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Abstract

The basis for measuring many attributes in the physical world, such as size and

mass, is fairly obvious when compared to the measurement of software attributes.

Software has a very complex structure, and this makes it di�cult to de�ne mean-

ingful measures that actually quantify attributes of interest. Program slices provide

an abstraction that can be used to de�ne important software attributes that can

serve as a basis for measurement. We have successfully used program slices to de-

�ne objective, meaningful, and valid measures of cohesion. Previously, cohesion was

viewed as an attribute that could not be objectively measured; cohesion assessment

relied on subjective evaluations.

In this paper we review the original slice-based cohesion measures de�ned to

measure functional cohesion in the procedural paradigm as well as the derivative

work aimed at measuring cohesion in other paradigms and situations. By viewing

software products at di�ering levels of abstraction or granularity, it is possible to

de�ne measures which are available at di�erent points in the software life cycle

and/or suitable for varying purposes.

1 Introduction

In his seminal work on slicing [25], Weiser presented several slice-based metrics.

They were

� Coverage which is a comparison of the average number of statements in the

slices of a module to the length of the module,

� Overlap which is an indication of how many statements in each slice are

found only in that slice,
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� Clustering which is a re
ection of the layout of the statements in the code,

� Parallelism which is an indication of the percentage of slices with few state-

ments in common, and

� Tightness which is a measure indicating the percentage of statements that

are in every slice.

Although Weiser suggested the use of slices to de�ne metrics, he did not iden-

tify actual software attributes that these metrics might meaningfully measure.

He did report on one exploratory study using his metrics. Because of the ex-

ploratory nature, however, the �ndings were limited to observations on slicing.

Rather than focus on slicing, we can develop more generally useful measures

by �rst identifying attributes of interest. We have studied the attribute of

cohesion and its relationship with slices.

The concept of cohesion has been well known for nearly two decades [26]. For

much of this time, cohesion was viewed as an attribute that could only be

subjectively evaluated. Although various aids were developed for classifying

modules such as the Page-Jones decision tree [22], as Fenton noted in his 1991

book on software metrics [5]

Unlike coupling, cohesion does not appear to admit of a graph-type model.

As such it is far more di�cult to attempt to de�ne anything more than the

ordinal measure proposed . . .

We found that slices can be used to create a model for measuring cohesion.

2 Slices and Cohesion Measurement

Longworth [17] was the �rst to hypothesize that some of the slice-based metrics

suggested by Weiser might be used as indicators of cohesion. He demonstrated

that Coverage, a modi�ed de�nition of Overlap, and Tightness could be used

to di�erentiate between high and low levels of cohesion.

In [21,24] Thuss improved the behavior of the metrics through the use of

metric slices. A metric slice takes into account both the uses and used by data
relationships [11]; that is, they are the union of Horwitz et.al.'s backward and

forward slices [12]. In addition, Thuss argued that the intent of a module in the

procedural paradigm is to compute a value or values that are communicated to

the remainder of the program or the external environment via output variables.

Thus, he argued that limiting the slicing criteria to one slice for each of the

output variables would highlight the intended purpose of the modules. He

also developed slice pro�les as a tool to help visualize the relationships among
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slices [20].

We next studied the suitability of these metrics as indicators of cohesion [18].

The concept of metric slices was further re�ned through the the use of data

tokens (i.e., variable and constant de�nitions and references) rather than state-

ments as the basic unit of which slices are composed [18]. These slices were

called metric data slices. Using data tokens as the basis of the slices ensured

that all changes of interest would cause a change in at least one slice of a mod-

ule. A change of interest is any change that could a�ect the cohesiveness of a

module. Changes of interest include adding code, deleting code, or replacing

one variable instance with another variable. An analysis of a slice model of

programs shows how program changes are re
ected in the slice-based metrics.

Since the behavior of the metrics matched our intuitive understanding of co-

hesion, this analysis reinforced the hypothesis that these metrics are indeed

indicators of cohesion.

3 Measuring Functional Cohesion

Functional cohesion is the highest level of cohesion in the procedural paradigm.

Slice abstractions provide a model for a set of metrics for measuring functional

cohesion [3].

Functional cohesion is identi�ed by examining procedure outputs. Each output

\object" (output parameter, modi�ed global variable, or �le) represents one

component of a procedure's functionality. Although a procedure may perform

a computation that does not produce outputs, outputs of some kind are gener-

ally the externally visible manifestation of functionality. Functional cohesion

is based on how closely the program parts that contribute to di�erent out-

puts are bound. Using this approach, procedures with only one output exhibit

maximum functional cohesion.

Each output of a procedure has a corresponding data slice. An \output" is

any single value explicitly output to a �le or device, an output parameter,

or an assignment to a global variable. Since functional cohesion indicates the

cohesion of the whole procedure, the measures use a concept similar to that

of end-slices [14]. Backward slices are computed from the end of procedure 1

and forward slices are computed from the tops of the backward slices.

Figure 1 displays an example of a data slice embedded in a program. The slice

for Sum in Figure 1 is a sequence of data tokens

n1�Sum1�i1�Sum2�01�i2�12�i3�n2�i4�Sum3�Sum4�i5

1 That is from the FinalUse nodes as described in [12]
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Sum Prod Statement

2 2 void SumProduct( int n, �Sum, �Prod);

f

1 1 int i;

2 �Sum = 0;

2 �Prod = 1;

5 5 for (i=1; i<n; i++) f

3 �Sum = �Sum + i;

3 �Prod = �Prod � i; g

g

Fig. 1. Data Slice pro�le for SumProduct. The number of data tokens included in

the data slice for Sum and Prod is indicated in columns 1 and 2 respectively. Items

included in the data slice for Sum are underscored.

where each Ti indicates the i'th data token for T in the procedure. The slice

for Prod is

n1�Prod1�i1�Prod2�11�i2�12�i3�n2�i4�Prod3�Prod4�i6

A metric slice pro�le of the data slices, as shown in Figure 1, gives a sense of

the relationships among data items. The column for a slice variable indicates

the number of data tokens in that line that are included in the slice. This

pro�le was derived from the earlier method developed by Thuss [20,24].

A Slice Abstraction models each procedure as a set of data slices and a data

slice as a sequence of data tokens. The model strips away all non-data tokens

from a procedure and includes only the data tokens in the abstraction.

The slice abstraction for the SumProduct procedure of Figure 1 is

SA(SumProduct) =
fn1�Sum1�i1�Sum2�01�i2�12�i3�n2�i4�Sum3�Sum4�i5,
n1�Prod1�i1�Prod2�11�i2�12�i3�n2�i4�Prod3�Prod4�i6 g

Figure 2(a) provides another view of a slice abstraction of the SumProduct
procedure. The names of the data tokens are listed in the �rst column of

Figure 2(a). A \j" in the second and third column indicates if the indicated

data token is part of the data slice for the named output.

Slice abstractions without labels are useful for visualizing important attributes

of functional cohesion. Figure 2(b) is an unlabeled view of the slice abstrac-
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Data

Token Sum Prod

n1 j j

Sum1 j

Prod1 j

i1 j j

Sum2 j

01 j

Prod2 j

11 j

i2 j j

12 j j

i3 j j

n2 j j

i4 j j

Sum3 j

Sum4 j

i5 j

Prod3 j

Prod4 j

i6 j

(a) SA(SumProduct)

j j

j

j

j j

j

j

j

j

j j

j j

j j

j j

j j

j

j

j

j

j

j

(b) Unlabeled View

j j

j

j

j j

j

j

j

j

j j

j j

j j

j j

j j

j

j

j

j

j

j

(c) Glue tokens
highlighted.

Fig. 2. Three Views of SA(SumProduct)

tion of the SumProduct procedure. When analyzing functional cohesion, it is

important to know when one token is in more than one data slice, but the

actual names of the tokens are not important. The slice abstractions from two

completely di�erent procedures can have the same cohesion properties and

look identical when viewed in the unlabeled form.

As Figure 2(a) and Figure 2(b) show, several of the data tokens are common

to more than one data slice. Data tokens n1, i1, i2, 12, i3, n2, and i4 are in
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S1 S2 S3

Super-glue: j j j

j

j

j

Super-glue: j j j

j

Glue: j j

Glue: j j

j

Glue: j j

j

Fig. 3. A 3-slice SA with glue and super-glue.

the data slice for Sum and the data slice for Prod. Such tokens, common to

more than one data slice in a slice abstraction, are the connections between

the slices. These tokens are the \glue" that bind the slices. Thus, the glue in
a slice abstraction of a procedure P , G(SA(P)), is the set of data tokens that
lie on more than one data slice in SA(P). A glue token is a token that lies on

more than one data slice. Figure 2(c) shows SA(SumProduct) with the glue

tokens enclosed in boxes. Although there are two \j" symbols on each row of

glue tokens in Figure 2(c), there is actually only one token for each row.

Note that all super-glue tokens are also glue tokens. Thus, when there are only

one or two data slices in an abstraction, the set of super-glue tokens is the

same as the set of glue tokens.

Figure 3 shows a 3-slice abstraction with glue and superglue tokens. This

abstraction has two super-glue tokens and �ve glue tokens (super-glue is still

glue). One of the tokens glues S1 to S2, one glues S2 to S3, and one glues S1

to S3. The super-glue tokens bind all three slices together. Six of the tokens

lie on only one data slice and are not glue tokens.

The distribution of glue and super-glue tokens indicates how tightly bound the

individual slices are, since the e�ect of glue tokens is to bind slices. Individual

glue tokens can have a varying e�ect on cohesion based on the number of slices

that they bind. Thus, we can describe the relative adhesiveness of a glue token.
The notion of token adhesiveness can characterize the adhesiveness property

of an entire procedure or slice abstraction.
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Metrics based on the relative number of glue and super-glue tokens can easily

be de�ned in terms of slice abstractions. According to Yourdon and Constan-

tine [26], a procedure with functional cohesion is one in which all parts are

cohesive. This view is consistent with the use of the super-glue tokens as the

basis for de�ning cohesion attributes and measures. Thus, strong functional
cohesion (SFC) is the ratio of super-glue tokens to the total number of data

tokens in a procedure p:

SFC(p) =
jSG(SA(p))j

jtokens(p)j
(1)

SFC is similar to the Tightness measure studied by Ott and Thuss [21].

The glue tokens in a slice abstraction also represent a form of cohesion. Such

functional cohesion is a \weaker" type of cohesion than indicated by the super-

glue tokens. Weak functional cohesion (WFC) is the ratio of glue tokens to

the total number of tokens in a procedure p:

WFC(p) =
jG(SA(p))j

jtokens(p)j
(2)

Another way to measure cohesion is in terms of the adhesiveness of glue to-
kens. Adhesiveness is related to the relative number of slices that each token

\glues" together. Thus, a token that \glues" together four slices in a �ve slice

procedure is more adhesive than a token that \glues" together two or three

slices. The adhesiveness, �, of token t in procedure p is

�(t; p) =

8><
>:

# slices in p containing t
jSA(p)j

if t 2 G(SA(p))

0 otherwise
(3)

The overall adhesiveness, A, of a SA is the average adhesiveness of the data

tokens in a procedure:

A(p) =

X

t2tokens(p)

�(t; p)

jtokens(p)j
(4)

Adhesiveness indicates the relative strength of the glue in a procedure. Adhe-
siveness is most closely related to the coverage measure studied by Ott and

Thuss [21].

The SumProduct program of Figure 1 has two outputs, thus it has two slices

and all glue tokens are also super-glue tokens. It has a total of 19 data to-
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kens with 7 glue and super-glue tokens. As a result, SFC(SumProduct) =

WFC(SumProduct) = A(SumProduct) = :37.

The WFC and SFC of the 3-slice abstraction in Figure 3 will di�er since some

of the glue tokens are not super-glue. Out of a total of 11 tokens, this abstrac-

tion has 5 glues tokens of which 2 are super-glue. Thus WFC(SA(Figure 3))=
5=11 = :45 and SFC(SA(Figure 3))= 2=11 = :18. Since there are two tokens

on three slices and three tokens on two slices, adhesiveness is calculated as

follows:

A(SA(Figure 3)) = 2�3+3�2

11�3
= :36

Adhesiveness indicates that the data tokens covered slightly more than one

third of the slice space in the slice abstraction of Figure 3.

An implementation of these measures for C programs is available [7]. A study

by Karstu provided experimental evidence that cohesion as measured with

slice-based cohesion measures may be inversely related to the number of revi-

sions that a module undergoes during maintenance. This is some of the �rst

experimental evidence for the long held belief that modules with high cohesion

require less maintenance [13].

4 Design-level Functional Cohesion

Cohesion may also be measured using only procedure interface information.

Bieman and Kang derive design-level cohesion measures using an approach

very similar to the one described in Section 3 to measure code-level functional

cohesion [2].

They de�ne design-level functional cohesion (DFC) measures only in terms of

the dependencies between module input and output components. Input com-

ponents include all input parameters and referenced global variables. Output

components include all output parameters, modi�ed global variables, and val-

ues returned by a function. An input or output component has a dependence

relation with a particular output component if its value a�ects the output. A

design document can, and should, specify dependence relations. We can also

derive dependence relations from code since all components that lie on an

output's data slice have a dependence relation with that output.

DFC measures are de�ned in terms of:

� The total number of input and output components, T , and the number of

output components, O.
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� The number of non-isolated components, N . A component is non-isolated if
it has a dependence relation with more than one output, or if the module

has only one output. Non-isolated components are analogous to the glue

tokens used in the code-level functional cohesion measures.

� The number of essential components, E. A component is essential if it has
dependence relationships with all outputs of a module. Essential compo-

nents are analogous to super-glue tokens.

� The connectedness of component i, Ci, This is the relative number of outputs

with which a component has a dependence relation. The connectedness is

analogous to the token adhesiveness used to compute code-level module

adhesiveness. The connectedness of the i'th component is

Ci =

8><
>:

Di�1

O�1
if O > 1

1 otherwise

where the i'th component has dependence relations with Di outputs.

The three DFC measures are analogous to the three code-level functional

cohesion measures:

(1) Loose cohesion, LC = N=T , is analogous to code-level weak functional
cohesion (WFC).

(2) Tight cohesion, TC = E=T , is analogous to code-level strong functional
cohesion (SFC).

(3) Module cohesiveness, MC =

P
T

i=1
Ci

T
, is analogous to code-level adhesive-

ness (A).

Like the code-level functional cohesion measures, a module with only one

output has LC = TC = MC = 1. Also, a module with two outputs has LC
= TC = MC, since all non-isolated components are also essential tokens |

they have dependence relations with all two outputs. The two output program

SumProduct of Fig. 1 has three input/output components: n, Sum, Prod. Only
n has a dependence relation with more than one output. Thus, T = 3, O = 2,

N = E = 1, and LC = TC = MC = :33.

The DFC measures are very similar to the code-level functional cohesion mea-

sures. Take a code-level slice abstraction as de�ned in Section 3 and delete

all tokens that do not represent inputs and outputs. Such a design-level slice
abstraction (DSA) for the SumProduct procedure is

DSA(SumProduct) = fn � Sum; n � Prodg

The code-level functional cohesion measures can be applied directly to a DSA.

Then, LC = WFC, TC = SFC, and MC = A.
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The DFC measures have also been implemented and the implementations are

available over the world wide web [7]. In [2], Bieman and Kang provide a de-

tailed comparison between the code-level and design level measures. Analytical

results show that the DFC measures should behave in a similar manner to the

code-level functional cohesion measures. Initial empirical results indicate that

design level cohesion values can e�ectively predict the functional cohesion of

an implementation.

5 Applying Slice-based Measures to Formal Speci�cations

Leminen applied the concept of slicing to study the cohesion of Z formal spec-

i�cation schemas [16]. He used Schema slicing to obtain a slice abstraction

model of an operation schema. This model consists of a set of schema data
slices obtained for each output of the operation. A schema data slice for a

given output is a sequence of data tokens in the schema predicate that are re-

lated to that output. A schema data slice is based on the bindings of values to

the schema variables in order to satisfy the schema predicate. Leminen iden-

ti�ed a technique for obtaining schema slices using logical and precondition

dependencies among the primitive clauses of a schema predicate.

He argued that cohesiveness in the speci�cation domain and cohesiveness in

the program domain are intuitively similar attributes. In both domains, co-

hesiveness can be characterized by the amount of relatedness between the

functionalities of a module as manifested by its outputs. Measures analogous

to strong functional cohesion, weak functional cohesion, and adhesiveness were
developed and shown to match the intuitive cohesiveness of operation schemas.

6 Slice-based Cohesion Measures for Object-Oriented Software

As in procedural software, we can apply slicing notions to the measurement

of attributes of object-oriented software. Again, cohesion is the attribute that

seems most applicable to a slicing analysis.

Cohesion as used in the procedural paradigm can be applied directly to meth-

ods in the object-oriented world. Functional cohesion is an appropriate mea-

sure for procedural code where basic software units are procedures and func-

tions. In object-oriented software, the basic design units are classes, which are

collections of instance variables and methods. Functional cohesion cannot be

applied directly to classes. Fenton suggests that what we are interested in here

is a di�erent form of cohesion, namely data cohesion, rather than functional
cohesion [5].
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We examine two slice-based approaches for measuring object-oriented cohe-

sion [19]. One approach, by Ott and Gupta [9], is a direct extension of our work

on functional cohesion. The other approach, by Bieman and Kang [1], evolved

from Chidamber and Kemerer's measure of the lack of cohesion (LCOM) be-

tween methods [4]. In both approaches, the class is the basic unit and the

instance variables are the \glue" that connects the methods in a class. The

di�erence in the approaches is in the granularity of the analysis. Ott and

Gupta slice method bodies while Bieman and Kang treat a method as an

atomic unit.

6.1 Data Cohesion

In [9], Ott and Gupta apply the approach used to de�ne functional cohesion

measures to measure the cohesion of classes in an object-oriented paradigm.

Again, they assume that cohesion is an indication that the elements of a

module belong together, however, they refer to the elements of a class as the

basic unit in object-oriented software. An object is represented by its behavior

as re
ected through its class methods and its state information as maintained

in the class instance variables. The intent of a class is to model an object

rather than computing a value as in the procedural paradigm. Hence, slices

are obtained for each class method and then concatenated together to form a

slice model. The measures for cohesion are based on the number of data tokens

that appear in more than one slice and thus \glue" the module together.

Figure 4 is an example of a data slice pro�le for class stack. The �gure indicates
the number of data tokens included in the slice from each statement. The slice

pro�le for a class is the concatenation of the slice pro�les for all methods in

the class.

A class slice abstraction of a class C, CSA(C), is the set of concatenated

slices, one for each instance variable, formed by concatenating the data tokens

obtained from the method data slices for that instance variable.

The super-glue tokens for the class, denoted as, SG(CSA(C)), is the union

of the super-glue tokens of each of the methods of the class. Similarly, the

set of glue tokens for the class, denoted as, G(CSA(C)), is the union of the

glue tokens of each of the member methods of the class. tokens(C) is a set

of all data tokens of a class C. The following measures parallel the functional

cohesion measures.

(1) Strong data cohesion (SDC) is a measure based on the number of data

tokens included in all the data slices for a class, i.e. a count of the number
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of super-glue tokens in the class C.

SDC(C) =
jSG(CSA(C))j

jtokens(C)j
(5)

(2) Weak data cohesion (WDC) measures the amount of data cohesion in a

class based on the glue tokens.

WDC(C) =
jG(CSA(C))j

jtokens(C)j
(6)

(3) Data adhesiveness (DA) is a more precise measure of the binding or

relatedness among the data slices. Data adhesiveness for a class C is

de�ned as the ratio of the sum of the number of slices containing each

glue token to the product of the number of data tokens in the class and

the number of data slices. Thus,

DA(C) =

P
d�G(CSA(C))# slices containing d

jtokens(C)j � jCSA(C)j
(7)

As an example, we apply these cohesion measures to the class stack in Figure 4.
The CSA(stack) has three slices with 19 data tokens, 12 glue tokens, and 5

super-glue. Hence,

SDC(CSA(stack)) =
5

19
= :26

WDC(CSA(stack)) =
12

19
= :63

DA(CSA(stack)) =
7 � 2 + 5 � 3

19 � 3
= :51

6.2 Class Cohesion

Bieman and Kang treat the method and instance variable class components

as the key class units that may or may not be connected [1]. Thus, if a slice

includes a method, it includes the method as an indivisible unit. A method

and an instance variable are related by the way that an instance variable is

used by the method. Two methods are related (connected) through instance

variable(s) if both methods use the instance variable(s). Using this orientation,

class cohesion can be measured by the relative connectivity (through instance

variables) of the methods.

Individual methods in a single class can be connected via two mechanisms:

(1) MIV relations involve communication between methods through shared
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array top size Class Stack

class Stack {int *array, top, size;

public:

Stack (int s) {

2 2 size = s:

2 2 array = new int[size];

2 top = 0;}

int Isempty() {

2 return top==0};

int Size() {

1 return size};

int Vtop() {

3 3 return array[top-1];}

void Push (int item) {

2 2 2 if (top==size)

printf("Empty stack.\n");

else

3 3 3 array[top++]=item;}

int Pop() {

1 if(Isempty())

printf("Full stack.\n");

else

1 --top;}

};

Fig. 4. Data slice pro�le for class stack.

instance variables. An MIV relation is created when two or more class

methods read or write to the same class instance variable.

(2) Call relations involve the sending of messages directly (or indirectly) from

one method to another. Instance variables used by the server may also be

used indirectly by the client when one method invokes another through

message passing.
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toparray sizePush Pop

Stack

array

Stack Push

Vtop

top

Stack PopPush

Vtop Isempty

size

Stack

Push Size

Vtop Isempty Size

(a)

(b)

Fig. 5. MIV relations for class Stack

A call relation can be re
ected by the MIV relation; two methods with a

call-relation are also connected through the instance variables used by both

methods. One method uses the instance variable(s) directly and the other uses

the instance variable(s) indirectly through the call relation. There is no MIV

relation when a server method neither writes nor reads instance variables.

Figure 5(a) shows the MIV relations among class components of Stack in

Figure 4. A link between a rectangle and an oval indicates that the method

corresponding to the rectangle uses the instance variable corresponding to the

oval. Figure 5(b) shows the connections for each instance variable. Here, the

instance variable top is used by the methods Stack, Push, Pop, Vtop, and
Isempty. All of the methods that use the variable top are connected through

the variable top. These methods should be de�ned in one class or in classes

with an inheritance relationship in order to access the instance variable.

Constructors and destructor methods create connections between methods

even if the methods do not have any other relationships. Thus, the model

and measures do not include constructor and destructor functions. Dashed

lines represent links between the constructor Stack and instance variables in

Figure 5.

Cohesion of a class indicates the degree of connectivity of the visible methods

in the class. Instance variables are not usually visible to the clients of a class,

the state of an object is provided through class methods. Instance variables
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are involved in MIV relations among visible methods. Invisible methods are

also involved indirectly when they are called by visible ones. Therefore, class

cohesion is modeled as the MIV relations among all visible methods (not

including constructor or destructor functions) in the class.

Actual measures of class cohesion are based on the direct and indirect con-

nections of method pairs. Let NP(C) be the total number of pairs of visible
methods in a class C. NP is the maximum possible number of direct or in-

direct connections in a class. If there are N methods in a class C, NP(C) is
N � (N � 1)=2. Let NDC(C) be the number of direct connections and NIC(C)
be the number of indirect connections in class C. Two measures are Tight
class cohesion and Loose class cohesion:

(1) Tight class cohesion (TCC), TCC(C) = NDC(C) / NP(C), is the relative
number of directly connected methods.

(2) Loose class cohesion (LCC), LCC(C) = (NDC(C) + NIC(C)) / NP(C),
is the relative number of directly or indirectly connected methods.

The value of LCC is always greater than or equal to the value of the corre-

sponding TCC. For the Stack example of Figure 4, the class cohesion measures

are:

TCC (Stack)= 7=10 = 0:7

LCC (Stack)= 10=10 = 1

The TCC measure indicates that 70% of the visible methods in class Stack
are directly related. The LCC measure shows that all visible methods of class

Stack are related directly or indirectly.

TCC and LCC indicate the degree of connectivity between visible methods in

a class. These visible methods are those de�ned within the class or inherited

by the class. However, class cohesion measures for visible methods de�ned

only within the class are also useful because the measures are not a�ected by

the cohesion of a superclass.

Local class cohesion measures are de�ned by using the local (non-inherited)

methods in a class. The instance variables used and methods called by the

visible methods for local class cohesion may include inherited variables. The

local class cohesion measures for class Stack are equal to the class cohesion

measures since class Stack does not use inheritance.

Shumway [23] demonstrates that TCC and LCC are consistent with an em-

pirical relation system de�ned by intuitive notions of class cohesion. He shows

that these measures do, in large part, satisfy the representation condition of

measurement. However, they do not completely re
ect the ability to split a
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class without breaking method connections. In a limited study, Bieman and

Kang found that class cohesion is inversely related to reuse; classes exhibiting

high class cohesion tended to be reused through inheritance less often [1].

7 Slicing Granularity

We use slices to help quantify software attributes. The attributes may be

viewed at various levels of abstraction. At the code-level intra-procedure slices

are needed to see connections between code components inside procedure bod-

ies. At the design-level all details about the connections between components

within procedures are not of interest. Slicing can be used at a level of abstrac-

tion that satis�es the measurement goals. A key slicing granularity decision is

to determine what kinds of components are sliced and what kinds of compo-

nents are indivisible and cannot be sliced.

The functional cohesion measures described in Section 3 quantify the cohesion

within procedure and function bodies. The goal is to see how the internal com-

ponents (i.e, statements, expressions, and data tokens) are connected. Thus,

procedure and function bodies are sliced into divisible segments for analysis.

Procedure and function bodies need not be sliced to study a design. An analy-

sis of the procedure and function interfaces and the connections between inter-

face components should be adequate. If we take the perspective of a client of

a procedure or function, we are only interested in the connections between the

externally visible inputs and outputs in a module interface. This is the per-

spective of the design-level functional cohesion measures of Section 4. They

do not make use of procedure/function body slicing.

The correct slicing granularity for class-level measures is not obvious for

object-oriented software. Both approaches described in Section 6 assume that

data connections are the glue that bind class components together. Thus, both

use the perspective of slicing. However, the two approaches use di�erent slic-

ing granularities. The class cohesion measures of Section 6.2 treat a method

as a single unit. The measures do not distinguish between (1) a single ref-

erence to an instance variable in only one statement in a method and (2)

many references to an instance variable within most or all statements within

a method.

In contrast, the data cohesion measures of Section 6.1 consider the degree

that all method statements may a�ect an instance variable. For the strongest

cohesion, all (or most) data tokens in all methods must a�ect the value of

all instance variables. Thus, these data cohesion measures indicates a very

\strict" view of cohesion. High cohesion classes will need to have very tightly
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coupled methods. Because of this strict view, the data cohesion measures will

show lower cohesion values than the class cohesion measures.

There are many cohesion measures based on alternative slicing strategies.

There is no one best measure. The correct measure and slicing strategy to use

depends on the goals of measurement. A measure must provide information

that is relevant to the measurer. Measurement users must have clear objectives

in order to wisely choose a measurement technique.

8 Future Measures Based on Inter-Class Slicing

Work on slice-based measurement has focused primarily on the measurement

of intra-procedural or intra-class attributes such as cohesion. Inter-module

attributes can also be viewed from the perspective of slicing. To measure

inter-module attributes, we need to use models based on inter-procedural or

inter-class structure.

Inter-module design attributes are likely to be more important than intra-

module attributes. Intuition suggests that the connections or dependencies

between components are what makes software di�cult to design, test, modify

and reuse. The intricacies of these connections in object-oriented code are espe-

cially complex. Object-oriented connections may be classi�ed as aggregations,

inter-class or intra-class method invocations, sub- or super-class connections,

non-hierarchical links, links through shared instance variables, etc.

These inter-component connections are manifestations of coupling attributes.

We are working now to understand the notion of coupling as applied to object-

oriented software. Sets of object-oriented design patterns used by practitioners

suggest desirable coupling [8] and may form the basis for de�ning measures.

Before deriving measures, we need to clearly de�ne the coupling attributes

that we want to measure.

Any class-coupling measure de�nitions will be based on abstractions of object-

oriented structure. Harrold and Rothermel de�ne a set of abstractions for

analyzing object-oriented software [10]. These abstractions include graphs to

represent inheritance, class and interclass call graphs, class control 
ow graphs,

and class dependence graphs. They also de�ne the notion of framed classes to

represent classes as analyzable components. OMT, Booch, or UML diagrams

might be the right level of abstraction for de�ning coupling measures [6].

We can make use of these or similar abstractions to de�ne relevant coupling

attributes and their measures.

Inter-class and inter-method slicing is likely to be useful in de�ning and im-
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plementing object-oriented cohesion measures. We can make use of object-

oriented slicing methods such as those de�ned by Larsen and Harrold [15].

Before inter-component slicing can be applied to industrial strength object-

oriented software, we need methods to correctly slice software with exception

handling and concurrency. Another problem is caused by delayed binding. The

type or class of an identi�er might be implemented by a set of classes that

are either subclasses of the named class or implementations of an interface.

Overly large slices may result.

9 Conclusions

Long recognized as a key attribute of software designs [26], the concept of

module cohesion has resisted objective de�nition and measurement. In the

past module cohesion could only be assessed through a subjective evaluation

by experts. Cohesion evaluations were rarely conducted due to their high cost.

We �nd that program slices can form the basis for models that capture the

essence of various notions of software cohesion. Because program slices can be

mapped to graph abstractions, they can form the basis for objective measure-

ment and formal analysis. Because program slices can be viewed as program

text, they provide the intuition needed to validate prospective measures.

Program slices should also prove useful in modeling notions of coupling. While

intra-module slices model notions of cohesion, inter-module slices can model

coupling.

Depending on measurement goals, slicing granularity can be adjusted to match

desired levels of abstraction. To measure the functional cohesion of a proce-

dure, slices consist of a sequence of procedure body data tokens. To measure

the design-level functional cohesion of a procedure, slices consist of a sequence

of input and output components. When measuring the cohesion of classes,

method bodies may be sliced, or they may be treated as indivisible units.

Program slicing provides a 
exible tool for de�ning software measures. The

many available slicing options provides 
exibility and are a strength of the

method. One can select appropriate slicing mechanisms to build appropriate

models of speci�c program attributes. Thus, a slice-based abstraction can

match the desired level of abstraction and granularity to capture attributes

of interest. Then measures based on the abstractions can e�ectively quantify

desired attributes.
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