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abstract

We propose a novel approach to automatically discover formulae of �rst principles

from the measurement data. The formulae obtained by our approach are ensured to

re
ect the �rst principles despite the fact that we try to use as littel knowledge of

the target relation as possible to make it applicable to various domains not limited

to physics problem. The basic idea is the combined use of deductive \scale-type-

based reasoning" and \data-driven reasoning". The former is based on the scale-type

information of quantities di�erent from the quantity dimension. The features of our

approach are demonstrated and discussed through its applications to many classes of

examples. This approach is expected to provide a basis to discover �rst principles of

various domains such as physics, biology, psychology, economics and social science.

1 Introduction

One of the early work to automatically discover formulae of physical �rst principles is a method

called dimensional analysis that was based on the product theorem [Bridgman22].

Product Theorem Assuming absolute signi�cance of relative magnitudes of physical quantities,
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the function � relating a secondary quantity, �, to the appropriate primary quantities, x; y; ::::

has the form: � = �(x; y; z; :::) = Cxaybzc::::, where C; a; b; c; ::: are constants.

There is another important theorem that is called Buckingham �-theorem [Buckingham14].

Buckingham �-theorem If �(x; y; ::::) = 0 is a complete equation, then the solution can be

written in the form F (�1;�2; :::;�n�r) = 0, where n is the number of arguments of �, and r is

the number of basic dimensions in x; y; z::::. For all i, �i is a dimensionless number.

Basic dimensions are such dimensions as length [L], mass [M ] and time [T ], scaling quantities

independently of other dimensions in the given �. For example, this theorem can be used together

with the product theorem to obtain the oscillation period t[T ] of a simple pendulum from its stick

length l[L], gravity acceleration g[LT�2] and deviation angle � [no dimension] (see Fig. 1.). We

can �nd two dimensionless quantities �1 = t(g=l)1=2 and �2 = �, and derive the basic formula

of the solution as F (�1;�2) = F (t(g=l)1=2; �) = 0 based on the theorem. Using this dimensional

analysis technique, Bhaskar and Nigam introduced a concept \regime" which is a formula �i =

�i(x; y; :::) de�ning a dimensionless quantity �i[Bhaskar90]. In the above example, t(g=l)1=2 and

� are the regimes. Further, they de�ned an \ensemble" which stands for the combination of a

complete equation F (�1;�2; ::::;�n�r) = 0 and the set of regimes contained in the equation.

The equation F (�1;�2; ::::;�n�r) = 0 is called an \ensemble equation". In the current example,

F (�1;�2) = 0 is an ensemble equation, and it composes an ensemble together with the regimes

t(g=l)1=2 and �. A regime refers to a decomposable subprocess. An ensemble stands for a

complete physical process in the system. The dimensional analysis utilizes the physical insights

into the objective system that is described by the unit dimension of each quantity. Another

method to automatically derive physical formulae is the symmetry-based approach which was

proposed by Ishida[Ishida95]. He applied the principle of symmetry to physical domains. The

system he developed heuristically searches for the invariant physical formula under a given set of
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isomorphic mappings. In the example of the simple pendulum, we can apply further constrains

of symmetry on the form F (t(g=l)1=2; �) = 0. One is phase translatory symmetry on t, and

this gives F (t(g=l)1=2; �) = F ((t(g=l)1=2 + 2m�; �), where m is an integer. Another is mirror

symmetry of the time t and angle � giving F (t(g=l)1=2; �) = F (�t(g=l)1=2;��). A formula

satisfying these constraints is � = sin(t(g=l)1=2). As is evident, this method also has to utilize

the explicit knowledge of physical characteristics of the object in terms of symmetry.

In contrast with these methods that are grounded on physical knowledge, some challenges have

been made by using data-driven approaches to discover the formulae of the �rst principles that

govern the objective system. Langley and others' BACON systems [Langley89] are most well

known as the pioneering work. They founded the succeeding BACON family. FAHRENHEIT

[Koehn86], IDS [Nordhausen90] and KEPLER [Wu89] are such successors that basically use

similar algorithms to BACON in search for a complete equation governing the data measured

in a continuous process. The target objects in various domains can be modeled because they do

not use any a priori knowledge of the objects. However, the heuristics in the search algorithm

have no �rm theoretical bases, and the search is limited to enumerating only polynomial and

meromorphic formulae. Accordingly, the set of the solutions obtained is not ensured to be sound

and complete.

To alleviate this drawback, some members of the BACON family, e.g., ABACUS [Falkenhainer86],

have a mode to utilize the information of the quantity dimension to prune the meaningless terms

based on the principle of dimensional homogeneity. However, this heuristic still limits the search

to polynomial and meromorphic formulae, and leaves too many types of equations in candi-

dates. COPER [Kokar86], another type of equation �nding systems based on the principles

of dimensional analysis can signi�cantly reduce the candidate generation by explicit use of the

information about the quantity dimension. Its another signi�cant advantage is higher credibility
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of the solution that it is not merely an experimental equation but is indeed a �rst principle

equation. However, these approaches are not applicable when the information of the quantity

dimension is not available. This fact strongly limits their applicability to non-physics domains.

All the previous approaches employ the following assumptions.

Assumption 1 The relation among quantities is represented by a complete equation in a con-

tinuous process under consideration.

Though Bhaskar and Nigam demonstrated the applicability of their dimension-based method

to the systems consisting of multiple complete equations, the speci�cation of a set of quanti-

ties is required for each complete equation in the framework, and thus this assumption must

be maintained[Bhaskar90]. Their dimension-based approach also requires the following assump-

tions.

Assumption 2 The type of scales of physical quantities is limited to ratio scale.

Assumption 3 The information on unit dimension of every quantity is available.

Assumption 4 Given a regime �i(�i; x; y; :::) = 0, either one of the following conditions holds.

1) It is a unique regime of a complete equation.

2) For each quantity x in �i, any other regimes do not contain x, or any other regimes are

related in such a way that x does not change �i from outside of �i.

COPER also requires the assumptions 2 and 3 , and ABACUS the assumption 3 if it tries to

apply its dimension based heuristics. The assumption 2 is the restatement of the assumption in

the product theorem, i.e., the absolute signi�cance of relative magnitudes of physical quantities.

Although the quantities of the ratio scale are quite common in various domains, there is another
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scale-type of quantities called \interval scale" which is also widely encountered as explained

later. The assumption 3 is needed for any dimension based approach, and this limits the

applicability of the approach to the domains where the relations among measurement processes

of quantities are well-de�ned. The assumption 4 was recently pointed out by Kalagnanam and

Henrion[Kalagnanam94]. Every data-driven approach in BACON family assumes the following

environment of data measurement.

Assumption 5 The measurements on the relation in any subset of quantities in a complete

equation can be made while holding the other variables constant under an experimental envi-

ronment, and the measured data can be subsequently used to reason the formula relating the

variables.

The objective of this paper is to propose a new approach to automatically discover formulae

of �rst principles. Our approach lies in between the deductive approaches as represented by

dimension-based reasoning and the empirical approaches as represented by BACON family. The

former systems such as ABACUS (in case that it uses the dimension based heuristics) and

COPER also take the position between the deductive and empirical frameworks. However, their

applicability is quite limited due to the strong assumptions 2 and 3 as explained earlier. In

contrast, our approach removes the limitations of the assumptions 2 , 3 and 4 , i.e., it covers the

quantities of both ratio and interval scales, does not require the information on unit dimension

but only scale-types, and covers the mutually dependent regimes. The following theoretical

aspects are newly introduced in this paper to achieve these advantages.

1) The sound relations among quantities of ratio and interval scales within a regime are char-

acterized, and the product theorem is extended to re
ect the relations.

2) The structure of dimension is characterized for both ratio and interval scale quantities, and

the Buckingham �-theorem is extended for the structure.
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3) The condition that each regime contains a set of quantities that are mutually exclusive in

an ensemble is characterized (i.e., the condition that a set of regimes forms a partition of

the quantities), and an algorithm to identify such regimes is proposed.

4) A new approach to automatically discover formulae of �rst principles is proposed based on

scale-type-based and data-driven reasoning. It is applicable to the target formula contain-

ing both of ratio and interval scale quantities without using any information of their unit

dimensions.

The other two assumptions 1 and 5 remain the same in our approach at present. On these

grounds, our approach can derive a sound set of solutions of the formulae for each regime

similarly to the dimension-based approach while still maintaining the advantage of the data-

driven approach like BACON, i.e., it does not require a priori insights into the objective system

but only data that can be obtained by measurements. Thus, it is expected to be applied to

various domains and not limited to physics. The subsequent section explains the basic principle

of scale-type based reasoning. The section 3 proposes and demonstrates our new approach, and

the section 4 discusses the features of our approach through its applications to many classes of

examples.

2 Basic Principle of Scale-Type-Based Reasoning

Since after Helmholtz originated a research �eld of \measurement theory" [Helmholtz87], many

literatures have been published on this topic in the 20th century. Stevens de�ned the measure-

ment process as \the assignment of numerals to object or events according to rules" [Stevens46].

He claimed that di�erent kinds of scale-types and di�erent kinds of measurement are leaded,

if numerals can be assigned under di�erent rules. Table 1 shows three scale-types, where the

last two of them, e.g., ratio and interval scales, are de�ned by him. The interval scale and the

ratio scale are the majorities of quantities in physical, psychological, economical and sociological
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domains. Examples of the ratio scale quantities are physical mass, absolute temperature, pres-

sure, time interval, frequency, and currency value. Each has an absolute origin, and the ratio of

two di�erent values x1=x2 is invariant against their unit change. Examples of the interval scale

quantities are temperature in Celsius and Fahrenheit, energy, entropy, time (not time interval),

and sound tone (proportional to the order of white keys of a piano). The origin of their scales

are not absolute, and are changeable by human's de�nitions, whereas the ratio of two di�erent

intervals (x1 � x2)=(x3 � x4) is invariant against their unit change. The scale-type is di�eren-

t from the dimension. The scale-type just represents the de�nition of the measurement rule.

Accordingly, the use of the information of the scale-types does not require the assumption 3 .

Another important scale-type we should mention is \absolute scale" as indicated in Table 1 where

dimensionless quantities belong to this type. Any change of units is not de�ned for absolute

scale quantities, and hence any unit conversion is not admissible.

Luce claimed that the basic formula of the functional relation between any two quantities of

ratio and interval scales can be determined by their scale-type features, if the quantities are not

coupled through any dimensionless quantities[Luce59]. In this case, the two quantities should

have common basic dimensions, and consequently a unit change of quantity a�ects the value of

another quantity. Suppose x and y are both ratio scale quantities, and y is de�ned by x through a

continuous functional relation y = u(x). Suppose the form of u(x) is logarithmic, i.e., y = log x,

and we multiply a positive constant k to x, i.e., a change of unit, without violating the group

structure of the ratio scale quantity x shown in Table 1, then this leads u(kx) = log k + log x.

This fact causes the shift of the origin of y by log k, and violates the group structure of y

which is the ratio scale quantity. Hence, the direct functional relation from x to y must not be

logarithmic. As the admissible transformations of x and y in their group structures are x0 = kx

and y0 = Ky respectively, the relation of y = u(x) becomes as y0 = u(x0) $ Ky = u(kx). The

factor K of the changed unit of y may depend on k, but it shall not depend upon x, so we denote
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it by K(k). Consequently, we obtain the following constraints on the continuous function u(x).

u(kx) = K(k)u(x);

where k > 0 and K(k) > 0, as these are the factors of the changed units. The constraints for

the di�erent combinations of the scale-types are summarized in the fourth column in Table 2

[Luce59]. Luce derived each solution of u(x) under the condition of x � 0 and u(x) � 0. We

extended his theorems to cover the negative values of x and u(x), and the result is summarized

in the last column in Table 2. Because of the space limitation, we omit the proof for the results.

For the detail, see the references[Washio96b], [Washio96a].

The inde�nability of a ratio scale from an interval scale in Table 2 is because the ratio scale

involves the information of an absolute origin, but the interval scale does not. Luce gave some

examples of the equations in Table 2 [Luce59]. The quantities entering into Coulomb's law,

Ohm's law and Newton's gravitation law are all ratio scales, and the formula of each law is a

power function which follows the formula of No.1 for the pairwise relation in the table. We see

examples of formulae No.2.1 and No.2.2 for laws associated with energy and entropy. The total

energy U of a body having a constant mass m and moving at velocity v is U = mv2=2+P , where

P is the potential energy. If the temperature of a perfect gas is constant, then the entropy E of

the gas as a function of the pressure p is of the form E = �R log p + E0, where R and E' are

Boltzmann's constant and a reference value of entropy respectively. In psychophysics, Fechner's

law states that the sound tone s of human sensing is proportional to the logarithm of the sound

frequency f , i.e., s = � log f + �, where s is an interval scale, and f is a ratio scale. As an

example of formula No.4, there is the relation x = vt+ x0 for a particle moving at its constant

velocity v, where x is the position at the present time t and x0 is the initial position.

Finally, the following important consequence should be indicated.
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Theorem 1 An absolute scale quantity can have functional relations of any continuous for-

mulae with other absolute scale quantities.

For example, the behavior solution of the simple pendulum of Fig. 1 is � = sin(t(g=l)1=2). The

triangular function sin which does not belong to Table 2 can hold, because � and t(g=l)1=2 are

dimensionless, i.e., absolute scale.

3 Theory and Method to Derive Possible Equations of First

Principles

3.1 Scale-Type-Based Reasoning within a Regime

This subsection describes the theory and the method of scale-type-based reasoning which uses

a priori knowledge of quantity scale-types (but not the knowledge of physics) to derive the

formula of �i for a given regime. First, the product theorem is extended to include interval scale

quantities.

Theorem 2 Assuming primary quantities in a set R are ratio scale-type, and those in another

set I are interval scale-type, the function � relating a secondary quantity � to xi 2 R [ I has

one of the forms:

� = (
Y

xi2R

jxij
ai)(
Y

Ik2C

(
X

xj2Ik

bkj jxj j + ck)
ak) (i)

� =
X

xi2R

ai log jxij +
X

Ik2C�g

ak log(
X

xj2Ik

bkjjxj j + ck) (ii)

+
X

x`2Ig

bg`jx`j + cg
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where all coe�cients except � are constants, and C is a covering of I, C�g a covering of I � Ig

(Ig � I).

Theorem 3 If R = � in Theorem 2 , the function � relating a secondary quantity � to xi 2 I

has one of the forms:

� =
Y

Ik2C

(
X

xj2Ik

bkj jxj j + ck)
ak (i)

� =
X

Ik2C�g

ak log(
X

xj2Ik

bkj jxj j + ck) (ii)

+
X

x`2Ig

bg`jx`j + cg

where all coe�cients except � are constants, and C is a covering of I, C�g a covering of I � Ig

(Ig � I).

Because of the space limitation, the proofs of theorems 2 and 3 are omitted. The principle of

the extension is a certain symmetry that the relations given in Table 2 must hold for each pair of

quantities sharing some basic dimensions in a regime. For example, if we look at the relation on

a pair of x and y(= u(x)) in R while regarding the rest of quantities as constants, both forms (i)

and (ii) in theorem 2 reduce to the realtion of y = u(x) = ��jxj
� which is the �rst relation in

Table 2. Thus, both formulae are the extension of the product theorem. Furthermore, if we look

at the relation on a pair of x in R and y(= u(x)) in I, both formulae reduce to the relations 2.1

and 2.2 in the table. The similar discussion holds for the relation on a pair of two interval scale

quantities. Accordingly, these theorems present the generic relations among ratio and interval

scale quantities which mutually share some basic dimensions.

Now, we consider to derive the candidates of formula � = �(x1; :::; xm) of a given regime �,

where the set of quantities except derivative � is Q = fx1; :::; xmg. The following algorithm

based on the product theorem and the above theorems 2 and 3 derives the candidates.
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Algorithm 1

(Step 1)Q = fx1; :::; xmg, S = �. Let R be a set of all quantities of ratio scale in Q. Let I be a

set of all quantities of interval scale in Q. (Q = R+ I)

(Step 2) If I = � f

Based on the product theorem, push the following to S.

� = �(x1; x2; :::; xm) =
Q

xi2R
jxij

ai : g

else if R = � f

Push the relation of theorem 3 to S.g

else f

Enumerate candidate relations of (i) in theorem 2 for all coverings C of I, and push

those candidates to S. Enumerate candidate relations of (ii) in theorem 2 for all

coverings C�g of I, and push those candidates to S.g

The candidates are rested in the list S. The result of S is sound, since the soundness is ensured

by the product theorem, the theorems 2 and 3 . The complexity of this algorithm is not low,

since many coverings of I must be tested in the theorems. However, it is not very problematic,

because the size of a regime is generally quite limited.

This algorithm have been tested by various physical laws. The following is an example of the

ideal gas equation which forms a unique regime. A regime involving four quantities of pressure

p, volume v, mass m and temperature t is given, thus Q = fp; v;m; tg. The quantities p, v and

m are ratio scales, while only t is an interval scale unless it is absolute temperature. We assumed

the positive sign of p, v and m in advance, hence the solutions for their negative values were

omitted. The algorithm �gured out the three candidate relations. The �rst one comes from (i)

of theorem 2 :

� = p
a1v

a2m
a3(b1t+ c1);
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and the second and third ones come from (ii) of theorem 2 :

� = a1 log p+ a2 log v + a3 logm+ a4 log(b1t+ c1) + c2:

� = a1 log p+ a2 log v + a3 logm+ b1 � t+ c1:

The �rst two formulae are essentially identical, and thus the following candidates were obtained.

p
�a1v

�a2 = ��1
m

a3(b1t+ c1):

p
a1v

a2 = m
�a3 exp(�� b1t� c1):

The former solution re
ects the right formula of the ideal gas equation, when the temperature is

not absolute one. Once the candidate formulae of a regime are determined, the correct formula

and the values of its coe�cients must be speci�ed in data-driven manner.

3.2 Data-Driven Reasoning on Ensemble

Before proposing the data-driven reasoning on an ensemble, the de�nition of dimension, regime,

ensemble and the consequence of Buckingham �-theorem need to be re-examined. Within the

conventional view, a basic dimension, D, of a quantity is de�ned by a basic unit, U, of the

quantity, i.e., the basic dimension is represented as D(U). The value of a measured quantity is

represented by the numeric value of units equivalent to the amount of the quantity. For example,

if the mass of an object is equal to the mass of seven basic units where each mass unit is named

as 1kg, then the mass of the object is said to be 7kg. When we use another basic unit such as

1g, then the measured value of the same object will be 1000 times larger. This de�nition is valid

only for basic quantities of ratio scale. Basic dimension of interval scale has a bit more complex

structure. A basic unit and a basic origin are required to determine the value of temperature

in Celsius. These unit and origin are di�erent for temperature in Fahrenheit. Consequently, we

need to extend the notion of a basic dimension as D(U, O) where O stands for a basic origin. In
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case of a basic dimension of ratio scale, O is constrained to be 0, while O can take an arbitrarily

value for a basic dimension of interval scale.

Based on the above discussion, the notion of the structure of a general dimension consisting of

multiple basic dimensions is also extended. For example, let us consider the total energy of a

particle. The particle having a certain temperature is moving at a certain height in a certain

velocity. Thus, its total energy Et is:

Et = Eh +Ep + Em;

where Eh; Ep and Em are contained heat energy, potential energy and kinematic energy re-

spectively. Every energy has an identical unit of [M ][L]2[T ]�2 where [M ]; [L] and [T ] are basic

units of mass, length and time. On the other hand, Eh; Ep and Em are interval scale, since Eh

is de�ned by temperature measured on a reference temperature point [To] , Ep by a reference

height level [Ho] and Em by the kinematic energy of a reference coordinate [Eo]. Every energy

component has its own reference point, i.e. the basic origin. Because Et is the summation of

Eh; Ep and Em, the dependency of the value of Et to these basic origins has a linear form of

mc[To] +mg[Ho] + [Eo] where m is the mass of this particle, c the speci�c heat coe�cient and g

the gravitational acceleration. Accordingly, the structure of the dimension of Et is represented

as D([M ][L]2[T ]�2;mc[To] +mg[Ho] + [Eo]). The structure of a general dimension can be rep-

resented as D(U�1
1
U
�2
2
� � � ; �1O1 + �2O2 + � � �) where U1; U2; � � � are basic units, and O1; O2; � � �

are basic origins. This is because the relation among origins follows the theorem 3 , while the

relation among units follows the product theorem.

This extended structure of the dimension requires to extend the Buckingham �-theorem as

follows.

Theorem 4 (Extended Buckingham �-theorem) If �(x; y; z � � �) = 0 is a complete equa-
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tion, and if each argument is one of interval, ratio and absolute scale-types, then the solution

can be written in the form

F (�1;�2; :::;�n�r�s) = 0;

where n is the number of arguments of �, and r and s are the number of basic units and that of

basic origins of the dimensions in x; y; z � � �. For all i, �i is a dimensionless quantity.

The basic background of the original Buckingham �-theorem is the fact that the intrinsic degree

of freedom of n ratio scale quantities of x; y; z � � � is n� r, because the values of r quantities are

determined by the speci�cation of r basic units in the measurement. As an interval scale quantity

has an extra factor, i.e., basic origin, beside the basic unit, the values of r + s quantities are

determined by the speci�cation of the measurement, and the intrinsic degree of freedom reduces

to n� r � s. This theorem ensures that we can remove the limitation of the assumption 2 .

Another important subject is to overcome the limitation of the assumption 4 that was pointed

out by Kalagnanam and Henrion[Kalagnanam94]. The process of identifying the formula of each

regime �i(x; y � � �) = �i is basically to �nd a relation among a subset of quantities in a complete

equation while holding the condition that must hold outside of �i = � constant as stated in the

assumption 5 . If the assumption 4 does not hold, this operation is impossible because of the

dependency among multiple regimes. This di�culty can be removed by introducing an idea of

pseudo-regime.

De�nition of pseudo-regime

A pseudo-regime is a subsystem, where the relation among quantities follows one of the product

theorem, theorem 2 and 3 , of a given complete equation.

Consider the example of convection heat transfer depicted in Fig. 2 given by Kalagnanam et

al.[Kalagnanam94] The heat transfer from a 
uid to a pipe wall takes place through convection
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when a 
uid is forced through a pipe. A complete equation for this phenomenon under the

turbulent 
ow is known as follows.

�1 = 0:023�2
0:8�3

0:4
;

where �1 = hd
k
;�2 = dv�

�
and �3 = c�

k
: Here, h is the convection heat transfer coe�cient

dependent on the other quantities, d and v are diameter of pipe and velocity of stream, and

�, �, c and k are the material quantities of the 
uid, i.e., viscosity, density, speci�c heat and

thermal conductivity respectively. The number of quantities and that of the basic dimensions

are n = 7; r = 4 and s = 0 respectively. Hence, three (n � r � s = 3) regimes exist in this

ensemble, and �1, �2 and �3 are called as Nusselt's, Reynold's and Prandtl's numbers in the

thermal hydraulics domain. This example violates the assumption 4 , because d; � and k appear

in multiple regimes. However, this equation is regarded as a unique pseudo-regime, because it

can be rewritten to follow the product theorem as:

k0:6v0:8�0:8c0:4

hd0:2�0:4
=

1

0:023
:

Accordingly, the data-driven search of a pseudo-regime can discover this formula without facing

the di�culty pointed out by Kalagnanam and Henrion. On the other hand, the relation can be

decomposed into:

�0

1 = d; �0

2 = k; �0

3 = �; �0

4 = h; �0

5 = v� and �0

6 = c:

Because these pseudo-regimes are mutually independent, the data-driven discovery of these

pseudo-regimes is also possible. Consequently, the following theorem can be stated.

Theorem 5 Given a complete equation �(x1; x2; :::xn) = 0, its decomposition into pseudo-

regimes always exists where

F (�1;�2; :::;�k) = 0 and f�0i(x1i ; x2i ; :::xmi
) = �iji = 1; :::; kg:
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Here fQijQi = fx1i ; x2i ; :::xmi
g; i = 1; :::; kg is a partition of entire quantity set Q = fx1; x2; :::xng.

The quantity � of a pseudo-regime may not be dimensionless, since a pseudo-regime does not

necessarily consist of quantities that cancel out every dimensions. The � de�ned in a pseudo-

regime is called a \pseudo dimensionless quantity". Accordingly, the following assumption must

hold.

Assumption 6 The measurement for the data of the entire complete equation must follow a

consistent unit system 1

Otherwise, the formulae of the ensemble equation may become invalid, since it is not invariant

to the change of dimensions. In addition, the number of pseudo-regimes does not follow n�r�s.

The algorithm to discover an ensemble equation and a set of pseudo-regimes involves a stage

to identify pseudo-regimes, a stage to determine the arguments �s of the ensemble and a stage

to determine the formula of the ensemble equation. The following algorithm to discover the

formula of a complete equation from the given data has been constructed.

1For example, SI units system should not mixed up with CGS units system in an experiment.
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Algorithm 2

(Step 1)E = fx1; x2; :::xng, LE = � and k = 1.

(Step 2) Repeat until k becomes equal to n. f

Repeat for every partition �i of E where j�ij = k. f

Repeat for every Qij 2 �i(j = 1; :::; k). f

Apply the algorithm 1 to Qij to identify a pseudo-regime. Test each solution in S

obtained in the algorithm 1 through the least square �tting to the measured data

under some sets of constant values of quantities in (E � Qij). If some solutions

are accepted, substitute them to a list LQij .g

If every LQij 6= �, let a list L�i = fLQij jQij 2 �i; j = 1; :::; kg. Push L�i to LE.g

If LE 6= �, go to (Step 3), else k = k + 1.g

(Step 3) Repeat for every L�i in LE. f

Take Cartesian products LPi = LQi1 � LQi2 � � � � � LQik in L�i.

Let �(�ij ) be the pseudo dimensionless quantity of the regime �ij (2 LQij).

Repeat for every f�i1 ; �i2 ; :::; �ikg 2 LPi. f

Determine the formula F (�(�i1);�(�i2); :::;�(�ik)) = 0.gg

More concrete contents of this algorithm are demonstrated through an example of an electric

circuit depicted in Fig. 3. Both V1 and V2 are the input voltages and V1 is set higher than V2.

The intermediate voltage that is determined by the ratio of the resistances R1; R2 is provided to

the base of the transistor Tr, and a capacitor C is connected to the emitter of the Tr. The line

between the collector and the emitter is ON due to the voltage di�erence between the base and

the emitter, when the C is not charged, i.e., the voltage di�erence across the C is equal to 0V .

Consequently, the C is charged by the electric current through the collector and the emitter,

and the voltage of the emitter approaches to that of the base. When the voltage di�erence
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between the base and the emitter becomes negligible, the line between the collector and the

emitter becomes OFF , and the electric charge in the C is maintained. The dynamics of this

circuit is represented by a complete di�erential equation as

_Q =
hFE

RBE
(

R2

R1 +R2

(V1 � V2)�
Q

C
);

where

Q : electric charge of capacitor;

_Q : time derivative of Q;

C : charge capacity of capacitor;

R1; R2 : values of resistance;

V1; V2 : applied higher and lower voltage levels;

hFE : amplifying rate of electric current of transistor;

RBE : resistance between base and emitter of transistor:

This equation consists of multiple elementary physical laws. The measurement data ofQ; _Q; V1; V2

have been obtained for the various values of the parameters C;R1; R2 through the numerical

simulation of this circuit. The other parameters hFE and RBE are considered to be constant

throughout this example.

In (Step 1), the set of measured quantities E is set as fQ; _Q;V1; V2; C;R1; R2g. (Step 2) is the

process to enumerate all partitions of E where each subset of E is interpreted as a pseudo-regime.

The goodness of the least square �tting of each candidate solution derived by the algorithm 1 is

checked through the F-test which is a statistical hypothesis test to judge if the measured data

follows the solution. If a parameter is close enough to an integer value, then the parameter

is forced to be the integer, because the parameter having an integer value is quite common



Spec. Issue, KDD: Tech. & App., Knowledge-Based Systems, 10, 7, pp.403-411, 1998 19

in various domains. Every partition �i, where all of its components are judged to be pseudo-

regimes, is searched in an ascending order of the cardinal number k of the partition. Once

such partitions are found at the level of the certain cardinal number, (Step 2) is �nished at

that level to obtain the solutions of the ensembles involving the least number of pseudo-regimes.

This criterion decreases the ambiguity of the formula of the ensemble equation by reducing the

number of the absolute scale quantities in it. In the current example, only the partition of

ffR1; R2g; f _Qg; fQ;Cg; fV1; V2gg is accepted at the least cardinal number, k = 4. All quantities

in the last pseudo-regime are of interval scale, and those in the others are of ratio scale, and

thus the formula of these pseudo-regimes are enumerated as:

�1 = R
a1
1 R

a2
2 ; �2 = _Q; �3 = Q

a3C
a4 ; �4 = b1V1 + b2V2 + c1:

Notice that the number of quantities n is 7 while r = 3 and s = 1, since these quantities have

three basic units of [Q]; [V ]and[s] and one basic origin of voltage level. Therefore, the number

of regime must be n� r� s = 3 according to the extended Buckingham �-theorem, whereas the

number of the pseudo-regimes is 4. In fact, �2;�3 and �4 are not dimensionless. Their more

speci�c formulae are identi�ed through the data �tting as follows.

�1 = R1=R2; �2 = _Q; �3 = Q=C; �4 = V1 � V2:

(Step 3) searches the ensemble equation, i.e., the relation among �s �gured out in the preceding

steps. This step utilizes the BACON like algorithm, where the basic approach is to generate bi-

variate equations based on data �tting and compose them in a hierarchical manner by repeatedly

applying hypothesis generation rules. First, the polynomial and meromorphic relations between

each pair of f�1;�2;�3;�4g are tested, and a linear relation between �2 and �3 is found under

constant �1 and �4. Thus, we obtain

d1 = �2 + d3�3:
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Next, the pairwise relations among fd1;�1;�4g are tested, and another linear relation between

d1 and �4 is found under constant �1.

d1 = e1�4:

Also, it can �nd that d3 is independent of the other quantities. Finally, the following relation

between e1 and �1 is searched.

e1 = d31=(�1 + 1):

By combining above formulae, the original equation to represent this system is reconstructed.

This example demonstrates that our approach is applicable to systems consisting of multiple

elementary laws and having dynamic and nonlinear characteristics.

4 Discussion

This section discusses the characteristics of the proposed method in several aspects. The as-

sumptions 1 , 5 and 6 are retained in our method. The �rst and the second assumptions

are common in the conventional data-driven approach, and do not limit the applicability of

our method in the same sense with the conventional approaches, when the experimental envi-

ronment is available. The last assumption is acceptable, if the measurements of quantities are

appropriately arranged to re
ect the features of the objective system, even when the dimensions

of quantities are not known. Accordingly, our approach has the wide applicability to various

domains.

The overcoming of the assumption 2 and 3 in our framework is clear. The examples of the

ideal gas law and the convection heat transfer contains only ratio scale quantities. On the other

hand, the example of the electric circuit contains interval scale quantities. In each case, our

approach discovers the formula of the �rst principles governing the target system without using
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the information of quantity dimension. Another example to show the wide applicability of our

approach with respect to the assumption 3 is the following equation known to be the law of

spaciousness of a room in psychophysics[M. Kan.72].

Sp = c

nX

i=1

RL
0:3
i W

0:3
i ;

where Sp; R; Li andWi are average spaciousness of a room, room capacity, average light intensity

and solid angle of window at the location i in the room. Though the dimension of Sp is unclear,

its scale-type is known to be ratio scale based on its de�nition. L and R are ratio scale, and W

is absolute scale. Our approach can derive the above expression under given measurement data

without any di�culty. This ability of our approach comes from the theory of scale-types, the

extended Product Theorem and Buckingham �-theorem.

The limitation stated in the assumption 4 has also been removed in our approach by introducing

the idea of the pseudo-regime. The ideal gas law aforementioned follows the �rst condition of the

assumption. An example that follows the second condition is the well-known Black's speci�c heat

law. This relates the initial temperatures of two substances T1 and T2 with their temperature

Tf after they have been combined. This law has the formula of

Tf =
M1

M1 +M2

T1 +
M2

M1 +M2

T2

whereM1 andM2 are the masses of the two substances. This contains the following two regimes

that do not mutually share any common quantities and an ensemble equation.

�1 =
Tf � T1

Tf � T2
;�2 =

M2

M1

and �1 + �2 = 0:

The formulae of the ideal gas law and the Black's speci�c heat law are easily discovered in our

approach. On the other hand, the assumption does not hold in the aforementioned examples of

the convection heat transfer and the electric circuit. In spite of this more complex condition,

our approach can reconstruct the target formulae through the identi�cation of pseudo-regimes.
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Another important feature of the objective system which has not been addressed earlier is if

the system is represented by a read-once formula. A read-once formulae is a formula where

each quantity appears at most once in it. The formulae of the ideal gas law, the convection

heat transfer and the electric circuit are such examples. In contrast, the formula of the Black's

speci�c heat law is not a read-once formula. Some of Tf ; T1 and T2 in the �rst regime or one of

M1 and M2 in the second appears more than once in the same regime under any conformation

of the formula. Because the type of the formula of a regime is strongly limited, the search of

the regime which is not read-once is not a very expensive process. However, suppose the case

where a quantity appears more than once in di�erent regimes. The following formula of the

decay speed of a radioactive element is such an example.

_C = C0� exp(�t);

where _C is the decay speed, C0 the initial amount of the element, � the decay constant and t

time. This has two regimes

�1 =
_C

C0�
and �2 = �t;

where � appears at each regime. In this case, our approach identi�es the following three pseudo-

regimes and an ensemble equation.

�1 =
_C

C0

;�2 = t and �3 = � and �1 = �3 exp(�2�3):

Then, the vast number of candidate formulae must be searched under the assumption that any

�i can appear more than once in an ensemble equation. This becomes expensive, when the

formula of the objective system is complex. This di�culty must be alleviated in the future

work.
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5 Conclusion

In this paper we have proposed a new method that enables us to automatically discover formulae

of �rst principles. Our approach makes the best use of both the deductive and the empirical

data-driven approaches. The major characteristics of our approach are summarized as follows.

1) The sound solutions of basic formulae of law equations within a regime are provided by using

only the knowledge of quantity scale-types (not the knowledge of unit dimensions).

2) An ensemble equation and its pseudo-regimes in the objective system are identi�ed from the

experimental data without any strong limitations. The identi�ed pseudo regimes are not

necessarily the real regimes but they are ensured to hold independently of other regimes,

thus considered to be informative decomposable subprocesses.

3) The applicability is not limited to well-de�ned domains such as physics, because the method

does not require a priori knowledge such as unit dimensions except the knowledge of quantity

scale-types as mentioned in 1).

The scale-type-based reasoning may provide a basis to discover qualitative models of various

domains such as biology, psychology, economics and social science.
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Figure 1 A simple pendulum.

Figure 2 Convection heat transfer.

Figure 3 An electric circuit.
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Table 1: Scale-types

Scale-type Basic Empirical Operation Mathematical Group Structure

Absolute Determination of equality of values Identity group x0 = x

Ratio Determination of equality of ratios Similarity group x0 = kx

Interval Determination of equality of Generic linear group x0 = kx+ c

intervals or di�erences
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Table 2: Constraints and their possible equations satisfying the scale-type characteristics

Scale-types

No. Independent Dependent Constraints Possible Relations

variable (De�ned)

variable

1 ratio ratio u(kx) = K(k)u(x) u(x) = ��jxj
�

2.1 ratio interval u(kx) = K(k)u(x) + C(k) u(x) = � log jxj+��

2.2 u(x) = ��jxj
� + �

3 interval ratio u(kx+ c) = K(k; c)u(x) impossible

4 interval interval u(kx+ c) = K(k; c)u(x) + C(k; c) u(x) = ��jxj+ �

1) k > 0;K(k) > 0;K(k; c) > 0; c and C can be any real numbers.

2) The notations ��; �� are �+; �+ for x � 0 and ��; �� for x < 0, respectively.
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Figure 1: Knowledge-Based Systems, Takashi Washio and Hiroshi Motoda
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Figure 2: Knowledge-Based Systems, Takashi Washio and Hiroshi Motoda
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Figure 3: Knowledge-Based Systems, Takashi Washio and Hiroshi Motoda


