
Knowledge Modelling for a Generic
Refinement Framework

Robin Boswell and Susan Craw

School of Computer and Mathematical Sciences, The Robert Gordon University

St Andrew Street, Aberdeen AB25 1HG, UK

Abstract

Refinement tools assist with debugging a KBS’s knowledge, thus easing the
well-known knowledge acquisition bottleneck, and the more recently recognised
maintenance overhead. Existing refinement tools are developed for specific
rule-based KBS environments, and have usually been applied to artificial or
academic applications. Hence there is a need for tools which are applicable
to industrial applications. However, it would be wasteful to develop separate
refinement tools for individual shells; instead, the KrustWorks project is devel-
oping re-usable components applicable to a variety of KBS environments. This
paper develops a knowledge representation that embodies a KBS’s rulebase and
its reasoning, and permits the implementation of core refinement procedures,
which are generally applicable and can ignore KBS-specific details. Such a
representation is an essential stage in the construction of a generic automated
knowledge refinement framework, such as KrustWorks. Experience from ap-
plying this approach to Clips, PowerModel and Pfes KBSs indicates its
feasibility for a wider variety of industrial KBSs.

Keywords: Knowledge Refinement, Knowledge Representation,
Knowledge Acquisition.

1 Introduction

The well-known knowledge acquisition bottleneck encompasses both the origi-
nal knowledge elicitation, and the debugging of the knowledge while the knowl-
edge based system (KBS) develops. As KBSs become more routinely used in
industry, their maintenance becomes a further knowledge management issue.
The evolution of methodologies such as KADS [1], organises the knowledge de-
velopment process, but there is a demand for knowledge refinement tools that
assist with the acquisition, debugging and maintenance of the knowledge itself.
A knowledge refinement tool assists a knowledge engineer by identifying places
where the knowledge may need to be changed. For knowledge acquisition, it
identifies potential gaps in the knowledge and incorporates missing knowledge
into the KBS. For debugging, it identifies potential faults in the knowledge and
suggests possible repairs. In contrast to debugging, knowledge maintenance
refines the knowledge because the problem-solving environment has changed

1



in some way; in this case, the knowledge must be updated to match the new
environment.

Knowledge refinement tools each perform the same general steps. The tool
is presented with a faulty KBS and some evidence of faulty behaviour; often
this consists of examples that the KBS fails to solve correctly, together with
the correct solutions. The refinement tool reacts to a piece of evidence by
undertaking the following three tasks: blame allocation determines which rules
or parts of rules might be responsible for the faulty behaviour; refinement

generation suggests rule modifications that may correct the faulty behaviour;
and refinement selection picks the best of the possible refinements. The goal of
refinement is that the refined KBS correctly solves as many of the examples as
possible, with the expectation that novel examples will also have an improved
success rate.

Most knowledge refinement systems are designed to work with KBSs de-
veloped in a single language [2, 3, 4], or a particular shell [5]. However, it is
wasteful to develop refinement tools for individual languages and shells. We
prefer to investigate re-usable refinement components that can be applied to
a variety of KBS environments. This paper concentrates on the knowledge
representation issues, and the rest of this section investigates the knowledge
demands of the core refinement processes. Section 2 considers how they can
be satisfied by generic structures that organise the key roles adopted by com-
ponents of rules. In Sections 3 and 4 we describe our experience of applying
these generic knowledge structures to various KBSs. Section 5 investigates the
approaches used by other refinement tools. In Section 6 we draw some conclu-
sions about the usefulness of these structures and their utility in our long term
goal of providing a framework of refinement components in the KrustWorks
project.

1.1 The Refinement Process of a KrustTool

We base this paper on experience with our Krust refinement system [6]. Fig-
ure 1 shows a KrustTool1 performing the operations highlighted above. The
KBS’s problem-solving for one training example is analysed, and blame is al-
located to the knowledge that has taken part in the faulty solution, or which
failed to contribute to the solution as intended. The experiment toolset gener-
ates repairs that correct this faulty behaviour. A rule is prevented from firing
by making its conditions harder to satisfy, or by preventing rules that conclude
the knowledge required by the original rule’s conditions. Conversely, a rule is
encouraged to fire by making its failed conditions easier to satisfy, or by encour-
aging rules that conclude the knowledge required by the original rule’s failed
conditions. Knowledge specific refinement operators implement these repairs
on the rules. KrustTools are unusual in proposing many faults and generating

1We now refer to refinement tools that apply the basic mechanism of the original Krust

system as KrustTools. We are developing a KrustWorks framework (Section 6) from which
an individual KrustTool for a particular KBS will be assembled; i.e. there is not one unique
KrustTool.



many repairs initially, and so a KrustTool applies filters to remove unlikely
refinements before any refined KBSs are implemented. It then evaluates the
performance of these refined KBSs on the training example itself and other
examples that are available. A detailed description of the execution of an early
Krust appears in [7].

IMPLEMENT
 REFINEMENTS

GENERATE
REFINEMENTS

ALLOCATE
BLAME

Training
Example

CHOOSE
BEST KB

Filter Toolset

All examples

Refinement
Filter

Implementation
Filter

Experiment
Toolset

Operator Toolset

Faulty
Knowledge

Base

Refined
Knowledge

Base

Figure 1: The Operation of a KrustTool

1.2 The Knowledge Demands of a KrustTool

The refinement process relies on determining what knowledge was applied to
solve the given training example and what knowledge might have been ap-
plied instead (Blame Allocation), and how to alter the knowledge (Refinement
Generation). A refinement tool therefore reasons about actual and potential
interactions within the KB, and in particular rule chaining behaviour. An im-
portant result of our work on knowledge refinement is the conclusion that the
necessary information for the refinement of any KBS may be represented in two
structures.



The Knowledge Skeleton is an internal representation of the rules in a KBS.
The knowledge skeleton allows the refinement tool to determine what knowledge
is applied and how rules can chain. The creation of a knowledge skeleton
requires the existence of a common knowledge representation language, which
can represent any feature in any shell to which KrustWorks is to be applied.
The skeleton itself is built by a shell-specific translator. The remaining sections
of this paper concentrate on the representation language for the knowledge
skeleton and the use of the knowledge skeleton in KrustTools.

The Problem Graph represents the KBS’s problem-solving for an incorrectly
solved example. Details of the problem graph and its use in KrustTools will
appear in a later paper. Figure 2 shows a problem graph when the KBS solu-
tion is ‘–’ but the correct answer is ‘+’. The initial facts are shown as circular
leaf nodes, provable knowledge is also shown as circles, and square nodes rep-
resent knowledge that is currently not provable but would help to correct the
error. Each rule is labelled by a diamond, linked to its conditions beneath it
and its conclusion above. A circular arc indicates that a rule has two or more
conditions forming a conjunction. For example, rule R7 has conditions G ∧ H
and conclusion B. Rule R8 has condition H and conclusion C. The positive

+ - +

A B D E

F H I J K

R7R6R5

R2R1

R8 R9

R4R3

R10

G

C

Figure 2: A Sample Problem Graph

part of the problem graph is shown as solid lines and represents the knowledge
that was applied during the problem-solving. The negative part of the problem
graph is shown with dotted lines and highlights those parts of rules which may
be changed to deduce the correct answer ‘+’. The negative part of the graph
is constructed with reference to the desired goal and the knowledge skeleton,
since it can not be derived from the observed behaviour of the KBS. We repre-
sent the control strategy by organising the sub-graphs in a left-to-right order,
where the leftmost rules are those chosen earliest for execution. The chain of
reasoning that leads to the KBS’s conclusion is therefore the leftmost sub-graph
containing circled nodes only; nodes are circled because these rules’ conditions
were satisfied, and they appear as the leftmost of the satisfied rules because
they were selected in preference to other satisfied rules. This chain has been
highlighted using bolder lines in Figure 2. Blame allocation identifies square
nodes leading to ‘+’ that should be altered to allow them to fire (leftmost
sub-graph), circular nodes leading to ‘–’ that should be prevented from firing



(middle sub-graph), and circular nodes leading to ‘+’ that should be altered
to make them more competitive in the control strategy (rightmost sub-graph).

It is important to note that the positive half of the problem graph is derived
from the actual observed behaviour of the KB, not from an internal simulation,
so is guaranteed correct. On the other hand, the negative half of the graph
does require a simulation of potential KB behaviour, and hence may introduce
inaccuracies. However, any consequent incorrect repairs will be detected during
testing; and if the ideal repair is missed, then the best of the many other
refinements that the KrustTool generates will be applied instead.

1.3 Using the Knowledge Structures

The core refinement procedures adopted by all KrustTools were shown in
figure 1. Figure 3 places the refinement procedures in context, and shows how
a KrustTool interacts with a KBS to create the knowledge skeleton and the
problem graph. These provide the information needed to carry out refinement.
The KrustTool performs the following steps.

1. The tool translates the KBS’s rules into the knowledge skeleton, repre-
senting the static knowledge in the KBS.

2. The tool is given a training example, for which the KBS gives an incor-
rect solution, together with information about how the KBS reaches its
conclusions. This information may be provided either in the form of an
execution trace, or via queries submitted to the KBS. The tool uses the
information to build a problem graph: an internal structure representing
the reasoning of the KBS for the particular training example.

3. The refinement algorithm analyses the problem graph and the knowledge
skeleton to determine where changes may be made to correct the errors
made by the KBS. In general, the correct fix can not be uniquely deter-
mined, so the tool generates a number of alternative refinements, which
are then filtered, implemented and tested. Testing consists of translating
the modified knowledge skeletons back into the language of the KBS, and
then executing them on the training example and others.

One distinguishing feature of KrustTools is that the refinement algorithm
and the KBS run as separate processes. In contrast, Either [2] is written in
Prolog and refines only Prolog KBSs, using a single process for both tool
and KBS. The KrustTools approach is necessary for a generic refinement tool,
since a separate refinement tool and KBS is necessary to allow the refinement
of a KBS written in any language.



Translators

Query

Answer

Knowledge
Skeleton

Problem
Graph

KRUST
Tool

==> f-0 (fact)
=> Activation 0
FIRE 1 not-artic: f4
==> f-5 (not-artic)
FIRE 2 weight: f3,f4
==> f6 (total-weight 1)
FIRE 3 isa-car: f2
=>> f-7 (vehicle car)

Execution Trace

Refinement
Algorithm

KBS

Training
Example

Figure 3: Krust and KBS Processes

2 The Knowledge Skeleton Representation
Language

The purpose of this language is to represent the rules in any KBS to which a
KrustTool is to be applied. This seemingly over-ambitious task is made feasi-
ble because, despite the variety of different syntax and functionality apparently
available in current KBS shells, there are in fact only a limited number of roles
that a rule element can play [8, 9]. Furthermore, we are interested only in the
ability to reason about which rules fire and the capability of the KrustTool
to repair faults. Therefore, the knowledge representation language needs to
represent faithfully only those parts of the knowledge that should be reasoned
about and can be repaired. In contrast, for example, knowledge that contains
external function calls does not need to be transformed into any special internal
format since it will remain unchanged and so can be copied into any refined
KBSs.

2.1 Basic Rule Elements

Each rule condition and conclusion is said to be a rule element. Three basic
classes of rule element have been identified, corresponding to the fundamental
roles they play in rules.

Tests can succeed or fail; e.g., retrievals from working memory, or comparisons
such as ?amp-price ≤ ?amp-budget where ?var is a variable name.

Expressions are rule elements that return a value, and always succeed; e.g.,
arithmetical calculations or function calls.



Assignments assign a value to a variable, and again always succeed.

These three basic classes form the first level of the hierarchy of rule elements
shown in Figure 4.

It is clear that by defining an internal representation for each rule element
type, we can create an internal data structure representing the static rules in
the KBS. However, in addition to simply representing the rules, the knowledge
skeleton must also allow a KrustTool to reason about the knowledge in order
to refine it. The most direct way of changing the behaviour of any rule element
is to change the rule element itself by applying an appropriate refinement op-
erator. We therefore wish to establish a rule element hierarchy so that each
leaf node is associated with a set of refinement operators that apply to rule
elements of this type.

2.2 A Usable Knowledge Hierarchy

The initial partition above is too coarse for defining refinement operators.
Therefore, we continue to partition these roles until each partition contains
a class of rule element with a well-defined set of associated refinement oper-
ators. Each of the new nodes in the extended hierarchy of Figure 4 is now
described.

Knowledge Element

ExpressionAssignmentTest

KRUSTExp KBSExpComparison Goal

Arithmetic

OAV Triple

Ordered Term LFunctionCall

Figure 4: Hierarchy of Knowledge Elements

2.2.1 Tests

There are two sub-classes of test depending on whether the truth of the test
comes from information local to the rule or knowledge deduced by other rules.

Comparisons are equations or inequalities. Their truth depends only on lo-
cal information: the relational operator and the values being compared.
Suitable refinement operators change the operator (adjust-operator) or
the values (adjust-value).



Goals are rule elements that use the KBS’s working memory; a conclusion
that adds a fact to working memory, and a condition that uses that fact,
are both classified as Goals2. We now identify two common sub-classes,
but further sub-classes are added in Section 4.

Ordered Terms consist of a keyword followed by arguments; e.g., the
Prolog literal colour(sky, blue, light).

OAV Triples are a sub-class of Ordered Term where the keyword is the
attribute and the object and value form the remaining two argu-
ments; e.g., colour(sky, blue).

Goals offer another way to modify the behaviour of a rule’s condition: by
changing rules whose conclusions unify with the condition. Therefore, the
knowledge skeleton must allow the KrustTool to determine when two Goals
chain; i.e. a condition in one rule matches a conclusion of another rule. The
goals-match function determines that two Ordered Terms (or OAV Triples)
chain if and only if they have the same keyword and arity, and the corresponding
arguments unify. As we propose further sub-classes of Goal we shall describe
relevant refinement operators and modify the goals-match function.

2.2.2 Expressions

An expression is a piece of procedural knowledge which calculates and returns
a value. There are two sub-classes, reflecting whether the calculation can be
performed within the KrustTool or must be passed to the KBS for external
execution.

KRUSTExps are evaluated within the KrustTool and are further divided.

Arithmetic expressions use the four standard arithmetical operators
+,−,×, /.

LFunctionCall expressions are Lisp functions and are executable in the
KrustTool since it is implemented in Lisp. They represent KBS rule
elements which are either written in Lisp or can be translated into
Lisp. Alternatively, it would be possible to pass all non-arithmetical
expressions to the KBS for evaluation, with the consequence how-
ever, that these expressions could not be refined.

KBSExps include all those expressions which cannot be evaluated within the
KrustTool and so are passed to the original KBS for evaluation. KB-
SExps deal with situations where a KBS shell allows calls to procedural
code, such as C functions, in rule elements. KBSExps cannot be refined.

2Describing Goals in terms of working memory applies particularly to forward-chaining
rules. However, the distinguishing property of Goals is their ability to chain, so that we can
identify and reason about Goals equally well for either backward or forward-chaining rules.



2.2.3 Assignments

Many rule elements, including those described so far, consist of a single element
from the hierarchy, but a rule element can consist of an arbitrarily deep recur-
sive structure. This is particularly relevant for Assignments and Arithmetic
Expressions; e.g.,
?amp-budget = (?budget - ?cd-price) * 0.6

is an Assignment whose right-hand side is the Arithmetic Expression
(?budget - ?cd-price) * 0.6

These recursive style rule elements have also proved useful for more complex
knowledge formats found in some KBS languages. Further examples appear in
the following two sections.

We therefore now introduce the term knowledge element for the classes
identified in the knowledge hierarchy, and reserve the term rule element for
complete conditions or conclusions. Thus, rule elements are made up of one or
more knowledge elements. We are therefore building a representation language
for knowledge elements which can then be used to construct rule elements and
hence rules.

3 Applying the Knowledge Skeleton

The hierarchy we have described (Figure 4) is fairly basic and was based on
our experience with Prolog KBSs and some simple KBSs written in Clips

[10]. Figure 5 shows a rule broken down into the knowledge elements we have
met in the previous section. We now investigate the hierarchy’s expressiveness
when applied to more advanced KBS shells. For this investigation we consider
the knowledge structures available in three commercial KBS shells: Clips3,
PowerModel4 and Pfes5 [11]. Both Pfes and Clips use exclusively forward-
chaining rules; PowerModel permits the use of both forward and backward-
chaining rules. Many features of these shells corresponded to knowledge element
types already present in the hierarchy, and this section explores the features to
which the existing hierarchy was applicable.

3.1 Clips Patterns

Clips patterns correspond to Ordered Terms and provide rule chaining; e.g.,

(preferences amplifier denon-amp-40 cd marantz-cd-75)

(preferences amplifier ?amplifier cd marantz-cd-75)

Rules containing these elements as conclusion and condition respectively will
chain. However, Clips has a more general wildcard than ?var; $? matches 0
or more arguments. Such wild-cards require an appropriate extension to the
goals-match function.

3Clips is an expert system shell widely used in both academia and industry.
4PowerModel is developed by IntelliCorp Ltd and is the successor to Kappa.
5Pfes (Product Formulation Expert System) is a development environment for KBSs that

solve design and formulation problems.



OAV Triple

Comparison

OAV Triple

Arithmetic

Assignment

OAV Triple

If Budget of Hi-Fi-System == ?Budget

Price of CD-player == ?CD-Price

?Amp-Budget = (?Budget - ?CD-Price) * 0.6

?Amp-Price == Price of ?Amplifier

?Amp-Price ≤ ?Amp-Budget

Then

Amplifier of Hi-Fi-System = ?Amplifier

Figure 5: Sample Knowledge Elements in a Rule

3.2 Pfes Agendas

There is a group of rule elements that appear at first unique to Pfes, and
therefore potentially difficult to represent within a common knowledge hier-
archy. These agendas are untyped lists, where items can be read/written at
the top or bottom, or directly below another given item. Agendas pass data
between routines that generate values and those that subsequently test or filter
them.

Pfes agendas can also be viewed as a mechanism for storing attribute-value
data; this better indicates how they may be represented within the existing
hierarchy. Not all agendas have the same semantics, but the number of different
possibilities actually employed within Pfes applications is fairly limited. Two
examples from the Hi-fi program, whose purpose is to select the components
of a hi-fi system, appear in Figure 6 where

speaker-agenda is a list of speakers; they are on it if they have the correct
impedance

cd-price-agenda is a list of CD players, but now each item is associated with
its price.

Each example shows the contents of an agenda at some point during the running
of Hi-fi, together with the Pfes rule elements that write to and read from
the agenda, and the KrustTool representation of these elements as Ordered
Terms. Note that a conclusion that writes to the agenda, and the corresponding
condition that reads from it, have the same KrustTool representation, though
the two appear different in Pfes.

Another feature of this representation is the fact that, while ?price’s role
as an attribute of ?cd-player is implicit in the Pfes statements, it is made
explicit in the KrustTool representation, where both the CD player and its
price are arguments. One consequence is that Pfes commands of the type
add ?item to-bottom-of ?agenda have different KrustTool representations,
depending on whether ?item represents an attribute. Fortunately it is possible



to determine the correct translation from the context, both in the situations
described here, and in other more complex situations also arising in Hi-fi.

Snapshot of speaker-agenda

ar-18bx dean-alto-11 castle-pembroke

Pfes Read/Write Operations on speaker-agenda

Conclusion: add ?speaker to-bottom-of speaker-agenda

Condition: ?speaker is-on speaker-agenda

KrustTool representation of each operation

on-agenda(speaker-agenda, ?speaker)

Snapshot of cd-price-agenda

philips-cd650 429 sony-cdp103 399 marantz-cd 429

Pfes Read/Write Operations on cd-price-agenda

Conclusions: 1) add ?cd-player to-bottom-of cd-price-agenda

2) add ?price to-bottom-of cd-price-agenda

Conditions: 1) ?cd-player is-on cd-price-agenda

2) ?price is-the-item-after ?cd-player on cd-price-agenda

KrustTool representation of each operation

1) on-agenda(cd-price-agenda, ?cd-player)

2) agenda-unlabelled-attribute(cd-price-agenda, ?cd-player, ?price)

Figure 6: Agendas and their Pfes Operations

3.3 Compound Rule Elements

A powerful way to increase the expressiveness of the existing knowledge ele-
ments is to build compound rule elements from several knowledge elements.
We met this idea already in Section 2.2.3 where we embedded an Arithmetic
Expression as the body of an Assignment.

Clips, PowerModel, and many expert system shells allow conditions
whose effect is to access a value and then test it; e.g., selecting CD players
whose price is less than £200:

Clips (cd-player ?name ?price &: (< ?price 200))

PowerModel ?cd-player.price < 200;

We have chosen to represent these as compound rule elements; here, a Com-
parison embedded in an Ordered Term: (cd-player ?name (?price < 200)).



This has consequences for goals-match and the refinement operators, which
need to decompose the rule elements to which they are applied. In this ex-
ample, the refinement operators for Ordered Terms are applicable to the term,
but will not affect the Comparison element, while the refinement operators for
Comparison are applicable to the Comparison nested within the term.

4 Extensions to the Hierarchy

We encountered several rule element types which could not be represented
by the elements of the existing hierarchy shown in Figure 4. However, these
new knowledge elements were found to be more specialised versions of existing
knowledge elements and so could be added to the hierarchy without any revision
to the basic structure. Figure 7 shows how the hierarchy has been expanded
by the addition of the new Goal sub-class AV Tuple, described below.

Test

Goal

OAV Triple

Ordered Term

Comparison

AV Tuple

Figure 7: Adding a New Term to the Knowledge Element Hierarchy

4.1 Attribute Value Tuples

Many shells have a frame-based knowledge representation. Frames are similar
to Ordered Terms, but the significance of each argument is determined by a
preceding keyword rather than by the argument’s position in a list; e.g., a
Clips amplifier frame can be defined as:

(deftemplate amplifier

(slot name)

(slot price)

(slot power)

(slot impedance)

and a rule condition which tests the properties of amplifier looks like

(amplifier (name ?name) (power ?power) (price ?price))



The inherently unordered nature of this condition precludes its representa-
tion as an Ordered Term, so a new sub-class of Goal called an AV (Attribute-
Value) Tuple was introduced. The AV Tuple consists of a keyword followed by
a series of attribute-value pairs, so that the condition above is represented by
the AV Tuple

(amplifier name ?name power ?power price ?price)

and matches conclusions such as

(amplifier name marantz-pm26 price 125 power 30 impedance 8)

The goals-match function is defined to use keywords rather than order
for matching, and refinement operators are adapted so that they do not alter
keywords.

4.2 Future Knowledge Elements

PowerModel permits the use of a variety of iterative operators within its
rule conditions. A typical example is the loop:

for find ?x = instanceof Tuner;

do ?x.presets = 7;

which retrieves each instance of Tuner, and sets its presets slot to 7. Cur-
rently, knowledge like this is simply copied verbatim in the knowledge skeleton,
ignored during refinement generation, and re-created in its original form in the
refined KBSs. However, this approach may be unnecessarily restrictive, given
that within the procedural “wrapping” there are statements which can be re-
fined. This is an area requiring further work, but the find loop above suggests
the following. The statement contains an Assignment which can have an As-
signment refinement operator applied. For example, suppose for the training
example ?x is bound to quad-fm4 and its presets should be 9, then the refined
knowledge might look as follows:

for find ?x = instanceof Tuner;

do if ?x = quad-fm4

then ?x.presets = 9

else ?x.presets = 7;

5 Comparison with Other Work

Johnson and Carlis [9] have also classified the rule elements in expert systems
shells, but have taken a more syntax based approach. Their work confirms our
view that it is possible to build a common representation for expert system
shells while avoiding the need to introduce particular shell-specific items, and
hence the feasibility of our generic approach to refinement. We now consider
the restrictions imposed on KBSs by other refinement tools.



Either [2] and Forte [3] rely on Prolog’s Horn Clauses for their rea-
soning and ignore the control imposed by Prolog’s depth first search when
multiple solutions are available. Each condition in a Prolog rule is a Prolog

literal, and corresponds to an Ordered Term in the KrustTool hierarchy; the
literal’s predicate name is the Ordered Term’s keyword. Prolog’s depth first
search of clauses easily provides information for our problem graph. Therefore
Prolog KBSs have KrustTool representations.

Neither [12] extends Either’s refinement process by having specialised
refinement operators for m-of-n rules. An m-of-n condition contains a set of
n conditions, and is defined to be true if and only if at least m of the n con-
ditions are true. Similarly, Seek [5] refines rules in a specialised form where
normal conditions are supplemented with m-of-n type conditions, but now the
n conditions are symptoms associated with a diagnosis rather than explicitly
listed in the condition. An m-of-n condition is a new Goal sub-class requiring
a specialised goals-match function and specific refinement operators.

Clips-R [4] is similarly restrictive, since it refines only Clips KBSs. It uses
example traces to build a data structure which groups together those examples
that share an initial sequence of rule firings. This data structure guides Clips-R

towards the most common errors. Since the Clips-R data structure represents
the execution on training examples, it is similar in purpose to our problem
graph.

Odysseus [13] illustrates a different approach to the use of control informa-
tion from that of the other programs surveyed. Meta-rules contain the control
knowledge, and failure to solve problems is attributed to missing domain knowl-
edge which should have been available to be used by the control knowledge. By
representing the control knowledge explicitly, Odysseus is able to guide the
refinement process.

6 Conclusions

The knowledge element hierarchy we have developed has been shown to provide
a powerful representation mechanism for rule-based KBSs. It has evolved in a
disciplined way from experience with several basic KBSs. Many of the new con-
structions found in more sophisticated KBSs have been directly equivalent to
existing knowledge elements; e.g. Pfes agendas. However, the hierarchy is also
extensible in a natural way, by incorporating novel rule elements in two ways:
new knowledge elements have extended the hierarchy without destroying its
basic structure; or a recursive structure of existing knowledge elements repre-
sents the new rule element. It has thus been shown to be able to accommodate
novel rule elements from a variety of shells.

In this paper we have concentrated on the feasibility of a knowledge ele-
ment hierarchy as the basis of a representation language for knowledge skele-
tons. Knowledge skeletons contain the essential knowledge content of a KBS,
and the hierarchy additionally identifies suitable refinement operators for the
knowledge elements. Therefore, it is possible to have a common core of rou-



tines for blame allocation, refinement generation and filtering that explore the
problem graph and manipulate the knowledge skeleton. We have not been
concerned here with the efficacy of refinement, but other papers have shown
KrustTools being successfully applied to a range of KBSs. The Prolog-based
student loan rules [14] have been translated into Clips and PowerModel, and
KrustTools have been applied to fix artificially introduced faults in all 3 ver-
sions [15, 16]. A KrustTool has successfully been applied to the debugging
and maintenance of the Pfes-based tablet formulation system Tfs developed
by Zeneca Pharmaceuticals [17, 18].

The KrustWorks project is applying these ideas to provide a framework
of re-usable refinement components from which to assemble a KrustTool for
a particular KBS. Figure 8 illustrates the process. The knowledge engineer
provides the rulebase and interpreter for a KBS, together with a grammar for

KBS KRUSTWORKS

Translator

Refinement
Filters

Refinement
Operators

Evaluation
Rules

Rule Base

Interpreter

Grammar

User
Interface

Refinement
Filters

Refinement
Operators

Evaluation
Rules

KBS
Analysis

KRUSTTool

Figure 8: Creating a KrustTool from the KrustWorks Framework

parsing the rules. KrustWorks performs an analysis of the KBS, determining
properties such as the kinds of rule elements present, and the direction of
rule chaining. Guided by the knowledge engineer, KrustWorks generates and
customises modules to perform translation and the standard refinement tasks.
The resulting specific KrustTool, shown at the bottom of the diagram, is
customised to the needs of the particular application and does not contain
unnecessary functionality.

Acknowledgements

This work is supported by EPSRC grant GR/L38387 awarded to Susan Craw.
We also thank Intellicorp Ltd. for donating and supporting our Power-

Model licences.



References

[1] G. Schreiber, Bob Wielinga, and J. Breuker, editors. KADS: A Principled
Approach to Knowledge Based Systems Development. Academic Press,
1993.

[2] Dick Ourston and Raymond Mooney. Theory refinement combining ana-
lytical and empirical methods. Artificial Intelligence, 66:273–309, 1994.

[3] Bradley L. Richards and Raymond J. Mooney. Refinement of first-order
horn-clause domain theories. Machine Learning, 19(2):95–131, 1995.

[4] Patrick M. Murphy and Michael J. Pazzani. Revision of production system
rule-bases. In W. W. Cohen and H. Hirsh, editors, Proceedings of the
Eleventh International Conference on Machine Learning, pages 199–207,
New Brunswick, NJ, 1994. Morgan Kaufmann.

[5] Allen Ginsberg. Automatic Refinement of Expert System Knowledge
Bases. Research Notes in Artificial Intelligence. Pitman, London, 1988.

[6] Susan Craw. Refinement complements verification and validation. Inter-
national Journal of Human-Computer Studies, 44(2):245–256, 1996.

[7] Susan Craw and D. Sleeman. Automating the refinement of knowledge-
based systems. In L. C. Aiello, editor, Proceedings of the ECAI90 Confer-
ence, pages 167–172, Stockholm, Sweden, 1990. Pitman.

[8] Gareth Palmer and Susan Craw. An extensible knowledge refinement tool.
Technical Report 96/2, SCMS, Robert Gordon University, 1996.

[9] Verlyn M. Johnson and John V. Carlis. Building a composite syntax for
expert system shells. IEEE Expert, 12(6):60–66, 1997.

[10] Joseph C. Giarratano. Expert Systems : Principles and Programming.
International Thomson, 3rd edition, 1998.

[11] Alvey. The PFES report, volume three: The formulations kernel. Logica
UK Ltd, 1987.

[12] Paul T. Baffes and Raymond J. Mooney. Symbolic revision of theories with
M-of-N rules. In Ruzena Bajcsy, editor, Proceedings of the Thirteenth
IJCAI Conference, pages 1135–1140, Chambery, FRANCE, 1993.

[13] David C. Wilkins. Knowledge base refinement as improving an incorrect
and incomplete domain theory. In Y. Kodratoff and R. S. Michalski, ed-
itors, Machine Learning: An Artificial Intelligence Approach Volume III,
pages 493–513. Morgan Kaufmann, San Mateo, CA, 1990.

[14] Michael J. Pazzani. Student loan relational domain. In UCI Repository of
Machine Learning Databases [19], 1993.

[15] Gareth Palmer. Applying KRUST to a new KBS tool: experience with
Kappa. Technical Report 95/9, SCMS, Robert Gordon University, October
1995.

[16] Gareth J. Palmer and Susan Craw. The role of test cases in automated
knowledge refinement. In Proceedings of the 16th Annual Technical Con-
ference of the British Computer Society Specialist Group on Expert Sys-
tems, pages 75–90, Cambridge, UK, 1996. SGES Publications.

[17] Susan Craw, Robin Boswell, and Ray Rowe. Knowledge refinement to
debug and maintain a tablet formulation system. In Proceedings of the
9TH IEEE International Conference on Tools with Artificial Intelligence
(TAI’97), pages 446–453, Newport Beach, CA, 1997. IEEE Press.

[18] Robin Boswell. Knowledge Refinement for a Formulation System. PhD
thesis, School of Computer and Mathematical Sciences, The Robert Gor-
don University, 1998.

[19] C. J. Merz and P. M. Murphy. UCI Repository of machine learning


