure 2. ODL Specifications of Employee and Professor classes

The extent of a type is the set of all instances of the type within a particular object database management system.

Thus, every instance of the Professor class is a member of the extent of Professor, named professors in the correspond-

ing ODL specification.

The subtype/supertype relationships (ISA and EXTENDS) involve polymorphism: where an object of the supertype

can be used, an object of the subtype can be used instead. The extent of a subtype is a subset of the extent of its super-

type; in the example in Fig. 2, professors is a subset of employees. An object’s most specific type is the type that de-

scribes all features of the instance.

4. Introducing Views in the ODMG Object Model and ODL

To support a new concept in the ODMG object model, it is necessary to make some changes or extensions in the rest of

its components. In our case, the inclusion of the view concept has meant extending the ODL and the bindings to the

programming languages. However, it has not been necessary to make any modification in the query language, OQL,

because views have the same nature as the rest of ODMG data types. In this section we describe how the object model

and the ODL have been extended to include views.

We propose to introduce views as a new kind of data type and thus views could be used in the definition of a data-

base schema. Just like classes and interfaces, views define the abstract state and/or the abstract behavior of an object

type. Both the behavior and state of a view can include a portion of the behavior and state of its base class, and can also

add new operations, derived attributes and derived relationships. The extent of the view, a subset of the extent of its

 5

base class, is defined by an OQL predicate which we denominate view invariant1.

4.1 Definition of Views

The structure of a view specification is shown in the following ODL code defining V as a view of the C base class:

view V is_view_of C
{ imported_features {
 list-of-attributes
 list-of-relationships
 list-of-operations
 }
 additional_features {
 list-of-derived-attributes
 list-of-derived-relationships
 list-of-operations
 }
 invariant is_V { OQL predicate };
};

Thus, a view definition may include the following:

1. The view identifier

2. A specification of the base class from which the view has been derived. A view can have only one base class, be-

cause the view instances preserve the identity of the stored objects. Nevertheless, we will show later how it is pos-

sible to express views derived by a join operation.

3. A list containing the base class features which have been included in the view.

4. An abstract specification of the additional features, when the view adds new operations, derived attributes or de-

rived relationships.

5. The view invariant, named in the form is_<view-name>.

We note that imported_features, additional_features and invariant declarations are optional but at least one of them

has to be specified. The schema of our running example could include a view of the Employee class, named SeniorEm-

ployee, the definition of which is given in Fig. 3.

view SeniorEmployee is_view_of Employee
{
 imported_features { // features extracted from the base class
 attribute string name;
 relationship Department works_for;
 void raiseSalary (in float amount);
 }
 additional_features {
 attribute unsigned short startYear { self.hiredate->year };
 attribute SeniorEmployee seniorManager { self.manager };
 void retire ();
 }
 invariant is_SeniorEmployee { self.yearsInCompany > 10 };
};

Figure 3. ODL specification of the SeniorEmployee type, as a view of the Employee class

1 We use the view invariant term because it corresponds to the concept of class invariant. We think that this term is more appropriate than the usually

used view query term because the ODMG object model considers that classes have only an intensional –but not extensional– nature, and thus the
queries are applied on object collections.

 6

4.2 Nature of the View Instances and Placement of Views

Just like interfaces, views are types that are not directly instantiable. An instance of an interface is always a direct in-

stance of a class that implements the interface. In a similar way, a view instance is a direct instance of its base class. In

the previous example, SeniorEmployee is a view of Employee, so SeniorEmployee instances take their identity from the

corresponding Employee instances. In this way, the objects stored in the database are not affected by the introduction of

a new view in the schema. It is just that a stored object can act as an instance of a view. For example, an instance of the

Employee class satisfying the is_SeniorEmployee predicate could act as an instance of the SeniorEmployee view. There-

fore, from the point of view of the type compatibility, a view is compatible with its base type (i.e. an object whose type

is SeniorEmployee may be connected to an Employee type variable).

With regard to the problem of inserting views in the schema, we use the view derivation relationship presented in

[1,7]. We refer to this relationship as IS-VIEW. The alternative choice is to integrate every view in the class hierarchy as

a subclass of its base class [9,10], but this strategy requires a data model with multiple classification because a view

instance would also be an instance of its base class. Moreover, the extent of a view is a subset of the extent of its base

class, but the set of features of a view does not have to be a subset of the features of its base class.

4.3 Features of a View

Importation of Features by a View. A view may import attributes, relationships and operations already defined in the

base class, albeit directly or inherited from any supertype. In the example, SeniorEmployee imports the name attribute,

the works_for relationship and the raiseSalary operation.

Given a relationship R between two classes C1 and C2, a view derived from C1 or C2 can import R. For example,

SeniorEmployee imports the one-to-many relationship defined by the works_for and workers traversal paths. When a

view imports a relationship, the users of the view can only access a subset of the instances of the original relationship.

The works_for relationship imported by SeniorEmployee consists in pairs <set of Employee, Department> where the

employees are instances of the view –and not all the objects of Employee. Thus, the original relationship between Em-

ployee and the Department class is viewed as a relationship between SeniorEmployee and Department. It is worth not-

ing that the inverse of workers in Department is still works_for in Employee.

It should be observed that only the features imported from the base class are accessible in the view because the IS-

VIEW relationship is not an inheritance relationship. Thus, SeniorEmployee does not include salary, hireDate, manager

or yearsInCompany features of Employee, nor other features of the supertype Person.

Definition of New Features in a View. A view may add new features. In the example, SeniorEmployee adds a new

operation named retire, and two new attributes, startYear and seniorManager. Every new attribute introduced in a view

 7

always has to be a derived attribute whose value we know how to obtain. Thus, startYear is derived from the hireDate

attribute by calculating the year of joining company, and seniorManager is derived from the manager attribute by re-

turning either the manager, if he or she is also a senior employee, or the null value. OQL can be used to express the

derivation expressions of new operations and derived attributes.

A view may include nested properties of the base class. That is, a view can add an attribute defined by a path ex-

pression starting from the base object. In our example, the SeniorEmployee view could include an attribute workOffice

whose definition would be the following:

attribute string workOffice { self.works_for.officeId } ;

In addition to operations and derived attributes, a view may add new derived relationships. Given a relationship R

between two classes C1 and C2, and letting V1 and V2 be two views derived from C1 and C2 respectively, then it is

possible to define a new relationship R’ between V1 and V2 if and only if R’ is derived from the original relationship R.

A derived relationship R’ defines a subset of the possible logical connections between the objects participating in the

original relationship R. In our example, the relationship defined between the Employee and Department classes could be

used to derive a new relationship between SeniorEmployee and a view of Department. A derived relationship, in a simi-

lar way to derived attributes, does not mean the addition of any new field to the view instances.

4.4 The Invariant of a View

The view invariant is an OQL predicate expressing the constraints that an instance of the base class must satisfy in order

to act as a view instance. In the SeniorEmployee view, the invariant expresses that a senior employee is an employee

who has worked at the company for more than ten years, so the extent of the SeniorEmployee view is the subset of em-

ployees whose yearsInCompany operation returns a value greater than 10. Just like an operation, a view invariant is

always applied on an instance of the base class (the base object), and thus a path expression within the OQL predicate

may start from either a variable connected to an object or from the reserved word self denoting the base object. An ex-

ample of each kind of path expression appears in the FloralPerson view, shown below, whose view invariant contains

f.name and self.name expressions. If a path expression does not start from either a variable or self, the base object is

assumed.

As we mentioned before, a view definition may not to include any invariant declaration. In that case a true is as-

sumed and therefore all the instances of the base class also belong to the view.

Joins in the View Invariant. It is worth noting that the view invariant specification allows us to express explicit joins,

and thus the view can involve some more classes in addition to the base class. In the ODMG standard the explicit join is

illustrated by an example selecting “the people who bear the name of a flower”. In our approach, we could define the

 8

following view derived from the Person class:

view FloralPerson is_view_of Person {
 imported_features { ... }
 additional_features { ... }
 invariant is_FloralPerson { exists f in Flowers: f.name = self.name };
};

where Flowers denotes a collection of instances of the Flower class. In this view, the invariant includes an explicit join

expressing that the name of a flower must be equal to the name of the person.

Views with Features Imported from More than One Class. Since a view has only one base class, all features im-

ported by the view belong to its base class. Therefore, the FloralPerson view could only import features from the Per-

son class but not from the Flower class. This restriction is originated by our choice of a view semantics with object-

preservation. In any case, operations or derived attributes could be used in order to include in a view operations and

attributes belonging to those types involved in the view invariant and different to its base class. In the example, the

FloralPerson view could include a scientificName operation that, given a Person instance belonging to the FloralPer-

son view, will return the value of scientificName attribute in the corresponding instance of the Flower class of the same

name.

4.5 Views and Inheritance

A view defines the state and behavior of its instances. Both of them are always extracted from the base class and so they

do not belong to the view itself. In addition, just like an interface, a view is not instantiable. Therefore, according to the

nature of views, it does not make any sense to define subtype/supertype relationships between classes (or interfaces)

and views. However, a subtype/supertype relationship between views could be defined. Hence, we have considered the

view inheritance relationship introduced in [7], which has been revised and adapted to the ODMG context. This inheri-

tance relationship has been named V_ISA and is orthogonal to the view derivation relationship. The whole set of possi-

ble supertype/subtype relationships in ODMG is summarized in Table 1. It is worth noting that the V_ISA relationship

has a different semantics to the ISA relationship, although there are some common properties such as multiple inheri-

tance and a polymorphic nature.

Table 1. Subtype/supertype relationships in ODMG extended with views

 Supertype
Subtype interface class view
interface IS-A - -

class IS-A EXTENDS -
view - - V_IS-A

The following figure, which is an adaptation of Fig. 2-2 in [5], shows the possible relationships between views, in-

terfaces and classes in the ODMG object model extended with views and it indicates whether multiple or single inheri-

tance is allowed; it also includes the view derivation relationship.

 9

inherits [0..n]

extends [0..1]
view_inherits [0..n]

ODL interface

ODL classODL view

inherits [0..n]
is_view_of [1..1]

Figure 4. Class-Interface-View Relationships

In order to describe the V_ISA relationship, we use the ODL type hierarchy shown in Fig. 5 and based on our run-

ning example, where the SeniorEmployee view inherits from ReliablePerson.

The V_ISA relationship is defined as follows. Let a view be a subtype (a subview) of another view (the superview),

then i) the subview inherits all the features of the superview and the subview may add new features (that are always

either imported from its own base class or new operations and derived properties), ii) the V_ISA relationship involves

polymorphism: an instance of the subview can act as a superview instance, and iii) the instances of the subview are

those instances of its base class that satisfy both the subview and superview invariants; therefore, the subview instances

are a subset of the superview instances. To ensure this, the following constraints have to be satisfied: i) the base class of

the subview must be either the base class of the superview or a subclass of the base class of the superview, and ii) the

invariant of the view must be added to the supertype invariant.

ISVIEW

Person

RetiredEmployee

ISA

Student

ISVIEW

ISA

EXTENDS

Professor

Employee SeniorEmployee

RichEmployee
ISVIEW

FullTimeProfessor
ISVIEW

PhStudent ISVIEW

V_ISA

Figure 5. An ODL type hierarchy including views

In our example, the FullTimeProfessor view has been declared as a subview of the RichEmployee view. The Full-

TimeProfessor view could also inherit from SeniorEmployee or RetiredEmployee views. However, it could not be de-

fined as a subview of the PhStudent view because this originates a situation in which multiple classification is required:

supposing that FullTimeProfessor inherits from PhStudent, then every FullTimeProfessor instance –a Professor in-

stance– is also a PhStudent instance, that is a Student instance.

It is worth noting that we could define a new view of Employee, named RichSeniorEmployee, which is a subview of

both RichEmployee and SeniorEmployee views.

Finally, we can point out the following properties of our proposed view concept. Let VC be a view whose base class

is C, then:

• The extent of VC is a subset of the extent of C. The instances of VC are the instances of C that satisfy the view in-

 10

variant. Obviously, as the instances of any subtype of C belong to the extent of C, they will also be instances of VC if

they satisfy its invariant.

• The features of VC are those declared in its definition. These can be features imported from C or additional features

(operations, derived relationships and derived attributes). VC does not implicitly inherit other features from C or

from the supertypes of C.

• The VC type is compatible with C, that is, an object of type VC may be assigned to a variable of type C. The assign-

ment of an object of type C to a variable of type VC requires a dynamic check of the view invariant for the assigned

object.

• The ODMG supports parametrized collection objects such as Set<T> or Bag<T> which implement the Collec-

tion<T> interface. Types Collection<VC> and Collection<C> are compatible with each other. The assignment be-

tween them is always allowed. Since VC instances are also C instances, the assignment of an object of type Collec-

tion<VC> to a variable cc of type Collection<C> does not suppose any problem, whereas the assignment of an

object of type Collection<C> to a variable vcc of type Collection<VC> requires the dynamic check of the view in-

variant for all objects in the assigned collection because vcc must contain only the objects that satisfy the invariant.

The semantic of this assignment is discussed later in Sections 5.6 and 6.

Optionally, if VC is declared as a subtype of another view V, then:

• V must be either a view of C or a view of any (direct or indirect) supertype of C.

• An inheritance relationship between views is established (V_ISA).

• VC inherits all the features of V, and the invariant of VC includes the V invariant.

5. Mapping Views Into C++ Classes

The ODMG standard defines the binding between the object model and the ODL and C++, Smalltalk and Java pro-

gramming languages. Therefore, our proposal must extend these bindings in order to map the view concepts introduced

in the object model into specific constructs of these OO programming languages. This mapping has to solve issues such

as: how to place views within the class hierarchy, how to ensure that the user of the view only accesses a portion of the

information, and how to solve compatibility problems between types. In this section, we describe the architecture of an

OO database system supporting views and the mapping of views into C++ classes.

5.1 Database System Architecture

Fig. 6 shows a global view of the architecture of a database system supporting the proposed view model. This figure is a

new version of figure 5-1 in the specification of ODMG [5]. It is modified in order to manage ODL specifications with

views, and to map views into C++ classes.

 11

C++ ODL type
declarations

C++ ODL view
declarations

User C++ source
(and header) files

with OML

Source code
Preprocessor

Object
code

ODMS
runtime

LinkerDatabase

ODMS
metadata

ODL view declarations
Preprocessor

ODL type declarations
Preprocessor

Executable
application

ODMS
runtime

Generated C++
header (and
source) files

C++
compiler

Figure 6. ODMG DBMS architecture including views

The database schema is defined by ODL declarations and the database applications are written in a high level pro-

gramming language (we assume C++). As Fig. 6 shows, we separate the standard ODL type declarations from the view

declarations because views are derived once the conceptual schema has been established. Therefore, the declaration of

classes and interfaces in the conceptual schema is not dependent on the set of defined views. The database conceptual

schema is not modified when a new view is defined.

Fig. 6 includes two preprocessors related to views: the ODL view declarations preprocessor, and the Source code

preprocessor. The first one translates view declarations into C++ class definitions. A class implementing a view could

be implemented either within the database application code (if the proper access privileges on the base class have been

granted to the programmer) or by the database designer–the class here being imported into the application. The ODL

view declarations preprocessor receives the result of the ODL type declarations preprocessor as input, because it needs

to know the class declarations from which the views are derived. The ODL type declarations preprocessor included in

the standard also has to be modified to perform the mapping into C++ classes in a slightly different way on account of

the problem explained below in Section 5.2. The output of the ODL view declarations preprocessor is a set of header

and source files to be included in the C++ application.

The translation of views into class declarations must be completed by also preprocessing the application source

code. This step ensures that an application only uses the types on which it holds the proper access privileges. Finally,

the compiler receives the generated C++ header and source files with the structure of the ODL types (including views),

and the application source code.

5.2 Mapping ODL Classes

The ODMG standard establishes a syntactic equivalence between attributes of ODL types and data member of C++

classes, so an ODL class attribute is mapped into a public data member of the corresponding C++ class. Here, we intro-

duce a modification to the standard because, as we will see later, it is necessary for a subclass to be able to modify the

 12

C++ data member export status. Let B be a subclass of A, C++ allows B to redeclare any function member by changing

its export status, but it does not allow this kind of redeclaration for data members.

Therefore, in our model each ODL class attribute is mapped into a protected data member and two public function

members2, one that returns the attribute value and another that allows the direct modification of the attribute (get and set

methods). To increase efficiency, the compiler may detect calls to public methods that only return the value of an attrib-

ute and may handle them just like a direct access to such an attribute. Fig. 7 illustrates how ODL class declarations are

translated into C++ class definitions. It should be noticed that all methods are declared as virtual, and since repeated

inheritance will arise in the C++ class hierarchies obtained, virtual inheritance is used.

ODL Classes C++ Classes
class A
{
 readonly
 attribute long q;
};

Class A: public d_Object {
 public:
 virtual d_Long q (void);
 protected:
 d_Long _q;
};

class B extends A
{
 attribute short p;
};

Class B: public virtual A {
 public:
 virtual void p(d_Short value);
 virtual d_Short p (void);
 protected:
 d_Short _p;
};

Figure 7. An example of the mapping of ODL classes into C++ classes

5.3 Mapping ODL Views

In our work, one of the main issues that we have tackled is the translation of views into classes in the chosen program-

ming language. In particular, it is necessary to find out how to translate the IS-VIEW relationship into C++ constructs.

Bearing in mind the aforementioned problems arising when integrating a view as a subclass of its base class (primarily,

multiple classification is needed), we have devised the following mapping.

A view VC derived from the base class C is mapped into a C++ abstract class with the same name. In the C++ hier-

archy, this class is a new superclass of the class C and a subclass of all the classes corresponding to the supertypes of C

within the ODL type hierarchy. That is, VC is placed between C and its superclasses. Obviously, this approach needs

multiple inheritance because both C and VC classes may have one or more superclasses. From now on, we refer to the

C++ abstract class corresponding to an ODL view as class-view.

Since a class-view is an abstract class, it includes a set of abstract methods and is not instantiable. Therefore, the ex-

tent of a class-view consists of direct instances of its base class or its subclasses, which are objects stored on database.

Fig. 8 shows a graphic representation of an example of mapping of ODL type declarations into C++ classes. In this

example, we have derived three views from the class B introduced in Section 5.2: V1 and V2 are derived from the class

2 In the C++ context, we use the more general terms method and attribute instead of function member and data member, respectively.

 13

B, and V3 is a view of V2. The “*” symbol denotes an abstract class, whereas the “+” symbol denotes an effective (non-

abstract) class. Throughout this section, we use as running example the hierarchies presented in Fig. 8.

B

A

V2V1

B+

A+

V1* V2*

ISA

ISVIEW

ISVIEW

ISVIEW

V3

V3*

(a) ODL type hierarchy (b) C++ class hierarchy

Figure 8. An ODL type hierarchy and its mapping into C++

The definition of views V1 and V2 requires the declaration of the C++ class B to be modified in order to include the

two views as superclasses:

class B : public virtual A,public V1,public V2 {
... };

Bearing in mind that the ODL class B has the q attribute, inherited from A, and the p attribute, which is directly in-

troduced in B (see Fig. 7), then we can distinguish several mapping cases according to whether the attributes p and q are

imported or not by the V1 view, and whether the view introduces new features or not. Although only attributes have

been considered, the discussion for each case is also suitable for operations because the mapping of the ODL attributes

involves operations.

• V1 imports the p attribute from B

The V1 class-view has to declare the methods corresponding to this attribute as public and abstract. The subclass B

makes them effective, without any further modifications.

class V1 : public virtual A {
 public:
 virtual void p (d_Short value)=0;
 virtual d_Short p (void)=0;
 ...};

• V1 does not import the p attribute

The V1 class-view does not have to include any method concerning p.

• V1 imports the q attribute introduced in A

The V1 class-view already inherits the q attribute from A, so it should not include any method related to q. There

may exist one or more views derived from B and each corresponding class-view establishes an inheritance path be-

tween B and A. Virtual inheritance is applied between each class-view and A so that the attributes of A are not repli-

cated in B.

 14

• V1 does not import the q attribute introduced in A

C++ public methods corresponding to the attribute q have to be redefined in the V1 class-view. Their export status

must be changed from public to protected in order to hide them from the clients, and the method body must be re-

placed by an empty block. Since such methods are inherited as protected by B, they must be redeclared as public in

B.

class V1 : public virtual A {
 protected:
 virtual d_Long q (void){ }; //nothing is done
 ...};

class B : public virtual A,public V1,public V2{
 public:
 virtual d_Long q (void) { return A::q() };
 ...};

• V1 introduces a new operation or a new derived attribute t

Since a view can only add operations and derived attributes, only methods can be added. The V1 class-view declares

a new virtual method t. Since the B class inherits this method, B has to hide it from its clients and subclasses and

therefore, the t method is redeclared as private with the same implementation.

class V1 : public virtual A {
 public:
 virtual d_Object t (d_String x);
...};

class B : public virtual A,public V1,public V2{
 private:
 d_Object t (d_String x) {return V1::t(x)};
...};

With regard to relationships, we have to distinguish between importation and addition. In ODMG, a relationship is

mapped into an attribute (used to refer to the other end of the relationship) plus several methods on the relationship

target classes. These methods form and drop members from the relationship, provide access and manage the required

referential integrity constraints. Therefore, the mapping of an imported relationship is the same as the mapping de-

scribed for imported attributes and operations. When a derived relationship is added within a view, each relationship

target view-class has to include a method which returns the other end plus the methods managing the relationship and

which delegate their tasks to the corresponding methods (generated from the ODMG mapping) in the base class.

The existence of the V2 view does not affect the mapping established for each case, because we have considered vir-

tual inheritance, so the B class would share all attributes and methods inherited from each class-view. We have verified

that ambiguous situations do not arise. Moreover, these mapping rules can be applied regardless of base type of view –

be it a class or a view– within the ODL declaration. In the running example, V3 is a view of V2, then V3 is mapped into

a new superclass of the V2 class-view and a subclass of the superclass of V2 –the A class.

5.4 The View Invariant

In an ODL view specification, the view invariant is an OQL predicate that expresses the constraints which must be

 15

satisfied by a view instance; let the view V be derived from the base class C, then every instance of C satisfying the

view invariant of V is also an instance of V. Therefore, the view invariant defines the extent of a view as a subset of the

extent of its base class.

According to the specialization semantic of the IS-A relationship, every instance of a class C can act as an instance

of any superclass of C, thus the extent of a class C is a subset of the extent of any superclass of C –the extent of C is

made up of the direct instances of C and the instances of its subclasses. However, our approach for mapping views into

C++ classes does not follow this semantics strictly because a class-view is a superclass of the base class of that view,

and so an instance of the base class can only act as an instance of the class-view if it satisfies the invariant. Neverthe-

less, our solution works since the class-view is an abstract class which has a single subclass, the base class of that view,

and so all the instances of the class-view will also be instances of the single subclass. An entity (variable, parameter)

whose type is a view, could only reference instances of the base class, with the only condition that it will be necessary

to check the view invariant whenever an instance of the class attempts to act as an instance of a class-view (in a similar

way as a type cast). So, we think that the object-oriented paradigm is preserved.

Given the following variable declarations

ob: B; ov1: V1

where V1 and B are the classes of the example showed in Fig. 8, the assignment

ov1 = ob

would be legal, although at runtime the object connected to ob will only be connected to ov1 if that object satisfies the

view invariant of the V1 view. For example, an entity whose static type is SeniorEmployee, can only be connected to an

Employee instance satisfying the invariant of the SeniorEmployee view.

In the C++ binding, a view invariant is mapped into several C++ methods. First, the d_Object class, whose purpose

is to enable a definition of a persistent-capable class, is extended with a new method named check_predicate whose

signature is

d_Boolean check_predicate(const char* OQL_predicate);

This method has the OQL predicate expressing the view invariant as input and returns true or false depending on

whether the predicate is satisfied or not by the target object. Secondly, every class-view will include an automatically

generated method, named like the view invariant in the ODL declaration (i.e. is_<view-name>), whose purpose is to

check whether the view invariant predicate is satisfied or not. This method has no arguments and invokes the

check_predicate method and provides it with the view invariant predicate as argument. Finally, each C++ class will

include a non-virtual method named view_invariant whose purpose is either to invoke the is_<view-name> method, in

the case of a class-view, or to return true, in the case of a C++ class corresponding to an ODL class or interface. In this

 16

way, methods which need to check whether a stored object belongs to a given view, perform the checking through a

chain of three invocations: the view_invariant method is invoked first, and which in turn invokes the method is_<view-

name>, which finally invokes the check_predicate method.

The implementation of the view invariant through two methods (view_invariant and is_<view-name>), instead of

through a single method, is due to two facts: i) a class can have several views, and ii) some classes, such as iterators or

collections, managing instances of any view, need to apply a generic method instead of an is_<view-name> specific

method to check the view invariant.

Fig. 9 shows the ODL definition of the V1 view introduced in our running example, and the corresponding class-

view in C++. The B class inherits the methods is_v1, is_v2 and is_v3 from the superclasses V1, V2 and V3, respectively,

and has a view_invariant method returning true. It is worth noting this method is not declared as virtual because the

dynamic type of an entity whose static type is a view will always be the base class of the view or some subclass. In our

example, given an entity ov1 whose static type is V1, the dynamic type of ov1 will be B or some subclass of B. By de-

fining view_invariant as a non-virtual method, the message ov1->view_invariant() will always check the invariant of

V1, instead of returning true.

view V1 is_view_of B
{
 imported_features {
 attribute short p;
 attribute long q;
 }
 invariant is_V1 { p > 10 };
};

class V1 : public virtual A {
 public:
 virtual void p (d_Short value)=0;
 virtual d_Short p (void)=0;
 d_Boolean is_v1 (void) {
 check_predicate("p>10");};
 d_Boolean view_invariant (void) {
 return is_v1();};
};

Figure 9. ODL definition of the V1 view and the mapping into a C++ class

For example, given the method insert_element (const T &element) belonging to the template class d_Set<T>, and

supposing the instantiation d_Set<SeniorEmployee>, then the invocation of the message element->view_invariant()

during the execution of the insert_element method will provoke the checking of the invariant of the SeniorEmployee

view on the object connected to the element parameter. Management of collections is described in Sections 5.6 and 6.

A view V3, whose base type is another view V2, will include the invariant of V2:

d_Boolean is_v3 (void){...};
d_Boolean view_invariant (void) {
 return V2::view_invariant() && is_v3();};

In the same way, if a view V3 is declared as a descendant of another view V2, then the invariant of V3 is and-ed to

the invariant of V2. Moreover, if both relationships are given at the same time, i.e. if a view V is derived from another

view and is a subtype of a third view, then all invariants are and-ed within the view invariant of V class-view.

5.5 View Access Control

A view mechanism facilitating the definition of external schemas must apply two controls aimed at constraining users to

 17

access to the portion of authorized information: i) the user application can only use the types (classes, interfaces and

views) included in the external schema, and ii) an entity whose type is a view can only reference an instance satisfying

the view invariant. The first control is performed at compilation time by the C++ source code preprocessor which takes

both the application source code and the external schema as input. The second control is performed at runtime by

checking the view invariant in order to evaluate when a stored object can act as a view instance.

The ODMG C++ binding defines a template class d_Ref<T> to allow references3 (smart pointers) between objects

(either persistent or not). A variable of type d_Ref<T> is a reference to an instance of type T, which can be de-

referenced using * and -> operators, or assigned to another variable with the = operator. According to the standard, if D

is a superclass of C then a d_Ref<C> can be assigned to a d_Ref<D>. This kind of assignment is possible through the

d_Ref_Any class, which is used as an intermediate step in the conversion between different instantiations of d_Ref. We

have modified the d_Ref<T> class in order to check a view invariant. Thus, the source code preprocessor ensures that

references to instances of a view V are always performed through variables whose type is d_Ref<V>, i.e. pointer vari-

ables are not used. The view invariant is checked each time that a variable whose type is a view is manipulated: i) it is

initialized, ii) an object is assigned to it (the assignment operator has been modified in the d_Ref template), and iii) a de-

reference is applied on it (* and -> operators have been also modified in d_Ref).

If a view invariant is not satisfied, then a d_Error_RefInvalid exception is raised, indicating an attempted access to

unauthorized information. In any case, the client code could avoid this runtime exception by checking the view invari-

ant before executing the instruction that raises the exception; this checking could be performed by means of the invoca-

tion of the method that implements the view invariant predicate in the class-view. Some changes in the state of a view

instance may make the view invariant not be satisfied in the new state. For this reason, the view invariant is also

checked when a d_Ref<T> is de-referenced. This test adds a time overhead to the use of views which is proportional to

the time required to execute the invariant. In any case, optimization techniques could be used to partially avoid this

increment in the execution time.

5.6 Mapping Collections

Collections play an important role in object-oriented databases because users normally use them to access to the stored

information. Now, it is possible to declare collections whose elements are of a view type, for instance

d_Set<SeniorEmployee>. Since the ODMG standard enforces the compatibility between a collection of a type T and a

collection of a supertype of T, a user will be able to access a collection containing instances of a class C through a vari-

3 ODMG specifies that “a reference in many aspects behaves like a C++ pointer, but provides an additional mechanism that guarantees integrity in

references to persistent objects”.

 18

able declared as a collection of instances of a view derived from C. For example, a user who is allowed to access Senio-

rEmployee but not Employee, can obtain a reference to a collection d_Set<Employee>, but through a

d_Set<SeniorEmployee> reference. It is necessary to ensure that the user can only see the employees satisfying the

SeniorEmployee view invariant.

With regard to the implementation, now a collection needs to know if its elements are being considered as instances

of some view. In other words, the behavior of the methods in the classes associated to collections (d_Set, d_Bag, d_List,

d_Array, d_Varray, d_Dictionary) and in the class of the iterators (d_Iterator) has to be modified to check, when neces-

sary, the view invariant of the type of the collection. This modification only causes some changes in the generic imple-

mentation of the collections and iterator templates. These issues are explained in the next section.

6. Accessing Stored Objects through Views

According to the ANSI/SPARC three-level architecture, an external schema offers a vision of the database schema for a

particular user or group of users. Therefore, all users associated to an external schema have to hold access privileges on

all the types included in that schema. In this section we discuss the definition and use of external schemas defined by

the view concept proposed for the ODMG. We pay attention to the issues related to the access from a programming

language to the stored objects.

Most object-oriented view models proposed have considered the definition of external schemas [7,9]. In our ap-

proach, an external schema is defined by the derivation of views and the importation of types (classes, interfaces and

views) from the conceptual database schema. As is well-known, an external schema must satisfy the closure property:

for every type included in the external schema, all types used in the declaration of the attributes and operation parame-

ters of that type must also belong to the schema. A detailed discussion about external schemas and the closure property

can be found in [7].

Next, we consider a C++ application accessing a database (a collection of objects belonging to classes included in

the base schema) through an external schema and we analyze the issues related to the manipulation of the database from

the application.

In ODMG, a logical database4 is an instance of the Database type. The Database interface includes the operations

for manipulating the Database object, such as bind or lookup. The operation bind allows us to connect a name to a

stored object. The objects in the database are accessible to an application through these named objects which are the

entry point to the content of the database. The operation lookup allows retrieval of the stored object bound to a name

4 ODMG specifies that “an OODBMS may manage one or more logical databases, each of which may be stored in one or more physical databases”.

 19

supplied as a String argument. This operation returns the object as an instance of the root of the class hierarchy, that is

the Object type. Therefore, an application retrieving objects from the database must perform a type cast in order to ma-

nipulate the objects extracted. For instance, let employees be the name of a set of instances of the Employee class, the

following C++ code shows how the employees object could be retrieved and assigned to a variable es, and the applica-

tion of the cardinality method on this set. The first variable declaration means that es is a reference to a set of references

to instances of the Employee class.

d_Ref<d_Set<d_Ref<Employee>>> es;
d_Database db;
…
es = (d_Ref<d_Set<d_Ref<Employee>>>)
 db.lookup ("employees");
…
int i = es->cardinality ();//get the number of elements in the set

When a user is restricted to developing applications on an external schema, then he or she may only use the types

included in that schema. Given an external schema including the SeniorEmployee view but not the Employee class, then

the previous C++ code would be written as follows:

d_Ref<d_Set<d_Ref<SeniorEmployee>>> ses;
d_Database db;
…
ses = (d_Ref<d_Set<d_Ref<SeniorEmployee>>>)

 db.lookup ("employees");
…
int i = ses->cardinality ();//get the number of elements in the set

Now, the employees set is manipulated from the viewpoint provided by the SeniorEmployee view. Both es and ses

variables reference the same set of Employee objects, but the static type of the actual parameter of the collection is dif-

ferent: Employee class and SeniorEmployee class-view respectively (as we explained above in Section 5.6, the types

d_Set<Employee> and d_Set<SeniorEmployee> are compatible). Whereas all instances of the employees set can be

accessed through a d_Set<Employee> reference, only the instances that satisfy the SeniorEmployee view invariant can

be accessed through a d_Set<SeniorEmployee> reference: the ses->cardinality() message returns the total number of

senior employees, instead of the total number of employees returned by the es->cardinality() message.

Therefore, the checking of the view invariant should be included within the implementation code of the methods that

manipulate collections (insert_element, remove_element, etc.) because, given a class-view V, a d_Collection<V> refer-

ence allows access to a collection containing instances of the base class of V, but this reference should only allow access

to instances of view V.

However, collections are not the only objects that can be stored in a object-oriented database. Objects of any type

can be persistent (orthogonal persistence). For example, let us suppose that a named object john, referencing an instance

of the Person class, is defined in the db database instance. A user restricted to using the SeniorEmployee view could

retrieve the object john by executing the following assignment:

d_Ref<SeniorEmployee> se;

 20

…
se = (d_Ref<SeniorEmployee>)db.lookup("john");

Just as happens with a variable referencing a collection of view instances, the se variable allows access to the john

object through the features of the view SeniorEmployee.

During the execution of a type casting, an exception is raised when the dynamic type of the object is not compatible

with the static type of the variable. Furthermore, the assignment may now raise another exception if the assigned stored

object violates the view invariant. In order to emphasize this difference, this type conversion may be called view cast-

ing, a particular case of type casting. It should be noticed that a reference whose static type is a view-class (for example,

SeniorEmployee) can always be assigned to a variable whose type is the base class of that view (Employee).

7. Conclusions and Future Work

In this paper, we have presented a proposal for the inclusion of views in the ODMG standard. Firstly, we have discussed

our main design decisions, assuming that OO views have the same functionality as relational views. We have presented

the basic concepts of the ODMG object model and then we have described how the object model, the object definition

language and the C++ binding have been extended.

Views have been included in the object model in such a way that views are a new kind of ODMG data type and the

IS-VIEW relationship specifies the derivation of a view from its base class. The definition of a view specifies the list of

features imported from its base class, the list of additional features and the view invariant (an OQL predicate defining

the view extent). In a view model supporting capacity-augmenting views (that is, views that may add non-derived at-

tributes), object restructuring is needed and object updates are more complicated. Hence, in our view model we have

considered object-preserving views –that is, each view instance preserves the identity of its base instance– and views

can only add derived attributes (and relationships) and new methods. Although in our approach, a view can only have a

single base class, we have shown how several classes could be involved in a view declaration. Since views are a new

kind of data type, it is not necessary to change the object query language, OQL.

Regarding the binding to the programming languages, we have described a C++ binding. Each view is mapped into

a C++ abstract class which is placed, in the class hierarchy, between the C++ base class and the superclass of this base

class. With this implementation technique it is possible that a view instance preserves the identity of its base instance.

We have discussed how the polymorphism is affected by integrating the view as a superclass of its base class: an in-

stance of a base class can only act as a view instance if the view invariant is satisfied, in a similar way to a type cast.

The process to generate C++ code from ODL declarations has been modified by introducing two additional preproces-

sors in order to manage views in ODMG. Finally, we have described how to manage collections containing view in-

stances.

 21

We believe that the C++ binding obtained is practical. It can be implemented on a commercial OO database system

because it does not impose hard restrictions. Besides, the object-oriented paradigm is preserved and the database pro-

grammer may write applications in the usual way. However, it is difficult to translate this binding into Smalltalk and

Java, because our approach to mapping views into C++ classes is based on multiple inheritance of classes and on some

specific properties of C++, such as the use of non-virtual methods (in the implementation of the view invariant). At

present, we are working on the definition of Java and Smalltalk bindings. In the Java binding, the multiple inheritance

of interfaces could be useful in order to include views in the class hierarchy.

Our future work also includes, i) to extend the ODMG metadata descriptions, and ii) to deal with the formalization

of the view model in a similar way as is done in the formal view model presented in [7].

8. References

[1] Bertino, E.: A View Mechanism for Object-Oriented Databases. Proceedings of the 3rd International Conference on Extending
Database Technology (EDBT), (1992) 136-151

[2] Bertino, E., Ferrari, E., Guerrini, G., Merlo, I.: Extending the ODMG Object Model with Time. Proc. of 12th European Confer-
ence on Object-Oriented Programming (ECOOP), Bruxelles (Belgium), July 20-24 LNCS, No.1445, Springer-Verlag (1998).

[3] Bertino, E., Guerrini, G.: Extending the ODMG Object Model with Composite Objects. Proceedings of ACM Object-Oriented
Programming Systems, Languages and Applications (OOPSLA'98) Conference, Vancouver (Canada), Oct. 18-22, ACM Press
(1998)

[4] Carey, M.J., DeWitt, D.J.: Of Objects and Databases: A Decade of Turmoil. Proceedings of the 22nd VLDB Conference, Bom-
bay, India (1996) 1-12

[5] Cattell, R.G.G. et al.: The Object Database Standard: ODMG 3.0. Morgan Kaufmann Pub. (2000)
[6] García-Molina, J., Guerrini, G., Bertino, E., Catania, B.: Dimensions in the Design of an Object-Oriented View Mechanism.

Proceedings of the 1st Spanish Conference on Databases JIDBD, A Coruña (1996) 119-129
[7] Guerrini, G., Bertino, E., Catania, B., García-Molina, J.: A Formal Model of Views for Object-Oriented Database Systems.

Theory and Practice of Object Systems, Vol. 3(3), (1997) 157-183
[8] Kim, W., Kelley, W.: On View Support in Object-Oriented Database Systems. In: Kim, W. (ed.): Modern Database Systems.

ACM Press (1995) 108-129
[9] Kuno, H.A., Rundensteiner, E.A.: The MultiView OODB View System: Design and Implementation. Theory and Practice of

Object Systems, Vol. 2(3) (1996) 203-225
[10] Scholl, M.H., Laasch, C., Tresch, M.: Updatable Views in Object-Oriented Databases. Proceedings of the 2nd International

Conference on Deductive and Object-Oriented Databases. LNCS, No. 566 (1991) 189-207
[11] Souza dos Santos, C.: Design and Implementation of Object-Oriented Views. Proceedings of the 6th International Conference

DEXA. LCNS, No. 978 (1995) 91-102

 22

