Knowledge-Based Systems 15 (2002) 37-43

Knowledge-Based
—SYSTEMS—

www.elsevier.com/locate/knosys

A quality index for decision tree pruning

D. Fournier™, B. Crémilleux

GREYC, CNRS — UMR 6072, Université de Caen, F-14032 Caen cedex, France

Abstract

Decision tree is a divide and conquer classification method used in machine learning. Most pruning methods for decision trees minimize a
classification error rate. In uncertain domains, some sub-trees that do not decrease the error rate can be relevant in pointing out some
populations of specific interest or to give a representation of a large data file. A new pruning method (called DI pruning) is presented here. It
takes into account the complexity of sub-trees and is able to keep sub-trees with leaves yielding to determine relevant decision rules, although
they do not increase the classification efficiency. DI pruning allows to assess the quality of the data used for the knowledge discovery task. In
practice, this method is implemented in the UnDeT software. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Data mining and knowledge discovery in databases
(KDD) are fields of increasing interest combining databases,
artificial intelligence, machine learning and statistics.
Broadly speaking, the purpose of KDD is to extract non-
trivial ‘nuggets’ of information in an easily understandable
form from large amount of data. Such discovered knowl-
edge may be for instance regularities or exceptions.

In this context, with the growth of databases, methods
which explore data — like for example decision trees —
are required. Such methods can give a summary of the data
(which is easier to analyze than the raw data) or can be used
to build a tool (like for example a classifier) to help a user
for many different decision-makings.

Briefly, a decision tree is built from a set of training data
having attribute values and a class name. The result of the
process is represented as a tree, the nodes of which specify
attributes and the branches specify attribute values. Leaves
of the tree correspond to sets of examples with the same
class or to elements in which no more attributes are avail-
able. Construction of decision trees is described, among
others, by Breiman et al. [1] who present an important and
well-known monograph on classification trees. A number of
standard techniques have been developed, for example like
the basic algorithms ID3 [2] and CART [1].

Nevertheless, in many areas, such as medicine, data are
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uncertain: this means that there are always some examples
which escape the rules. Translated in the context of decision
trees means that these examples seem similar but in fact
differ from their classes. In these situations, it is well
known (see Refs. [1,3]) that decision tree algorithms tend
to divide nodes having few examples and that the resulting
trees tend to be very large and overspecified. Some
branches, especially towards the bottom, are present due
to sample variability and are statistically meaningless (one
can also say that they are due to noise in the sample). Prun-
ing methods (see Refs. [1,2,4]) try to cut such branches in
order to avoid this drawback.

In uncertain domains, the understanding of the mechan-
ism of these methods is a key point for their use in practice:
in order to achieve a fruitful process of extraction of infor-
mation, these methods require declarativity during treat-
ments. In Section 3, it is seen that this point is included in
the pruning strategy.

This paper is organized as follows. Section 2 outlines
existing decision trees pruning methods and sets out the
question of pruning in uncertain domains. The principal
pruning methods are based on a classification error rate
and that it may be a drawback in uncertain domains is
seen. So, in Section 3, a quality index (called DI for
depth-impurity quality index) which is a trade-off between
the depth and the impurity of nodes of a tree is proposed.
From this index, a new pruning method for decision trees
(denoted DI pruning) that is appropriate in uncertain
domains is inferred: unlike usual methods, this method is
not bound to the possible use of a tree for classification. It is
capable of giving an efficient description of a data file
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Fig. 1. A tree which could be interesting although it does not decrease the
number of errors.

oriented by a priori classification of its elements and to
highlight interesting sub-populations, even though the
classification error rate does not decrease (see examples in
Section 4). It is considered that it is a major point for the use
of decision trees in uncertain domains. In Section 4, a short
overview of the UnDeT software which implements this
method is given. Examples in a real world domain in
which DI pruning is used as a tool to optimize a final
decision tree is presented.

2. Motivations

The principal methods for pruning decision trees are
examined in Refs. [4—6]. Most of these pruning methods
are based on minimizing a classification error rate where
each element of the same node is classified in the most
frequent class in this node. The latter is estimated with a
test file or using statistical methods such as cross-validation
or bootstrap.

These pruning methods are inferred from situations where
the built tree will be used as a classifier and they system-
atically discard a sub-tree which does not improve the used
classification error rate. The sub-tree depicted in Fig. 1 is
considered. D is the class and it is here bivalued. In each
node the first (resp. second) value indicates the number of
examples having the first (resp. second) value of D. This
sub-tree does not lessen the error rate, which is 10% both in
its root or in its leaves; nevertheless the sub-tree is of inter-
est since it points out a specific population with a constant
value of D while in the remaining population it is impossible
to predict a value for D. The authors think that, in uncertain
domains, cutting such a sub-tree would introduce more
uncertainty than keeping the leaves.

Fig. 2. Splitting of a node (2 using an attribute Y.

Another way to prune decision trees, based on a quality
improvement, is treated in Refs. [7,8]. These methods use a
quality measurement that indicates an information gain
brought by the tree. Even though both methods have the
ability to spare sub-trees like in Fig. 1, they have some
limitations: in Ref. [7], they do not take into account the
complexity of the trees and Wehenkel [8] only computes the
total number of nodes without integrating the layout of
the trees. In the context of inductive rule learners, the idea
to manage a trade-off between the gain of a rule (i.e. the
improvement of the accuracy relative to the initial situation)
and its structure (i.e. the number of examples covered) is,
for instance, discussed in Ref. [9].

Here a twofold aim is pursued: on one hand, to develop a
pruning method which does not systematically discard a
sub-tree whose classification error rate is equal to the rate
of the root, and on the other hand, to handle the complexity
of the trees. Section 3 describes a tree quality index and a
pruning method based on this index which integrates these
constraints. This method is able to highlight interesting —
in our opinion — sub-populations (like the ones shown in
Fig. 1). This method is not based on a classification error
rate and the authors claim that it is a major point in uncertain
domains.

3. Depth-impurity quality index and pruning
3.1. Framework for a quality index

The question of a quality index is formulated. The
authors claim that the quality index of a tree T has its
maximum value if and only if the two following conditions
are satisfied:

(1) All the leaves of T are pure.
(i) Depth of T'is 1.

These conditions are part of the usual framework to
properly define suitable attribute selection criteria to build
decision trees is noticed [1,7]. This framework states that on
a theoretical level, criteria derived from an impurity
measure [10] perform comparably [1,7,11).' Such criteria
are called concave-maximum criteria (CM criteria) because
an impurity measure, among other characteristics, is defined
by a concave function. The most commonly used criteria
which are the Shannon entropy (in the family of C4.5
software [12]) and the Gini criterion (in CART algorithms
[1]) are CM criteria.

The idea is then to use known properties (based on an
impurity measure) of CM criteria to define a quality index.
In order to better understand the genesis of the quality index
that is present below, a closer look at the question of
attribute selection criteria in decision trees and its usual

' The term impurity is used here because it is the most usual in the
machine learning community [1,10].
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Fig. 3. Examples of DI and IQN values on a pedagogic tree.

notations is to be taken. Let D be called the class of the
examples of a data set, with values di,...,d;, {2 a node and
Y any attribute defined on (2, with values yy,...,y,.. Let ¢ be
a CM criterion (see Fig. 2).

WY) =7 (a(2)a(Q))e(L2;) where (24,...,0),, are the
sub-nodes yielded by Y, a({2;) is the number of examples in
£;, and ¢ is an impurity measure of D (see Refs. [1,7,10]).
Y¥(Y) can be viewed as a combined measure of impurity of
the sub-nodes induced by Y. The value of the criterion in a
node reflects how appropriately the chosen attribute divides
the data: it is a way to quantify the quality of a tree of depth
1. For example, theoretical results on CM criteria claim that
the minimum value of /(Y) is reached if and only if the sub-
nodes induced by Y are pure with respect to D, /(Y) has its
maximum value if and only if the frequency distributions of
D in £ and in the sub-nodes induced by Y are equal.

In fact, these criteria, used to quantify the quality of a
splitting (that means of a tree of depth 1) can be straight-
forwardly extended in order to evaluate the quality of a tree
of any depth: the sub-nodes of depth 1 induced by Y are
replaced by the leaves of any depth of the tree. Furthermore,
that the aim is to offer a suitable pruning method in uncer-
tain domains should not be forgotten. In this context, the
authors claim that a deep tree is less relevant than a small
one: the deeper a tree, the less understandable and reliable.
For example, in Fig. 3, the tree which has the root denoted
£, is preferred than the one with root (2, (even if the
frequency distributions of D are the same on all leaves).
On the other hand, both trees with root {25 and {2, have
the same number of miss-classified examples, but the tree
with root (25 is preferred because it is simpler.

So, a quality index which takes into account both impu-
rities and depths of leaves should be defined properly.
Section 3.2 presents this index.

3.2. The quality index DI

First of all, the quality of a node {2 (called IQN for
impurity quality node) is defined as a combination between
its purity and its depth. IQN({2) is relative to the tree T
where (2 is located (so T is introduced in the notation).
IONH(2) is given by Eq. (1):

ION7() = (1 — o({D)f (depthr(£2)) ey

where T is the decision tree which contains the node (2 and
¢ is an impurity measure normalized between [0,1]. It is
noted that as ¢ is an impurity measure, (1 — ¢) defines a
purity measure. By introducing a damping function
(denoted as f), ION is able to take into account the depth
of a node within T (denoted depthy): the deeper a node, the
lower its quality.

Eq. (2) defines the quality index DI (for depth-impurity)
of a subtree T, in T (either DI(T, is noted) or DI({2,), the
quality index of the tree Ty of root (2)). DI is directly
stemmed from IQN as the weighted average of the quality
of the tree’s leaves

DI(T) = DI = S X 10N (2) @)

i=1 7

where (2, ..., {2, are the leaves of T, a; (resp. a)” gives
the number of examples in (2'; (resp. (2,).
So, Eq. (2) can also be written as

m

DI(T) =DI(Q2) = Y (1 — (Q)fdepthr(2)  (3)

i=1 s

Due to the definition of IQN, the depth of a leaf is

2 To simplify notations, a(£2;) is replaced by a;.
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computed from the root of the whole tree (and not from the
root of Ty). For instance, in Fig. 3, to compute the quality of
the sub-tree of root (2, the depth of the leaf 2% is with
respect to {2,. Referring again to the example given at the
end of Section 3.1 (comparison between trees of root (2;
versus the one of root 2,), the quality index of the tree
of root (2, is lower because it is deeper is noticed. This
choice to compute the depth allows comparing whichever
nodes. As DI is based on IQN (and thus on the damping
function used in IQN), DI also takes into account the depth
of the leaves.

The authors are led to address now the question of defin-
ing the damping function f. The argument of fis a depth of a
node (denoted d). A minimal set of constraints is:

(1) fis decreasing.
@fm=1

Constraint (1) corresponds to the damping process and (2)
is necessary to satisfy condition (ii) of our framework. If an
impurity measure normalized between [0,1] is chosen, as
ST (ai/ay) =1, it is will be seen immediately with both
constraints that the value of DI is between [0,1]. The higher
the value of DI, the better is the quality of T;.

Furthermore, the three following constraints are added:

(3) f(d) = 0 when d tends towards the total number of
attributes.

@»Ho=fd=1.

(5) f(d+1)=Bf(d) where BER" (in practice,
B € [0,1] to respect constraint (1)).

Constraint (3) means that a leaf which has a depth similar
to the total number of attributes is likely to be unreliable
(particularly in uncertain domains), so it seems sensible that
the value of its quality is close to the minimum value of DI.
Constraint (4) allows the values of the damping function and
of the purity (or impurity) of a leaf to have same rough
estimates. Over the achievement of a linear damping,
constraint (5) is suggested by algorithmic considerations:
it will be seen that it allows to have a linear computation
of DI as indicated by Remark 1. So, as the number of
elementary steps in the whole process is limited, the compu-
tational cost of DI pruning (see Section 3.3) is particularly
low and it is tractable even with large databases.

Translated into a mathematical form, this set of
constraints leads to choose an exponential function for f.

Proof. From f(d + 1) = Bf(d), it is deduced that f(d) =
BY“"Vr(1). Thus from (2): f(d) = B9~V is obtained. This
equality implies that fis an exponential function.

Thus the following function fis chosen:

fld)y=e @70 4

where N is the total number of attributes (let us note that any
exponential function can be chosen).

O

Coming back to the tree given in Fig. 3, it is noticed that
the tree which has the root denoted by (25 has a greater DI
value than the one with root (24: impurities of leaves of
these trees are equal, but the latter is more complex than
the former. This has been taken into account by DI.

Remark 1. With regard to the algorithmic point of view,
computation of DI is not expensive. DI(T;) can be easily
written according to the DI values of sons of T: in other
words, the computation of DI(T) is the weighted average of
the DI values of the sons of T.

Proof. As used previously, (2, ..., (2, are the leaves of a
tree T, of root (2,. Let £2, be called as a son of (2, and (2} as
the leaves stemmed from (2,. Then:

DIy =Y z—ilQNT<Q}>. 5)
J

To consider all the sons of (2,:

ax N A%(VvY /
; o DI({2,) ; o (; o IQNT«z,)) (6)

As the sets of leaves of each (2; make a partition of the
leaves of (2, then

oy a; -

e DI B ™)

% Qg (; ak) ; Qg
With Eq. (7), Eq. (6) becomes

m

> ZEp1e) =Y ~LIoNy(@) @®)

k i=1 %s
It follows easily that the definition of DI (see Eq. (2)) can

be rewritten

DIy =Y “EDI(y) ©)
k s

(]

By ensuring that DI is computed for each node in one
step, this point will allow a low computational cost for the
DI pruning method. This subject is discussed now.

3.3. DI pruning

DI leads to a straightforward way to prune sub-trees 7T
the main idea is to compare DI(T,) with the relative quality
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Fig. 4. Examples of DI values on the pedagogic pruned tree.

of its root. When DI(Ty) is lower than the relative quality of
its root, the ‘cost’ of 7, (due to its complexity) is more
‘expensive’ than the benefit of the explanation it has gener-
ated. So, T, reduces the quality of the whole tree 7. Then
cutting and replacing 7 by its root, which becomes a leaf,
improve the quality of 7. Within our framework, this means
that if a subtree T of root (2 is cut satisfying Eq. (10), the
quality of the whole tree T can only increase

DI(,) = %IQNT(QQ (10)

where « is the number of examples of 7. So, a straight-
forward pruning method that maximizes the quality of T,
consists in pruning recursively from the bottom of 7, all sub-

[0] 32a(3d,245)
@ [1] 275(30/245) gram<=0.0
® [3] 259(16/243) prot<=0.95
@ [5] 232(97223) eruption=0
® [10] 31(7/24) age<=1.66
[12] 14(0/14) ws<=78.0 VIR
© [13] 17(7/10) vs=78.0
[14] 7{0/7) age<=0.58 VIR
@ [15] 10(7/3) age>0.58
[16] 4i1/3) dfievre<=39.7 VIR
[17] 6(6/0) dfievre>39.7 BACT
®© [11] 201(2/199) age>1.66
[18] 119(0,119) aerien=0 VIR
[19] 54{0/54) aerien=1 VIR
[20] 20{0/20) aerien=2 VIR
@ [21] 8(2/6) aerien=3
[22] 1(0/ 1) saisan=hiver VIR
[23] 2(2/0) saison=printemps BACT
[24] 5(0f5) saison=ete VIR
[25] D{0/D) saison=automne VIR
@ [56] 11(1/10) erupticn=1
[26] 10(0/10) cytol<=400.0 VIR
[27] 1(1/0) cytal=400.0 BACT
[7] 10{0/10) eruption=2 VIR
[8] 4{4/0) eruption=3 BACT
[2] 2{2/0) eruption=4 BACT
@ [4] 16(14/2) prot=0.95
[28] 4{2/2) cytol<=600.0 BACT
[29] 12(12/0) cytol=600.0 BACT
[2] 54(54/0) gram>0.0 BACT

Fig. 5. Initial large tree.

trees T of T satisfying Eq. (10). This method is called DI
pruning because it goes with DI.

It is noted that the cost-complexity method of Breiman
[1] uses a similar process (that means a trade-off between a
‘cost’ and a ‘benefit’ to cut sub-trees), but the cost is based
on a classification error rate.

From experiments, it is noticed that the degree of pruning
is quite bound to the uncertainty embedded in data. In prac-
tice, this means the damping process has to be adjusted
according to the data in order to obtain, in all situations, a
relevant number of pruned trees. For that, a parameter is
introduced (denoted k) to control the damping process: the
higher k, the more extensive the pruning stage (i.e. more
sub-trees are cut). Eq. (11) gives the damping function
updated by this parameter (as usual, N is the total number
of attributes)

fild) = e *"UN) Githk € RT (11)

With k£ = 1, again Eq. (4) is obtained. By varying k, DI
pruning produces a family of nested pruned trees spreading
from the initial large tree to the tree restricted to its root. In
practice, it should be not easy to select automatically the
‘best’ pruned tree (but it is not the main aim of this stage of
this work). Nevertheless, curves of DI as a function of k£ and
as a function of the number of pruned nodes give a prag-
matic method to stop the pruning process. Furthermore, if
we are eager to obtain automatically a single ‘best’ pruned
tree, a procedure requiring a test file can be used [1,6].

Fig. 4 shows the pruned tree obtained (with k= 1)
from the whole tree indicated in Fig. 3. Two sub-trees
(of root 2, and {2,) have been cut. Although the sub-
trees of root (25 and (2, are identical, only the latter is
cut because it is deeper than the former. Moreover, even
though the frequency distributions of D in {2; and in {2,
are equal, the sub-tree of root 2, is removed (and not
the sub-tree of root (2;), because (2, is more complex
than (2;. The authors remark that DI({2,) has increased,
as expected.
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[0] 329{(84,245)
@ [1] 275(30/245) gram<=0.0
® [3] 259(16/243) prot<=0.95
@ [5] 232(9/223) eruption=0
Q@ [10] 31(7/24) age<=1.66
[12] 14{0/14) vs<=78.0 VIR
® [13] 17(7/10) vs>78.0
[14] 7(0/7) age<=0.58 VIR
@ [15] 10(7/3) age=0.58
[16] 4{1;3) dfievre<=39.7 VIR
[17] 6(6/0) dfievre=39.7 BACT
[11] 201{2/199) age>1.66 VIR
@ [6] 11({1/10) eruption=1
[26] 10(0/10) cytol<=400.0 VIR
[27] 1(1/0) cytol=400.0 BACT
[7] 10(0/10) eruption=2 VIR
[8] 4(d4/0) eruption=3 BACT
[9] 2(2/0) eruption=4 BACT
@ [4] 16(14/2) prot=0.95
[28] 4(2/2) cytol<=600.0 BACT
[29] 12(12/0) cytol=600.0 BACT
[2] 54(54/0) gram>0.0 BACT

Fig. 6. Pruned tree (k = 2).

4. Experiments

An induction software called UnDeT (for uncertain deci-
sion trees) which produces decision trees has been designed.
Three paradigms of attribute selection criteria are available
in UnDeT: gain, gain ratio and ORT criterion (the choice of
one of these depends on the kind of data and the aim wished
by the user: see Ref. [13]). UnDeT computes /IQN and DI
indexes for each node and pruned trees with DI pruning. The
authors’ tool also offers all the functionalities which one can
expect from an effective data mining tool: management of
the training and test sets, automatic cross-validation, confu-
sions matrix, back-ups and re-use of the classification built
model (more information about all the functionalities of
UnDeT and its use to study difficult problems issued from
uncertain domains are available in Ref. [14]). UnDeT is
included in a more general data mining tool-box in which
another major part is dedicated to the treatment of missing
values [15].

In this section the results obtained by running UnDeT on
a real world database is discussed. UnDeT with the gain
criterion (Shannon entropy) is performed [12] because it is
the most commonly used one. The data set is a medical
database coming from the University Hospital at Grenoble
(France) and runs on child’s meningitis (trees in Fig. 5-7
are snapshots produced by UnDeT).

[0] 329(84,/245)
® [1] 275(30/245) gram<=0.0
[3] 259(16/243) prot<=0.95 VIR
@ [4] 16(14/2) prot=0.95
[28] 4(2/2) cytol<=600.0 BACT
[29] 12(12/0) cytol=600.0 BACT
[2] 54{54/0) gram=>0.0 BACT

Fig. 7. Pruned tree (k = 4).

4.1. Child’s meningitis

Faced with a child with a case of acute meningitis, the
clinician must quickly decide which medical course should
be taken. Briefly, the majority of these cases are viral infec-
tions for which a simple medical supervision is sufficient,
whereas about one quarter cases are caused by bacteria and
need treatment with suitable antibiotics.

In typical cases, the diagnosis could be considered as
obvious and a few simple rules enable a quasi certain deci-
sion. However, nearly one-third of these cases are presented
with non-typical clinical and biological data: the difficulty
of the diagnosis lies in the fact that the observed attributes,
considered separately, have little diagnostic signification.
The aim of this section is to study the relevance of DI
pruning in such domains.

The used data set is composed of 329 instances, described
by 22 (quantitative or qualitative) attributes. The class is
bivalued (viral versus bacterial).

4.2. Results

The initial large tree (see Fig. 5) has 29 nodes with pure
leaves. Its quality (0.739) is high, especially for a medical
domain. This result is due to the relevance of the used
attributes.

In the tree depicted in Fig. 5 and further, let T; be called
the sub-tree of root labelled [1]. T, has an impurity in its
root equal to 0.54 (two miss-classified instances among 16)
and T, has an impurity in its root equal to 0.77 (seven miss-
classified instances among 31). Although T, increases
significantly the classification result (it finally leads to a
single miss-classified instance), DI(T);) remains lower
than DI(Ty) (DI(Ty) = 0.584 and DI(T;) = 0.625). This
behavior was expected: Ty is complex and some leaves
are reached only at the seventh level of the tree. So, the
explanation given by T, is not very reliable.

Fig. 6 represents the first pruned tree obtained with k = 2,
its quality is slightly improved (0.743). The sub-tree of root
labelled [11] becomes a leaf. This pruning introduces two
miss-classified instances. This number is not high regarding
the 201 instances of the node. Furthermore, in order to
properly classify these two instances, the initial large tree
had to build a complex sub-tree with deep leaves. Such
leaves appear not to be very reliable in uncertain domains.

Finally, Fig. 7 indicates the next pruned tree obtained
with k = 4. With this pruning stage, a new step of simplifi-
cation is reached. The sub-tree of root labelled [3] becomes
a leaf (in this case, the sub-tree T, is cut: its complexity to
classify a single instance is not reliable).

It is important to notice that the sub-tree of root
labelled [4] is not destroyed: even if it does not decrease
the number of miss-classified examples (which is two on
both root and leaves), this sub-tree highlights a reliable
sub-population when the attribute ‘cytol’ is higher than
600 (this result is checked by the medical expert). It is
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typically the situation that the authors presented in their
motivations (see Section 2).

5. Conclusions

The authors have presented a quality index DI for deci-
sion trees for uncertain domains which realizes a trade-off
between the impurities and the depth of the leaves of a tree.
Stemming from DI, the authors present a pruning method
which is able to keep sub-trees which do not decrease an
error rate but can point out some populations of specific
interest; yet usual methods are based on a classification
error rate. The authors claim that it is a major point in
uncertain domains.

Further work is to optimize the choice of the damping
parameter so that it is not linked to the degree of uncertainty
embedded in the data and it gives the ‘best’ pruned tree. A
way for this is to use a test file, then move to another stage of
the authors’ work, which will be to select a pruned tree
which reflects — in general — the sound knowledge of
the studied data. A further stage is to compare DI pruning
with others known methods [4,5,16].

Finally, it is noted that when the quality index has a low
value on a subtree T, it suggests that T contains poor data
for the KDD tasks. Another direction is to use this index to
manage a feedback to the experts of the domain in order to
improve such data.
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