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Abstract

This paper presents the research effort to formally specify, develop and test a complex real-life protocol for mobile network radios (MIL-

STD 188-220). As a result, the team of researchers from the University of Delaware and the City College of the City University of New York,

collaborating with scientists from CECOM (an R&D facility of the US Army) and the US Army Research Laboratory, have helped advance

the state-of-the-art in the design, development, and testing of wireless communications protocols. Estelle is used both as the formal

specification language for MIL-STD 188-220 and the source to automatically generate conformance test sequences. The formal test

generation effort identified several theoretical problems for wireless communication protocols (possibly applicable to network protocols in

general): (1) the timing constraint problem, (2) the controllability problem, (3) inconsistency detection and elimination problem and (4) the

conflicting timers problem. Based on the collaborative research results, two software packages were written to generate conformance test

sequences for MIL-STD 188-220. These packages helped generate tests for MIL-STD 188-220’s Data Link Types 1 and 4 services that were

realizable without timer interruptions while providing a 200% increase in test coverage. The test cases have been delivered and are being

used by a CECOM conformance testing facility.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Complexity of the wireless protocols used in MIL-STD

188-220, being developed for mobile combat network

radios [23], necessitated that a formal approach be taken

in protocol specification, development and testing. Estelle

[40] was chosen as the formal specification language to

define the protocols in MIL-STD 188-220, from which the

conformance tests were automatically generated.

Let us first provide the following data to help the reader

realize the magnitude of size and complexity of the wireless

protocols used in 188-220. The Datalink and Network layer

specifications consist of 69 and 19 documents, respectively,

describing the architecture, interfaces, EFSM, and state

table of each module. The Datalink layer specification is

accompanied by three Estelle source code files (for Datalink

classes A, B, and C) with approximately 1600, 8700, and

2400 lines of code, respectively. The Estelle source code for

the Network layer has 7150 lines of code, defining 34 states

and 370 transitions in seven EFSMs [88].

Automatic test generation from Estelle specifications

presented various theoretical problems defined as follows:

† Timing constraint problem [79]. During testing, if active

timers were not taken into account when the tests were

generated, these timers can disrupt the test sequences,

thereby failing correct implementations or worse,

passing incorrect ones. For accurate testing, timers

must be incorporated as constraints into the extended

FSM (EFSM) model of an Estelle specification.

† Controllability problem [12,32,33]. Test sequence gen-

eration is limited by the controllability of an Implemen-

tation Under Test (IUT) [8]. Testers may not have direct

access to all interface(s) in which the IUT accepts inputs.

Typically, the interfaces with upper layers (or with

timers) are difficult or impossible to access during real

testing conditions. In this case, some inputs cannot be
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directly applied; the interactions involving such inter-

faces may render some portions of the protocol

untestable, and may introduce non-determinism and/or

race conditions during testing.

† Inconsistency detection and elimination problem [25,26].

Infeasible test sequences may be generated unless

possible conflicts among the protocol’s variables used

in the actions and the conditions are avoided.

† Conflicting timers problem [34]. Infeasible test

sequences may result from a protocol’s variables

modeling multiple timers that may be running

simultaneously.

The team of researchers and scientists that participated in

this research and development effort are from the University

of Delaware (UD), the City College of the City University

of New York (CCNY), the Army Research Laboratory

(ARL), US Army Communications-Electronics Command

(CECOM), and the Joint Combat Net Radio Working Group

(CNR-WG). As a result of the collaboration, the synergistic

framework to develop C4I (Command, Control, Communi-

cations, Computers, and Intelligence) systems with the help

of formal methods serves as a model for future US

Department of Defense networking standards development

[27].

Based on the solutions to these theoretical problems, two

software packages, called efsm2fsm-rcpt, and (2) INDEEL,

have been developed to automatically generate test cases

from the EFSM models of Estelle specifications. The sizes

of the resulting FSMs derived from the Estelle specifications

range from 48 to 303 states, and from 119 to 925 transitions.

The corresponding test sequences range from 145 to 2803

test steps. These tests are free of interruptions due to

unexpected timeouts while their coverage of the number of

testable transitions increased from approximately 200 to

over 700 by utilizing multiple interfaces without controll-

ability conflicts.

Section 2 describes the general approach and the research

results for test generation from Estelle specifications at UD

and CCNY. Section 3 presents efsm2fsm-rcpt and INDEEL

software systems. Section 4 summarizes our technology

transfer from the UD and CCNY with the CECOM. Finally,

Section 5 presents the authors’ personal perspective on how

the protocol development process was improved thanks to

using formal methods. A brief introduction of MIL-STD

188-220 is provided in Appendix A.

2. Test case generation

Formal methods in communications protocol specifica-

tion and conformance testing have been widely used in the

design and testing of real-life protocols [5,7,20,21,35,43,44,

46,59,90]. In particular, the Estelle formal description

technique (FDT) [13,40,67,70] has been used on several

occasions to resolve ambiguities within protocols used

world-wide [9,18,42,57,68,83].

A number of techniques have been proposed to generate

test sequences from Estelle specifications [51,52,71,72,89].

However, full Estelle specifications of large systems may

prove to be too complex for direct test case generation.

There may be several ways of generating test sequences

from Estelle specifications. One approach would be to

expand Estelle’s EFSMs, thereby converting them to pure

FSMs. This expansion would be useful since methods exist

for generating tests directly from pure FSMs [2]. Unfortu-

nately, completely converting even a simple EFSM can

result in the state explosion problem, that is, the converted

FSM may have so many states and/or transitions that either

it takes too long to generate tests, or the number of tests

generated is too large for practical use.

As an alternative, the UD and CCNY research group used

an intermediate approach, where an Estelle EFSM is

partially expanded just enough to generate a set of tests

that is feasible and practical in size. Determining which

features to expand in the general case is the difficult aspect

of this research.

2.1. Test case generation research

Conformance test generation techniques reported in

literature [2,8,48,55,64,72], using a deterministic finite-

state machine (FSM) model of a protocol specification,

focus on the optimization of the test sequence length.

However, an IUT may have timing constraints imposed by

active timers. If these constraints are not considered during

test sequence generation, the sequence may not be realizable

in a test laboratory. As a result, valid implementations may

incorrectly fail the conformance tests, or nonconformant

IUTs may incorrectly pass the tests.

Another problem in test sequence generation is due to the

limited controllability of an IUT. Typically, the inputs

defined for the interfaces with upper layers or with timers

cannot be directly applied by the tester. In this case, the

testability of an IUT may severely be reduced; in addition,

non-determinism and/or race conditions may occur during

testing.

When a test sequence is to be generated from an EFSM

model, one must take into account that the variables used in

the actions and conditions may require conflicting (i.e.

inconsistent) values for a given sequence. A test sequence

becomes infeasible if there are one or more variables with

conflicting values in it. Therefore, possible conflicts (i.e.

inconsistencies) among the protocol’s variables used in the

actions and the conditions must be avoided during test

sequence generation.

Another focus point in test sequence generation is the

status of different protocol timers at each state (e.g. running,

stopped, started, etc.) and the relationship between timers

and the actions to trigger them (e.g. start, stop, re-start, or

expiry of a timer, etc.). The so-called conflicting timers
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problem addresses the fact that infeasible test sequences

may be generated unless conflicting conditions based on

timers are resolved.

The remainder of this section presents detailed defi-

nitions of these problems and outlines the research progress

and the current results.

2.2. The timing constraint problem

During testing, traversing each state transition of an IUT

requires a certain amount of time. A test sequence that

traverses too many self-loops (a self-loop is a state transition

that starts and ends at the same state) in a given state will not

be realizable in a test laboratory if the time to traverse the

self-loops exceeds a timer limit as defined by another

transition originating in this state. In this case, a timeout will

inadvertently trigger forcing the IUT into a different state,

and thereby disrupting the test sequence before all of the

self-loops are traversed. If this unrealizable test sequence is

not avoided during test generation, most IUTs will fail the

test even when they meet the specification. Therefore, a

properly generated test sequence must take timer constraints

into account.

Our research results optimize the test sequence length

and cost, under the constraint that an IUT can remain only a

limited amount of time in some states during testing, before

a timer’s expiration forces a state change [78,79]. The

solution first augments an original graph representation of

the protocol FSM model. Then it formulates a Rural Chinese

Postman Problem solution [53] to generate a minimum-

length tour. In the final test sequence generated, the number

of consecutive self-loops never exceeds any state’s specified

limit. In most cases, this test sequence will be longer than

one without the constraint since limiting the number of self-

loop traversals likely requires additional visits to a state

which otherwise would have been unnecessary.

The methodology uses UIO sequences for state verifica-

tion. However, the results presented also are applicable to

test generation that uses distinguishing or characterizing

sequences. Earlier results of this study, limited to verifica-

tion sequences that are self-loops, are presented in Ref. [78].

The later paper [79] generalizes these earlier results to both

self-loop and non-self-loop verification sequences.

2.2.1. Practical motivation

Examples of protocols that contain many self-loop

transitions in their FSM models include ISDN Q.931 for

supplementary voice services, MIL-STD 188-220 [23] for

Combat Net Radio communication, and LAPD [80], the

data link protocol for the ISDN’s D channel. For example, in

ISDN Q.931 protocol (Basic voice services, for the user

side), each state has an average of nine inopportune

transitions, which requires the traversal of 18 self-loop

transitions during testing. A Q.931 implementation has

several active timers that are running in certain states, e.g.

timer T304 running in state Overlap sending, and timer

T310 in state Outgoing call proceeding. An EFSM modeling

the Topology Update (TU) functionally of 188-220’s

Intranet Layer has three active states in which one or two

timers are running [78].

It is not always possible to delay the timeout at a tester’s

convenience. In real protocols, there may be timers whose

timeouts are difficult to set by the tester, e.g. Acknowl-

edgements timers’ timeout values often are computed by the

implementation. Moreover, a tester may want to test an

IUT’s behavior for different settings of the IUT’s internal

timers, to be able to test the IUT’s correctness for various

configurations of the timers.

In addition to the original self-loops of a specification

model, additional self-loops are typically created when

generated test sequences use state verification techniques

such as unique input/output (UIO) sequences [63], dis-

tinguishing sequences [6,47], or characterizing sequences

[6,47].

2.2.2. Optimizing tests under timing constraints

Let Eself and Evnsl be the sets of self-loop and non-self

loop edges to be tested, respectively. Let dselfðviÞ; the

number of self-loops of vertex vi; be defined as the number

of edges in Eself incident on vi: Let dmin_selfðviÞ be the

minimum number of times any tour covering all edges of

Evnsl < Eself must include vertex vi [ V :

Let dstate_verðviÞ be the number of self-loop transitions

used to verify whether an IUT is in state vi: Suppose that

during testing, a given vertex vi [ V can tolerate at most

max_selfðviÞ self-loops executed at one visit to vertex vi:

Attempting to remain in state vi to execute 1 þ

max_selfðviÞ self-loops would result in disruption of a

test sequence. Testing a self-loop transition involves

traversing this transition followed by applying the state

verification self-loop sequence, which contains dstate_verðviÞ

transitions.

Due to space limitations, we are unable to include the

detailed derivation of dmin_selfðviÞ: In Ref. [78], we prove that

the minimum number of times vertex vi must be visited in a

test sequence is as follows:

dmin_selfðviÞ ¼
dinðviÞ; if dselfðviÞ # ðdinðviÞD1ðviÞÞ

GðviÞ; if dselfðviÞ . ðdinðviÞD1ðviÞÞ

(
ð1Þ

where doutðviÞand dinðviÞ are, respectively, the out-degree

and the in-degree of vertex vi in Evnsl (i.e. no self-loops are

included), and where

GðviÞ ¼ dinðviÞ þ
dselfðviÞ2 ðdinðviÞD1ðviÞÞ

D2ðviÞ

� �
ð2Þ

D1ðviÞ ¼
max_selfðviÞ2 dstate_verðviÞ

1 þ dstate_verðviÞ

$ %
ð3Þ

D2ðviÞ ¼
max_selfðviÞ

1 þ dstate_verðviÞ

$ %
ð4Þ
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G0ðV 0;E0Þ (G0 is obtained from G by removing self-loop

edges) is converted to G p ðVp;EpÞ by splitting each vertex

v0i [ V 0 satisfying

dmin_selfðviÞ . maxðdinðviÞ; doutðviÞÞ ð5Þ

into the two vertices vpð1Þi ; vpð2Þi [ Vp (Fig. 1). Then, vpð1Þi

is connected to vpð2Þi with a set of edges with the

cardinality of

dmin_selfðviÞ : Ep
i ¼

def [
v0

i
[V 0

gððvpð1Þi ; vpð2Þi Þ; dmin_selfðviÞÞ

Each edge in Ep
1 is assigned infinite capacity b and a zero

cost c: These ‘fake’ edges will force additional visits to vi

in a minimum-cost tour of G:

We then use network flow techniques (similar to Aho

et al. [2]) to maximize the flow on graph Gp with minimum

cost. This flow defines a minimum-cost tour of G under

timing constraints.

Example. Consider the FSM (represented by the graph

GðV ;EÞ) with self-loop transitions shown in Fig. 2. Suppose

that vertices v0; v2; and v3 of the FSM can tolerate at most

three, and v1 at most two self-loop transitions during each

visit. Let transitions e10 and e11 correspond to timeouts.

After either e10 or e11 is triggered, the FSM is brought into

state v3:

UIO sequences and the values of max_self; dstate_ver and

dmin_self for vertices v0; v1; v2; and v3 are as follows:

Vertex UIO max-self dstate_ver dmin_self

v0 e0 3 1 2

v1 e2 2 1 3

v2 e6; e7 3 2 4

v3 e9 3 1 2

The Chinese postman method [74] when applied to the

graph without any self-loop repetition constraint results in

the test sequence

e0; e0; e1; e2; e2; e2; e10; e9; e9; e9; e12; e0; e1; e3; e2; e4; e6;

e7; e6; e6; e7; e11; e9; e12; e1; e4; e7; e6; e7; e8; e6; e7; e5; e0

ð6Þ

containing 34 edges. Edges used for the purpose of state

verification appear in bold.

As can be seen from the underlined part of the above test

sequence, after e1 is traversed, the IUT should stay in

state v1 for a time that allows at least three self-loop

traversals. However, this part of the test sequence is not

realizable in a test laboratory because the timeout edge

e10 will be triggered after the second consecutive self-

loop traversal (i.e. max_selfðviÞ ¼ 2). The IUT will

prematurely move into v3 and the test sequence will be

disrupted.

To address the problem of test sequence disruption due to

timeouts, the graph of Fig. 2 is converted to the graph shown

in Fig. 3. Since in this example all UIO sequences are self-

loops, the simplified conversion presented in Ref. [78] is

sufficient. The vertices for which a premature timeout may

disrupt a test sequence, which are v1 and v2; are split and

then connected by dmin_selfðv1Þ ¼ 3 and dmin_selfðv2Þ ¼ 4

edges, respectively.

Considering the constrained self-loop problem, the test

sequence for the graph of Fig. 3 is obtained as

e0; e0; e1; e2; e10; e9; e9; e9; e12; e0; e1; e2; e2; e4; e6; e7;

e11; e9; e12; e1; e3; e2; e4; e6; e6; e7; e5; e0; e1; e4; e7; e6; e7;

e5; e1; e4; e8; e6; e7; e5 ð7Þ

Fig. 1. Conversion of vi in G (part (a)), to v0i in G0 (part (b)) and to vpð1Þi ; vpð2Þi in Gp (part (c)).

Fig. 2. Minimum-cost test sequence without self-loop repetition constraint.
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containing 40 edges (all ‘fake’ edges from vpð1Þi to vpð2Þi are

dropped).

Although longer than that of Fig. 2, the test sequence in

Fig. 3 is minimum-length with the introduced self-loop

constraint. During each visit to vertices v0; v1; v2 and v3; the

number of consecutive self-loop edges traversed is less than

or equal to the maximum allowed number of self-loop

traversals. Therefore, this test sequence is realizable in the

test laboratory.

2.3. The controllability problem

Consider a testing framework where the interface I1

between the IUT and the ðN þ 1Þ-layer in the System Under

Test (SUT) [8] is not externally accessible (Fig. 4). In other

words, the inputs from ðN þ 1Þ-layer cannot be directly

applied to the IUT, nor can the outputs generated by the IUT

be observed at ðN þ 1Þ-layer. Such an interface I1 is called

semicontrollable if FSM1 can be utilized to supply inputs

to the IUT. On the other hand, the tester can apply inputs to

the IUT directly by using a lower tester, which exchanges

N-PDUs with the IUT by using the ðN 2 1Þ-Service

Provider. The interface I0 between the lower tester and the

IUT is, therefore, directly controllable.

Our approach addresses the problem of generating

optimal realizable test sequences in an environment with

multiple semicontrollable interfaces [32]. The methodology

fully utilizes semicontrollable interfaces in an IUT while

avoiding the race conditions. An algorithm is introduced in

Ref. [32] to modify the directed graph representation of the

IUT such that its semicontrollable portions become directly

controllable, where possible. In the most general case,

obtaining such a graph conversion may produce with

exponentially large number of nodes. However, it is

shown [32] that special considerations such as the small

number of interfaces interacting with an IUT and diag-

nostics considerations make the problem size feasible for

most practical cases.

2.3.1. Practical motivation

As motivation for solving the controllability problem, a

real protocol is considered where an SUT’s ðN þ 1Þ-layer

must be utilized indirectly to test certain transitions within

the ðNÞ-layer IUT.

188-220 focuses on three layers: Physical, Datalink, and

Network. The Network layer contains an Intranet sublayer.

An SUT contains the ðNÞ-layer IUT implemented in the

Datalink layer, and the Intranet sublayer, which is part of the

ðN þ 1Þ-layer, as shown in Fig. 5.

In the CECOM’s environment used for testing 188-220

implementations, the upper layers cannot be directly

controlled. Therefore, the IUT’s transitions that are

triggered by the inputs coming from the Network layer are

not directly testable. An example SUT transition that causes

a controllability problem is the transition t1 from the Class

A-Type 1 Service Datalink module [23,30], shown in Fig. 5.

The input/event field for this transition requires a DL_U-

nitdata_Req from the ðN þ 1Þ-layer. Unfortunately, the

interface between the IUT and the ðN þ 1Þ-layer is not

directly accessible for generating this input. Initially, it

appears that transition t1 is untestable.

To trigger this transition, which requires the ðN þ 1Þ-

layer to pass a DL-Unitdata.Req down to the ðNÞ-layer,

feedback from the ðN þ 1Þ-layer must be used. To force a

DL-Unitdata.Req from the ðN þ 1Þ-layer, the tester sends a

PL-Unitdata.Ind to the IUT (similar to the message a in

Fig. 4) that contains an intranet layer message telling the

ðN þ 1Þ-layer to relay the frame to a different network node.

The IUT outputs this message to the ðN þ 1Þ-layer (see

message b in Fig. 4), and the ðN þ 1Þ-layer FSM responds

by outputting the desired DL-Unitdata.Req (message c in

Fig. 4). Finally, the datalink layer generates the desired

output PL-Unitdata.Req (corresponding to message d in

Fig. 4), which can be observed by the lower tester.

In fact, 70% of the transitions the Class A–Type 1

Datalink Service module are based on not directly

controllable inputs. Without indirect testing, test coverage
Fig. 4. Testing ðNÞ-layer IUT with an ðN þ 1Þ-layer semicontrollable

interface.

Fig. 3. Minimum-cost test sequence with self-loop repetition constraint.

M. Ü. Uyar et al. / Information and Software Technology 45 (2003) 815–835 819



would be seriously limited: only approximately 200

transitions out of 750 would be testable. However, by

applying the technique outlined in this paper, over 700 of

defined transitions (.95%) can be tested. The application

of the presented technique to 188-220 is described in more

detail in Ref. [31].

Similar controllability problems can also be pointed

out in testing the IEEE 802.2 LLC Connection

Component [32,41].

2.3.2. Optimizing tests with multiple semicontrollable

interfaces

To optimize tests with multiple semicontrollable inter-

faces, modeling SUT as a single FSM was proposed [32,33]. A

semicontrollable interface Ii is implemented as a separate

FIFO buffer. During testing, a buffer may be empty or store an

arbitrary sequence of inputs to the IUT generated indirectly

through Ii: For each Ii;we define variablevi that has a distinct

value for each permutation of inputs that the ith buffer can

hold. The proposed model consists of graph G (which

represents the IUT’s FSM) and the variables v1; v2;…;vF :

An FSM modeling the SUT can be obtained bye

expanding G and v1; v2;…;vF into G0ðV 0;E0Þ: An

algorithm for converting GðV ;EÞ to G0ðV 0;E0Þ pro-

ceeds as follows (a detailed description of the

algorithm along with its pseudocode is available in

Refs. [32,33]).

Step 0. Definitions:

Let Bi denote a sequence of inputs buffered at

the ith semicontrollable interface. Each state v0 [
V 0 has two components: the original state v [ V ;

and the current configuration of F buffers, i.e.

v0 ¼ ðv; B̂1;…; B̂FÞ: The algorithm constructs all

possible buffer configurations with up to bi

inputs buffered at Ii:

Step 1. Initialize:

r0; root of G0; as ðr;B;…;BÞ (root of G and

configuration of empty buffers); E0 as empty set;

V 0 as {r0}; Q; queue of vertices, as V 0

Step 2. Repeat until Q is empty:

0.1. extract v0 ¼ ðvstart; B̂1;…; B̂FÞ as first element

from Q, where ðB̂1;…; B̂FÞ is current

configuration

0.2. given the current vertex v0 ¼ ðvstart; B̂1;…; B̂FÞ;

perform the following steps for each original

outgoing edge e ¼ ðvstart; vendÞ [ E :

– create new configuration ðB1;…;BFÞ based on

the class of e (Fig. 6):

– Class 1. e is triggered by an input from

and generates output(s) to an LT;

– Class 2. e is triggered by an input from an

LT and generates an output oq;l (buffered in

Bq to create a new configuration) at Iq;

– Class 3. e is triggered by ap;k (extracted

from Bp to create a new configuration)

from Ip and generates output(s) to an LT;

– Class 4. e is triggered by an input ap;k

from Ip and generates an output oq;l at Iq:

Apply rules for Class 3 and Class 2 to

create a new configuration.

– create new vertex v0new ¼ ðvend;B1;…;BFÞ [ V 0;

and new edge e0new ¼ ðv0; v0newÞ [ E0

– to avoid nondeterminism, include new edges

in E0 iff inputs in ðB̂1;…; B̂FÞ cannot trigger

other edges outgoing from vstart (as a result,

some edge combinations may not be possible

to traverse)

– append to Q end vertices v0new [ V 0 of new

edges included in E0

Step 3. Retain only strongly connected states:

remove from V 0 all vertices from which r0

cannot be reached, and remove from E0 all

edges incident to such vertices

Based on the practical considerations discussed in

Ref. [32], the algorithm can be refined to meet the following

objective: ‘generate a test sequence that, at any point in

time, avoids storing more than one input in only one of the

buffers (where possible).’ Satisfying this objective yields a

linear running time in the number of semicontrollable

Fig. 5. MIL-STD 188-220: example of the controllability problem.

M. Ü. Uyar et al. / Information and Software Technology 45 (2003) 815–835820



interfaces and the number of edges in G: If this objective

cannot be satisfied, the running time grows and nondeter-

minism may not be avoided during testing.

Example. Consider the IUT of Fig. 7 which is interacting

with semicontrollable FSM1 and FSM2 through the

semicontrollable interfaces I1 and I2; respectively. The

IUT’s FSM (represented by graph G) is described in Table 1.

Transition e1; triggered by input x1 from the lower tester,

generates output o1;1 to FSM1. In response, FSM1 sends

input a1;1 which triggers transition e3: (In general, ai;j is the

expected response to oi;j:) Transition e2; which is triggered

by a lower tester’s input x2; outputs o1;2 to FSM2, which

responds with input a2;1 triggering e4: Then e4 outputs o1;2

to FSM1, which responds with a1;2 triggering e8: On

the other hand, transitions e5; e6; e7; e9; and e10; can be

triggered directly by the lower tester. e6; e7; e9; and e10; do

not generate outputs to the semicontrollable interfaces. e5

generates output o2;2 to FSM2, which does not send any

input to the IUT.

After conversion (Fig. 8), each state of G is replaced with

at most four related states in G0 corresponding to the

buffer configurations at a semicontrollable interface. Each

edge e is annotated as e:x; where x ¼ 0; 1; 2; 3; depending

on the input buffered in the e:x’s start state, as shown in

Fig. 8. The solid edges in Fig. 8 are the mandatory edges

that are incident to nodes that correspond to the case

where both buffers are empty; the dashed-line edges are

the ones that can be traversed only when either buffer

contains an input. Due to the practical diagnostic

considerations [32], we prefer testing edges when no

inputs are buffered in semicontrollable interfaces. The

Aho et al. [2] optimization technique gives the minimum-

length test sequence for G0 shown in Table 2. Steps with

ð!Þ indicate that an edge is tested in this step. Note that,

for simplicity, the UIO sequences [63] are not included in

this sequence.

Fig. 6. Classes of edges in G0 (dashed-lined outputs are optional).

Fig. 7. IUT interacting with two semicontrollable interfaces.

Table 1

Inputs and outputs for the edges of Fig. 7. A?x denotes receiving input x

from A. B!y denotes sending output y to B

Edge Input Output Edge Input Output

e1 LT?x1 FSM1!o1;1 e6 LT?x6 LT!y6

e2 LT?x2 FSM2!o2;1 e7 LT?x7 LT!y7

e3 FSM1?a1;1 LT!y3 e8 FSM1?a1;2 LT!y8

e4 FSM1?a2;1 FSM1!o1;2 e9 LT?x9 LT!y9

e5 LT?x5 FSM2!o2;2 e10 LT?x10 LT!y10
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2.4. Inconsistency detection and elimination problem

Feasible test sequence generation is essential for assuring

the proper operation and interoperability of different

components in computer and communication systems. The

use of formal description languages such as VHDL and

Estelle enable the precise description of such systems and

help minimize the implementation errors due to misinter-

pretations. However, the specifications written in VHDL

and Estelle are often extended FSMs (EFSMs), making the

automated test generation a more complex task due to

possible inconsistencies among the action and condition

variables [25,26].

We studied the problem of generating feasible test

sequences for the EFSM by analyzing the interdependencies

among the action and condition variables of the EFSM

models. In the earlier phases of this research, action and

condition inconsistencies in the EFSM models were defined

[81,82]. It has been shown that once the inconsistencies are

eliminated, the existing FSM-based test generation methods

can be used to generate feasible test sequences from the

resulting consistent EFSM graphs.

The algorithms for the detection and elimination of

inconsistencies in EFSM models utilize symbolic execution,

linear programming, and graph splitting methods. After all

inconsistencies are eliminated, all paths of the final resulting

EFSM graph are feasible and can be used as an input to the

FSM-based test generation methods. The basic concepts for

the inconsistency elimination algorithms were outlined in

Ref. [82], which were later generalized to include graphs

with loops [25,77]. The formal descriptions of the incon-

sistency detection and elimination algorithms have been

given in Refs. [25,26].

2.4.1. Action inconsistencies

If there is no solution for the set of equations formed

by the actions of an edge ei and the condition of another

edge ej; where headðejÞ can be reached from tailðeiÞ or

Fig. 8. Graph transformation applied to the graph of Fig. 7. Mandatory and optional edges appear in solid and dashed lines, respectively.

Table 2

Minimum-length test sequence for the IUT of Fig. 7

Step Edge Input Output Step Edge Input Output

!1 e1:0 LT?x1 FSM1!o1;1 8 e7:2 LT?x7 LT!y7

2 e5:1 LT?x5 FSM2!o2;2 !9 e8:2 FSM1?a1;2 LT!y8

!3 e3:1 FSM1?a1;1 LT!y3 10 e7:0 LT?x7 LT!y7

!4 e6:0 LT?x6 LT!y6 !11 e5:0 LT?x5 FSM2!o2;2

!5 e7:0 LT?x7 LT!y7 !12 e9:0 LT?x9 LT?y9

!6 e2:0 LT?x2 FSM2!o2;1 13 e10:0 LT?x10 LT!y10

!7 e4:3 FSM2?a2;1 FSM1!o1;2 14 e6:0 LT?x6 LT!y6
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headðejÞ ¼ tailðeiÞ; then the two edges of ei and ej are said to

have an action inconsistency (for an edge directed from

node va to node vb; the head and tail nodes are defined as va

and vb; respectively).

For example, in Fig. 9, there is an action inconsistency

between the action of e1 and the condition of e8 due to

variable b:

In general, the effects of the edge actions on variables

(i.e. variable modifications) can be represented as matrices.

For an EFSM graph with m variables, var1; var2;…; varm; a

pair of matrices Aðm £ mÞ and Bðm £ 1Þ called the

modification matrix and the modification vector, respect-

ively, are defined.

The accumulated effects of the actions in the paths

leading to a node vi can be represented by a set of Action

Update Matrix pairs defined as

AUMðvi; JÞ ¼ {Avi;0
; ~Bvi ;0

;Avi;1
; ~Bvi ;1

;…;Avi;J21; ~Bvi;J21} ð8Þ

where Avi;k
; ~Bvi ;k

; and J are the kth modification matrix, kth

modification vector ð0 # k , JÞ; and the number of AUM

pairs associated with vi; respectively. The symbolic values

of a variable varr are represented in the rth rows in

AUMðvi; JÞ: Only one AUM pair, where A and ~B are

initialized to the identity matrix and to a zero vector,

respectively, is created for the initial node.

The algorithm for detecting and resolving action

inconsistencies can be summarized as follows:

† Determine the symbolic values of the variables at each

node reached in the MBF (modified breadth-first [25,26])

graph traversal.

† Pass the effect of actions onto the condition variables.

† For each node vi; based on the symbolic values of the

variables of running timers, determine the feasibility of

each outgoing edge whose conditions use differently

modified variables at vi:

† For each action inconsistency, split the graph such

that the two edges (with inconsistent actions and

conditions) are placed in two different sub-graphs.

The number of AUM pairs associated with vi solely

depends on the number of different ways in which the

actions of the edges leading to vi modify variables. If the

overall variable modifications of the actions of any two

paths leading to vi are the same, only one AUM pair is

sufficient to account for the effects of the actions in the two

paths. Therefore, only unique AUM pairs are associated

with vi (Section 2.4.3).

Symbolic execution is utilized in the construction of

AUM pairs. When an action inconsistency is detected, the

EFSM graph is split from the node where the conflict

occurs. The analysis continues until all action incon-

sistencies are eliminated. By applying the algorithms in

Refs. [25,26,77], the resulting EFSM graph after the

action conflicts are eliminated is shown in Fig. 10.

2.4.2. Condition inconsistencies

After all action conflicts are eliminated from the EFSM

graph, the next step involves the detection and elimination

of condition inconsistencies. The edges ei and ej are said to

have a condition inconsistency if there is no solution for the

set of equations formed by the accumulated conditions of

the edges of a sub-path e1e2· · ·ei and an edge ej; where

headðejÞ can be reached from tailðeiÞ or headðejÞ ¼ tailðeiÞ.

The process of condition inconsistency detection and

resolution can be outlined as:

† Collect the accumulated conditions of the edges leading

to vi reached with the DF graph traversal.

† Based on the symbolic values of the variables, determine

if there is an edge reachable from vi whose condition(s)

conflict with the ACM triplets of vi:

† Upon finding two edges whose conditions conflict,

split the graph and place the two edges in separate

sub-graphs.

In Fig. 10, for example, there is a condition inconsistency

between the edges of e5ð0Þ and e4ð1Þ since each edge requires

Fig. 9. An EFSM graph with inconsistencies.
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a conflicting value of variable c: Fig. 11 shows the final

consistent EFSM graph.

Since the conditions of the edges of a test sequence

constitute a system of constraints, a simplified version of

linear programming algorithms can be used in deciding

whether a certain path predicate is feasible [1]. The edge

conditions in a path from the starting node v0 to a node vi

can be represented in matrices. A triplet of matrices are

defined as C ðm £ pÞ; O ~P ðp £ 1Þ; and ~D ðp £ 1Þ; where m is

the number of variables, p is the number of conditions in the

path from v0 to vi; C is the coefficient matrix, O ~Pis the

operator vector containing the relations of ¼;,;.; ! ¼;…;

etc., and ~D is the scalar vector containing the scalar values

of the conditions in the path.

The AUM pairs discussed in Section 2.4.1 are applied to

the edge conditions of the EFSM graph as follows. A single

condition of an edge er ¼ ðvi; vjÞ is in the form of ~C ~VðO ~PÞ ~D:

The condition of er will be modified based on the symbolic

values of the variables var0 through vm21; which are

represented by the AUMðvi; JÞ: The current values of the

variables including all the modifications represented by an

AUM pair of vi are in the form of ~V ¼ Avi;k
~V þ ~Bvi;k

:

Substituting ~V values in an edge condition will result in
~CðAvi;k

~V þ ~Bvi;k
ÞðO ~PÞ ~D; which simplifies as ~E ~VðO ~PÞf ; where

~E ¼ ~CAvi ;k
is an m-element vector and f is a scalar. An edge

er ¼ ðvi; vjÞ whose condition is infeasible based on the AUM

pairs of vi is deleted from the graph. The values assumed by

the variables used in the condition of er can be determined

from

C ~V ¼ CðAvi ;k
~V þ ~Bvi ;k

Þ ð9Þ

where C is the coefficient matrix for the condition of er and

0 # k , J; where J is the number of AUM pairs associated

with vi:

The accumulated different conditions of the paths

leading to vi can be represented by a set of Accumulated

Condition Matrix (ACM) triplets: ACMðvi; JÞ ¼ ðCvi;0
;

O ~Pvi ;0
; ~Dvi ;0

;Cvi;1
;O ~Pvi;1

; ~Dvi;1
;…;Cvi;J21;O ~Pvi;J21; ~Dvi;J21Þ;

where Cvi;k
; O ~Pvi;k

; ~Dvi ;k
; and J are the kth coefficient matrix,

kth operator matrix, kth scalar value matrix ð0 # k , JÞ;

and the number of the ACM triplets associated with vi;

respectively.

2.4.3. Complexity of algorithms

The action inconsistency detection and elimination

algorithms use a two-phase modified breadth-first graph

traversal, called P1-MBF and P2-MBF. P1-MBF is the main

graph traversal from which P2-MBF may be invoked

multiple times. During the condition inconsistency

Fig. 10. The EFSM graph after splitting the graph of Fig. 9 due to e1 action and e8 condition.
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detection phase, the graph is traversed in a regular depth-

first manner.

The complexity of the action inconsistency detection and

elimination is contributed by a two-phase MBF graph

traversal and constructing the number of AUM pairs for

each node, for each edge for each AUM pair.

The complexity for the two-phase MBF graph traversal is

OðE2Þ [22]. For each node vi; the number of AUM pairs isPlV l21
1 lEvj!vi l £ lAUMðvj; JÞl (where lEvj!vi l is the number

of edges from vj to vi).

The complexity for the condition inconsistency detection

and elimination is bounded by the number of AUM pairs of

each node and executing the linear programming for each

edge. A simplified version of linear programming, which is

used to eliminate infeasible conditions, takes minðm2; S2Þ

steps where m is the number of variables and S is the number

of constraints [1].

The inconsistency detection and elimination algorithms

are designed such that each graph split affects only a portion

of the EFSM graph (rather than the entire graph). Therefore,

the growth of the EFSM graph for resolution of each

action/condition inconsistency is bounded by the size of the

subgraphs involved in this specific conflict.

The inconsistency elimination algorithms do not change

the basic properties of the original EFSM graph, but rather

place the edges whose actions and/or conditions are

conflicting into separate subgraphs [25,26,77]. Among

these subgraphs there are no paths (except through the

initial node, which requires re-initializing the variables of

the EFSM). Therefore, when all the inconsistencies are

eliminated, all feasible paths in the original EFSM graph are

maintained in the final conflict-free graph.

Since, for general software, the inconsistency removal

problem is equivalent to the halting problem, it is

undecidable for the general case, yielding an exponential

growth of the final conflict-free graph size. However, to

limit the problem scope to those features common to most

communication protocols, several simplifying assumptions

are adopted in Ref. [25] such as linearity of all actions and

conditions, and lack of recursive functions and syntactically

endless loops.

With the help of these assumptions, the loops can be

handled by the conflict resolution algorithms as discussed in

Ref. [25]. In addition, as mentioned above, the algorithms

take advantage of localized inconsistencies by splitting only

the portions of the graph. Furthermore, in the augmented

algorithms, G0 will only be split because of the incon-

sistencies among variables for timers that are active in

specific subgraphs. In other words, any condition or action

using timer variables for inactive timers will not cause an

Fig. 11. The final conflict-free EFSM graph after all inconsistencies are eliminated (the subgraph starting from the node v1ð0Þ is not shown for simplicity).
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inconsistency, and thus will not contribute to the growth of

the graph. This methodology has been applied to two real-

life protocols, resulting in conflict-free graphs that did not

grow exponentially (Section 4).

2.4.4. The conflicting timers problem

To ensure feasibility of tests in a laboratory, automated

test generation for network protocols with timer require-

ments must consider conflicting conditions based on a

protocol’s timers. The conflicting timers problem is a

special case of the inconsistency detection and elimination

problem. There are two simplifying features of the

conflicting timers problem: (1) timer-related variables are

linear, and (2) the values of time-keeping variables

implicitly increase with time. The original inconsistency

elimination algorithms [25,26,77,82] are thus augmented to

make them more efficient for the EFSM models with timer

variables.

Suppose that a protocol specification defines a set of

timers K ¼ {tm1;…; tmlKl}; such that a timer tmj may be

started and stopped by arbitrary transitions defined in the

specification. Each timer tmj can be associated with a

boolean variable Tj whose value is true if tmj is running, and

false if tmj is not running. It is also described by time-

keeping variable fj that measures the time since a timer is

activated. Let f be a time formula obtained from variables

T1;…;Tk by using logical operands ^; _; and : : Suppose

that a specification contains transitions with time conditions

of a form ‘if f’ for some time formula f: It is clear that there

may exist infeasible paths in an FSM modeling a protocol, if

two or more edges in a path have inconsistent conditions.

For example, for transitions e1 : if ðTjÞ then {w1} and e2 :

if ð: TjÞ then {w2}; a path ðe1; e2Þ is inconsistent unless

the action of w1 in e1 sets Tj to false (which happens when

timer tmj expires in transition e1).

Our research developed a new model for testing real-time

protocols with multiple timers [34], which captures complex

timing dependencies by using simple linear expressions

involving timer-related variables. The model, specifically

designed for testing purposes, avoids performing a full

reachability analysis and significantly limits the explosive

growth of the number of test scenarios. These goals are

achieved by incorporating certain rules for the graph

traversal without reducing the set of testable transitions.

The technique also models a realistic testing framework in

which each I/O exchange takes a certain time to realize, and

a tester has an ability to turn timers on and off in arbitrary

transitions and to algorithmically find proper timeout

settings.

The augmented inconsistency removal algorithms differ

from the original ones (Sections 2.4.1 and 2.4.2) as follows.

In a generic EFSM model, all variables are treated equally.

However, in the model presented in this paper, a

relationship between boolean Tj and time-keeping variable

fj (for timer tmj) is exploited to prevent unnecessary growth

of the state space of G00: In the original algorithms, when

variable x is used in actions of edges incoming to vp; but is

not used in conditions of edges reachable from vp; vertex vp

and the following graph are not split.

This rule cannot be used in the model presented here in

its original form because, for each timer tmj; fj is used in

actions and conditions of all edges. Therefore, splits would

occur every time. However, fj‘s value is significant only if Tj

is 1 (we will say that fj is either active or inactive). The edge

conditions (derived from those in Section 2.4.2) in the

model are defined so that each component involving

inactive fj would evaluate to true all the time. Thus, inactive

fj cannot create any inconsistencies, and its component can

be pruned from a condition. The rule for identifying an

inconsistency should be modified as follows: when variable

x is used in actions of edges incoming to vp; and either (1) x

is not used in conditions of edges reachable from vp or (2) x

is used in these conditions, but it is inactive in AUMðvpÞ;

vertex vp and the following graph are not split.

In the test cases delivered to CECOM (Section 4),

conflicting conditions based on 188-220’s timers are

resolved by manually expanding EFSMs based on the set

of conflicting timers. This procedure results in test

sequences that are far from minimum-length. The technique

presented here allows us to automatically generate conflict-

free test sequences for 188-220. The software implemen-

tation of these algorithms developed at UD and CCNY is

described in Section 3.

2.5. Related work

Test generation from EFSM models has been an active

research area. Sarikaya et al. used the functional program

testing approach to generate test sequences from the EFSMs

[64]. Software data flow testing approaches have been used

to generate tests for the communication protocols [71–73].

Ural applied the all-uses [73,61] criterion, used for testing

software written in block structured programming

languages, to Estelle [13,14] specification of protocols.

Miller and Paul [55] introduced a method to generate tests

for both control and data for EFSM models. Chanson and

Zhu [17] proposed a test generation method which considers

both the control flow and data aspects of the EFSM models.

Lee and Yannakakis [50] provided a method to convert a

class of EFSMs, where input variables are assumed to have

finite domains, into equivalent FSMs. For a restricted class

of LOTOS expressions, called P-LOTOS, Higashino and

Bochmann propose a method that provides solutions to a set

of interrelated problems such as the test case derivation and

the detections of nonexecutable branches, deadlocks, and

nondeterminism [36].

Although these methods made significant contributions

towards the test generation from the EFSMs, the inclusion

of infeasible paths in the test sequences may be inevitable

since the underlying models are EFSMs. Therefore, without

a proper analysis of the interdependencies among the

variables used in the actions and conditions of the EFSMs,
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considerable effort may be wasted on test generation since

the infeasible portions of these test sequences will be

discarded later.

Among the reported techniques for testing protocols with

timers, some produce a prohibitively large number of test

cases [16,65], which reduces their practical applicability.

Other approaches [24,28] sample the time space with

random granularity, which, unfortunately, is not necessarily

associated with the real transitions’ duration defined by the

specification. In other methods, when the order of possible

timer expirations is not known, undesirable nondeterminism

and infeasible test cases may be introduced [45]. Some test

generation algorithms may take an unacceptably long time

to terminate for real-life protocols because many test

sequences may be generated before the one verified as

executable is found [37].

3. Software for automated test generation

The process of generating tests involved the development

of two systems of software: (1) efsm2fsm-rcpt, and (2)

INDEEL. These two systems are now described in turn.

3.1. efsm2fsm-rcpt

Fig. 12 depicts the major software components that were

developed to generate test sequences from an EFSM [29].

The software contains two packages: (1) efsm2fsm, and (2)

rcpt. The former was designed and implemented at UD. The

latter was based on the software written at CCNY, which

originally was able to handle graphs of at most 100

transitions in a plain input/output format, without any of the

additional parameters specifically required for 188-220B

tests. This component was enhanced to generate tests for

188-220B for a proprietary CECOM’s format. Also, the

software was significantly redesigned to process large

graphs (1000s of transitions), which enabled its application

to more complex real-life protocols. For the details on the

tools’ configuration see Ref. [4].

3.1.1. efsm2fsm

efsm2fsm takes a protocol’s EFSM representation as

input and performs its expansion to an FSM. Each EFSM’s

transition is associated with the following parameters:

transition name in the Estelle specification, transition

description, start and end states, input and output names,

numerical values specifying the corresponding fields in 188-

220B’s PDUs, and changes in the variables’ values (i.e. start

and end configurations. To express the start and end

configurations, a simple notation was defined. In the

potential future work on this package, it is essential that

this notation be replaced with a different one, which should

be more expressive and flexible.

To facilitate creating the input to efsm2fsm, spontaneous

transitions are allowed to be specified in the input EFSM.

These transitions are then concatenated with regular

transitions (i.e. triggered by an external input) to eliminate

spontaneous transitions from the resulting FSM. This

procedure can be briefly described as follows. Suppose

that in a path

v0 !
t1

v1 !
t2

v2· · ·vi21 !
ti

vi· · ·vn21 !
tn

vn ð10Þ

where vi and ti denote a state and a transition, respectively,

t1 is regular and t2;…; tn are spontaneous. Then transitions

t1;…; tn are concatenated into a single transition t1;n from

state v0 to state vn: Their inputs, outputs, and other

parameters are combined and associated with transition

t1;n: States v2;…; vn21 are marked as temporary, and

subsequently removed from the FSM along with their

outgoing transitions.

After the expansion to an FSM, transitions that are

equivalent from a testing point of view could be identified,

leading to a minimum-cost test sequence covering at least

one transition from each equivalence class. However,

building such a test sequence is NP-hard [29]. Therefore,

a simple heuristic bringing about 20–30% reduction in the

number of transitions were implemented.

It is possible to manually prepare the input file for the

package such that an EFSM’s states are divided into two

groups: (1) states with no inputs buffered, and (2) states with

one input buffered at a semicontrollable interface. Then

semicontrollable interfaces can be utilized for certain

simplified cases such as using the 188-220B Intranet layer

for indirect testing of 188-220B Datalink layer (in these

tests, only one semicontrollable interface is used with a

small number of semicontrollable inputs). A self-loop

repetition constraint can be taken into account for the case

of self-loop state verification sequences.

To run the package for a protocol’s EFSM specified in

file protocol.efsm, the following command must be used:

efsm2fsm protocol.efsm [-options ]Fig. 12. Software for automated test generation.
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producing two files protocol.fsm and protocol.stat. The

former contains the output FSM. All information associated

with transitions in the input EFSM is preserved. This

enables the rcpt package to populate the fields defined in the

CECOM format for test sequences. The latter file contains

statistics such as the number of states and transitions in the

EFSM/FSM, and the percentage effectiveness of the

reduction heuristic.

Note that the original EFSM to FSM conversion

technique implemented should be replaced by the appli-

cation of the inconsistency elimination algorithms

implemented in INDEEL (Section 3.2). Using INDEEL to

eliminate inconsistencies results in a conflict-free EFSM

that is significantly smaller than the FSM.

3.1.2. rcpt

The FSM produced by efsm2fsm is then fed to rcpt,

which builds a corresponding directed graph representation

G. Then, network flow techniques are applied to find a rural

symmetric augmentation of G as G00: Finally, rcpt finds an

Euler tour of G00; and outputs to a file a resulting test

sequence conforming to the CECOM format. It is proven

[29] that if G has either a reset capability or self-loop

property (as defined by Aho et al. [2]), an Euler tour always

exists for G00:

Suppose that protocol.fsm is an input file containing a

protocol’s FSM. Then the following command runs the package:

rcpt [-cecom/-plain ] protocol.fsm output_file

where plain option refers to a plain input/output file format.

protocol.fsm file in plain format can be prepared manually.

The cecom option selects test generation in the CECOM

format. In this case, the input file protocol.fsm should be

generated by the efsm2fsm package. The tests are stored in the

number offiles named protocol.i, where i is the index of a test

group.

3.2. INDEEL: software for inconsistency detection

and elimination

A software package, called INDEEL (INconsistencies

DEtection and ELimination), has been implemented at

CCNY based on the inconsistency elimination algorithms

given in Refs. [25,26,77]. As part of the ongoing

collaboration between the CCNY and the UD, the

application of these algorithms has been extended to

generate test sequences for the protocols with conflicting

timers such as 188-220.

INDEEL contains 15,000 þ lines of algorithmic C code.

As its input, the software reads a user specified file

containing the description of an EFSM graph with the

following properties:

† The specification consists of a single process and thus

there are no communicating EFSMs.

† If the specification contains function calls, they can be

described within the process with a simple

transformation.

† Pointers, recursive functions, and syntactically endless

loops are assumed not to be present in the specification.

† All conditions and actions are linear.

Overall complexity of the algorithms used in INDEEL was

discussed in Section 2.4.3. INDEEL uses an iterative

approach: every time an action or condition inconsistency is

detected and eliminated, an intermediate output graph is

generated in a file, using the same format as in the input file.

This intermediate output file then becomes the new input file

to INDEEL for continued analysis. This iterative procedure is

repeated until the graph becomes free of inconsistencies. The

intermediate and the final output graphs are provided as files.

INDEEL starts its analysis by considering the action

inconsistencies; it then proceeds to the detection and

elimination of the condition inconsistencies (if any). During

the analysis of the action inconsistencies, INDEEL

constructs a set of Action Update Matrix (AUM) pairs for

each node. The AUM pairs represent the effects of the

actions of the traversed edges leading to a given node vi:

Similarly, the accumulated different conditions of the paths

leading to vi can be represented as a set of Accumulated

Condition Matrix (ACM) triplets containing the coeffi-

cients, operators, and constants of the edge conditions.

To reduce the space complexity, during the AUM and

ACM constructions, the software uses a single matrix called

path_matrices in which the numbers of the edges in the

paths from the initial node to vi are stored.

4. Technology transfer results

Using research results from Section 2, and software as

described in Section 3.2, UD and CCNY collaborated with

CECOM to generate tests for the SAP components of

188-220’s Data Link Layer Classes A and C. Table 3 shows

Table 3

188-220 Datalink tests. A single step corresponds to one input/output

exchange

Test set # of states # of transitions # of test steps

Class A Type 1 service

General behavior 298 799 1732

Precedence 303 401 1316

Multidestination 112 119 145

Class C Type 1 service

General behavior 298 799 1732

Precedence 193 357 1314

Multidestination 112 119 145

Class C Type 4 service

general behavior 235 925 2803

outstanding frames 48 172 264

Multidestination 112 119 145
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the sizes of the expanded EFSMs and the tests that were

generated from them. For example, the precedence tests set

for Class A-Type 1 Service was based on an expanded

EFSM of 303 states and 401 transitions. The minimum-

length test sequence generated for this machine consists of

1316 input/output pairs covering every transition in the

expanded EFSM at least once.

Fig. 13 shows a sample of the delivered test scripts. The

figure depicts the test group #92 from Datalink Class A-

Type 1 service tests. Each test group is a subsequence of a

full test sequence that starts and ends in the initial state. In

the first step, the technique of utilizing semicontrollable

interfaces presented in Section 2.3 is used. The lower tester

sends a packet with three destination addresses: IUT-addr,

des-addr_1, and des_addr_2. The setting Relay ¼ Yes in

the INTRANET clause tells the first addressee, i.e. the IUT,

to relay the packet to the two remaining addresses. As a

result, the IUT sends a packet with its address as a source,

and des_addr_1 and des_addr_2 as destinations, as if it

were originated by the IUT’s Intranet Layer. In the second

and third steps, the IUT’s packet sent in the first step is

acknowledged by des_addr_2 and des_addr_1, respect-

ively. Each test step is further annotated with the test

description, the number of the corresponding Estelle

transition(s), and the appropriate section(s) from the 188-

220 official document.

The implementations of 188-220 from several manufac-

tures are being tested at CECOM. The tests generated by the

UD and CCNY team have uncovered several implemen-

tation errors, including lack of mandatory capabilities in

Fig. 13. A sample of test scripts delivered to CECOM.
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Datalink layer, and problems with multi-hop Intranet

Relaying.

5. Conclusions: improvements to protocol development

process

5.1. Integration of Estelle into system development

Traditional sequential process of system development is

known to be inefficient since it allows unnecessary

duplication and does not facilitate tracking of rapidly

changing technology. With 188-220 as a critical component,

a synergistic framework for C4I (Command, Control,

Communications, Computers, and Intelligence) systems

development has been established [27] (Fig. 14). It

combines several parallel activities: developing protocol

standards and specifications, formally specifying protocols

in Estelle, building conformance tester hardware and

software, ‘field testing’, modeling and simulation, as well

as resolving and documenting the solutions to standards-

related technical issues by the Joint CNR Working Group.

(WG participants include representatives from DoD ser-

vices/agencies, industry, and academia.)

Estelle[40]wasselectedas theFDTforspecifying188-220

protocolsuite foranumber reasons.Thelanguage issupported

by a set of tools combined in the Development Toolset (EDT)

[11] (accessible through http://www-lor.int-evry.fr/edt/),

which is composed of a simulator/debugger with a Message

Sequence Chart trace generator, a Universal Generator (test

drivers generator, decompiler, distributed specification gen-

erator-splitter), a state/event tables generator, a browser, a

pretty printer, and a graphical editor [66]. More than 30

universities, research centres and industrial laboratories

around the world are licensed to use the EDT tools, including:

University of Delaware (USA), Concordia University

(Canada), Centro Studi e Laboratori Telecomunicazioni

(Italy), Joint Interoperability Test Comand-Open Systems

Environment Test Laboratory (Ft. Huachuca, Arizona, USA).

Using formal methods as part of this process helped

create a high quality protocol standard, which is robust and

efficient. Due to the structured nature of Estelle, the

specification process progressed at an accelerated pace

compared to other standards. 188-220 was completed on

time, setting a rare example in the protocol standards arena.

The existence of a formal specification allowed the

researchers at UD and CCNY to extract modeling

information in order to solve a number of theoretical

problems. This resulted in the development of new testing

methodologies. By applying these new results, the con-

formance tests for 188-220 were generated while the

protocol was still evolving. Performing initial conformance

tests on prototypes uncovered several interoperability errors

early in the development process. Following this success of

the 188-220 development, the synergistic efforts to develop

C4I systems with the help of formal methods serves as a

model for DoD standards process and development for the

future [27].

5.2. Advantages of formal methods in eliminating protocol

errors

In addition to the vagueness introduced by a natural

language description, ambiguities and contradictions are

difficult to detect when related protocol functionalities are

defined in different document sections separated by several

pages of unrelated text. Such problems are eliminated in a

formal Estelle specification. All actions in a particular

context are defined in one place within the Estelle

specification. The specifications make the conditions for

state transitions explicit through Estelle constructs. Indeed,

the very process of creating these constructs enables formal

specifiers to detect some of these types of ambiguities which

are difficult to see in normal reading of a document written

in English.

5.3. Observations on applicability of formal methods

As concluding remarks for this paper, we report the

following observations based on our experience during the

formal specification and test generation for 188-220.

The develop an Estelle formal specification of a protocol,

we must not only define its architecture and interface

components (e.g. as in Figs. A2 and A3 for 188-220), but we

must also carefully specify the behavior of each module of

these components. This definition, achieved through the

creation of EFSMs, is the most difficult and time-consuming

step of creating a formal specification. A syntax-directed

editor improves the readability for testers who are not FDT-

trained; it also is useful in writing non-trivial specifications.

Moreover, the modeling and specification languages, such

as SDL [38,39] and UML [58], enjoy widespread industrial

popularity, partially due to their standard graphical

representation and readily available commercial tools.

Once all states and transitions of a protocol (including

inputs and outputs) are finalized, the writing of the Estelle

code itself is fast and straightforward.Fig. 14. Estelle as part of synergistic efforts to develop C4I systems.
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Since 188-220 is a multilayer, multifunction protocol

of a considerable size and complexity, manual generation

of conformance test sequences would be both inefficient

and ineffective. As seen from Table 3, the tests already

delivered to CECOM contain approximately 10,000 test

steps. It is clear that manually generating test sets of this

size from the protocol textual description is not a trivial

task.

A number of conformance test generation techniques

have been proposed [2,8,10,55,62,64,69,72], each of

which is expected to give better results for a certain

class of protocol specifications depending on the nature

and size of the protocol. The experience obtained in

generating tests for 188-220 suggests that to successfully

test today’s complex protocols by using formal methods,

an ideal test generation tool should support multiple test

generation techniques [50]. They can range from Post-

man tours [2] or fault-oriented tests [84,86] for midsize

protocols when the number of states is on the order of

thousands, to guided random walk approaches [48,87] for

larger protocols when the number of states ranges in the

tens of thousands.

The state explosion problem has been a major issue

for generating FSM models out of EFSM representations

of protocols [19,60,85,86]. One common procedure for

converting EFSMs into FSMs simultaneously performs

reachability analysis and online minimization [19,49];

this conversion is based on combining equivalent states

[63] using bisimulation equivalence [56]. Another

approach proposes the elimination of inconsistencies in

EFSM models [75,76]. Efficient algorithms such as these

should be implemented in any test generation tool using

FSM models. If the final FSM model is not confined to a

manageable size, the test sequences generated from it

will be infeasibly long regardless of the test generation

method.

Finally, a test house may require its own proprietary

format for the executable tests. Although TTCN is accepted

as input by many test tools, a proprietary test format may be

preferable for a given protocol if this format is more

readable by testers, or is simpler to parse by software tools.

The output of a test generation tool should be easily custom-

tailored for a particular format, possibly by using simple

application generators.

Fig. A1. MIL-STD 188-220 Protocol Architecture. The circles indicate

those parts of the protocol where FDTs were used during the development.

Fig. A2. Network layer interface and architecture.
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Appendix A. Estelle specification of MIL-STD 188-220

The Protocol Engineering Lab researchers at UD used

Estelle to specify parts of the 188-220 protocol suite [3,23,

15,54]. 188-220, originally developed in 1993, evolved to

188-220A with substantial new functionality, including

support for new radio technology and integration with

Internet protocols (commercial IP, TCP, and UDP at the

network and transport layers). Version 188-220B, whose

architecture is depicted in Fig. A1, describes the protocols

needed to exchange messages using Combat Network Radio

(CNR) as the transmission media. These protocols include

the physical, data link and part of the network layer of the

OSI model. The protocols apply to the interface between

host systems and radio systems. Hosts usually include

communications processors or modems that implement

these lower layer protocols. The unshaded portions of

Fig. A1 indicate those protocols and extensions that were

developed specifically for use with CNR.

MIL-STD-188-220 Datalink layer specifies several

service types, each intended to handle different types of

traffic with different quality of service (QoS) demands. A

188-220 station can actually process several different

types of traffic simultaneously (and almost orthogonally).

MIL-STD-188-220 Network Layer consists of Internet (IP)

Layer, Subnetwork Dependent Convergence Function

(SNDCF), and Intranet Layer. The Intranet Layer has been

dedicated to routing intranet packets between a source and

possibly multiple destinations within the same radio

network. The Intranet Layer also accommodates the rapid

exchange of topology and connectivity information, where

each node on the radio network needs to determine which

nodes are on the network and how many hops away they are

currently located.

A.1. Intranet layer architecture

Fig. A2 shows the interface and general architecture of

the Network layer. The architecture represents the protocol

stack at a single station, as well as an interface with

‘operator module’ which can interact with several different

layers in the stack. The operator module abstracts the link

layer’s interactions with both a human operator and a

system management process.1

Fig. A3 shows the internal structure of the Intranet Layer.

The two main Intranet Layer functionalities, Source

Directed Relay (SDR) and Topology Update exchange

(TU), were encapsulated in separate component modules of

the Intranet Layer module. This simplifies the design of the

FSMs that model the entire layer, and also allows for

generating test cases for each functionality separately.

The SDR module receives IL-Unitdata_Req messages

through SNDCFSAP interaction point. It starts/stops a

varying number of END_END_ACK timers, one for each

IP packet that has been sent but not yet acknowledged. The

TU module interacts with the SDR module by notifying it of

Fig. A3. Intranet layer architecture.

1 Note that the numbers in Figs. A2 and A3 refer to interactions, and are

consistent throughout the figures (e.g. number 12 refers to OP-min-update-

per in all three figures).
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any topology changes that take place dynamically. The TU

module communicates with two timers: Topology_Update

Timer and Topology_Update_Request Timer. The former is

started after a topology update message is sent by the

station. According to 188-220A, a station is not allowed to

send another topology update message until the timer

expires. The latter performs the same role for topology

update request messages.

Both SDR and TU modules can send and receive

messages from the datalink layer through their lower_mux

interaction points-the messages from the two modules are

multiplexed by the parent Intranet Layer module. A peer

operator or management component is connected directly to

the Topology Update module and can set parameters that are

relevant in topology update mechanism. Part of the diagram

inside the dash-lined rectangular contains modules that

handle XNP procedures: joining and leaving the net with

either centralized or distributed control, and parameter

update requests.
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