
Control-flow semantics of use cases in UML

K.G. van den Berga,* , A.J.H. Simonsb

aDepartment of Computer Science, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
bDepartment of Computer Science, University of Sheffield, Regent Court, 211 Portobello Street, Sheffield S1 4DP, UK

Received 10 July 1998; received in revised form 15 March 1999; accepted 17 March 1999

Abstract

The control-flow for five kinds of use cases is analysed: for common use cases, variant use cases, component use cases, specialised use cases
and for ordered use cases. The control-flow semantics of use cases—and of the uses-relation, the extends-relation and the precedes-relation
between use cases—is described in terms of flowgraphs. Sequence diagrams of use cases are refined to capture the control-flow adequately.
Guidelines are given for use case descriptions to attain a well-defined flow of control.q 1999 Elsevier Science B.V. All rights reserved.

Keywords:Requirements elicitation; Use case modelling; UML; Control-flow semantics

1. Introduction

Use cases, as introduced by Jacobson [1], are frequently
utilised in the requirements elicitation phase of software
development. They are also part of the Unified Modelling
Language (UML) [2]. The role of use cases in software
reuse is discussed by Jacobson [3]. There is a strong debate
about the use of use cases [4,5]. One of the critical points
relates to the semantics of use cases.

The control-flow semantics of use cases, and of the rela-
tionships between use cases, is not very well defined [6,7].
There are approaches to formalising use cases [8,9], but
these do not address control flow of use case relations. In
this article, the control-flow semantics of use cases is
described in terms of the well-established theory of
control-flow graphs [10]. Based on this treatment, some
enhancements are proposed to use case modelling in UML
and guidelines are given for the use of relations between use
cases.

First, use case terminology is discussed and control-flow
graphs are introduced briefly. Subsequently, the mapping of
use case diagrams and their relations onto control-flow
graphs is described. Then the flow of control in sequence
diagrams with branching is discussed. In the conclusion,
guidelines are given for the descriptions of use cases with
extends-relations and uses-relations based on the given
semantics.

1.1. Use cases

A use case class (or briefly a use case) is a specification of
actions, including variants, which a system (or other entity)
can perform, interacting with an actor of the system. A use
case is a specific way of using the system by performing
some part of the functionality. A use case instance (also
called a scenario) is a specific sequence of actions as speci-
fied in a use case carried out under certain conditions. A use
case model or diagram contains a collection of related use
cases [1,2].

We distinguish the following five kinds of use cases. Each
of them gives the intended use of the use case and the
relationship. We relate this with the terminology on use
cases and their relationships as being described for Objec-
tory1 by Jacobson [1], for SOMA2 by Graham [11], in the
OPEN3 Modelling Language (OML) reference manual by
Firesmith [12], and the Unified Modelling Language (UML
1.1) semantics document [2].

1. Common use casesCommon parts of use cases are
factored out so that these can be (re)used by other use
cases without repeating the description. This type of use
case can be found in Jacobson (uses-relation), Firesmith
(invokes-relation) and in UML (uses-relation).

2. Variant use casesIn variant use cases, alternatives to the
normal use case behaviour are captured. They are also
used for exceptions. This type of use case can be found in

Information and Software Technology 41 (1999) 651–659

0950-5849/99/$ - see front matterq 1999 Elsevier Science B.V. All rights reserved.
PII: S0950-5849(99)00027-0

* Corresponding author. Tel.:1 31-53-489-3783; fax:1 31-53-489-
3247.

E-mail addresses: vdberg@cs.utwente.nl (K.G. van den Berg);
a.simons@dcs.shef.ac.uk (A.J.H. Simons)

1 Objectory: Object Factory for Software Development.
2 SOMA: Semantic Object Modelling Approach.
3 OPEN: Object-oriented Process, Environment and Notation.

Jacobson (extends-relation), Graham (usage-relation)
and in UML (extends-relation).

3. Component use casesIn component use cases, parts of
use cases are further refined leading to a hierarchical
decomposition of use cases. This type of use case can
be found in Graham (composition-relation), Firesmith
(invokes-relation), and in UML (refines-relation).

4. Specialised use casesUse cases may be classified in
more specialised versions. This type of use case is
found in Graham (specialisation-relation).

5. Ordered use casesOrdered use cases deal with situations
where the completion of one use case is required before
the following use case can be executed. This type of use
case is found in Firesmith (precedes-relation).

In OML [12], the invokes-relationship is applied, in
examples, to both common use cases and component use
cases. Deviant is the description of Graham [11] of the
usage-relation between use cases (in his terminology
scripts) and side-scripts. The side-scripts handle exceptions
that require a redirection of the flow of control. A similar
description is found in Jacobson [1] and UML [2] for the
extends-relation. The subscripts, which handle specialised
cases, aim at a specialisation hierarchy as with inheritance.

In this article, we focus on the control-flow semantics of
these five types of relationships between use cases, and in
this context we discuss the uses-relation and the extend-
relation as defined in UML 1.1.4 We now introduce
control-flow graphs.

1.2. Control-flow graphs

A control-flow graph [10] (in shortflowgraph) is a direc-
ted graph. The nodes in the graph represent actions (activity,
method execution) and the arcs indicate the flow of control
from one action to another. A flowgraph has two special
nodes: thestart nodeand thestop node. The stop node
has no outgoing arcs and every node in a flowgraph lies
on some path from the start node to the stop node (the
one-entry one-exit property). A node with one outgoing
arc is called anaction node. A node with two or more
outgoing arcs is called abranch node.

Elementary flowgraphs(primes) are the following: selec-
tion with IF(c,A), IF(c,A,B), CASE(c,A,B,…) and iteration
with WHILE(c,A) and REPEAT(A,c, with condition c).

The sequence-operation of two flowgraphsA and B,
denoted byA;B, is obtained by joining the stop node ofA
with the start node ofB.

Thenesting-operation of flowgraphB onto action nodex
in A, denoted byA(B on x), is obtained by replacing the
outgoing arc ofx in A by B. Often, the nodex is not specified
and nesting is denoted byA(B).

Flowgraphs that can be fully decomposed with sequen-
cing and nesting into elementary flowgraphs are called
structured flowgraphs. A large number ofmetrics has
been defined to capture properties of flowgraphs, such as
complexity, depth of nesting and testability [13].

Next, we discuss the control-flow semantics of use cases
and each of the relationships between use cases in terms of
control-flow graphs. From now on we use, as far as possible,
the UML-notation and terminology for the description of
uses cases and their relations.

2. Control-flow in use cases

In a use case instance, some path—i.e. a contiguous
sequence of interactions [12]—in the use case is taken.
An actor requires some functionality of the system; this
request provides the entry point of the use case. By perform-
ing a sequence of related actions this functionality is
supplied by the system, either in a normal course of action,
in some variant course of actions, or by handling exceptions.
After this, the exit point of the use case is reached.

The flow of control within each use case can be derived
from interaction diagrams, i.e. thesequence diagramor the
correspondingcollaboration diagram. In order to clarify the
control-flow, these diagrams are mapped onto flowgraphs. A
message m() sent to object Y is represented by the action
Y.m(). The sequence of messages is represented by the arcs
between the actions in the flowgraphs. The entry point of the
use case is mapped onto the start node of the flowgraph and
the exit point onto the stop node.

2.1. Control-flow with common use cases

Common parts of use cases can be factored out so that

K.G. van den Berg, A.J.H. Simons / Information and Software Technology 41 (1999) 651–659652

Table 1
Mapping of common use cases onto flowgraphs

Use cases relation Flowgraph

Uses B(D on d)
Extension point d in B

4 The forthcoming versions of UML (1.2 and 1.3) will provide modified
definitions of the relations between use cases (see the Appendix).

these can be (re)used by other use cases without repeating
the description. A use case may then depend on other
(subordinate) use cases, i.e. theuses-relation between use
cases. The resultant use case is obtained by placing the
subordinate use cases at the appropriate place in the (super-
ordinate) use case, i.e. the extension point [1] where the
subordinate use case is called. “An extension point is a
location at which the use case can be extended with addi-
tional behaviour”. In the flowgraph, this is represented by
nesting the subflowgraphs onto the (superordinate) flow-
graph (see Table 1). Here, use case B uses another use
case D. The location of nesting is given byextension
pointsd in B, i.e. D is called/invoked in d. As with flow-
graphs, the control-flow for use cases with subordinate use
cases can be obtained by nesting the sequence diagram of
the used use case onto the sequence diagram of the using use
case.

2.2. Control-flow with variant use cases

In variant use cases, alternatives to the normal use case
behaviour are captured. They are also used for special cases
and exceptions. A use case may then be extended with other
use cases, i.e. theextends-relation between use cases. The
extensions are subject to conditions. The actual flow of
control in the instantiated use case is determined at ‘run-
time’.

We follow the description by Jacobson [1] (p. 161):
‘What happens when a course is inserted in this way is as
follows. The original use case runs as usual up to the point
where the new use case is to be inserted. At this point, the
new course is inserted. After the extension has finished, the
original course continues as if nothing had happened. …
The use case is not inserted only when the condition is
true, but the insertion always takes place. Actually, the
condition is always checked. If it is true, the whole course
with extension is initiated; otherwise the original course
continues directly’.

The mapping onto flowgraphs is given in Table 2. This
example is given for one extension only, i.e. use case B
extends use case A at the extension pointx and on the
condition c. The extension pointx is part of an if-then
construct in A. The extension is mapped onto the flowgraph
with a nesting of the flowgraph B onto A inx. The actual
flow of control is determined by the value ofc. If the extend
conditionc is fulfilled then use case B is executed. In the
extended use case A, the extension pointx can be just a
dummy action node.

From this, it can be seen that a uses-relation is semanti-
cally equivalent to an extends-relation (with if-then) for
which the condition is always satisfied.

Another semantics is provided with an if-then-else
construct in the extended case A. If the extended condition
is not fulfilled the normal course is followed and action (or
use case) D is executed, followed by the rest of the course in
A. If the condition is fulfilled the extending use case B is
executed instead of D, and then the rest of the course in A is
taken. Now, the extending use case can be seen as an alter-
native to the normal course in use case D. This extends-
relation can be seen as an ‘extends-with-alternative’.

As with flowgraphs, the control-flow for use cases with
extensions can be obtained by nesting the sequence diagram
of the extension use case onto the sequence diagram of the
extended use case.

2.3. Control-flow with component uses cases

In component use cases, parts of use cases are further
refined leading to a hierarchical decomposition of use
cases. For each part, it must be specified at which point in
the superordinate use case the subordinate use case has to be
inserted. This is exactly the same situation as described for
the uses-relation for common use cases. The mapping onto
flowgraphs is given in the section on common use cases.

K.G. van den Berg, A.J.H. Simons / Information and Software Technology 41 (1999) 651–659 653

Table 2
Mapping of variant use cases onto flowgraphs

Use cases relation Flowgraph

Extends A(B on x)

in A:
if c thenx
extension conditionc
extension pointx

Extends A(B on x)

in A:
if c thenx else D
extension conditionc
extension pointx

2.4. Control-flow with specialised use cases

Use cases can be classified in more specialised versions.
The specialised use case, the sub use case, only contains the
additional behaviour for the specialisation and inherits the
other behaviour of the unspecialised use case—the super
use case. It has to be specified on which condition the
specialised use case should be taken and at which point
the behaviour from the sub use case has to be inserted in
the super use case. This is exactly the same situation as
described for the extends-relation with variant use cases.
The mapping onto flowgraphs is given in the section on
variant use cases.

2.5. Control-flow with ordered use cases

Ordered use cases deal with situations where the comple-
tion of one use case is required before the following use case
can be executed [12]. A (client) use case may thenprecede
another (server) use case, i.e. the first use case must be
completed first before the second use can be executed (see
Table 3). We use the (not predefined) UML-stereotyped
association «precedes» for this relation (or in tables and
figures briefly «p»).

Precedes is here defined as a stereotyped association
between use cases. It specifies that the content of the
preceded use case is added to the related use case. When
an instance of the related use case has completed its
sequence of actions, the sequence continues with the
sequence of actions of the preceded use case. The mapping
onto a control-flow graph is asequencingof control-flow of
the use cases.

If a selection has to be made between two component use
cases, this selection should be incorporated into the super-
ordinate use case. This maps onto an IF-THEN-ELSE flow-
graph. If iteration has to be performed on a component use
case, this iteration should be incorporated into the super-
ordinate use case. This maps onto a WHILE flowgraph.

A use case may be followed by two use cases in a

K.G. van den Berg, A.J.H. Simons / Information and Software Technology 41 (1999) 651–659654

Table 3
Mapping of ordered use cases onto flowgraphs

Use case relation Flowgraph

Preceding A ; B

Selection D � …IF(c, A,B)…

conditionc
A,B are components of
superordinate D

Iteration D � …WHILE(c, A)…

conditionc
A is components of
superordinate D

Precedence
rhombus

general: A ; (Bk C) ; D

instances:
A; B; C; D
A; C; B; D

C[9,10,4,11,6]

A[1,7,3,12] B[2,8,5]

[7 on 9, 3 on 11]

<<uses>>

[2 on 4, 5 on 6]

<<uses>>

Fig. 1. Multiple uses-relation between use cases.

precedence relation (a fork) or a use case may be preceded
by two use cases in a precedence relation (a join) (see the
precedence rhombus in Table 3). In this example, A
precedes B and A precedes C (a fork); further, B precedes
D and C precedes D (a join). There is no precedence relation
between use cases B and C so that these use cases may be
carried out in any order or even in parallel. However, paral-
lel execution of flowgraphs is not covered in flowgraph
theory [13]. To handle the parallelism of the precedence
rhombus in the use case model, the rhombus has to be
transformed to sequential control-flow graphs. Possible
instances with sequencing are given in the table. Any of
the use cases may be empty (dummy use cases): e.g., if A
is empty then this dummy use case provides the (empty)
start node of the use case flowgraph; if D is empty then it
provides the stop node of the flowgraph.

In the requirements elicitation phase, a fork-precedence

relation between use cases may be quite natural to model
parallel use cases. However, the precedence rhombus can
easily be confused with a selection between alternative use
cases.

3. Interleaving of use cases with uses-relationship

In Jacobson [1] and UML [2], a use case may have several
uses-relationships with other use cases. The resulting
sequence in the instantiated use case will be obtained by
interleaving the used sequences.

An example is given in Fig. 1. Use case A has four
subordinate use cases, each indicated with a (numeric)
label. These components are A[1], A[7], A[3] and A[12].
The components lie on a path (a possible sequence) in use
case A. Use case B has three components, and use case C
has five components. Use case C is the using use case, and
use cases A and B are the used use cases. The uses-relation
between use cases is expressed by a list of tuples, in which
the first component refers to the used label and the second
component to the using label. A label refers to a one-entry
one-exit use case component. All labels are assumed to be
unique. The use case of the used label is placed onto the use
case of the using label. If there is more than one path in a use
case then the uses-relation should be defined for each path
separately. We assume that interleaving has the following
properties:

1. The resultant use case does not depend on the order in
which the use cases are being used.

2. The uses-relation between use cases preserves the order
of the use cases involved, i.e. the order of components in
the resulting use case corresponds to the order of the
components in the using use cases and the used use cases.

There are two conditions to be satisfied to obtain this
order preserving interleaving of use cases:

1. The used labels in the uses-relation must lie on a path in

K.G. van den Berg, A.J.H. Simons / Information and Software Technology 41 (1999) 651–659 655

C[9] C[10] C[4] C[11] C[6]

A[1] A[7]

[7 on 9]

<<uses>>

A[3]

[3 on 11]

<<uses>>

A[12] B[2]

[2 on 4]

<<uses>>

B[8] B[5]

[5 on 6]

<<uses>>

<<p>> <<p>> <<p>> <<p>>

<<p>> <<p>> <<p>> <<p>> <<p>>

Fig. 2. Expanded view on multiple uses-relation between use cases from Fig. 1.

x':ClassXx:ClassX

c()

[c = true] n1()

n4()

n2()

join lifelines

n3()

begin of branching on
condition c
with two lifelines of x

[c = false]

end of
branching on
condition c

entry

exit

Fig. 3. Branching in a sequence diagram with auxiliary lifeline.

the used use case; in other words they are a subsequence
of the labels in the used case.

2. The using labels in the uses-relation must lie on a path in
the using use case; in other words they are a subsequence
of the labels in the using case.

Further, the using labels in the uses-relations must be
unique, i.e. no using use case can use another use case
more than once.

The subsequence-condition can be shown in an expanded
view on the uses-relation as given in Fig. 2. In this view, this
condition means that uses-lines between using use case and
used use cases should not cross. The resulting use case
consists of A[7], C[10], B[2], A[3], B[5]. The two
conditions are fulfilled and the order of components of all
use cases involved is preserved.

4. Control-flow in sequence diagrams

The flow of control in use cases can be displayed in
interaction diagrams, especially the sequence diagrams.
However, with branching, the flow of control is not always
obvious. We model branching through objects with auxili-
ary lifelines. Once the condition is no more determinative,
the auxiliary lifeline is joined with the main lifeline. The
values of the conditions are displayed at each branching
point. The flow of control can be read quite easily now
from the sequence diagrams as shown in Figs. 3 and 4.

In Fig. 3, the value of conditionc is established. Ifc is
true then messagen1 is sent to objectx followed by n2,
otherwise messagen3 is sent tox followed by n4. In order
to visualise these branches, objectx0 is introduced. This
object x0 is the same as objectx, however with an own

K.G. van den Berg, A.J.H. Simons / Information and Software Technology 41 (1999) 651–659656

c()

[c = true] m1()
begin of branching
on condition c
control transferred
to object y
with two lifelines

[c = false] m2()

m3()

m4()

join lifelines
end of branching
on condition c

entry

exit

x:ClassX y:ClassY y':ClassY

Fig. 4. Branching in a sequence diagram to other object with auxiliary lifeline.

x : ClassX z :

[c = true]

[c = false]

m()

entry

exit

x : ClassX

m()

entry

exit

x : ClassX

[c = true]

[c = false]

m()

entry

entry

entry

exit

extending
use case

part a part b part c

exit

Fig. 5. A sequence diagram with a conditional extension point.

auxiliary lifeline. After sendingn2, the flow of control is
going back to the main lifeline of the objectx. At sending
n3 to object x, on the lifeline ofx, there is an (implicit)
assumption that conditionc is false. We can map this
sequence diagram onto flowgraphs. The corresponding
flowgraph in this case is:x.c(); IF(c,(x.n1(); x.n2()),
(x.n3(); x.n4)).

Now, there are three types of arrows being used in
sequence diagrams with a message sent to the target object,
a return value to the target object, and—as introduced
above—solely the transfer of control to the target object
(which is also implicit with the other arrows). Each of the
arrows may have additionally a guard showing the condition
on the flow of control. It is recommended to indicate the
type of arrow being used in the diagrams (by adding the
message name, return or join/merge/transfer, respectively).

Also, other objects may be involved in branching. In Fig.
4, again the value of conditionc is established. Ifc is true
then messagem1 is sent to objecty, otherwise messagem2 is
sent toy. In order to visualise these branches, objecty0 is
introduced with an auxiliary lifeline. After sendingm2 and
m4, the flow of control is going back from the auxiliary
lifeline to the main lifeline of objecty. The corresponding
flowgraph for this sequence diagram is:x.c(); IF(c, (y.m1();
y.m3()), (y.m2(); y.m4())). In this example, the flow of

control ends at objecty, which provides the exit point of
the (partial) sequence diagram.

4.1. Extension points in sequence diagrams

In the use cases presented in the previous sections, there
are extension points for relations with other use cases.
Usually, an extension point has to be added to a use case
once the need for a relation with another use case becomes
apparent. An extension pointz in a sequence diagram may
be modelled by some message sent to a (dummy) objectz. If
there is a condition in the relation then this will be indicated
on the branches. It must be clear which part of the use case is
involved in the extension as part of the branching. An
example is given in Fig. 5. The original use case just
contains one messagem sent to objectx, being the ‘normal’
course in the use case (part (a) of the figure). The extension
of this use case inz is subject to conditionc. The use case
can be adapted for the extension with the branching IFc
THEN z ELSE x.m() END (part (b) of the figure). The
sequence diagram of the extending use case can be inserted
on the extension pointz (part (c) of the figure). In terms of
flowgraphs, this is a nesting of the flowgraph of the extend-
ing use case onto the flowgraph of the original use case.

The flow of control in use cases may also be described
with UML-activity diagrams [2,14]. The semantics of activ-
ity diagrams can be described in terms of control-flow
graphs in a similar way as shown above for sequence
diagrams. The rules for nesting and sequencing activity
diagrams are the same as for control-flow graphs. An exam-
ple of activity diagram is given in Fig. 6 for the sequence
diagram in Fig. 4.

5. Conclusion and guidelines

The control-flow semantics of use cases can be described
in the well-established model of control-flow graphs. A
prerequisite is that, use cases have the one-entry one-exit
property. If not then one may obtain unstructured use cases
with an ill-defined flow of control, as the use of goto-state-
ments in conventional programming may result in spaghetti-
code.

The control-flow of the extends-relation and uses-relation
between use cases has been described in terms of nesting of
flowgraphs; the precedes-relation is given as a sequencing
of flowgraphs. It is shown that the uses-relation is semanti-
cally equivalent with an unconditional extends-relation.
Parallel execution of use cases cannot be mapped onto stan-
dard flowgraphs.

In Table 4, a summary is given of the control-flow seman-
tics for the five kinds of use cases described in the first part
of this article. Both common use cases and component use
cases have the control-flow semantics of the uses-relation
between use cases, whereas variant use cases and specia-
lised use cases have the semantics of the extends-relation.
Ordered use cases have the control-flow semantics of a

K.G. van den Berg, A.J.H. Simons / Information and Software Technology 41 (1999) 651–659 657

x.c()

test c

y.m1()

y.m3()

y.m2()

y.m4()

[c = false] [c = true]

Fig. 6. Activity diagram corresponding to sequence diagram in Fig. 4.

Table 4
Five kinds of use cases with their control-flow semantics

Use case Relation Control-flow semantics

Common
component

Uses Behaviour is inserted
unconditionally

Variant
specialised

Extends Behaviour is inserted
conditionally

Ordered Precedes Behaviour is appended
unconditionally

precedes-relation in which behaviour of one use case is
sequenced (appended) to the behaviour of the preceding
use case. Further, we have augmented the notation for
branching in sequence diagrams with auxiliary lifelines to
visualise the flow of control.

With the mapping of use cases onto flowgraphs, the corre-
sponding theory of flowgraphs can be applied to the analysis
of use case diagrams, among others with metrics for struc-
turedness, complexity and testability.

Use cases may be used for deriving tests for the resulting
software. The mapping onto flowgraphs allows the use of
testability metrics for a number of test strategies: all-path
testing; visit-each loop path testing; simple path testing;
branch testing; and statement testing. For structured flow-
graphs, the set can be derived from the component flow-
graphs and the flowgraphs onto which they are nested
[13]. For the analysis of flowgraphs, several tools are avail-
able, such as Prometrix and Qualms (see Ref. [13] for
further references). Metric values can be obtained with
these tools. These static analysers need a front-end in
which a flowgraph representation is derived; in this case
from the sequence diagrams of use cases.

Without such analysers, we have to derive tests based on
the flow of control in use cases directly from sequence
diagrams, for example in the Rational Rose tool. Then,
such a tool should support conditional behaviour with
branching or UML-defined activity diagrams.

From the analysis of use cases with flowgraphs given in
this article, seven guidelines are derived, which—once
followed—facilitate reasoning about the flow of control in
use cases and related sequence diagrams:

1. Define for each use case and its sequence diagram both
theentrypoint and theexit point. These points are prere-
quisites for a well-defined flow of control in use cases
with uses-relationships and extends-relationships.

2. Give for each used use case (in a uses-relation), the
precise extension point in the using use case.

3. Provide for each extending use case (in an extends-rela-
tion) an explicit if-then(-else) construct in the extended
use case, together with the extension condition and the
extension point, and—if applicable—the component in

the normal use case for which the extension is an alter-
native.

4. Do not use precedence-forks from use cases (a use case
followed by more than one use cases in a precedes-rela-
tion), unless explicit parallelism is required. If used then
the related join use case should be provided.

5. Provide an if-then-else construct in the superordinate use
case for selection of alternative component use cases, and
a while construct for repetition of a component use case.

6. Model branching in sequence diagrams with auxiliary
objects with their own temporary lifeline.

7. Label arrows between objects in sequence diagrams with
either a message, a return or a join/merge.

Acknowledgements

This paper has been written during the first author’s
sabbatical leave in the Department of Computer Science
at the University of Sheffield, where the authors had many
discussions on object-oriented modelling issues. The
authors would like to thank Pim van den Broek for his
comments on earlier versions of this paper. The paper also
improved through the comments of the anonymous referees.

Appendix

In the emerging version of UML 1.2 and 1.3 some major
changes are expected with respect to use cases. Rational
profoundly changed the description of the relations between
Use Cases in UML version 1.2 (and 1.3) as compared to
version 1.1. The new description can be found in Ref. [15],
pp. 226–228. In UML version 1.1 (as described in this
paper):

1. the «extends» relation between use cases was described
as specialisation but was actually modelling variant
behaviour;

2. the generalisation relation was abused for both the
«uses» and the «extends» relation between use cases;

3. there was no (proper) specialisation relation between use
cases.

In the new UML version 1.2/1.3:

1. the old «uses» is now replaced by «includes». It models
common behaviour. It is denoted by a dependency rela-
tion between use cases with the arrowhead pointing to the
included use case (compare the OML invokes);

2. the new «extends» is now used to model variant beha-
viour. It is denoted by a dependency relation between use
cases with the arrowhead pointing to the extended use
case;

3. there is a (proper) specialisation relation between use
cases denoted by the generalisation relation with the
(open) arrowhead pointing to the general use case.

K.G. van den Berg, A.J.H. Simons / Information and Software Technology 41 (1999) 651–659658

Table 5
Five kinds of use cases with their control-flow semantics (with UML 1.2/1.3
relations, except precedes)

Use case Relation Control-flow semantics

Common
component

Includes Behaviour is inserted
unconditionally

Variant
specialised

Extends Behaviour is inserted
conditionally

Generalisation Behaviour is replaced
conditionally

Ordered Precedes Behaviour is appended
unconditionally

The new situation leads to Table 5 (the revision of Table 4
presented in this paper).

References

[1] I. Jacobson, M. Christerson, P. Jonsson, G. O¨ vergaard, Object-
oriented Software Engineering, a Use Case Driven Approach, Addi-
son-Wesley, Reading, MA, 1992.

[2] Rational, UML Summary, Semantics, Notation Guide, Version 1.1,
Rational Software Corporation, 1997.

[3] I. Jacobson, M. Griss, P. Jonsson, Software Reuse. Architecture,
Process and Organization for Business Success, Addison-Wesley
Longman, Reading, MA, 1997.

[4] E.V. Berard, Be Careful With Use Cases, 1996.
[5] A. Cockburn, M. Fowler, Question Time! about Use Cases.

OOPSLA’98, ACM Sigplan Notices 33 (10) (1998) 226–229.
[6] K. Bergner, A. Raush, M. Sihling, A Critical Look upon UML 1.0, in:

M. Schader, A. Korthaus (Eds.), The Unified Modeling Language,
Physica, Wurzburg, 1998, pp. 92.

[7] G. Övergaard, K. Palmkvist, A Formal Approach to Use Cases and
their Relationships.Workshop «UML» 1998.

[8] P.H. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, C. Chen,
Formal approach to scenario analysis, IEEE Software 11 (2) (1994)
33–41.

[9] B. Regnell, M. Andersson, J. Bergstrand, A hierarchical use case
model with graphical representation, Proceedings of the ECBS’96,
IEEE International Symposium and Workshop on Engineering of
Computer-based Systems, 1996.

[10] N.E. Fenton, R.W. Whitty, Axiomatic approach to software metrica-
tion through program decomposition, Computer Journal 29 (4) (1986)
329–339.

[11] I. Graham, Migrating to Object Technology, Addison-Wesley,
Wokingham, UK, 1995.

[12] D. Firesmith, B. Henderson-Sellers, I. Graham, OPEN
Modeling Language (OML) Reference Manual, Sigs, New York,
1997.

[13] N.E. Fenton, S.L. Pfleeger, Software Metrics, A Rigorous & Practical
Approach, 2nd, Thomson, London, 1996.

[14] M. Fowler, K. Scott, UML Distilled. Applying the Standard Object
Modeling Language, Addison-Wesley, Reading, MA, 1997.

[15] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling
Language User Guide, Addison-Wesley Longman, Reading, MA,
1999.

K.G. van den Berg, A.J.H. Simons / Information and Software Technology 41 (1999) 651–659 659

