
Conceptual framework and architecture for service mediating

workflow managementq

Jinmin Hu, Paul Grefen*

Computer Science Department, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Received 22 August 2002; revised 27 March 2003; accepted 7 April 2003

Abstract

This paper proposes a three-layer workflow concept framework to realize workflow enactment flexibility by dynamically binding activities

to their implementations at run time. A service mediating layer is added to bridge business process definition and its implementation. Based

on this framework, we propose an extended workflow management systems architecture, in which service contracting layer, service binding

layer and service invocation layer are extensions to support the proposed service mediating concept. According to an enactment specification,

different instances of the same activity can be bound to different services to achieve enactment flexibility. The conceptual framework and

architecture together provide a comprehensive approach to flexible service enactment in B2B collaborative settings.

q 2003 Elsevier B.V. All rights reserved.

Keywords: Workflow management; Service mediation; Enactment flexibility; Dynamic binding; Business-to-Business collaboration

1. Introduction

In the past years, workflow management systems

(WFMSs) have been widely adopted by enterprises to

streamline business processes. They make business process

execution more efficient by offering means for explicit

process specification, automated interpretation of process

specifications, assignment of tasks to actors, and manage-

ment of process exceptions. As Internet technologies are

rapidly developing, the focus of many companies is shifting

from the inside to the outside business world. They have

started to intensify the collaborations with their customers,

suppliers and business partners. The relationships among

companies are fast changing, which demands that Business-

to-Business collaboration should be dynamically set up. To

support this business target, workflow-based enterprise

information systems have to be extended to support

dynamic inter-enterprise collaboration, for example, elec-

tronic service outsourcing. The extended workflow system

has to be flexible enough to cope with the rapidly changing

requirements and unexpected failures. Hence, flexibility and

the ability to support inter-enterprise cooperation are

becoming major challenges for workflow management

(WFM). This sets the research focus of this paper.

The concept ‘workflow flexibility’ has many inter-

related meanings [1]: easy design and change, easy

enactment of changes in running workflow instances, good

support of exception handling and failure recovery, dynamic

workflow schema evolution and so on. One of the most

important forms of flexibility is enactment flexibility.

Enactment flexibility means that different instances of an

activity can be dynamically bound to different implemen-

tations at run time. The conceptual architecture of most

WFMS exhibits similar flexibility in dynamically binding

‘Activity Instances’ with ‘Actors’ through the use of

‘Roles’. However, in spite of conceptually separating

activity definitions from their implementations, which is

characterized by the typical workflow framework, full

enactment flexibility has not been yet reached in most

current WFMSs. This is due to the fact that most WFMSs

establish the associations between the activities with their

implementations at build time. The pre-established associa-

tions allow workflow engines to invoke the corresponding

applications at runtime. However, these pre-established

associations are not allowed to change at workflow runtime.

For example, in the IBM MQSeries Workflow product [10],

0950-5849/03/$ - see front matter q 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0950-5849(03)00092-2

Information and Software Technology 45 (2003) 929–939

www.elsevier.com/locate/infsof

q A short and earlier version of this paper has been published in the

Proceedings of the Fourth International Symposium on Collaborative

Technologies and Systems (CTS), Orlando, Florida, USA, 2003, pp. 23–29.
* Corresponding author.

E-mail address: p.w.p.j.grefen@tm.tue.nl (P. Grefen).

http://www.elsevier.com/locate/infsof

programs for executing workflow activities are registered in

the build time environment. References to the registered

programs are the properties of program activities call

execution. The descriptions of the registered programs even

contain the file paths of the programs, which are parts of the

FDL (MQSeries Flow Definition Language) specification.

So, to change the implementation of an activity is not

possible at run time but only at build time: “…However if

you have already imported the workflow model in run time,

you must export it from build time and import it again in

runtime to use the new definitions” [10]. Some extensions to

the static model have been realized—we discuss an example

in Section 2.

To attain full runtime enactment flexibility, a WFMS

must realize a mechanism that supports dynamically

establishing or changing the association between an activity

and its implementation at run time. This paper provides an

approach to this dynamic binding by adopting a service-

oriented approach. Our approach is to separate the activity

specification from the workflow process specification and

dynamically combine it with the descriptions of applications

or services to generate an enactment specification (ES),

which is used to support dynamically binding an activity

instance to an appropriate service.

The second focus of this paper is WFMS support for B2B

collaboration. Traditionally, the emphasis of WFM has been

placed on homogeneous environments within the boundary

of a single organization. As e-business is growing,

extending a WFMS to support B2B collaboration is now a

challenge for many enterprises. Though the Workflow

Management Coalition (WfMC) has already defined Inter-

face 4 in its workflow reference architecture [18] to support

inter-operation between workflow systems, the reality is that

this type of support for collaboration is too tightly coupled.

It is not suitable for today’s ever-changing business and

technology environment. In a dynamic business environ-

ment, an enterprise requires flexibility to select its partners

dynamically, for example, outsource the same business

activity to different parties according to different QoS levels

provided and demanded. So, a tightly coupled collaboration

system is not suitable for today’s dynamic and flexible B2B

collaboration any more.

This paper combines the enactment flexibility issues and

inter-enterprise support abilities as a combined research

goal. A service-oriented approach provides us with the

possibility to reach this combined goal. In our approach,

both remote applications and internal applications are

transparent to the workflow definition process and treated

as services. We extract activity specifications from work-

flow process specifications and use them as service

requirements to find corresponding services that can

implement the activities. Our service mediating workflow

system architecture supports integration of both the internal

services implemented in internal information systems and

external services imported from business partners to

implement the total business workflow. Such a system

enables an enterprise to implement flexible outsourcing

strategies by dynamically binding and invoking e-services

provided by different service providers.

The remaining sections of this paper are organized as

follows. Section 2 introduces related work and places our

contribution in context. Section 3 presents an illustrative

example. The conceptual framework and conceptual model

of service mediating WFM are proposed in Section 4.

Section 5 presents the extended WFM architecture. In

Section 6, we describe the service mediating layer in terms

of description of ES. Section 7 discusses two implemen-

tation methods for service invocation. Section 8 draws a

conclusion.

2. Related work and our contribution

Our work combines aspects of electronic services and

WFM. Hence, we discuss related work in both domains

below. In the e-service field, we place our work in the

context of the standards developed. In the WFM field, we

discuss the research related to the two main workflow

aspects of our work: flexibility and support for cross-

organizational workflows. We end this paragraph by

describing our contribution to the field.

2.1. E-services

The e-service model and service-oriented paradigm have

brought innovative approaches to develop enterprise

information systems. They build on the functionality of

existing e-business frameworks and extend them with the

aim of making the Internet more practical and powerful for

businesses [5,13]. The e-services framework enables an

application developer who has a specific need to cover it by

using an appropriate e-service published on the Internet,

rather than developing the related code from scratch [11].

Web services provide a service-oriented and component-

based approach to implement application-to-application

interaction. Web services are relatively simple and easy to

implement and deploy. The Web Service Description

Language (WSDL) [19] based on XML is used to describe

Web service interfaces. SOAP [14] provides a lightweight

message transport protocol to enable involved parties to

exchange message in a Web service transaction. UDDI [15],

a registering standard, is used in the Web service

architecture to support service publishing and discovery.

Microsoft, IBM and BEA have created a language called

Business Process Execution Language for Web Services

(BPEL4WS) [4] for composing web services to support

business process execution. BPEL4WS replaces the existing

IBM WSFL [20] and Microsoft XLANG [21] efforts by

combining and extending the functions of these previous

languages. At the core of the BPEL4WS process model is

the notion of peer-to-peer interaction between services

J. Hu, P. Grefen / Information and Software Technology 45 (2003) 929–939930

described in WSDL; both the process and its partners are

modeled as WSDL services.

2.2. Workflow management

Flexibility has been addressed in the workflow commu-

nity in a number of research efforts. Different types of

flexibility are discussed in Ref. [9]. A typical example of a

software development effort is the WASA project, in which

a WFMS was designed that supports flexibility through

mechanisms supporting on-the-fly changes to process

specifications of workflow instances [16]. A different way

of achieving flexibility in workflow process specifications is

by distinguishing between core process specifications and

exception specifications [6].

Commercial WFM products offer varying degrees of

flexibility. For example, HP Process Manager offers

resource rules that allow some flexibility with respect to

application invocation, based on polymorphism of services

[21]. In this approach, polymorphism relies on sets of

functions that have the same invocation interface. The

mechanism for resource selection uses query facilities of

underlying database or directory systems.

Cross-organizational workflow management has been

the topic of a number of research projects on the integration

of process support and electronic business. Well-known

examples in this field are WISE and CrossFlow. In the

WISE approach [3], a global process specification is used to

link activities or subprocesses of organizations participating

in a virtual enterprise. In the CrossFlow approach [7],

dynamic virtual enterprises are supported in a service

outsourcing environment. Cross-organizational workflow

processes are specified in electronic contracts between

consumer and provider in a service outsourcing relationship.

A comparable approach to supporting flexible service

provision in virtual business communities is addressed in

Ref. [12]. Different from our approach to extend an

underlying WFMS to support dynamic service binding,

this approach relies on building a basic service model

and a service infrastructure to support flexible service

composition among partners. The work described in

Ref. [12] leaves many detail open, however.

2.3. Our contribution

Our major contribution is a service mediating workflow

management framework, model and architecture based on

realizing workflow enactment flexibility through separating

activity ESs from workflow definition. The proposed ES

binds activity specifications with service descriptions,

which allows late selecting and binding of services at run

time. Hence, different instances of the same activity can be

fully dynamically bound to different implementations. This

also allows the flexibility to bind an activity instance to an

intra- or cross-organizational service, hence proving a basis

for dynamic outsourcing decisions.

3. An illustrative example

In this section, an illustrative example is presented to

show how service concepts can be integrated into a

workflow management context to support flexible business

process execution. Fig. 1 shows a diagram describing a

business process that handles a purchase order. The business

activities within this business process are represented as

regular rectangle blocks. When a new purchase order is

received, activity ‘Check Order’ is executed to validate the

order. If the order is valid, the acknowledgement is sent.

Then, in parallel, both activity ‘Check Repository’ and

‘Invoice’ are carried out. Activity ‘Check Payment’ is to

check whether the payment has arrived. If the payment has

arrived and goods supplies are sufficient to fulfill this order,

activity ‘Delivery’ is enacted to deliver the goods. Activity

‘Check Repository’ is responsible for checking the amount

of goods in the repository. Activity ‘Arrange Production’ is

enacted when there are insufficient goods in the repository.

After activity ‘Produce’ is carried out, the amount of goods

will be sufficient and the activity ‘Delivery’ can be started.

After activity ‘Delivery’ is completed, activity ‘Check

Fig. 1. Example workflow—activities and component deployment.

J. Hu, P. Grefen / Information and Software Technology 45 (2003) 929–939 931

Satisfaction’ is to check whether the customer is satisfied

with the shipment.

To handle this process, the enterprise needs to deploy

components or systems to support the WFMS to execute the

activities. In Fig. 1, the components and systems that

implement the corresponding activities are shown as

rounded rectangle blocks. The ‘blocks’ can be wrapped

legacy backend system, software components (based on

COM, CORBA or EJB) or stand-alone systems (for

example, an e-mail system). In traditional workflow

management, the association of an activity and its

implementation is established at build time. At run time,

the workflow engine invokes the corresponding implemen-

tation to execute the activity instances. However, not all

components that support the activity execution belong to the

internal system. The enterprise may outsource some

business activities to other companies. In this motivational

example, activity ‘Invoice’ can be outsourced to a company

that operates a billing system for external parties. Activity

‘Delivery’ is outsourced to transport companies, as the

enterprise does not have its own transport system. So, the

enterprise collaborates with transport companies to carry

out this activity. From the view of activity outsourcing, the

activity ‘Delivery’ is outsourced to the transport company to

be executed there. However, from a service-oriented view,

the enterprise imports the ‘Transport Service’ from the

transport company and invokes it to execute activity

‘Delivery’.

To achieve enactment flexibility, a flexible WFMS must

allow dynamical deployment of a component to support

activity execution. In this example, the email component

through which an order is received can be replaced by a

component that supports the SOAP protocol to receive

the order sent in a SOAP message. Usually, in the business-

to-business world, service contracts are signed to guarantee

service provision, service availability and performance of

the provided services. A large enterprise may establish

many service contracts with its partners to obtain multiple

external support facilities to execute a complex process. It is

also possible that it makes different service contracts with

different companies to get the same or similar service for an

activity execution. For example, an enterprise may establish

different service contracts for product delivery with road-

transport companies, ship-transport companies and airlines

to have multiple service options. Therefore, to reach the

flexibility, the WFMS must have the ability to dynamically

bind and invoke these contracted services and the internal

services at workflow run time rather than at workflow build

time.

4. Conceptual framework and model for service

mediating WFM

Current workflow environments are characterized by

being separated into two layers: the business process logic

layer and the business application layer. This allows

applications to support flexible business logic, for

example changing the business activity sequences. How-

ever, the enactment flexibility we propose has not been

reached by these WFMSs due to the fact that the

dependencies of activities and their implementations are

pre-established at build time rather than at run time. In

this section, we propose an approach to separate the

implementation concerns from a workflow process

specification to loose the dependency, which allows

dynamically binding a service or an application to an

activity instance.

4.1. Three-layer conceptual framework

Our approach is to adopt a service mediating concept

that dynamically bridges activity specifications and their

implementations. Fig. 2 shows a three-layer conceptual

framework. It includes a process definition layer, a service

mediating layer and a service implementation layer. From

the service-oriented viewpoint, the process definition is

viewed as service requirements. It does not include any

association to activity implementations. The service

implementation layer corresponds to the business appli-

cation layer in traditional workflow frameworks. Business

applications (service implementations) are completely

transparent to the process definition (service require-

ments), and vice versa. Hence, service requirements and

service implementations can be dynamically associated

through service mediating layer that dynamically binds

activity specifications (service requirements) to the

descriptions of the service implementations. The concep-

tual model as discussed below contains the details of our

approach.

4.2. Conceptual model

Fig. 3 shows the ER model that describes service

mediating concepts. According to the time of building the

entities and establishing the relations among them, we

separate the model into four levels: workflow build time

Fig. 2. Service mediating workflow management concept framework.

J. Hu, P. Grefen / Information and Software Technology 45 (2003) 929–939932

level, service build time level, service contracting time level

and workflow run time level.

At workflow build time, workflow processes that consist

of workflow activities including workflow relevant data are

specified and stored in a process specification.

At service build time, internal applications or external

services are built as activity implementations. Corre-

sponding service descriptions are created to describe the

services. A service description of a standard service may

be supported by different services that are provided by

different service providers. This enables an enterprise to

have flexibility to choose the most appropriate

provider according to its outsourcing policies. To an

enterprise, a service refers to an internal application or

an external service that is guaranteed by a

service contract. A contract specifies all relevant aspects

(e.g. rights, obligations, service levels) of service

provisioning [2].

At service contracting time, workflow activities with

relevant data are used to generate activity specifications that

are used for searching corresponding services. Through

matchmaking between activity specification and implemen-

tation requirements and service descriptions, appropriate

providers are selected according to certain business policies,

for example, outsourcing policies. Through contracting,

service contracts are established to guarantee the services

provision and service qualities. Usually, a service descrip-

tion is specified in a contract and is part of service contract

content. As an activity specification can be matched with

several service descriptions provided by different providers,

or even the same description supported by different services,

several service contracts are likely created to guarantee one

activity implementation, which allows flexible service

selection at run time.

At workflow run time, selected service descriptions

that satisfy the activity implementation requirements are

bound to activity specification to dynamically generate an

ES. According to such an ES, each instance of an

activity can be dynamically bound to a corresponding

service. Though an activity specification can be matched

with multiple services, an instance of an activity can

only be bound to one service according to the ES.

Therefore, service selection policies are combined into

the ES to support dynamic service selection according

to the relevant data of the instances of the activity.

Fig. 3 shows that ‘Activity specification’, ‘Service

description’ and ‘Enactment specification’ are the key

elements to implement the service mediating concept.

Fig. 3. Service mediating conceptual model.

J. Hu, P. Grefen / Information and Software Technology 45 (2003) 929–939 933

5. Architecture for service mediating WFM

To support the proposed conceptual framework, we

extend the architecture of current WFMSs. The extended

architecture is shown in Fig. 4. It is divided into two parts:

the left part is the simplified traditional workflow system

architecture and the right part is the extension for supporting

the proposed service mediating concept. Based on the

service-oriented concept, the architecture is divided into

five layers: workflow definition layer (and service definition

layer), service contracting layer, service binding layer,

service invocation layer and service layer. Compared to the

conceptual model, the service binding layer in the extended

architecture crosses the contracting time and workflow run

time layers in the conceptual model.

5.1. Workflow definition layer

In the workflow definition layer, process and activities

are built (defined) using workflow modeling tools. A

workflow model interpreter interprets the workflow defi-

nition to extract the activity specifications. These will be

used to search for external services, to match against

existing internal applications or to build new applications.

An activity specification mainly contains a number of

activity description elements and workflow relevant data

structure descriptions. It is similar to the interface descrip-

tion of an application or a service that can implement an

activity, which makes it possible to use a matchmaking

approach to find corresponding activity implementations:

applications and services. The description of an activity

specification is presented in Section 6.

5.2. Service contracting layer

The service contracting layer is used to find appropriate

service descriptions and establish service contracts to

guarantee service outsourcing. Outsourcing polices are

used to determine which activities are to be outsourced.

External services are to be found to support outsourced

activities according to outsourcing policies. The service

discovery and contracting system is integrated in this layer

to discover external services that can meet the activity

implementation specifications. Activity specifications are

Fig. 4. Service mediating architecture.

J. Hu, P. Grefen / Information and Software Technology 45 (2003) 929–939934

used as service requirements to match with corresponding

service descriptions. When suitable services are found

through querying a service registry and matchmaking, the

contracting system establishes service contracts with

the service providers to guarantee the availability of the

external services. Service descriptions are specified in

the service contract and are part of the contract content.

The service descriptions of contracted services are used to

bind to activity implementation specifications to generate

ESs. If no outsourcing strategy is adopted, existing or newly

built internal applications that meet the activity implemen-

tation requirements will be invoked. Hence, service

descriptions must describe both external and internal

services. The details of service descriptions will be

discussed in Section 6.

5.3. Service binding layer

As we have mentioned above, different providers can

provide similar services to implement an activity, which

could have the same or different service descriptions. An

enterprise will subscribe to multiple services for the same

activity implementation to attain flexibility. To realize this

flexibility, a component called enactment specification

manager is added. It works with the service selection policy

management system at run time to dynamically select con-

tracted services descriptions and bind them to the corre-

sponding activity specifications to generate an ES. Service

selection policies are combined into the ESs to be used for

service invocation. Usually, an ES includes an activity

specification, some service descriptions and some policies

for service selecting, which will be described in Section 6.

Consequently, in this layer, an activity specification is

usually bound to one or multiple services. Since the relevant

data of the activity instance is not known yet in this layer,

the dynamical binding of a concrete instance with a concrete

service is implemented in the service invocation layer.

5.4. Service invocation layer

The service invocation layer is an extension of the

traditional workflow enactment system to support dynamic

and flexible service binding and invocation. A Service

Invocation Coordinator (SIC) is added to implement service

invocation. When an activity is instantiated by the workflow

engine, the invocation flow from the workflow engine is

redirected to the SIC. The SIC binds the activity instances

with the corresponding service according to the ES and

activity instance information. According to the data

mapping part described in the ES that we will discuss in

the following section, the service coordinator converts the

workflow relevant data to and from the data formats that the

remote or local service supports. To invoke a remote

service, the invocation messages with the relevant data are

sent or received by a proxy. For example, a HTTP/SOAP

proxy is used to exchange invocation messages and data

with a remote HTTP/SOAP server that provides Web

services. If the services are provided by an internal

application, it will be invoked directly by SIC.

5.5. Service layer

The service layer is the layer that may cross organiz-

ations. Services as discussed here include both the internal

applications that implement workflow activities and remote

services provided by other parties to support the workflow

activity executions. The internal applications can be

information systems or software components obtained by

wrapping legacy systems. Remote services are applications

or components that are implemented by other parties and

can be accessed based on specific messaging and transport

protocols.

6. Descriptions for service mediating layer

As discussed above, activity implementation specifica-

tions, service descriptions and enactment specifications play

important roles in implementing the service mediating

concept. They altogether play the bridging role to connect

workflow activity definitions (service requirements) to

activity implementations (services).

6.1. Activity specification

The activity specification is generated from a workflow

definition and is used for searching the activity implemen-

tations (which can be applications or services) (Fig. 5).

Fig. 5. Activity implementation specification.

J. Hu, P. Grefen / Information and Software Technology 45 (2003) 929–939 935

Usually, traditional workflow definitions include activity

signatures and descriptions, data structures, programs or

applications definitions, users and roles definitions, control

flow and data flow. Elements of an activity specification

include DataStructure, ActivityName, Input/output Data,

which are extracted from workflow definition, and ImplReq

(Implementation Requirement), which is an element added

to describe the requirements of activity implementation.

Implementation requirements may cover a very broad

spectrum of aspects from technology requirements to

business requirement. Generally speaking, they specify the

required properties that a service should have. They are the

major factors that should be considered when searching and

contracting services.

6.2. Service description

According to the activity specification, the service

discovery system searches for an appropriate service

through querying published service descriptions in the

service registry. Appropriate service descriptions that match

the activity specifications will be the candidates for

contracting. The basic service description describes the

interface for accessing a service, which includes operations

with input message, output message and transport protocols

(or invocation protocol). A good example of a basic service

description language is WSDL [19]. Advanced service des-

criptions can be based on WSDL and contain service

endpoint properties description, such as the quality of

service and the performance of service invocation. An

example of this description language is the Web Services

Endpoint Language (WSEL) [20]. In our approach, we use

WSDL as service description language to describe services.

A WSDL document that we call Web service description

describes a set of endpoints to be accessed. Each WSDL

document contains both an abstract definition of the service

and the concrete bindings to particular network implemen-

tation and data format. Shown in Fig. 6, Type, Message,

PortType are abstract definitions. Binding and Service are

concrete definitions. Abstract Operations are parts of

PortType. Operation implementations are parts of Binding.

Ports are parts of Service. As we treat internal applications

as services as well, the standard WSDL has to be extended

to support internal service description. The current version

of WSFL has already extended WSDL to support executable

program, JAVA Class and other applications description, so

we directly use them.

By comparing the elements of an activity specification

and the elements of WSDL, we find that they have a

similarity. An activity specification contains the abstract

part (input and output message) of a service in WSDL and

can specify the requirements for the concrete part: the

binding protocol. The ES is used to dynamically bind

these two.

6.3. Enactment specification

An ES combines service description(s), service selection

policies and an activity specification. It is interpreted by the

SIC. According to the activity instance data, the SIC

determines which service should be invoked to execute the

activity. Generally speaking, an ES is a combination of an

activity specification with one or multiple service descrip-

tions. Besides, it addresses the following issues:

1. Activity specification aspect: the activity information

and its input/output data structures, which are the major

parts of activity implementation specification presented

in Section 6.1.

2. Services and service descriptions, service provider infor-

mation: information is described as a WSDL document.

3. Proxy information: the general implementation infor-

mation of the corresponding proxy to the specified

service, only for accessing remote service. This infor-

mation indicates how the SIC can dynamically invoke

the proxy program and pass message to it. The proxy

program is viewed as an internal application.

4. Service selection policies: the policies to determine

which service binds to which activity instance when

multiple services are available. It can be changed from

time to time to realize flexible binding.

5. Data mapping: mapping activity input data and output

data with input message and output message of a service.

6. Performance control aspect: for example, monitoring

aspects specified in a contract.

Fig. 7 shows an example to illustrate the overall structure

and major elements of an ES. The service description in

WSDL in this example has been omitted to keep it brief and

to put emphasis on our extension. The ES we show in

Fig. 6. Key elements and their relationships of WSDL document.

J. Hu, P. Grefen / Information and Software Technology 45 (2003) 929–939936

the example is for enacting activity ‘Delivery’ as introduced

in Section 3. Descriptions of transport services by local

delivery system by railway system or by airlines are

attached to this activity. Data mapping between services

and the activity specification are specified. General proxy

implementation information is given to help the service

coordination invoke it dynamically. To support flexible

service selection, selection policies are combined. Accord-

ing to the policy, different instances of the same activity can

be bound to different services. In this example, ‘Destination’

of the ‘Delivery’ activity instance determines which service

is bound: if the Destination is outside ‘the Netherlands’ then,

transportation is operated by air (‘KLM_transport’). If the

Destination is inside the city ‘Enschede’, the enterprise uses

its own transport system (‘Internal_transport’). Otherwise,

the transportation is operated by train (‘NS_transport’).

The ES has some similarities to the ‘Flow Model’ of

WSFL. However, WSFL puts emphasis on describing

Fig. 7. Enactment specification.

J. Hu, P. Grefen / Information and Software Technology 45 (2003) 929–939 937

the flow rather than activity implementation as we do here.

Besides, we allow multiple service options to attach to an

activity implementation and adding service selection

policies to support dynamical selection, which are the

distinguishing differences between our approach and

WSFL [20].

7. Implementation of service invocation

In our architecture, the associations between the

activities and its implementations are described in the ES

but not in the workflow definition. The ES binds service

description and activity implementation specification. It is

completely separated from the workflow definition and can

be created or changed at run time. So the workflow engine

does not know anything about this enactment specification

and service description. The obvious question is how the

workflow engine can invoke the corresponding applications

or services to enact the activities since there are no

associations between activities and their implementation

in the workflow definition. There are two ways to bind the

activities with their implementation at run time through

the SIC.

7.1. PUSH method

In the first method, all activities that are not bound to

fixed applications at build time can be statically bound to the

SIC. As a result, the SIC is indicated as the executor of these

activities at workflow build time. In this case, the SIC is

viewed as a workflow application that can be invoked by the

workflow engine to carry out these activities when the

process is executed. Associations between these activities

and SIC are established at workflow build time. At run time,

the activity instances are pushed to the SIC by the workflow

engine. The coordinator will invoke the corresponding

applications locally or remotely according to the ES. We

call this way the PUSH method, which is a reactive method

since the SIC does not have any initiative by itself. By using

this method, the applications and services are dynamically

bound to the activities through the coordinator according to

the ES when the activity instance information is sent to the

coordinator.

7.2. PULL method

Another method is called PULL method. The invocation

service coordinator actively pulls the corresponding activity

instance and relevant data according to the ES when an

activity is instanced by workflow engine. Hence, no

association between an activity and the SICs is established

in the workflow definition. Since no implicit and explicit

associations are established at workflow build time, the SIC

has to actively monitor the process execution and take over

the workflow engine to execute the instanced activity if

there is an ES that specifies this activity implementation.

7.3. Comparison

To support the PULL method, the implementation of the

SIC module is more complex than to support the PUSH

method because the coordinator must monitor the state of

workflow instances and ‘pull’ the workflow instances and

activity instance information actively. For the PUSH

method, the workflow engine pushes the workflow instance

information to the coordinator directly. In that case, the SIC

is just a normal application to the workflow engine. Which

method is to be chosen depends on the WFMS that is used.

To support the PUSH method, the WFMS should support

passing the workflow relevant data to the invoked

application. To support the PULL method, the WFMS

should provide an API to monitor workflow instances.

Implementation of the PULL method is relatively compli-

cated. However, the limitation of the PUSH method is that

you have to specify the data to be transferred between

workflow engine and the SIC as SIC program parameters at

workflow build time, which cannot be changed at run time

anymore. Hence, the PULL approach can support a more

dynamic mechanism—deferring more aspects to run time.

8. Conclusions

This paper presents a service mediating approach to

realize workflow enactment flexibility. Our service mediat-

ing approach can be viewed as an equivalent of service

broking technology development in software engineering

domain, especially distributed software system engineering,

such as CORBA technology.

The service mediating WFM framework proposed in this

paper separates workflow activity definition from its

implementation and uses a service mediating layer to bridge

them. Thus, A WFMS has more flexibility to select the most

appropriate services at run time to execute the activity

instances. We have extended the traditional workflow

system architecture to implement our service mediating

concept. Since different services can be bound to different

instances of the same activity, the extended system can well

support flexible service outsourcing.

We end this paper with a few thoughts on the practical

applicability of our approach. One may have questions with

respect to the feasibility of dynamic binding in practice. For

example, CORBA allows for advanced dynamic binding

strategies, but they have not been used much in practice. We

believe that Web service environments both facilitate and

require more dynamism in binding than ‘traditional’

distributed software engineering. Dynamic binding is

facilitated because e-service markets will provide many

implementations of compatible services, with similar

functionality but with different quality of service

J. Hu, P. Grefen / Information and Software Technology 45 (2003) 929–939938

characteristics and with different pricing. Dynamic binding

is required to match the dynamism of e-business markets—

choice of business partners has to be made on-the-fly to

profit best from market conditions. Current development of

cross-organizational workflow management in e-service

contexts will provide the basis of complex, inter-organiz-

ational control flow handling [8] and advanced, compen-

sation-based transaction management [17], thereby

providing facilities not offered in typical software engin-

eering environments.

Acknowledgements

We thank Jochem Vonk for his work on setting up the

MQSeries Workflow system and assistance with this

software and proofreading this paper. We also thank Samuil

Angelov for discussing with us on service contract and

electronic contracting.

References

[1] A. Agostini, G. de Michelis, Improving flexibility of workflow

management systems, in: W. van der Aalst, J. Desel, A. Oberweis

(Eds.), Business Process Management, LNCS 1806 (2000) 218–234.

[2] S. Angelov, P. Grefen, A conceptual framework for B2B electronic

contracting, Proceedings of the Third IFIP Working Conference on

Infrastructures for Virtual Enterprises, Sesimbra, Portugal (2002)

143–150.

[3] G. Alonso, U. Fiedler, C. Hagen, A. Lazcano, H. Schuldt, N. Weiler,

WISE: business to business e-commerce, Proceedings of the Ninth

International Workshop on Research Issues on Data Engineering,

Sydney, Australia (1999) 132–139.

[4] BPEL4WS, http://www-106.ibm.com/developerworks/webservices/

library/ws-bpel/, 2002

[5] F. Casati, M.C. Shan, Dynamic and adaptive composition of e-

services, Information Systems 26 (3) (2001) 143–163.

[6] F. Casati, S. Ceri, S. Paraboschi, G. Pozzi, Specification and

implementation of exceptions in workflow management systems,

ACM Transactions on Database Systems 24 (3) (1999) 405–451.

[7] P. Grefen, K. Aberer, Y. Hoffner, H. Ludwig, CrossFlow: cross-

organizational workflow management in dynamic virtual enterprises,

International Journal of Computer System Science and Engineering

15 (5) (2000) 277–290.

[8] P. Grefen, H. Ludwig, S. Angelov, A Framework for E-Services: A

Three-level Approach towards Process and Data Management, IBM

Research Report RC22378, IBM Research Division, 2002.

[9] P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, M. Teschke, A

comprehensive approach to flexibility in workflow management

systems, Proceedings of the International Joint Conference on Work

Activities Coordination and Collaboration, San Francisco, USA

(1999) 79–88.

[10] IBM MQSeries Workflow—Getting Started with Buildtime, Version

3.2.1, IBM Corporation, 1999.

[11] IBM Web Services Architecture Team, Web Services Architecture

Overview—The Next Stage of Evolution for e-Business, IBM

Corporation, 2000, http://www-106.ibm.com/developerswork/web/

library/w-ovr/

[12] A. Marton, G. Piccinelli, C. Turfin, Service provision and composition

in virtual business communities, Proceedings of the Workshop on

Electronic Commerce (at ISRDS-18), Lausanne, Switzerland (1999)

336–341.

[13] T. Pilioura, A. Tsalgatidou, E-services: current technology and open

issues, Proceedings of the Second International Workshop on

Technologies for E-Services, Rome, Italy (2001) 1–15.

[14] Simple Object Access Protocol (SOAP) 1.1, http://www.w3.org/TR/

SOAP

[15] UDDI, Universal Description, Discovery and Integration, http://www.

uddi.org

[16] G. Vossen, M. Weske, The WASA2 object-oriented workflow

management system, Proceedings of the 1999 ACM SIGMOD

International Conference on Management of Data, Philadelphia,

USA (1999) 587–589.

[17] J. Vonk, P. Grefen, Cross-organizational transaction supported for e-

services in virtual enterprises, Journal of Distributed and Parallel

Databases (2003) Kluwer Academic Publishers, in press.

[18] WfMC Workflow Reference Model, WFMC-TC00-1003 (issue 1.1),

Workflow Management Coalition, 1995.

[19] Web Services Description Language (WSDL) 1.1, http://www.w3.

org/TR/wsdl

[20] Web Services Flow Language, Version 1.0, http://www-4.ibm.com/

software/solutions/webservices/pdf/WSFL.pdf

[21] HP Process Manager White Paper: Technical Architecture, http://

www.hp.com/go/e-process, Hewlett-Packard, 2001

Further Reading

[22] XLANG, http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/

default.htm

J. Hu, P. Grefen / Information and Software Technology 45 (2003) 929–939 939

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www-106.ibm.com/developerswork/web/library/w-ovr/
http://www-106.ibm.com/developerswork/web/library/w-ovr/
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP
http://www.uddi.org
http://www.uddi.org
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www.hp.com/go/e-process
http://www.hp.com/go/e-process
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm

	Conceptual framework and architecture for service mediating workflow management&?show [super]☆[/super];
	Introduction
	Related work and our contribution
	E-services
	Workflow management
	Our contribution

	An illustrative example
	Conceptual framework and model for service mediating WFM
	Three-layer conceptual framework
	Conceptual model

	Architecture for service mediating WFM
	Workflow definition layer
	Service contracting layer
	Service binding layer
	Service invocation layer
	Service layer

	Descriptions for service mediating layer
	Activity specification
	Service description
	Enactment specification

	Implementation of service invocation
	PUSH method
	PULL method
	Comparison

	Conclusions
	Acknowledgements
	References
	Further Reading

