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Abstract 

The following techniques for uncertainty and sensitivity analysis are briefly summarized: Monte Carlo analysis, 
differential analysis, response surface methodology, Fourier amplitude sensitivity test, Sobol’ variance 
decomposition, and fast probability integration. Desirable features of Monte Carlo analysis in conjunction with 
Latin hypercube sampling are described in discussions of the following topics: (i) properties of random, stratified 
and Latin hypercube sampling, (ii) comparisons of random and Latin hypercube sampling, (iii) operations involving 
Latin hypercube sampling (i.e., correlation control, reweighting of samples to incorporate changed distributions, 
replicated sampling to test reproducibility of results), (iv) uncertainty analysis (i.e,, cumulative distribution 
functions, complementary cumulative distribution functions, box plots), (v) sensitivity analysis (i.e., scatterplots, 
regression analysis, correlation analysis, rank transformations, searches for nonrandom patterns), and (vi) analyses 
involving stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty. 
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1. Introduction 

The assessment and presentation of the effects of 
uncertainty are now widely recognized as important 
parts of analyses for complex systems1& At the sim- 
plest level, such analyses can be viewed as the study of 
functions of the form 

where the function f represents the model or models 
under study, x = [ X I ,  x2, . . .] is a vector of model inputs, 
and y = [yl, y2, . . .] is a vector of model predictions. 
The goal of an uncertainty analysis is to determine the 
uncertainty in the elements of y that results from uncer- 
tainty in the elements of X. A typical adjunct to an un- 
certainty analysis is a sensitivity analysis, which at- 
tempts to determine how the uncertainty in individual 
elements of x affects the uncertainty in the elements of 
y. In practice, f can be quite complex (e.g., one or 
more computer programs involving complex algorithms 
and many thousands of lines of programming); further, 
x and y are often of high dimension. 

To carry out uncertainty and sensitivity analyses, 
the uncertainty in the elements of x must be character- 
ized. For this presentation, the uncertainty in the ele- 
ments of x is assumed to be characterized by a sequence 
of distributions 

where Dj is the distribution associated with the element 
x, of x and nX is the number of elements contained in x 
(i.e., x = [XI, x2, ..., xd]). Various correlations and 
additional relationships between the elements of X are 
also possible. Initially, the distributions in Eq. (1.2) 
will be assumed to characterize a degree of belief with 
respect to where the appropriate values for the elements 
of x are located for use in the evaluation of the function 
f in Eq. (1.1). When used in this manner, these distribu- 
tions are providing a quantitative representation for 
what is commonly referred to as subjective or epistemic 
un~ertainty.~? Such distributions are often developed 
through an expert review p r o ~ e s s 9 - ~ ~  

For notational convenience, the function f, and 
hence y, in Eq. (1.1) will be assumed to be real-valued, 
although such simplicity is almost never the case in real 
analyses. With this assumption, the representation in 
Eq. (1.1) becomes 

Y =Ax). (1.3) 

Further, again for notational convenience and also for 
ease in distinguishing between different uses of prob- 
ability at later points in this presentation, the distribu- 
tions in Eq. (1.2) and any additional relationships im- 
posed on the elements of x will be represented by a 
probability space (&, dsu, psu), where the subscript 
“su” is used as a designator for “subjective.” As a re- 
minder, a probability space ($ d ,  p), consists of three 
elements: a set S that contains everything that could 
occur in the particular universe under consideration; a 
collection d of subsets of Sfor which probability will 
be defined; and a function p that actually defines prob- 
ability for the elements of d (Sect. IV.4, Ref. 30). In 
the terminology of probability theory, the set S i s  the 
sample space; the elements of S(i.e., the vectors x in 
Eqs. (1.1) and (1.3)) are elementary events; the ele- 
ments of d are events; and the function p is a probabil- 
ity measure. 

When viewed in its most general form, uncertainty 
analysis simply involves determination of the distribu- 
tion for y that results from the function fin Eq. (1.3) and 
the distributions D1, D2, ..., Dnx in Eq. (1.2), which 
define probability space (&,, d,,, psu). Further, the 
distribution for y can be presented as a cumulative dis- 
tribution function (CDF) or as a complementary cumu- 
lative distribution function (CCDF), which is simply 
one minus the CDF (Fig. 1.1). The CCDF is typically 
used when it is desired to display small probabilities 
associated with large values of y or when it is desired to 
answer the question “How likely is y to be this large or 
larger?’ Given that it can be determined, the CDF, or 
equivalently the CCDF, in Fig. 1.1 provides a complete 
representation of the uncertainty in y. A density func- 
tion can also be used to summarize the uncertainty in y; 
however, CDFs and CCDFs provide more convenient 
and informative summaries in sampling-based studies. 

The CCDF in Fig. 1.1 can be formally defined by 
the integral 

where pro& > Y) is the probability that a value larger 
than Y will occur, dsu represents the density function 
corresponding to the distributions in Eq. (1.2) and 
hence to the probability space (&, d,,, pSJ,  the differ- 
ential dVsu is selected for mnemonic purposes because 
integration will typically be over a high-dimension (i.e., 
nX) volume, and 

1 



1 if f(x)>Y 
0 if f(x)SY. 

Similarly, the corresponding CDF is defined by 

prob(yIY)=l-prob(y>Y) 
(1.6) 

where prob(y 5 u) is the probability that a value less 
than or equal to Y will occur. Although the integral in 
Eqs. (1.4) and (1.6) formally defines the CCDF and 
CDF associated with y, in practice this integral is not 
amenable to a closed-form evaluation; rather, some type 
of approximation procedure must be used. In particular, 
the focus of this presentation is on the use of Latin hy- 
percube sampling317 32 in the approximation of this in- 
tegral. 

= 1 - Js 6Y [f(x)ldsu (x)flsu 9 

su 

As just indicated, uncertainty analysis is simple in 
concept and involves evaluation of the integral in Eq. 
(1.4) to obtain the CDF and CCDF in Fig. 1.1. 
Sensitivity analysis involves the determination of the 
effects of the individual elements of x on y = fix). 
Although sensitivity analysis is closely tied to 
uncertainty analysis, it tends to be a more complex 
undertaking due to both the variety of possible measures 
of sensitivity and the additional computational 
procedures required to evaluate these measures. This 
presentation will emphasize sensitivity measures that 
can be obtained when Latin hypercube sampling is used 
to evaluate the integral in Eq. (1.4). 

One formal way to look at sensitivity analysis is to 
view it as an analysis of variance problem. Specifically, 
the variance V(y) of y is given by 

where E(y) denotes the expected value of y and is given 
bY 

Sensitivity analysis can then be viewed as a decomposi- 
tion of V(y) into components due to the individual ele- 
ments of x, with the size of these components then pro- 
viding an indication of variable importance. However, 
as will be discussed, not all sensitivity analysis proce- 
dures are mathematically equivalent to a variance de- 
composition problem. A variety of sensitivity measures 
based on Latin hypercube sampling will be presented. 

0.5 0.4 1 

1 .o 
0.9 > 
0.8 P 
0.7 z 

2 
0.6 

0.5 
IF = 1 - CCDF 

uuJF = I - CDF 

0.2 u 
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0. I 0.1 8 
0.0 [v, P W Y  VI 

0.0 

0.3 2.8 5.2 7.6 10.0 12.5 
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m*w.mi 
Fig. 1.1. Use of CDFs and CCDFs to represent uncer- 

tainty in model predictions. 
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2. Techniques for Uncertainty and 
Sensitivity Analysis 

The use of Latin hypercube sampling constitutes 
part of what is often called a Monte Carlo procedure for 
the propagation of uncertainty. In addition, there exist a 
number of other procedures that are also used for the 
propagation of uncertainty, including differential analy- 
sis, response surface methodology, the Fourier ampli- 
tude sensitivity test (FAST) and the closely related So- 
bol’ variance decomposition, and fast probability 
integration. To provide perspective on, and a context 
for, the use of Latin hypercube sampling, the preceding 
procedures are briefly summarized in this section. 

2.1 Monte Carlo Analysis 

In Monte Carlo analysis, a probabilistically based 
sampling procedure is used to develop a mapping from 
analysis input to analysis results. This mapping then 
provides a basis for both the evaluation of the integral 
in Fiq. (1.4) (i.e., uncertainty analysis) and the evalua- 
tion of the effects of individual elements of x on y = 
A X )  (i.e., sensitivity analysis). Specifically, a sample 

of size nS is generated from S’, in consistency with the 
distributions in Eq. (1.2) (i.e., in consistency with the 
definition of the probability space (&,, &, p,,)). A 
number of possible sampling procedures exist, includ- 
ing random sampling, stratified sampling, and Latin 
hypercube sampling (see Sect. 3). The preceding sam- 
pling procedures are probabilistically based in the sense 
that weights 

wi, i =  1,2,  ..., nS, (2.2) 

exist such that the result obtained with sample element 
xi can be used in conjunction with the weight wi to ob- 
tain quantities such as expected values, variances and 
other entities that derive from integration over &,,. For 
random sampling and also Latin hypercube sampling, wi 
is the reciprocal of the sample size (Le., wi = l/nS); for 
stratified sampling, wi is determined by the probability 
of the stratum (i.e., subset of S’,) from which xi was 
sampled and the number of samples taken from that 
stratum. 

Once the sample in Eq. (2.1) is generated, evalua- 
tion off  creates the following mapping from analysis 
inputs to analysis results: 

[Xi,yi] ,  i =  1, 2, ..., nS, (2.3) 

where yi = Axi). Then, the integrals in Eiqs. (1.4), (1.7) 
and (1.8) can be approximated by 

ns 

i=l 

_4 

prob(y > Y )  = prob(y > Y )  = c S , ( y i ) w i  (2.4) 

i=l 

The distribution function approximated in Eq. (2.4) 
provides the most complete representation of the uncer- 
tainty in y that derives from the distributions in Eiq. 
(1.2) and hence from the probability space (S’,, &, 
psu). The expected value and variance approximated in 
Eqs. (2.5) and (2.6) provide a summary of this distribu- 
tion but with the inevitable loss of resolution that occurs 
when the information contained in 2 nS numbers (i.e., in 
the yi and wi) is mapped into two numbers. For random 
sampling, use of wi = l/(nS - 1) in Eq. (2.6) results in 
an unbiased estimate for V(y). 

The mapping in Eq. (2.3) can be explored with 
various techniques to determine the effects of the indi- 
vidual elements of x on y .  For example, scatterplots 
based on the points 

[xu,  y i ] , i =  1,2, ..., nS, (2.7) 

for each element xi of x may completely reveal the rela- 
tionships between the x, and y (Fig. 2.1). Another pos- 
sibility is to use the results in Eq. (2.3) and least squares 
techniques to construct a regression model of the form 

that relates y to the xi. Various aspects of this model 
and the construction process that produced it can then 
be used to infer the relationships between the xj and y .  
The preceding and other techniques for sensitivity 
analysis in conjunction with Monte Carlo procedures 
are discussed in more detail in Sect. 6. 

Monte Carlo procedures for the propagation of un- 
certainty are very popular and many examples of their 
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Xi : Uniform on [ 4 , 4 ]  Xi : Uniform on [ 4 . 4 ]  
TROOAO1l-O.d 

Fig. 2.1. Scatterplots produced in a Monte Carlo analysis with a Latin hypercube sample of size nS = 100: (a) no 
relationship between xj and y ,  and (b) well-defined relationship between xj and y (see Sect. 5.1 for a discus- 
sion of rank correlation). 

use exist?347 Further, Monte Carlo procedures find a nx 
wide variety of applications in the sciences and a very 
extensive literature exists.48-60 j= l  

v(Y) x [ a f ( X o ) l a x j I 2 v ( X j )  

nX nX 
+2C C taf<xo> 1 axj  I [ V ( X O  >/ax, I Cov(xj 9 xk 19 

(2.1 1) 

where E, v and cov denote expected value, variance 
and covariance, respective~y. If the are unconelat~,  
then 

2.2 Differential Analysis j=1 k= j+ l  

Differential analysis is based on the partial deriva- 
tives off with respect to the elements of X .  In its sim- 
plest form, differential analysis involves approximating 
the model by the Taylor series 

where % = [XlO, ~ 2 0 ,  . . ., x n x , ~ ]  is a vector of base-case 
values for the x. (e.g., the expected values for the x, 
defined by the distributions in Eq. (1.2)). .J 

Once the approximation in Eq. (2.9) is determined, 
variance propagation formulas can be used to determine 
the uncertainty in y that results from the distributions in 
Fiq. (1.2). In particular, 

and 

Thus, the Taylor series in Eq. (2.9) leads to approxima- 
tions of the expected value and variance for y that result 
from the distributions in Eq. (1.2). Differential analysis 
does not lead very naturally to an approximation for the 
CDF or CCDF for y ,  although such approximations 
could be obtained by using a Monte Carlo simulation of 
the Taylor series in Eq. (2.9). 

The determination of expected values, variances 
and possibly CDFs or CCDFs constitutes the uncer- 
tainty analysis component of differential analysis. Sen- 
sitivity analysis is based on the use of the partial deriva- 
tives associated with a Taylor series to determine the 
effects of the individual elements of x on y .  For exam- 
ple, if the Taylor series in Eq. (2.9) is used and the ele- 
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ments of x are independent, then the fractional contribu- 
tion of x, to the variance of y can be approximated by 

with V(u) being obtained from the approximation in Q. 
(2.12). An ordering of the xj on the basis of the size of 
the fractional contributions V(yk,) provides a ranking of 
variable importance on the basis of how much of the vari- 
ance of y can be accounted for by each element of x. 

Normalization of the partial derivatives in the Tay- 
lor series in Eq. (2.9) provides a basis for another ap- 
proach to assessing the importance of individual ele- 
ments of X. In particular, the following normalizations 
are possible: 

and 

where SD denotes standard deviation, SD(y) is esti- 
mated from Eq. (2.12), and no problem with respect to 
division by zero exists. The normalized coefficients 

from Eq. (2.14) provide a ranking of variable impor- 
tance based on equal fractional changes from base-case 
values xjo and thus incorporate no distributional infor- 
mation about the elements of X. The normalized coeffi- 
cients 

from Eq. (2.15) provide a ranking of variable impor- 
tance based on changes from base-case values xj0 that 
are equal fractions of the standard deviation SD(xj) of 
xi. Thus, unlike rankings of variable importance with 
the coefficients in Eq. (2.16), rankings with the coeffi- 
cients in Eq. (2.17) incorporate the distributional as- 
sumptions for the elements of x. 

The quality of results obtained in a differential 
analysis is limited by the quality of the underlying Tay- 

lor series approximation. In particular, if y is a nonlin- 
ear function of the elements of X, then the first-order 
Taylor series approximation in Eq. (2.9) may provide a 
poor representation of the relationships between y and 
the elements of x. Better approximations to y can be 
obtained by using higher-order Taylor series. For ex- 
ample, a second-order approximation has the form 

If the preceding approximation to y(x)  is used, the ele- 
ments of x are uncorrelated, and fourth-order and 
higher-order terms are ignored in the derivation of V(y), 
then the following estimates for the expected value and 
variance of y are obtained: 

and 

where p3(xj) denotes the third central moment of xi. As 
higher-order terms and correlations between the ele- 
ments of x are included, the approximations to the ex- 
pected value and variance for y rapidly become very 
complicated.61-64 

Differential analysis has long played a prominent 
role in the propagation and analysis of ~ n c e r t a i n t y . ~ ~ - ~ ~  
Usually, the most difficult part of a differential analysis 
is determining the necessary partial derivatives. As a 
result, much of the research related to differential analy- 
sis has been devoted to development of techniques for 
the determination of these derivatives, including adjoint 
te~hniques? l -~~ Green's function  technique^?^-'^ and 
various numerical Automatic differen- 
tiation techniques are maturing and can now be applied 
to quite complex programs, which greatly facilitates the 
implementation of derivative-based analyses.81-88 
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2.3 Response Surface Methodology 

Response surface methodology (RSM) is similar to 
Monte Carlo analysis except that an experimental de- 
sign is used to select model input. A variety of possible 
designs exist, including factorial, fractional factorial, 
central composite, Plackett-Burman, and many more. 
Usually, the design selected depends on many factors, 
including properties of the model and the type of results 
desired from subsequent uncertainty and sensitivity 
analyses. 

The experimental design results in a selection of 
points 

x i  = [x i l ,  xi*, . . ., x i , d  I, i = 1,2, . . . , nS, (2.21) 

from the s',,. However, the distributions in Eq. (1.2), 
and hence the probability space (S',, A,,, psu), do not 
play a direct role in the selection of the xi.  Rather, 
these points are typically selected on the basis of the 
ranges of the individual xj contained in x (e.g., a low, 
central and high value for each xi). As a result, there is 
not a probabilistic weight that can be associated with 
each design point in Eq. (2.21) as there is with the sam- 
ple elements in Eq. (2.1). 

After the design points in Eq. (2.21) are selected, 
evaluation off  for these points creates a mapping be- 
tween model input and model results of the form shown 
in Eq. (2.3). However, because probabilistic weights 
cannot be assigned to the design points, uncertainty 
results of the form indicated in Eqs. (2.4)-(2.6) cannot 
be obtained directly from these evaluations. Rather, as 
an intermediate step, a response surface of the form 
indicated in Eq. (2.8) is constructed; more complex 
constructions are also possible. Once constructed, this 
response surface can be used in a Monte Carlo simula- 
tion with the distributions in Eq. (1.2) to estimate the 
uncertainty in y. Or, as an alternative, expected values 
and variances can be determined with propagation pro- 
cedures similar to those shown in Eqs. (2.10)-(2.12). 

The response surface in Eq. (2.8) is analogous to 
the Taylor series in Eq. (2.9). Specifically, each is a 
linear approximation to the model y = Ax) indicated in 
Eq. (1.3). As a result, sensitivity analysis in RSM can 
be carried out in the same manner as sensitivity analysis 
in differential analysis. Specifically, sensitivity meas- 
ures of the type indicated in Eqs. (2.13)-(2.17) can be 
calculated for a regression model of the form indicated 
in Eq. (2.8) and derived from the mapping 

[ x i ,  y ( x i ) ] ,  i = 1,2, . . . , nS, (2.22) 

associated with the design points in Eq. (2.21). In the 
context of the regression model in Eq. (2.8), the normal- 
ized coefficients in Eqs. (2.15) and (2.17) are known as 
standardized regression coefficients. 

An extensive literature exists on experimental de- 
signs for use in RSM,89-101 and many examples of the 
use of RSM in uncertainty and sensitivity analysis ex- 
ist.102-108 In a related but somewhat different problem, 
RSM is widely used in optimization problems, with this 
area of application actually being the source from which 
RSM d e v e l ~ p e d . ~ ~ - ~ l ~  In addition, several books re- 
lated to RSM are also available.114-117 

2.4 Fourier Amplitude Sensitivity Test 
(FAST) and Sobol' Variance 
Decomposition 

The variance V(y) associated with the model y = 
Ax) in Eq. (1.3) is formally defined by the integral in 
Eq. (1.7). Although different in computational details, 
analyses based on both the Fourier Amplitude Sensitiv- 
ity Test (FAST)118-'20 and the Sobol' variance decom- 
position121 involve a decomposition of V(y) into com- 
ponents due to individual variables and interactions 
between individual variables. Specifically, V(y)  can be 
decomposed into the form 

under the assumption that the xi are independent, where 
vj is the part of V(y)  due solely to xi, q k  is the part of 
V Q )  due to the interaction of xj and Xk,  v j k l  is the part of 
v(y) due to the interaction of xi, xk and X I ,  and so on up 
to V12 ,., nX, which is the part of V(y) due to the interac- 
tion of XI, x2, . . ., x* 

Once the decomposition in Eq. (2.23) is available, 
various sensitivity measures such as 

sj = vj l V ( y )  (2.24) 
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can be defined, where si is the fraction of V(y) due 
solely to xi, sjk is the fraction of V(y) due to the interac- 
tion of xi and x k ,  and s. is the fraction of V(y) due to x, 
or the interaction of xi wth other variables. IT. 

In the FAST approach, the multidimensional inte- 
grals in Eqs. (1.7) and (1.8) that define V(y) and E(y) 
are converted to the one-dimensional integrals through 
the construction of an appropriate space-filling curve 

c(s)=[G1(sin qs),Gz(sin wp), ..., Ga(s in  ~ s ) ]  

(2.27) 

in Ssu, where Gj and oj are suitably defined functions 
and integers, respectively. Then, 

and 

v ( Y ) = q z  2K --It f 2 [ c ( s ) l d r - E 2 ( y ) .  

(2.28) 

(2.29) 

In general, some type of numerical procedure (e.g., 
Monte Carlo) is required to evaluate the integrals in 
Eqs. (2.28) and (2.29). 

The following relationship can be established by 
using properties of the Fourier series representation for 
f: 

where 

Further, 5 can be approximated by 

(2.30) 

(2.31) 

where oj is the integer associated with Gj in Eq. (2.27) 
in the conversions from multidimensional integrals to 
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one-dimensional integrals in Eqs. (2.28) and (2.29). 
Thus, the approximation 

follows from Eqs. (2.30) and (2.31). 

In analyses based on the Sobol' variance decompo- 
sition, E@) and V(y) are typically approximated by 
Monte Carlo techniques as indicated in Eqs. (2.5) and 
(2.6). Further, the individual terms, Vi, v j k ,  Vjkl, ..., 
 VI^...^ in the decomposition of V(y) in Eq. (2.23) are 
defined by multiple integrals involving the elements xi 
of X. For example, 

r 12 

d j  ( x j ) h j  - E ~ ( Y )  (2.33) 

where, as indicated earlier, the xi are assumed to be 
independent, (4, d j, pi) is the probability space char- 
acterizing the uncertainty in xi, d, is the density function 
associated with (4, dj, p,), 4-j) and I (-$4) denote 
the subsets of I= { 1, 2, .. ., nX) that result from the 
deletion of u) and u, k), respectively, and the use of 
the product symbol (i.e., n )  in conjunction with sets 
implies the concatenation of the elements of these sets. 
The probability space (S,,, dsu. ps,) associated with x 
is related to the probability spaces (3, 4, p,) associated 

with the xj by S,, = njE1 5, A&, = lljE J 4, psu = 
lI j c l  pj and dsu = II jc I 9. 

The integrals in Eqs. (2.33) and (2.34) are quite 
complex and in practice must be evaluated with some 
type of numerical procedure (e.g., Monte Carlo,121 the 
Winding Stairs sampling or simplifying 
approximations to f25). Once the necessary integrals, 
and hence Vi and v j k ,  are evaluated, si and sjk can be 
determined as indicated in Eqs. (2.24) and (2.25). 

The determination of yk[, qkl,,,, ..., V I ~ . . . ~ X  with 
either the FAST approach or Sobol' indices is very de- 



manding computationally and typically is not done. 
However, relatively efficient procedures exist to evalu- 
ate the total effect sensitivity measure with both the 
FAST approach126 and the Sobol' variance decomposi- 
tion.127 

Additional information on the FAST approach and 
Sobol' variance decomposition is available in a number 
of publications.118-121p 125-133 Further, a conceptually 
equivalent approach based on analysis of variance has 
also been d e ~ e I o p e d ' 3 ~ - ' ~ ~  and has the desirable feature 
of allowing correlations between the elements of x.135- 
137 

2.5 Fast Probability Integration 

Fast probability integration (FPI) is based on the 
use of analytic procedures to evaluate distribution func- 
tions. l3*, 139 Specifically, the following approximation 
procedure is used: 

where (i) ( Ssu,,, As,,,, psuJ represents the probability 
space that results when the elements xi of the vectors X 

associated with (S,,, dsu, psu) are transformed to ele- 
ments ui of u E S',, that are mutually independent, 
standardized to mean zero and standard deviation one, 
and normally distributed, (ii) f, denotes the reformula- 
tion offthat uses u rather than x as its argument, and 
(iii) is related to the most probable point (MPP) for 
whichf,(u) = Y as described below and erfc is the com- 
plementary error function (i.e., erfc(x) 

=(2/&)j"exp(-r2)dt). 

The equality 

defines a surface in &",, (see Fig. 1, Ref. 138). The 
MPP uo = [ul0,  u20, ,.., unX,o] is the point on this sur- 
face that is closest to the origin in &,,. In turn, j3 is 
given by 

p =nuol = [u:o + u;o + . . . + uh,o]L'2 (2.37) 

and equals the distance from uo to the origin. The out- 
come of this approach is that prob(y > Y) is being ap- 
proximated by the probability of the part of S',, that is 
cut off by a hyperplane that passes through the MPP uo 
and is tangent to the surface defined by Eq. (2.36). 

There are two major components to the implemen- 
tation of an analysis based on FFI. First, the distribu- 
tions indicated in Eq. (1.2) must be transformed to in- 
dependent, normal distributions with mean zero and 
standard deviation one. Second, the MPP uo associated 
with each probability probQ > Y) under consideration 
must be determined. This determination is typically 
based on search procedures using the partial derivatives 
off, with respect to the individual elements of U. In 
addition, more sophisticated approximations to the sur- 
face at the MPP UO than a hyperplane, and hence more 
sophisticated approximations to prob(y > Y). can be 
developed. Although FPI is primarily used for uncer- 
tainty analysis, it can support some types of sensitivity 
analysis (Sect. 2.4, Ref. 138). 

Additional information on FPI and related tech- 
niques is available from a number of sources.138-147 

2.6 Comparison of Techniques 

All techniques have positive and negative features, 
and no single technique is optimum for all situations. In 
the following, the positive and negative features of the 
individual techniques are briefly reviewed. 

Monte Carlo techniques are based on the use of a 
probabilistic procedure to select model input and result 
in a mapping between analysis inputs and analysis out- 
comes that is then used to produce uncertainty and sen- 
sitivity analysis results. Desirable features of Monte 
Carlo analysis include (i) extensive sampling from the 
ranges of the uncertain variables, (ii) uncertainty results 
that are obtained without the use of surrogate models 
(e.g., Taylor series in differential analysis and response 
surfaces in RSM), (iii) extensive modifications of, or 
manipulations with, the original model are not required 
(Le., as is the case for the other techniques), (iv) the 
extensive sampling from the individual variables facili- 
tates the identification of nonlinearities, thresholds and 
discontinuities, (v) a variety of sensitivity analysis pro- 
cedures are available, and (vi) the approach is concep- 
tually simple, widely used, and easy to explain. The 
major drawback is computational cost. This is espe- 
cially the case if long-running models are under consid- 
eration or probabilities very close to zero or one must 
be estimated. 
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Differential analysis is based on developing a Tay- 
lor series approximation to the model under considera- 
tion. Desirable properties of differential analysis in- 
clude (i) the effects of small perturbations away from 
the base-case value at which the Taylor series is devel- 
oped are revealed, (ii) uncertainty and sensitivity analy- 
ses based on variance propagation are straightforward 
once the Taylor series is developed, (iii) techniques 
(e.g., adjoint, Green’s function, specialized compilers) 
exist to facilitate the calculation of derivatives, and (iv) 
the approach has been widely studied and applied. 
There are two primary drawbacks: (i) differential 
analysis is inherently local, and (ii) a differential analy- 
sis can be difficult to implement and can require large 
amounts of human and/or computational time. 

Response surface methodology (RSM) is based on 
using an experimental design to select model input and 
then developing a response surface replacement for the 
original model that is used in subsequent uncertainty 
and sensitivity analyses. Desirable properties of RSM 
include (i) complete control over the structure of the 
model input through the experimental design selected 
for use, (ii) near optimum choice for a model whose 
predictions are known to be a linear or quadratic func- 
tion of the input variables, (iii) uncertainty and sensitiv- 
ity analyses are straightforward once the necessary re- 
sponse surface replacement has been developed, and 
(iv) experimental designs for use in RSM have been 
widely studied. Drawbacks to RSM include (i) diffi- 
culty of developing an appropriate experimental design, 
(ii) use of a limited number of values for each input 
variable, (iii) possible need for a large number of design 
points, (iv) difficulties in detecting thresholds, disconti- 
nuities and nonlinearities, (v) difficulty in including 
correlations and restrictions between input variables, 
and (vi) difficulty in constructing an appropriate re- 
sponse surface approximation to the model under con- 
sideration. 

The FAST approach and Sobol’ variance decompo- 
sition are based on a direct decomposition of variance 
into the parts contributed by individual variables. De- 
sirable properties of the FAST approach and Sobol’ 
variance decomposition include (i) full range of each 
input variable is explored, (ii) estimation of expected 
value and variance is by direct calculation rather than 
by use of a surrogate model, (iii) fractional contribution 
of each variable to total variance is determined, 
(iv) effects of variable interactions can be determined, 

(v) sensitivity analysis is not predicated on a search for 
linear or monotonic relationships, and (vi) modifica- 
tions to the original model are not required. Drawbacks 
include (i) the mathematics is complicated and difficult 
to explain, (ii) the approaches are not widely known and 
applied, (iii) evaluating the required integrals can be 
both complex and computationally demanding, and (iv) 
correlations cannot be imposed on the input variables. 

Fast probability integration is based on the use of 
analytic procedures to evaluate distribution functions. 
The desirable feature of fast probability integration is 
that it allows the estimation of the tails of a distribution 
without the estimation of the full distribution. This has 
the potential to require less computation than the use of 
Monte Carlo procedures to estimate the same tail prob- 
abilities. Less desirable features are that (i) the underly- 
ing mathematics is complicated and difficult to explain, 
(ii) the calculation of the partial derivatives required ir? 
the approach can be computationally demanding, and 
(iii) the approach is not appropriate for the calculation 
of full distributions or the consideration of distributions 
for a large number of different variables. Further, the 
approach is primarily one of uncertainty analysis and 
lacks associated sensitivity analysis procedures. 

This review considers the use of Monte Carlo tech- 
niques in general and Latin hypercube sampling in par- 
ticular in analyses that involve the propagation of uncer- 
tainty through complex systems. Although a variety of 
techniques exist for the propagation of uncertainty as 
previously indicated, Monte Carlo techniques provide 
the most effective approach to the propagation and 
analysis of uncertainty in many situations for various 
combinations of the following reasons: (i) large uncer- 
tainties are often present and a sampling-based ap- 
proach provides a full coverage of the range of each 
uncertain variable, (ii) modification of the model is not 
required, (iii) direct estimates of distribution functions 
are provided, (iv) analyses are conceptually simple and 
logistically easy to implement, (v) analysis procedures 
can be developed that allow the propagation of results 
through systems of linked models, and (vi) a variety of 
sensitivity analysis procedures are available. Latin hy- 
percube sampling is often the preferred sampling proce- 
dure in Monte Carlo analyses due to the efficient man- 
ner in which it stratifies across the range of each 
sampled variable. 
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3. Random, Stratified and Latin element will come from a particular subset of Ssu (i.e., 
& E &) is equal to the probability of that subset (i.e., Hypercube Sampling 

Psu( )>. 

The nature of a random sample will be illustrated 
for x = [U, VI, U assigned a uniform distribution on lo, 

3.1 Description of Sampling 
Techniques 

101, V assigned a triangular distribution and a mode of 8 
on [O, 101, and nS = 5. The sample is generated by in- 
dependently sampling five random numbers RU(l), 

In Monte Carlo analysisv some of sampling 
procedure must be used to generate the sample in Eq* 
(2.1). The simplest procedure is random sampling. 

each sample element is generated independently of all 
other sample elements, and the probability that this 

RU(2). ..., RU(5) from a uniform distribution on [0, I]  

U(l), U(2), ..., U(5)  for U (Fig. 3.la). Similarly, 

with random sampling from m~orrelated variables, 
and then using the CDF for u to five values 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 0.0 9.0 10.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 
U: Uniform V: Triangular 

Random Sample 10.01. I .  I ,  I ,  I .  I , ,  , I , ,  , , 
x5 

8.0 

2 6.0 

j. 4.0 

3.0 

1 .o 

0.0 
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

U: Uniform TRM*OlP-O.aI 

Fig. 3.1. Generation of a random sample of size nS = 5 from x = [U, VI with U uniform on [0, 101 and V triangular 
on [0, 101 with a mode of 8. 
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random sampling is again used to obtain an additional 
five independent random numbers RV(l), RV(2), ..., 
RV(5) from a uniform distribution on [0, 13, and the 
CDF for V is used to obtain five values V(1), V(2), .. .. 
V(5) for V (Fig. 3. lb). Then, 

xi = [U(i), V(i)], i = 1.2, ..., 5, (3.1) 

constitutes a random sample of size nS = 5 generated in 
consistency with the distributions assigned to U and V 
(Fig. 3.1~) .  The generation of a random sample 

xi = [+I, xi2,  ..., xi,..], i = 1,2, ..., n ~ ,  (3.2) 

when x has dimension nX > 2 is carried out in an analo- 
gous manner. 

The generation of a random sample in multiple di- 
mensions ultimately depends on being able to generate 
uniformly distributed random numbers from the interval 
[0, 11. The generation of such random numbers has 
been widely studied and discussed.57. 148-150 As an 
aside, such numbers are often called pseudorandom 
numbers because they are generated by reproducible 
algorithmic processes rather than in a truly random 
manner. For this presentation, the capability to generate 
random numbers is taken for granted and discussed no 
further. 

Stratified Sa 
10.0 r"' 

9.0 

7.0 

a 

A 

,ling: Ec 
T 

L 

a 

& 

J Strata Probability 
T 

3 

0 

A 0.0 
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

U: Uniform 

With random sampling, there is no assurance that a 
sample element will be generated from any particular 
subset of the sample space &. In particular, important 
subsets of S', with low probability but high conse- 
quences are likely to be missed. Stratified sampling. or 
importance sampling as it is also sometimes called, pro- 
vides a way to mitigate this problem by specifying sub- 
sets of s,, from which sample elements will be selected. 
Specifically, a,, is exhaustively subdivided into a col- 

lection G, 4, ..., &of disjoint subsets (i.e., uzl 4 
= s,, and 5 n 4 = 0 for p # q) (Fig. 3.2). The 4 
constitute the strata associated with the sampling proce- 
dure. Then, the corresponding sample (Le., the 
stratified or importance sample) 

nl  
x i =  [x i l ,  x i2 ,  ..., x i , n X ] , i =  1.2, ..., n ~ =  C n l , , ( 3 . 3 )  

k =1 

is obtained by randomly sampling nlk sample elements 
from strata 4. The preceding sampling is carried out 
conditional on the restriction of x to 4. Further, if Xi E 
&, then the corresponding weight wi for use in prob- 
abilistic calculations is given by wi = psu ( & ) / d k .  In 
most applications, n1, = 1, and so the sample size nS is 
equal to the number of strata and wi = psu( &) for Xi E 

4. 

Stratified Sampling: Unequal Strata Probability 

'O-O F--lll- ---r--3 
9.0 1 a 8.0 

1 .o 

0.0 
Frame 3.2b 

0.0 1.0 2.0 3.0 1 

U: Uniform 
TRooM115o.si 

Fig. 3.2. Generation of a stratified sample of size nS = 10 with one random sample per strata (Le., n1, = 1) from x = 
[ U ,  v] with U uniform on [0, 101 and V triangular on [0, 101 with a mode of 8: (a) Equal strata probability 
(i.e., p,, ( E R )  = O.l), and (b) Unequal strata probability (Le., psu (4) = 0.2, 0.2, 0.1, 0.1, 0.1, 0.06, 0.06, 
0.06,0.06,0.06). 
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Stratified sampling has the advantage of forcing the 
inclusion of specified subsets of $’, while maintaining 
the probabilistic character of random sampling. Indeed, 
it can be argued that stratified sampling is always the 
best procedure to use when enough information is avail- 
able for its appropriate implementation. A major prob- 
lem associated with stratified sampling is the necessity 
of defining the strata 4, &, . . . , GI and also calculating 
their probabilities. Both of these requirements are 
avoided when random sampling is used. When the di- 
mensionality of S,, is high, the determination of strata 
and strata probabilities becomes a major undertaking. 
The event tree and fault procedures that underlie many 
large analyses can be viewed as algorithms to determine 
the strata and strata probabilities for use in a stratified 
sampling procedure. These determinations are further 
complicated when many analysis outcomes are under 
consideration (i.e., when y in Eq. (1.1) is of high di- 
mension); in particular, strata definitions that are appro- 
priate for one analysis outcome may be inappropriate 
for other analysis outcomes. A compounding problem 
is that all the analysis outcomes that will be studied in 
the course of an analysis may not even be known at the 
beginning of the analysis. 

Latin hypercube sampling can be viewed as a com- 
promise procedure that incorporates many of the desir- 
able features of random sampling and stratified 
sampling and also produces more stable analysis 
outcomes than random sampling. Like random and 
stratified sampling, Latin hypercube sampling is a prob- 
abilistic procedure in the sense that a weight (Le., wi = 
l/nS) can be associated with each sample element that 
can be used in probabilistic calculations (i.e., in the 
estimation of the integrals in Eqs. (1.4) - (1.8)). Like 
random sampling, the implementation of Latin hyper- 
cube sampling is easier than the implementation of 
stratified sampling because it is not necessary to deter- 
mine strata and strata probabilities. However, Latin 
hypercube sampling does have the property of densely 
stratifying across the range of each element of X, which 
is a property closer to those possessed by stratified 
sampling. Thus, Latin hypercube sampling displays 
properties between random sampling, which involves no 
stratification, and stratified sampling, which stratifies on 
SSU. 

Latin hypercube sampling operates in the following 
manner to generate a sample of size nS from X = [XI, x2, 
..., x d ]  in consistency with the distributions D1, D2, 
..., D ,  indicated in Eiq. (1.2) (Le., in consistency with 

the probability space (S’,, As,,, p’,)). The range of 
each variable (i.e., the xi) is exhaustively divided into 
nS disjoint intervals of equal probability and one value 
is selected at random from each interval. The nS values 
thus obtained for x1 are paired at random without re- 
placement with the nS values obtained for x2. These nS 
pairs are combined in a random manner without re- 
placement with the nS values of x3 to form nS triples. 
This process is continued until a set of nS nX-tuples is 
formed. These nX-tuples are of the form 

xj = [ X j l ,  xj2, ...) Xi,,]. i = 1, 2, ..., nS, (3.4) 

and constitute the Latin hypercube sample (LHS). The 
individual xi must be independent for the preceding 
construction procedure to work; a method for generat- 
ing Latin hypercube and random samples from corre- 
lated variables has been developed by Iman and Cono- 
ver151 and will be discussed in Sect. 5.1. Latin 
hypercube sampling is an extension of quota sam- 
plinglS2 and can be viewed as an n-dimensional ran- 
domized generalization of Latin square sampling (Ref. 
153, pp. 206-209). 

The generation of an LHS is illustrated for x = [U, 
Vj and nS = 5 (Fig. 3.3). The ranges of U and V are 
subdivided into five intervals of equal probability, with 
this subdivision represented by the lines that originate at 
0.2, 0.4, 0.6 and 0.8 on the ordinates of Figs. 3.3a and 
3.3b, extend horizontally to the CDFs, and then drop 
vertically to the abscissas to produce the 5 indicated 
intervals. Random values U(1). U(2), ..., U(5)  and V(1), 
V(2). ..., V(5) are then sampled from these intervals. 
The sampling of these random values is implemented by 
(i) sampling RU( 1) and RV( 1) from a uniform distribu- 
tion on [0,0.2], RU(2) and RV(2) from a uniform distri- 
bution on (0.2, 0.41, and so on, and then (ii) using the 
CDFs to identify (i.e., sample) the corresponding U and 
V values, with this identification represented by the 
dashed lines that originate on the ordinates of Figs. 3.3a 
and 3.3b, extend horizontally to the CDFs, and then 
drop vertically to the abscissas to produce U(1), U(2), 
..., U(5) and V(1), V(2), ..., V(5). The generation of the 
LHS is then completed by randomly pairing (without 
replacement) the resulting values for U and V. As this 
pairing is not unique, many possible LHSs can result, 
with the LHS in Fig. 3 . 3 ~  resulting from the pairings 
[ w ) ,  v (~) I ,  [u(2) ,  v(1)i. ru(3), v(2)1, ru(41, ~(311, 
[U(5), V(4)] and the LHS in Fig. 3.3d resulting from the 
pairings [ W ) ,  V(3)1, [W), vm1, [W3), V(3)I. IU(4), 
V(5)l. t W), W)l. 
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Fig. 3.3. Example of Latin hypercube sampling to generate a sample of size nS = 5 from x = [U ,  v] with U uniform 
on [0,10] and Vtriangular on [0, IO] with a mode of 8. 
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The generation of an LHS for nS > 2 proceeds in a 
manner similar to that shown in Fig. 3.3 for nV = 2. 
The sampling of the individual variables for nS > 2 
takes place in the same manner as shown in Figs. 3.3a 
and 3.3b. However, the nX variables define an nX- 
dimensional solid rather than a 2-dimensional rectangle 
in the plane. Thus, Figs. 3 . 3 ~  and 3.3d would involve a 
partitioning of an nX-dimensional solid rather than a 
rectangle. 

3.2 Properties of Sampling 
Techniques 

Random sampling, stratified sampling and Latin 
hypercube sampling are now discussed and compared. 
This discussion is derived from the study by McKay 
et For notational convenience, a single element y 
of the vector y in Eq. (1.1) is considered. 

The following estimator is widely used in conjunc- 
tion with random sampling: 

where yi = Axi) for the random sample appearing in Eq. 
(3.2) and g is an arbitrary function. If g(y) = y ,  then T 
represents the sample mean, which is used to estimate 
the expected value E(y) of y .  If g(y) = yr, then T repre- 
sents an estimate for the fi sample moment, which is 
used in obtaining an estimate for the corresponding 
population moment. If g(y) = 1 for y I Y and g(y) = 0 
otherwise, then T is an estimate of the quantile on the 
distribution function of y associated with Y. 

Let T denote the expected value for the population 
of Ts that results from repeated calculations with inde- 
pendent random samples of size nS from x .  McKay 
et show that both stratified sampling and Latin 
hypercube sampling yield unbiased estimates for T, 
which is also the case for random sampling. That is, the 
expected value of repeated calculations of T with either 
sampling method is r. 

For notational convenience, let TR, Ts and TL rep- 
resent estimates of T (i.e., values of T calculated as 
shown in Eq. (3.5)) obtained with a random sample of 
size nS, a stratified sample of size nS with all strata of 
equal probability and one random selection per strata, 
and an LHS of size nS, respectively. Then, as shown by 
McKay et al.,31 

Vur (Ts ) S Vur (TR ) , (3.6) 

where Vur represents the variance of Ts and TR under 
repeated estimations. No direct means of comparing the 
variance of TL and TR appears to be known. However, 
the following result has been established by McKay 
et a1.31 

Theorem 3.1. If y =flxl, x2, . . ., xnx) is monotonic 
in each of the xi and g(y) is a monotonic function of y ,  
then 

(3.7) Vur (TL )I Vur (TR ) . 

As indicated earlier, uncertainty analysis generally 
involves estimating the mean, variance and distribution 
function for the particular dependent variable under 
consideration. Estimates for these quantities with ran 
dom sampling, stratified sampling, and Latin hypercube 
sampling are now considered. For each sampling 
method, the form for the estimator of the expected value 
of y is given by 

i=l 

where yi =Axi). To obtain this representation for the 
stratified sample, it is assumed that xi comes from stra- 
tum 4, ps,(&) = I/nS, and nIi = 1. The symbols 
y R ,  7s and FL are used to represent the value obtained 
in Eq. (3.8) with random sampling, stratified sampling, 
and Latin hypercube sampling, respectively. Each of 
YR, ys and 7~ is an unbiased estimator of E@). 

- 

The goodness of an unbiased estimator can be 
measured by its variance. As shown in McKay et al.,31 

(3.10) 
' i=l 

and 

where 
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p = E(Y) I (3.12) 

pi = E(y I X E  e) in Eq. (3.10) for the stratified 
sample, (3.13) 

pr = E(y I x E cell r )  in Eq. (3.1 1) for the LHS, (3.14) 

and q in Eq. (3.1 1)  denotes the restricted space of all 
pairs (p, ps) for which the associated cells have no 
coordinates in common. The cells being referred to in 
conjunction with Latin hypercube sampling in Eq. 
(3.1 1) are the n@ possible combinations of intervals of 
equal probability used in the construction of the sample. 
Each cell can be labeled by a set of coordinates 

where mri is the interval number for variable xi associ- 
ated with cell r, r = 1,  2, ..., nSnx. The statement that 
cells r and s have no coordinate in common means that 
md#ms,forj= 1,2, ..., nX. 

Comparison of Eqs. (3.9) and (3.10) shows that 

The relationship between V U ~ ( ~ R )  and Vur(7~) is not 
easily ascertained by comparing Eqs. (3.9) and (3.11). 
However, the previously stated theorem by McKay 
et al.31 (Theorem 3.1) implies that 

when y = f l x l ,  x2,. . ., x d )  is monotonic in each of the xi. 
In the example presented in McKay et al.,31 the sam- 
pling variability in yL (i.e., Vur(yL) ) was considerably 
less than that for yR and 7s. 

For each sampling method, the form for the estima- 
tor of the variance of y is given by 

ns 

i=l 
S2 =( l / f lS)c(y i  -yy  , 

and its expectation is given by 

E(S2) = Vur(y) -vu+), 

(3.18) 

where y is yR, ys or yL ,  depending on which sam- 
pling technique is in use. For convenience, SR, 2 2  Ss and 

Si are used to represent the values obtained in Eq. 
(3.18) for random sampling, stratified sampling (equal 
probability strata), and Latin hypercube sampling. 

For the random sample, nS S i  /(nS -1) is an unbi- 
ased estimator of the variance of y. The bias in the case 
of stratified sampling is unknown. However, it follows 
from Eqs. (3.9), (3.16) and (3.19) that 

[(nS-l)/nS]Vur(y) I E(S+vur(y). (3.20) 

The bias in Si is also unknown. However, in a deriva- 
tion analogous to the one used for Eq. (3.20), it follows 
from Eqs. (3.9), (3.17) and (3.19) that 

[ (nS -1)/nS]Vur(y) I E ( $ ) <  Vur(y) (3.21) 

when y = f l x l ,  x2, . . ., xnx) is monotonic in each of the 
xj. In the example given in McKay et al.,31 Siwas 
found to have little bias and considerably less sampling 
variability than either random or stratified sampling. 

For each sampling method, the form for the estima- 
tor of the distribution function of y is given by 

nS 

i=l 
(3.22) 

where u(z) = 1 if z 2 0 and u(z) = 0 otherwise. More 
specifically, G(y) is the estimator for the quantile on the 
distribution function associated with y. The locus of 
points (y, G(y)) is the empirical distribution function 
associated with y1, y2, ..., ynp Since Eq. (3.22) is of 
the form shown in Eq. (3.5), the expected value of G(y) 
is the same under all three sampling plans. Under ran- 
dom sampling, G(y) is an unbiased estimator for the 
distribution function of y, and so stratified and Latin 
hypercube sampling also provide unbiased estimates. 

As shown in McKay et the variances for the 
estimators in Eq. (3.22) are given by 

(3.23) 
(3.19) 
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and 

where GR, Gs and GL represent the estimator in Eq. 
(3.24) with random, stratified and Latin hypercube 
sampling, respectively, D represents the true distribu- 
tion function for y .  Di and D, represent the distribution 
function for y conditional on x belonging to stratum i or 
cell r as appropriate (see Eqs. (3.13)) and (3.14)), and 
!&represents the same restricted space that it did in Eq. 
(3.1 1). 

The equality in Eq. (3.24) implies that 

Thus, the variance in estimating 06) with stratified 
sampling is less than that with random sampling. The 
relationship between Var[GL(y)] and Var[GR(y)] is not 
readily seen by comparing Eqs. (3.23) and (3.25). In 
the example given in McKay et the sampling vari- 
ability in G L ( ~ )  (i.e., Var[GL(r)]) was found to be con- 
siderably less than that in GR@) and Gs(y). 

The comparisons involving random sampling, 
stratified sampling and Latin hypercube sampling dis- 
cussed so far have all been for samples of a fixed size 
nS. SteinlS4 has derived asymptotic comparisons of the 
variability of estimates TR and T L  of T obtained with 
random sampling and Latin hypercube sampling, re- 
spectively, under the assumption that the xis are inde- 
pendent. In particular, Stein found that the inequality 

(3.27) 

can be expected to hold for sufficiently large sample 
sizes nS for most models. 

A more explicit statement of Stein’s result requires 
some additional notation. Let SSu,j j = 1, 2, ..., nX, 
represent the sample space for xj and let dSuj represent 
the corresponding density function, with both &‘,,,j and 

d,,,, deriving from the distribution Dj indicated in Eq. 
(1.2). Further, let I = { 1, 2, . . ., nX), 4-13 = I - u}, 
dsu,k(xk). The representation of d,,(x) and d, , , (x)  as 
products involving dSJ(xj) is possible because the xis 
are assumed to be independent. 

d$u(x) = n j E  I dsu,j(xj)* and dsu,-&x) = n kc I (-i) 

Stein’s result is based on the following decomposi- 
tion of g[f(f)] : 

where 

k = [Z1, Z2,. . . , Znx ] is an arbitrary element of Ssu, 

dV,u,-j represents an increment of volume from 
Ssu,-j (Zj)  and r(k) is formally defined by 

nx 

j=1 
= g [ f ( k ) ]  - p - a j (E). (3.29) 

The function a,(E) characterizes the “main effect” of 

the element Z j  of E, and the function r ( f )  character- 

izes the nonadditive component of g [ f ( k ) ] .  As an 
aside, this decomposition also underlies the procedures 
introduced in Sect. 2.4. The following result is proved 
by Stein (Ref. 154, Corollary 1,  p. 145): 

Theorem 3.2. If J g 2 ~ f ( ~ ) l d , , ( ~ > d ~ , ,  is fi- 
Ssu 

nite, then 

where the notation F ( n S 1 )  = &SI) indicates that 
F ( n S 1 ) / n S 1  + 0 as nS + m (Ref. 30, p. xv). 

17 



The corresponding variance associated with ran- are given in several recent papers.ls7, 158 Also, a num- 
ber of references related to the theoretical development 
of Latin hypercube sampling are given at the end of 

dom sampling is given by 

v a r [ ~ R  (Y~*Y~----,Y~S)] Sect. 5.1. 

= js su {g [ f ( x ) 1 - P } 2  ds,(x)dV,, I n s  

- r2 (x)d,, (x)dVs, I nS Hypercube Sampling 
3.3 Historical Development of Latin 

- Is,, 
nX 

j=l 

The introduction of Latin hypercube sampling can 
be traced to concerns in the reactor safety community 
over the treatment of uncertainty in analyses related to 
the safety of nuclear power plants. In particular, the 
Reactor Safety Study's9 was published by U.S. Nuclear 
Regulatory Commission (NRC) in 1975 and widely 
praised for its advancement of the state of probabilistic 
risk assessment (PRA).160 However, it was also criti- 
cized for inadequately representing the uncertainty in its 
results.160 This led to an active interest on the part of 
the NRC and its contractors in the propagation of uncer- 
tainty through models for complex systems. 

+ c a: (xld, ,  (x)dV,, 1 nS, (3.31) 

with the second equality following from Eq. (3.28) and 
the equalities 

O =  Is,,, ai ( x P s u , j  ("i ) h j  

for i=  1,2, ..., nXand 

(3.32) 

(3.33) 

for xi E s,,,, and j = 1, 2, ..., nX. Thus, above some 
sample size, Latin hypercube sampling results in esti- 
mates for T with lower variance than random sampling 
unless all the main effects aj(x),  j = 1, 2, ..., nX, are 
zero. 

For sufficiently large sample sizes, TL - Y has a 
distribution that is approximately normal, where T is the 
expected value of TL. Specifically, the following result 
has been established by Owen:ls5 

Theorem 3.3. If g m x ) ]  is bounded, then nS1'2(TL 
- T) converges in distribution to a normal distribution 
with mean zero and variance 

as nS increases (see Ref. 156, Sect. 1.4, for formal defi- 
nition of convergence in distribution). 

In practice, most models satisfy the boundedness 
condition imposed on g m x ) ] .  Thus, in concept, the 
preceding result can be used to place confidence inter- 
vals on results obtained with Latin hypercube sampling. 
In practice, determining how large nS must be for ap- 
proximate normality to hold can be difficult. 

Additional results on variance reduction associated 
with Latin hypercube sampling and further references 
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In this environment, Latin hypercube sampling was 
conceived of by W.J. Conover (the original, unpub- 
lished manuscript documenting this work is reproduced 
in App. A) and formally published in conjunction with 
colleagues at Los Alamos Scientific Lab~ra to ry .~~  The 
first applications of Latin hypercube sampling were in 
the analysis of loss of coolant accidents (LOCAs) in the 
context of reactor safety.161, 162 R. L. Iman, a student 
of Conover's and a staff member at Sandia National 
Laboratories, recognized the potential of Latin hyper- 
cube sampling and became an early and active propo- 
nent of its use. Among his contributions was to write the 
first widely distributed program for Latin hypercube 
~amp1ing. l~~.  164 A brief description of the early devel- 
opment of Latin hypercube sampling was prepared by 
Iman in 1980 (this unpublished description is repro- 
duced in App. B). 

Much of the early use of Latin hypercube sampling 
was in programs related to radioactive waste disposal 
carried out at Sandia National Laboratories for the 
NRC.16s-167 In addition, the NRC also supported work 
on Latin hypercube sampling and associated sensitivity 
analysis techniques as part of its MELCOR project to 
develop a new suite of models for use in performing 
reactor safety s t ~ d i e s . ~ ~ ~ - * ~ ~  

In the mid 1980s, the NRC decided to reassess the 
results obtained in the Reactor Safety Study, with par- 
ticular attention to be paid to the assessment and propa- 
gation of uncertainty. This study, often referred to as 
NUREG-1 150 after its report number, was a very large 
analysis and probably the largest integrated analysis of 



any system carried out in the 1 9 8 0 ~ . * ~ ~ .  172 As part of 
the NUREG-1 150 analyses, Latin hypercube sampling 
was used in the propagation of uncertainty through 
PRAs for 5 nuclear power  plant^.'^^-'^^ In addition to 
the extensive technical report literature documenting 
these PRAs, summaries are also available in the journal 
1i terat~re . l~~.  178-182 Subsequent to NUREG-1 150, 
Latin hypercube sampling was used in a very extensive 
PRA for the LaSalle nuclear power station.183-186 

After the NUREG-1 150 analyses, the next large 
project to make use of Latin hypercube sampling in- 
volved performance assessment (PA) for the Waste 
Isolation Pilot Plant (WIPP), which was under devel- 
opment by the U.S. Department of Energy (DOE) for 
the geologic disposal of transuranic radioactive 
waste.187, 188 Latin hypercube sampling was used in 
several PAS for the WIPP, including the PA that sup- 
ported the DOE'S successful compliance certification 
application (CCA) to the U.S. Environmental Protection 
Agency (EPA) for the WIPP.189, With its certifica- 
tion, the WIPP became the first operational facility in 
the United States for the geologic disposal of radioac- 
tive waste. As an aside, EPA staff members charged 
with writing regulations for the geologic disposal of 
radioactive waste were acquainted with, and influenced 
by, uncertainty analyses performed with Latin hyper- 
cube sampling, with the result that the final regulations 
developed for the WIPP mandated an uncertainty 
propagation of the type for which Latin hypercube sam- 
pling is well ~ u i t e d . ' ~ l - ' ~ ~  

At present, the largest project that is making use of 
Latin hypercube sampling is the Yucca Mountain Pro- 
ject (YMP) to develop a deep geologic disposal facility 

for high level radioactive waste at Yucca Mountain, 
N e ~ a d a . ' ~ ~ - I ~ ~  This project is both large and contro- 
versial. It is also a very important project that has been 
much in the news recently and is likely to get even more 
attention in the near future for various reasons. Another 
large project that is currently using Latin hypercube 
sampling is the System Assessment Capability (SAC) 
program for the Hanford Site.198, 199 

The preceding background discussion has concen- 
trated on the large analyses that have used Latin hyper- 
cube sampling. However, Latin hypercube sampling has 
also been used in smaller analyses in a variety of fields 
(e.g., Refs. 33-39, 41-44, 200-214). A recent check 
(Sept. 9, 2001) of SciSearch shows 330 citations to the 
original article on Latin hypercube  ampl ling,^' with the 
number of citations steadily increasing with time. Fur- 
ther, this check does not indicate the extensive use of 
Latin hypercube sampling in analyses documented in 
the technical report literature. Thus, the use of Latin 
hypercube sampling is extensive and growing. As an 
indication of the interest in Latin hypercube sampling, 
the original article was recently declared a Technumet- 
rics classic in experimental design.215 

The growing use of Latin hypercube sampling and 
other techniques for the propagation and analysis of 
uncertainty derives from the recognition that it is not 
enough just to report the results of an analysis. For the 
analysis to be useful in a decision making context, it 
also necessary to assess and report how much confi- 
dence should be placed in the results of the analysis 
(e.g., see the recommendations given in quotes repro- 
duced in Ref. 7). 
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4. Comparison of Random and Latin 
Hypercube Sampling 

Because of its efficient stratification properties, 
Latin hypercube sampling is primarily intended for use 
with long-running models. When a model can be 
evaluated quickly, there is little reason to use Latin hy- 
percube sampling. However, due to their computational 
complexity and expense, long-running models do not 
constitute convenient vehicles for comparing random 
and Latin hypercube sampling. For this reason, the pre- 
sent section will use two relatively simple functions 
(i.e., models) to compare random and Latin hypercube 
sampling. No comparisons with stratified sampling are 
made because the stratification used in a real analysis 
will always depend on the goals of the analysis and the 
properties of the model(s) used in the analysis. In par- 
ticular, the efficacy of stratified sampling derives from 
an informed selection of strata of unequal probability. 

4.1 Monotonic Function 

The function 

fi (U ,v) = u + v + uv + u + v2 + u min {exp ( 3 ~ ) ,  10) 

(4.1) 

is monotonic for positive values of its arguments U ,  V 
and thus reasonably well behaved. For the purpose of 
comparing random and Latin hypercube sampling, U 
and V are assumed to be uncorrelated and uniformly 
disturbed on [ 1.0, 1.51 and [0, 11, respectively, 

Both random and Latin hypercube sampling can be 
used to estimate the distribution off that derives from 
the distributions assigned to U and V. To illustrate the 
robustness (i.e., stability) of results obtained with the 

two sampling procedures, 10 samples of size 25, 50 and 
1 0 0  are generated for each procedure and the associated 
CDFs for fi constructed. The CDFs constructed for 
Latin hypercube sampling show less variability from 
sample to sample than the CDFs constructed for random 
sampling (Fig. 4.1). Thus, Latin hypercube sampling is 
producing a more stable estimate for the CDF than is 
being produced by random sampling, which is consis- 
tent with the result in Theorem 3.1. 

4.2 Nonmonotonic Function 

Unlike the function f, in Eq. (4.1), the following 
function is monotonic for positive values of one argu- 
ment (i.e., v) and nonmonotonic for positive values of 
the other argument (i.e., V): 

f2 (U,V) = u + v + uv + u2 + v2 + Ug(V) (4.2) 

where 

h( V) = (V - 1 1/43)-' + (V - 22/43)-' + (V - 33/43)-' 

g(V) = h(V) if Ih(V)k 10 

= 10 if h(V) 2 10 

= -10 if h(V) 5-10. 

For the purpose of comparing random and Latin hyper- 
cube sampling, U and V are again assumed to be uncor- 
related and uniformly distributed on [ 1 .O, 1.51 and [0, 
11, respectively. Consideration of samples of size 25, 
50 and 100 illustrates that Latin hypercube sampling 
produces more stable CDF estimates than produced by 
random sampling (Fig. 4.2). 
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Fig. 4.1. Comparison of estimated CDFs for monotonic function fi(U, V) in Eq. (4.1) obtained with 10 replicated 
random and Latin hypercube samples of size 25,50 and 100. 
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Fig. 4.2. Comparison of estimated CDFs for nonmonotonic functionf2(U, V) in Eq. (4.2) obtained with 10 replicated 
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5. Operations Involving Latin 
Hypercube Sampling 

5.1 Correlation Control 

As indicated in Eq. (1.2), the uncertainty in the in- 
puts XI, x2, . . ., xnx to an analysis can be represented by 
distributions D l ,  D2, . . ., D~ If appropriate, correla- 
tions can also be specified between variables and form 
part of the definition of the corresponding probability 
space (S‘,, d,,, psu). Given that D1, D2, ..., Dnx are 
characterizing subjective uncertainty, correlations in- 
volving X I ,  x2, . . . , xnx must in some sense derive from a 
belief that a particular value for one variable implies 
something about the possible values for one or more 
other variables (e.g., a low value for x1 implies a high 
value for x2, or a high value for x3 implies a high value 
for x5 and a low value for xg), with the actual relation- 
ship being less strong than a strict functional depend- 
ence. 

Two widely used possibilities exist for defining 
correlations between variables: the Pearson correlation 
coefficient (CC) and the Spearman rank correlation 
coefficient (RCC). For samples of the form in Eqs. 
(3.2) and (3.4), the CC between two variables, say xj 
and xk, is defined by 

. .  

(5.1) - i=l 
112 ’ nS 

i=l i=l 

‘ X j X k  - [ )’I [ (xik -xk 

where 

n F  nS . .- 

E~ = C x d  I n s ,  Ek = c x i k  I n s .  
i=l i=l 

The CC takes on values between -1  and 1 and provides 
a measure of the strength of the linear relationship be- 
tween two variables, with variables tending to increase 
and decrease together for positive and negative CCs, 
respectively, and with gradations in the absolute value 
of the CC between 0 and 1 corresponding to a trend 
from no linear relationship to an exact linear relation- 
ship. 

The RCC is defined similarly to the CC but with 
rank-transformed data. Specifically, the smallest value 
of a variable is given a rank of 1 ;  the next largest value 

is given a rank of 2; and so on up to the largest value, 
which is given a rank equal to the sample size. nS. In 
the event of ties, average ranks are assigned. The RCC 
is then calculated in the same manner as the CC except 
for the use of rank-transfonned data. Specifically, 

R X j X k  = 

i=l 
112 ’ ‘ I 2  nS 

[$[ i=l 
( x j ) - f }  { c[ i=l (%k 1- E (xk )I2} 

where R(xu) and R(xik) denote the rank-transformed 
values of xu and xik, respectively, and R ( x j ) =  

E ( x k ) = ( n S + 1 ) / 2 .  Like the CC, the RCC takes 011 

values between -1 and 1 but provides a measure of the 
strength of the monotonic relationship between two 
variables. 

In the authors’ opinion, most individuals intuitively 
think in terms of RCCs rather than CCs when correla- 
tions are used in association with assessments of subjec- 
tive uncertainty. In particular, what is usually possessed 
is some idea of the extent to which large and small val- 
ues for one variable should be associated with large and 
small values for another variable. This is exactly the 
type of information that is quantitatively captured by 
RCCs. Therefore, this section will discuss the imposi- 
tion of a rank correlation structure on random and 
LHSs. 

An effective technique for imposing rank correla- 
tions has been proposed by Iman and C0n0ver.l~~ This 
technique has several desirable properties including (i) 
distribution independence in the sense that it can be 
applied to all types of distributions, (ii) simplicity in 
that no unusual mathematical techniques are required in 
its implementation, (iii) the stratification associated with 
Latin hypercube sampling is preserved, (iv) the mar- 
ginal distributions for the individual sample variables 
are preserved, and (v) complex correlation structures 
involving many variables can be imposed on a sample. 

The following discussion provides an overview of 
the ImadConover procedure for inducing a desired rank 
correlation structure on either a random or an LHS and 
is adapted from Sect. 3.2 of Helton.216 The procedure 
begins with a sample of size m from the n input vari- 
ables under consideration. This sample can be repre- 
sented by the m x n matrix 
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(5.3) 

where xc is the value for variable j in sample element i. 
Thus, the rows of X correspond to sample elements, and 
the columns of X contain the sampled values for indi- 
vidual variables. 

The procedure is based on rearranging the values in 
the individual columns of X so that a desired rank corre- 
lation structure results between the individual variables. 
For convenience, let the desired correlation structure be 
represented by the n x n matrix 

(5.4) 

where ck. is the desired rank correlation between vari- 
ables xk and x~ 

Although the procedure is based on rearranging the 
values in the individual columns of X to obtain a new 
matrix X* that has a rank correlation structure close to 
that described by C, it is not possible to work directly 
with X. Rather, it is necessary to define a new matrix 

(5 .5)  

that has the same dimensions as X, but is otherwise in- 
dependent of X. Each column of S contains a random 
permutation of the m van der Waerden scores @-'(dm + 
l), i = 1, 2, . . . , rn, where @-I is the inverse of the 
standard normal distribution (Ref. 217, p. 317). The 
matrix s is then rearranged to obtain the correlation 
structure defined by C. This rearrangement is based on 
the Cholesky factorization of C (Ref. 218, p. 89). That 
is, a lower triangular matrix P is constructed such that 

c = PPT. (5.6) 

This construction is possible because C is a symmetric, 
positive-definite matrix (Ref. 218, p. 88). 

If the correlation matrix associated with S is the n 
x n identity matrix (i.e., if the correlations between the 
values in different columns of S are zero), then the cor- 
relation matrix for 

s* = SPT (5.7) 

is C (Ref. 219, p. 25). At this point, the success of the 
procedure depends on the following two conditions: (i) 
that the correlation matrix associated with S be close to 
the n x n identity matrix, and (ii) that the correlation 
matrix for S* be approximately equal to the rank corre- 
lation matrix for S*. If these two conditions hold, then 
the desired matrix X* can be obtained by simply rear- 
ranging the values in the individual columns of X in the 
same rank order as the values in the individual columns 
of S*. This is the first time that the variable values con- 
tained in X enter into the correlation process. When X* 
is constructed in this manner, it will have the same rank 
correlation matrix as S*. Thus, the rank correlation 
matrix for X* will approximate C to the same extent that 
the rank correlation matrix for S* does. 

The condition that the correlation matrix associated 
with S be close to the identity matrix is now considered. 
For convenience, the correlation matrix for S will be 
represented by E. Unfortunately, E will not always be 
the identity matrix. However, it is possible to make a 
correction for this. The starting point for this correction 
is the Cholesky factorization for E: 

E = QQT. (5.8) 

This factorization exists because E is a symmetric, posi- 
tive-definite matrix. The matrix S* defined by 

has C as its correlation matrix. In essence, multiplica- 
tion of S by (Q-l)T transforms S into a matrix whose 
associated correlation matrix is the n x n identity ma- 
trix; then, multiplication by PT produces a matrix whose 
associated correlation matrix is C. As it is not possible 
to be sure that E will be an identity matrix, the matrix 
S* used in the procedure to produce correlated input 
should be defined in the corrected form shown in Eq. 
(5.9) rather than in the uncorrected form shown in Eq. 
(5.7). 

The condition that the correlation matrix for S" be 
approximately equal to the rank correlation matrix for 
S* depends on the choice of the scores used in the defi- 
nition of S. On the basis of empirical investigations, 
Iman and ConoverIS1 found that van der Waerden 
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scores provided an effective means of defining S, and 
these scores are incorporated into the rank correlation 
procedure in the widely used LHS program.164 Other 
possibilities for defining these scores exist, but have not 
been extensively investigated. The user should examine 
the rank correlation matrix associated with S* to ensure 
that it is close to the target correlation matrix C. If this 
is not the case, the construction procedure used to ob- 
tain S* can be repeated until a suitable approximation to 
C is obtained. Results given in Iman and ConoverlS1 
indicate that the use of van der Waerden scores leads to 
rank correlation matrices for S* that are close to the 
target matrix C. 

As a single example, the effects of imposing rank 
correlations of 0.00, 0.25, 0.50, 0.75, 0.90 and 0.99 on 
a pair of variables are shown in Fig. 5.1. The results of 
various rank-correlation assumptions with a variety of 
marginal distributions are illustrated by Iman and Dav- 
enport.220.221 

The control of orthogonality and the induction of 
correlations within LHSs are areas of much research 
interest, and a number of results exist in this area in 
addition to the original Iman and Conover rank correla- 
tion techniques discussed in this 

5.2 Reweighting of Samples 

Once a sampling-based uncertainty study has been 
performed, it is sometimes necessary to assess the ef- 
fects that arise from changed definitions for the distribu- 
tions D1, 02, ..., Dnx in Eq. (1.2). If the model under 
consideration is expensive to evaluate, it is desirable to 
perform this assessment without reevaluating (i.e., re- 
running) the model. When the distributions but not the 
ranges of the variables change, this assessment can be 
carried out with a reweighting technique developed by 
Iman and C o n ~ v e r . ~ ~ ~  

Latin hypercube sampling as described in Sect. 3.1 
is based on dividing the range of each variable into nS 
intervals of equal probability, where nS is the sample 
size. The Iman/Conover reweighting technique is based 
on a generalization of Latin hypercube sampling that 
involves the division of variable ranges into intervals of 
unequal probability. 

For this generalization of an LHS size nS from the 
variables XI, x2, . . . , xnx, the range of each variable xi is 
divided into nS mutually exclusive intervals J j ,  i = 1, 2, 
..., nS, and one value x+ i = 1, 2, ..., nS, of xi is ran- 
domly selected from each interval Jj The preceding 

variable values (i.e., x+ i = 1,2,  . . ., nS, j = 1,2, . . ., nx) 
are now used as described in Sect. 3.1 to generate an 
LHS. Specifically, the nS values for x1 are randomly 
paired without replacement with the nS values for q. 
The resultant nS pairs are randomly combined without 
replacement with the nS values for x3 to produce nS 
triples. This process is continued until nS nX-tuples are 
produced, with these nX-tuples constituting the LHS 

(5.10) 

The preceding division of the ranges of the variables 
into the intervals I j  produces a corresponding division 
of S,, into n P X  cells. Specifically, each cell is of the 
form 

(5.1 1) 

where n = [k, I ,  ..., m] is a vector of nX integers be- 
tween l and nS that designates one of the nSnX mutually 
exclusive cells into which S', has been partitioned. 
Further, the probability prob( G) of can be calcu- 
lated from the definition of (S,,, JSU, pSu). For exam- 
ple, 

if the xis are independent. 

Theorem 5.1. If xi, i = 1, 2, ..., nS, is an LHS of 
the form indicated in Eq. (5. lo), c ni , i = 1, 2, . . ., nS, 

designates the cell in Eq. (5.1 1) that contains xi, f is the 
function in Eq. (1. l), and g is an arbitrary function, then 

is an unbiased estimator of the expected value of g[f(x)] 
(Theorem 1, p. 1760, Ref. 241). 

The preceding result reduces to the unbiasedness of 
the estimator in Eq. (3.5) when Latin hypercube sam- 
pling with equal probability intervals is used (i.e., 
prob(Gi ) = l/nSnx) and f(xi) is real valued (i.e., yi = 

f(xi)). The importance of Theorem 5.1 is that it allows 
a recalculation of expected values, moments and distri- 
bution functions that result from changed distribution 
assumptions without a rerunning of the model under 
consideration. Specifically, the same values for g[f(xi)] 
are used in conjunction with new values for prob(Gi ) 
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Rank Correlation of 0.00 

Rank Correlation of 0.99 
1 ' 1 ' 1 ' 1 .  .. 4.2 .. 

X, : Normal with Mean = 0 and Var = 1 
TRMMo174..i 

Fig. 5.1. Examples of rank correlations of 0.00, 0.25, 0.50, 0.75, 0.90 and 0.99 imposed with the Iman/Conover re- 
stricted pairing technique for an LHS of size nS = 1OOO. 
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calculated for the changed distributions for the elements 
of x. A related result is given by Beckman and 

and 

(5.15) 
McKay.”2 nR 

S E ( F ) =  c ( T r  -F)21nR(nR-l) 
5.3 Replication of Samples L1 b 

provide an additional estimate for T and an estimate of 
the standard error for this estimate of T. The r- 
distribution with nR-1 degrees of freedom can be used 
to obtain a confidence interval for the estimate for T. 
specifically, the 1 - a confidence interval is given by 
F&r,-JE(F),  where rl - a /2  is the 1 - a(/2 quantile of 
the t-distribution with nR - 1 degrees of freedom (e-g., 
tl - = 2.262 for a = 0.05 and n~ = 10; Ref, 217, 
Table ~ 2 5 ) .  

A brief overview of the variability in statistics ob- 
tained with Latin hypercube sampling is given in Sect. 
3.2. The variability results when the same quantity is 
repeatedly estimated with independently generated 
samples of the same size. In essence, this variability is 
a measure of the numerical error in using a sampling- 
based ( k . ,  Monte Carlo) procedure in the estimation Of 
an integral. Unfortunately, the theoretical results indi- 
cated in Sect. 3.2 do not lead in any convenient way to 
error estimates in real analyses. 

In practice, a replicated sampling procedure pro- 
posed by R.L. Iman243 provides a more effective ap- 
proach to estimating the potential sampling error in 
quantities derived from Latin hypercube sampling. 
With this procedure, the LHS in Eq. (3.4) is repeatedly 
generated with different random seeds. These samples 
are used to produce a sequence of values T,., r = 1,  2, 
..., nR, for the statistic Tin  Eq. (3.3, where nR is the 
number of replicated samples. Then, 

nR 
T = T, I nR 

r=l 
(5.14) 

Latin Hypercube Sampling 

- Upper 95th CI - Mean 
- Lower 95th CI 

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 
f = fl(U,V) 

As an example, 0.95 confidence intervals for the 
cumulative probabilities associated with individual val- 
ues in the range of the function f1 defined in Eq. (4.1) 
are shown in Fig. 5.2, with the 10 replicated LHSs pro- 
ducing narrower confidence intervals than the 10 ran- 
dom samples. The confidence intervals in Fig. 5.2 were 
calculated for individual values on the abscissa and then 
connected to obtain the confidence-interval curves (i.e., 
the curves of upper and lower bounds). Thus, the con- 
fidence intervals apply to individual cumulative prob- 
abilities rather than to an entire CDF. 

Random Sampling . -  

- Upper 95th CI - Mean 
- Lower 95th CI 

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.022.5 25.0 
f = f1(U,V) 

TRoo*o2sl.U 

Fig. 5.2. Upper and lower bounds on 0.95 confidence intervals (CIS) for cumulative probabilities associated with 
functionfl(U, V) in Eq. (4.1) obtained from nR = 10 samples of size nS = 25 each (see Fig. 4.1 for CDFs): 
(a) Latin hypercube sampling, and (b) random sampling. 
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6. Example Uncertainty and 
Sensitivity Analysis 

An example uncertainty and sensitivity analysis in- 
volving a model for two-phase fluid flow follows. The 
analysis problem is briefly described (Sect. 6.1), and 
then techniques for the presentation of uncertainty 
analysis results are described and illustrated (Sect. 6.2). 
The section then concludes with illustrations of various 
sensitivity analysis procedures, including examination 
of scatterplots (Sect. 6.3), regression-based techniques 
(Sect. 6.4), and searches for nonrandom patterns 
(Sect. 6.5). 

6.1 Analysis Problem 

The following examples use results from an uncer- 
tainty and sensitivity analysis of a large model for two- 
phase fluid flow (Ref. 244, Chapts. 7, 8; Refs. 245-247) 
carried out in support of the 1996 CCA for the WIPP, 
which is being developed by the DOE for the geologic 
(i.e., deep underground) disposal of transuranic radioac- 
tive waste.lS9* 248 The indicated model involves the 
numerical solution of a system of nonlinear partial dif- 
ferential equations and is implemented by the 
BRAGFLO program (Sect. 4.2, Ref. 244; Ref. 245). 

The 1996 WIPP PA considered nX = 57 uncertain 
inputs (Table 6.1), of which 31 were used in the two- 
phase flow analysis and 26 were used in other parts of 
the PA (see Sect. 7). The distributions assigned to these 
variables (Fig. 6.1) are intended to characterize subjec- 
tive uncertainty, correspond to the distributions in Eq. 
(1.2), and define the probability space ( SSu, &, pSu). 

Latin hypercube sampling was used to generate nR 
= 3 replicated samples of size nS = 1 0 0  each (Sect. 5.3) 
for a total of 300 sample elements. For convenience, 
these replicates are referred to as R1, R2 and R3, re- 
spectively. The ImadConover restricted pairing tech- 
nique (Sect. 5.1) was used to induce specified rank cor- 
relations for three pairs of variables (Table 6.1) and to 
keep correlations between all other variables close to 
zero (Table 6.2). 

As is typical of most studies of real systems, the 
original analysis involved a large number of dependent 
variables, of which only 11 will be used for illustration 
in this section (Table 6.3). The variables in Table 6.3 
were calculated for three distinct sets of conditions des- 
ignated by EO, El and E2 in the 1996 WIPP PA, where 
EO corresponds to undisturbed conditions (Le., no hu- 
man disruption of the repository), El corresponds to a 

single drilling intrusion through the repository that 
penetrates an area of pressurized brine in a geologic 
formation beneath the repository, and E2 corresponds to 
a single drilling intrusion through the repository that 
does not penetrate pressurized brine. 

6.2 Uncertainty Analysis 

In this example, the model predictions are functions 
rather than single numbers as indicated in conjunction 
with Fig. 1 . 1 .  The distributions of curves in Fig. 6.2 
constitute one way of displaying the uncertainty in these 
functions that results from uncertainty in model input. 
However, the model predictions at individual times are 
real valued and thus can be displayed as CDFs or 
CCDFs. A popular presentation format25o is to display 
estimates for the CDF, the corresponding density func- 
tion, and the mean in a single plot (Fig. 6.3). 

For distributions of curves such as those in Fig. 6.2, 
summaries can be obtained by plotting mean and per- 
centile values of the dependent variable for individual 
values on the abscissa (Fig. 6.4). Conceptually, a verti- 
cal line is drawn through a point on the abscissa and the 
curves above this point. If a sample of size nS is in- 
volved, this results in selecting nS values for the de- 
pendent variable (i.e., the nS values above the point on 
the abscissa). These values can then be used to estimate 
a mean, a median, and various percentiles. Connecting 
these estimates for a sequence of values on the abscissa 
produces summary plots of the form shown in Fig. 6.4. 

The purpose of replicating the LHS in this example 
was to obtain an indication of the stability of the resul- 
tant distribution estimates with an LHS of size 100. In 
this analysis, these estimates were quite stable (e.g., Fig. 
6.5). Similar stability has also been observed in other 
studies.32. 170,251,252 

Presentation of multiple plots of the form illus- 
trated in Fig. 6.3 can be cumbersome when a large 
number of predicted variables is involved. When these 
variables have the same units, box plots provide a way 
to present a compact summary of multiple distributions 
(Fig. 6.6). In this summary, the endpoints of the boxes 
are formed by the lower and upper quartiles of the data, 
that is, ~ 0 . 2 5  and ~0.75. The vertical line within the box 
represents the median, ~ 0 . 5 0 .  The mean is identified by 
the large dot. The bar on the right of the box extends to 
the minimum of ~ 0 . 7 5  + 1.5 (~0.75 - ~ 0 . 2 5 )  and the 
maximum value. In a similar manner, the bar on the left 
of the box extends to the maximum of ~ 0 . 2 5  - 1.5 (~0 .75  
- ~ 0 . 2 5 )  and the minimum value. The observations fal- 
ling outside of these bars are shown in crosses. The 
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Table 6.1. Example Elements of x,, in the 1996 WlPP PA (see Table 5.1, Ref. 244, Table 1, Ref. 249 
and App. PAR, Ref. 189 for complete listings of the nV= 57 elements of x,,and sources of 
additional information) 

ANHBCEXP-Brooks-Corey pore distribution parameter for anhydrite (dimensionless). Distribution: Stu- 
dent's with 5 degrees of freedom. Range: 0.491 to 0.842. Mean, Median: 0.644. 

ANHBCVGP-Pointer variable for selection of relative permeability model for use in anhydrite. Used in 
BRAGFLO. See ANHBCEXP. Distribution: Discrete with 60% 0,40% 1. Value of 0 implies Brooks-Corey 
model; value of 1 implies van Genuchten-Parker model. 

ANHCOMP-Bulk compressibility of anhydrite (Pa-'). Distribution: Student's with 3 degrees of freedom. 
Range: 1.09 x 10-11 to 2.75 x 10-10 Pa-1. Mean, Median: 8.26 x 10-11 Pa-1. Correlation: -0.99 rank corre- 
lation with ANHPRM. 

ANHPRM-Logarithm of intrinsic anhydrite permeability (m2). Distribution: Student's with 5 degrees of 
freedom (see Figure 6.la). Range: -21.0 to -17.1 (Le., permeability range is 1 x 10-21 to 1 x 10-17.1 m2). 
Mean, Median: -18.9. Correlation: -0.99 rank correlation with ANHCOMP. 

BHPRM-Logarithm of intrinsic borehole permeability (m2). Distribution: Uniform. Range: -14 to -1 1 (Le., 
permeability range is 1 x 10-14 to 1 x 10-11 m2). Mean, median: -12.5. 

BPCOMP-Logarithm of bulk compressibility of brine pocket (Pa-'). Distribution: Triangular. Range: 
-1 1.3 to -8.00 (i.e., bulk compressibility range is 1 x 10-11.3 to 1 x 10-8 Pa-1). Mean, mode: -9.80, -10.0. 
Correlation: -0.75 rank correlation with BPPRM. 

BPPRM-Logarithm of intrinsic brine pocket permeability (m2). Distribution: Triangular. Range: -14.7 to 
-9.80 (Le., permeability range is 1 x 10-14.7 to 1 x 10-9.80 m2). Mean, mode: -12.1, -11.8. Correlation: 
-0.75 with BPCOMP. 

HALCOMP-Bulk compressibility of halite (Pa-'). Distribution: Uniform. Range: 2.94 x 10-12 to 1.92 x 
10-10 Pa-1. Mean, median: 9.75 x 10-11 Pad,  9.75 x 10-11 Pa-1. Correlation: -0.99 rank correlation with 
HALPRM. 

HALPOR-Halite porosity (dimensionless). Used in BRAGFLO. Distribution: Piecewise uniform (see Fig. 
6.lb). Range: 1.0 x 10-3 to 3 x 10-2. Mean, median: 1.28 x 10-2, 1.00 x 10-2. 

HALPRM-Logarithm of halite permeability (m2). Distribution: Uniform. Range: -24 to -21 (Le., perme- 
ability range is 1 x 10-24 to 1 x 10-21 m2). Mean, median: -22.5, -22.5. Correlation: -0.99 rank correlation 
with HALCOMP. 

SALPRESInitial brine pressure, without the repository being present, at a reference point located in the cen- 
ter of the combined shafts at the elevation of the midpoint of MB 139 (Pa). Distribution: Uniform. Range: 
1.104 x 107 to 1.389 x 107 Pa. Mean, median: 1.247 x 107 Pa, 1.247 x 107 Pa. 

SHRBRSAT-Residual brine saturation in shaft (dimensionless). Distribution: Uniform. Range: 0 to 0.4. 
Mean, median: 0.2,0.2. 

SHRGSSAT-Residual gas saturation in shaft (dimensionless). Distribution: Uniform. Range: 0 to 0.4. 
Mean, median: 0.2,0.2. 

WASTWKK-Increase in brine saturation of waste due to capillary forces (dimensionless). Distribution: Uni- 
form. Range: 0 to 1. Mean, median: 0.5,0.5. 
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Table 6.1. Example Elements of x,, in the 1996 WIPP PA (see Table 5.1, Ref. 244, Table 1, Ref. 249 
and App. PAR, Ref. 189 for complete listings of the nV= 57 elements of x,, and sources of 
additional information) (continued) 

WGRCOR-€orrosion rate for steel under inundated conditions in the absence of C02 ( d s ) .  Distribution: 
Uniform. Range: 0 to 1.58 x 10-14 d s .  Mean, median: 7.94 x 10-15 d s ,  7.94 x 10-15 d s .  

WGRMZCI4vlicrobial degradation rate for cellulose under inundated conditions (molkg s). Distribution: 
Uniform. Range: 3.17 x 10-10 to 9.51 x 10-9 molkg s. Mean, median: 4.92 x 10-9 movkg s, 4.92 x 10-9 
moVkg s. Variable 3 in LHS. 

WMKDFLG-Pointer variable for microbial degradation of cellulose. Distribution: Discrete, with 50% 0, 
25% 1,25% 2. 

WMICDFLG = 0, 1, 2 implies no microbial degradation of cellulose, microbial degradation of only cellulose, 
microbial degradation of cellulose, plastic and rubber. 

WPRTDZAM-Waste particle diameter (m). Distribution: Loguniform. Range: 4.0 x 10-5 to 2.0 x 10-1 m. 
Mean, median: 2.35 x 10-2 m, 2.80 x 10-2 m. 

WRGSSATqesidual gas saturation in waste (dimensionless). Distribution: Uniform. Range: 0 to 0.15. 
Mean, median: 0.075,0.075. 

WTACJFAIGShear strength of waste (Pa). Distribution: Uniform. Range: 0.05 to 10 Pa. Mean, median: 
5.03 Pa, 5.03 Pa. 

Replicate 1 
1 .o 
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0 
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0.2 x : Sampled Value 
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0.0 
-21 .o -20.0 -1 9.0 -18.0 -17.0 

ANHPRM 
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1 .o 
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E 
2 0.6 
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Variable #17 in LHS 

0.0 
0.00 0.50 1.00 1.50 2.00 2.50 3.00 

HALPOR (xl Wz) 
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Fig. 6.1. Distributions used to characterize subjective uncertainty in ANHPRM and HALPOR in 1996 WIPP PA (see 
Appendix, Ref. 244), for distributions assigned to all uncertain variables included in 1996 WIPP PA). 
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Table 6.2. Example Rank Correlations in the LHS that Constitutes Replicate R1 in the 1996 WlPP PA 

WGRCOR 1 .m 
WMICDFLG 0.0198 1.oooO 
HALCOMP 0.0011 0.0235 1 .oooo 
HALPRM -0.0068 -0.0212 -0.9879 1 .m 
ANHCOMP 0.0080 0.0336 -0.0123 -0.0025 1 .m 
ANHPRM 0.0049 -0.0183 0.0037 0.01 13 -0.9827 1 .oooo 
BPCOMP 0.0242 0.1071 -0.0121 0.0057 -0.0184 0.0078 1.oooO 
BPPRM -0.05 14 -0.0342 0.0035 0.0097 0.0283 -0.0202 -0.7401 1.oooO 

WGRCOR WMICDFLG HALCOMP HALPRM ANHCOMP ANHPRM BPCOMP BPPRM 

Table 6.3. Predicted Variables (Le., elements of y in Eq. (1.1)) Used to Illustrate Uncertainty and Sensi- 
tivity Analysis Results for Two-Phase Fluid Flow Model (see Table 7.1 .l, Ref. 244, for addi- 
tional information) 

BRAALIC Cumulative brine flow (m3) from anhydrite marker beds into disturbed rock zone (DRZ) 
surrounding repository (i.e., BRAABNIC + BRAABSIC + BRM38NIC + BRM38SIC + 
BRM39NIC + BRM39SIC) 

Cumulative brine flow (m3) out of anhydrite marker beds A and B into north end of DRZ 

Same as BRAABNIC but into south end of DRZ 

Cumulative brine flow (m3) out of anhydrite marker bed 138 into north end of DRZ 

Same as BRM38NIC but into south end of DRZ 

Cumulative brine flow (m3) out of anhydrite marker bed 139 into north end of DRZ 

Same as BRM39NIC but into south end of DRZ 

Cumulative brine flow (m3) into repository from all sources 

Cumulative gas production (mole) in repository due to corrosion of iron and microbial deg- 
radation of cellulose 

Total pore volume (m3) in repository 

Brine saturation (dimensionless) in lower waste panel (i.e., the southern waste panel, which 
in the numerical implementation of the analysis is the waste panel that is penetrated by a 
drilling for the El and E2 scenarios) 

BRAABNIC 

BRAABSIC 

BRM38NIC. 

BRM38SIC: 

BRM39NIC 

BRM39SIC: 

BRNREPTC 

GAS-MOLE 

POR VOL-T: 

WAS-SATB: 

flattened shape of box plots makes it possible to summa- 
rize multiple distributions in a small area and also facili- 
tates comparisons of these distributions. 

6.3 Examination of Scatterplots 

The simplest sensitivity analysis procedure is an ex- 
amination of the scatterplots associated with individual 
sampled variables and the particular model prediction 
under consideration (see Eq. (2.7)). If a variable has a 
substantial effect on the model prediction, then this will 
result in a discernible pattern in the corresponding scat- 

terplot (Fig. 6.7); in contrast, little or no pattern will 
appear in the scatterplot in the absence of an effect. 
Further, the examination of multiple scatterplots can 
reveal interactions in the effects of variables. For exam- 
ple, large values of WAS-SATB tend to be associated 
with large values of BHPRM (Fig. 6.7a); however, given 
the Occurrence of a large value for BHPRM, the resul- 
tant value for WAS-SATB is determined primarily by 
WRGSSAT (Fig. 6.7b). Latin hypercube sampling is a 
particularly effective procedure for the generation of 
scatterplots due to its full stratification across the range 
of each sampled variable. 
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Fig. 6.2. Time-dependent results used to illustrate sensitivity analysis techniques: (a) saturation in lower waste panel 
with an E2 intrusion at lo00 yr (E2: WAS-SATB), (b) total cumulative gas generation due to corrosion and 
microbial degradation of cellulose under undisturbed (i.e., EO) conditions (EO: GAS-MOLE), (c) cumula- 
tive brine flow into disturbed rock zone (DRZ) surrounding repository with an E2 intrusion at IO00 yr 
(E2: BRAALIC); and (d) total pore volume in repository with an E2 intrusion at lo00 yr (E2: PORVOL-T). 

6.4 Regression-Based Techniques 

A more sophisticated approach to sensitivity analy- 
sis is to use formal search procedures to identify spe- 
cific patterns in the mapping in Eq. (2.3). For example, 
regression-based techniques are often effective in iden- 
tifying linear relationships and relationships that can be 
made linear by a suitable transformation (Ref. 216, 
Sect. 3.5). Stepwise regression analysis provides an 
efficient and informative way to carry out a regression- 
based sensitivity analysis, with variable importance 
being indicated by the order in which variables are se- 
lected in the stepwise procedure, the changes in R2 val- 

ues that occur as individual variables are added to the 
regression model, and the size of the standardized re- 
gression coefficients (SRCs) for the variables included 
in the regression model. When the relationships be- 
tween the sampled and predicted variables are nonlinear 
but monotonic, the rank t r ans fo rma t i~n~~~  is often ef- 
fective in linearizing the underlying relationships and 
thus facilitating the use of regression-based techniques. 

As an example, stepwise regression analyses for y = 
E0:GAS-MOLE and y = E2:BRAALIC with raw and 
rank-transformed data are presented in Table 6.4. For 
E0:GAS-MOLE, similar results are obtained with raw 

35 



1 .o 
0.9 

.€ - 0.8 

2 0.7 
2 
n 0.6 

.- 

BRM38NIC 

BRM38SIC 

BRAABNIC 

BRAABSIC 

BRM39NlC 

BRM39SIC 

BRAALIC 

BRNREPTC 

(D 

$ 0.5 

E 0.4 

0.3 li: 

- 

5 0.2 

1 ' ' """I ' ' .'"'.I ' ' """I ' ' """I ' ' ""'Y 1- 

- 

- - 
- - 
- - 
- - 
- - -  

*- - Time: 10000 yr 
I , , , ,.... I , , ,,.,.,I . . ... I.. 1 , I ,,.... I . . ...... I . , 

0.1 

0.0 

E 
L 5 
m 
P 

-0.7 2.2 5.0 7.8 10.6 13.5 
y = EO: GAS-MOLE, Mole (~10') 

TROOA0204.al 

Fig. 6.3. Presentation of estimated CDF, mean, and 
density function for y = E0:GAS-MOLE at 
10,OOO yr. 
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E0:GAS-MOLE for replicate R1. 
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Fig. 6.5. Individual mean and percentile curves for y 
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Fig. 6.6. Use of box plots to summarize cumulative 
brine flows over 10,OOO yr in the vicinity of 
the repository for an El intrusion at 10oO yr 
into lower waste panel (see Table 6.3 for a 
description of individual variables). 
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and rank-transformed data (Le., the same variables are 
selected in both analyses and the final regression mod- 
els have R2 values of 0.85 and 0.82, respectively). For 
E2:BRAAWC, the use of rank-transformed data consid- 
erably improves the resolution of the analysis and pro- 
duces a final regression model with six variables and an 
R2 value of 0.90; in contrast, the use of raw data pro- 
duces a final regression model with three variables and 
an R2 value of 0.62. 

An alternative to regression analysis is to calculate 
correlation coefficients (CCs) or partial correlation co- 
efficients (PCCs) between sampled and predicted vari- 
ables (Ref. 216, Sect. 3.5). As with regression analysis, 
these coefficients can be calculated with raw or rank- 
transformed data, with the latter case producing rank 
correlation coefficients (RCCs) and partial rank correla- 
tion coefficients (PRCCs). When the variables within 
the sample are independent (Le., orthogonal), CCs and 
SRCs are equal, as is also the case for RCCs and stan- 
dardized rank regression coefficients (SRRCs). Similar, 
but not entirely equivalent, measures of variable impor- 
tance are given by SRCs and PCCs. Specifically, SRCs 
characterize the effect on the output variable that results 
from perturbing an input variable by a fixed fraction of 
its standard deviation, and PCCs characterize the 
strength of the linear relationship between an input and 
output variable after a correction has been made for the 
linear effects of the other input variables. Similar inter- 
pretations apply to SRRCs and PRCCs for rank- 

transformed variables. Although SRCs and PCCs are 
not equal, use of their absolute values to order variable 
importance produces identical importance orderings 
when the values for the individual variables within the 
sample are independent, as is also the case for SRRCs 
and PRCCs. 

As in Fig. 6.2, model predictions are often time de- 
pendent. When this is the case, presenting stepwise 
regression analyses at multiple times in the format used 
in Table 6.4 can become quite unwieldy. In such situa- 
tions, a more compact alternative is to present plots of 
time-dependent coefficients (Fig. 6.8). In particular, the 
coefficients are calculated at multiple times and then the 
coefficients for individual variables are connected to 
obtain the curves in Fig. 6.8. This presentation format 
is relatively compact and also displays how variable 
importance changes with time. 

6.5 Searches for Nonrandom Patterns 

Regression-based techniques are not always suc- 
cessful in identifying the relationships between sampled 
variables and model predictions. As an example, the 
regression analyses with raw and rank-transformed data 
in Table 6.5 perform poorly, with the final regression 
models having R2 values of 0.33 and 0.20. Given the 
low R2 values, there is little reason to believe that the 
variable orderings are meaningful or even that all the 
influential variables have been identified. 
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Table 6.4. Stepwise Regression Analyses with Raw and Rank-Transformed Data with Pooled Results 
from Replicates R1, R2 and R3 (i.e., for a total of 300 observations) for Output Variables 
€O:GAS-MOL€ and €2:6RAAL/C at 10,000 yr 

Stepa 
1 

I Raw Data: I Rank-Transformed Data: I 
y = E0:GAS-MOLE y = E0:GAS-MOLE 

Variableb SRCc R2d Variableb SRRCe R2d 
WMICDFLG 0.65 0.4 1 WMICDFLG 0.62 0.39 

2 
3 
4 
5 
6 

HALPOR 0.59 0.76 HALPOR 0.57 0.72 
WGRCOR 0.27 0.84 WGRCOR 0.28 0.80 
WASTWICK 0.07 0.84 ANHPRM 0.08 0.8 1 
ANHPRM 0.07 0.85 WASTWICK 0.07 0.8 1 
SHRGSSAT 0.07 0.85 SHRGSSAT 0.07 0.82 

I Raw Data: I Rank-Transformed Data: 

1 
2 
3 
4 
5 
6 

I y = E2:BRAALIC I y = E2: BRAALIC 
Step I Variable I SRC I R2 I Variable I SRRC I R2 

ANHPRM 0.77 0.59 ANHPRM 0.9 1 0.83 
WMICDFLG -0.14 0.61 WMICDFLG -0.15 0.85 
SALPRES 0.09 0.62 BHPRM 0.13 0.87 

HALPRM 0.12 0.88 
SALPRES 0.10 0.89 
WGRCOR -0.05 0.90 

When regression-based approaches to sensitivity 
analysis do not yield satisfactory insights, important 
variables can be searched for by attempting to identify 
patterns in the mapping in Eq. (2.3) with techniques that 
are not predicated on searches for linear or monotonic 
relationships. Possibilities include use of (i) the F- 
statistic to identify changes in the mean value of y 
across the range of individual xis, (ii) the $statistic to 
identify changes in the median value of y across the 
range of individual xis, (iii) the Kruskal-Wallis statistic 
to identify changes in the distribution of y across the 
range of individual xjs, and (iv) the $statistic to iden- 
tify nonrandom joint distributions involving y and indi- 
vidual xjs.254 For convenience, the preceding will be 
referred to as tests for (i) common means (CMNs), 
(ii) common medians (CMDs), (iii) common locations 
(CLs), and (iv) statistical independence (SI), respec- 
tively. 

The preceding statistics are based on dividing the 
values of xi in Eq. (2.7) into intervals (Fig. 6.9). Typi- 
cally, these intervals contain equal numbers of values 
for xj (i.e., the intervals are of equal probability); how- 

ever, this is not always the case (e.g., when xi has a fi- 
nite number of values of unequal probability). The cal- 
culation of the F-statistic for CMNs and the Kruskal- 
Wallis statistic for CLs involves only the division of xi 
into intervals. The F-statistic and the Kruskal-Wallis 
statistic are then used to indicate if the y values associ- 
ated with these intervals appear to have different means 
and distributions, respectively. The &statistic for 
CMDs involves a further partitioning of the y values 
into values above and below the median for all y in Eq. 
(2.7) (i.e., the horizontal line in Fig. 6.9a), with the cor- 
responding significance test used to indicate if the y 
values associated with the individual intervals defined 
for xi appear to have medians that are different from the 
median for all values of y. The X2-statistic for SI in- 
volves a partitioning of the y values in Eq. (2.7) into 
intervals of equal probability analogous to the partition- 
ing of the values of xi (i.e., the horizontal lines in Fig. 
6.9b), with the corresponding significance test used to 
indicate if the distribution of the points (xu, y i )  over the 
cells in Fig. 6.9b appears to be different from what 
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Fig. 6.8. Time-dependent coefficients: (a, b) SRCs and PCCs for cumulative gas generation under undisturbed (i.e., 
EO) conditions 0, = E0:GAS-MOm see Fig. 6.2b), and (c, d) SRRCs and PRCCs for cumulative brine 
flow into DRZ with an E2 intrusion at 1000 yr (y = E2:BRAALIC; see Fig. 6 .2~ ) .  
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Table 6.5. Stepwise Regression Analyses with Raw and Rank-Transformed Data with Pooled Results for 
Replicates R1, R2 and R3 (Le., for a total of 300 observations) for Output Variable 
€Z.PORVOL-Tat 10,000 yr 

Stepa 

1 
2 
3 
4 

Raw Data: Rank-Transformed Data: 
y = E2:PORVOL-T y = E2:PORVOL-T 

Variableb SRCC R2d Variableb SRRC R2d 

HALPRM 0.37 0.15 HALPRM 0.35 0.13 
BHPRM 0.33 0.25 ANHPRM 0.23 0.18 
ANHPRM 0.24 0.3 1 HALPOR 0.13 0.20 
HALPOR 0.15 0.33 

a Steps in stepwise regression analysis. 
Variables listed in order of selection in regression analysis with ANHCOMP and HALCOMP excluded from entry 
into regression model because of -0.99 rank correlation within the pairs (ANHPRM, ANHCOMP) and (HALPRM, 
HALCOMP). 
Standardized regression coefficients (SRCs) in final regression model. 
Cumulative R2 value with entry of each variable into regression model. 

e Standardized rank regression coefficients (SRRCs) in final regression model. 
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Fig. 6.9. Partitionings of (xv yi) ,  i = 1, 2, . .., nS = 300: (a) division of xi = BHPRM into intervals of equal prob- 
ability and y = E2:PORVOL-T into values above and below the median, and (b) division of xi = 
HALPRM and y =E2:PORVOL-T into intervals of equal probability. 

would be expected if there was no relationship between 
xi and y. For each statistic, a p-value can be calculated 
which corresponds to the probability of observing a 
stronger pattern than the one actually observed if there 
is no relationship between xi and y. An ordering of p- 
values then provides a ranking of variable importance 
(i.e., the smaller the p-value, the stronger the effect of xi 
on Y appears to be). More detail on these and other 

related procedures is given in Kleijnen and H e l t ~ n . ~ ~ ~ .  
255 

As an example, analyses for y = E2:PORVOL-T 
With the tests for CMNs, CMDs, CLS and SI are Pre- 
sented in Table 6.6. For perspective, tests based on p- 
values for CCs and RCCs are a l s ~  presented in Table 
6.6, with the p-values indicating the probability of ob- 

40 



serving larger, in absolute value, CCs and RCCs due to 
chance variation in the absence of any relationship be- 
tween xi and y.254 The ordering of variable importance 
with CMNs, CMDs, CLs and SI is different from the 
orderings obtained with CCs and RCCs. In particular, 
the tests for CMNs, CMDs, CLs and SI are identifying 
the nonlinear and nonmonotonic relationship involving 
BHPRM that is being missed with the tests based on 
CCs and RCCs. If desired, the top-down correlation 
technique introduced by Iman and Conover could be 
used to provide a formal assessment of the agreement 
between the results for the different sensitivity analysis 
procedures in Table 6.6.254* 256 

Variance decomposition procedures provide an- 
other way to identify nonlinear and nonmonotonic rela- 
tionships and are typically implemented with Monte 
Carlo procedures (Sect. 2.4). In addition, many proce- 
dures have been proposed by the ecological community 
for identifying nonrandom patterns that may have a use 
in sampling-based sensitivity analysis (e.g., Refs. 257- 
270). Finally, the two-dimensional Kolmogorov- 
Smirnov test has the potential to be a useful tool for the 
identification of nonrandom patterns in sampling-based 
sensitivity analysis (e.g., Refs. 271-274). Further in- 
formation on sampling-based procedures for uncertainty 
and sensitivity analysis is available in a number of re- 
views (e.g., Refs. 32,38, 216, 254,275-281). 

Table 6.6. Sensitivity Results Based on CMNs, CMDs, CLs, SI, CCs and RCCs for y =  E2:PORVOL-T 

CMN CMD CL SI cc RCC 
Variable Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val 

BHPRM 1.0 O.oo00 1.0 O.oo00 1.0 O.oo00 1.0 O.oo00 10.0 0.3295 4.0 0.0926 
HALPRM 2.0 O.oo00 2.0 O.oo00  2.0 O.oo00 2.0 0.0001 1.0 O.oo00 1.0 O.oo00 
ANHPRM 3.0 O.OOO5 3.0 0.0007 3.0 O.oo00 4.0 0.0082 2.0 O.oo00 2.0 O.oo00  
HALPOR 4.0 0.0341 6.0 0.0700 5.0 0.1072 5.0 0.1137 3.0 0.0097 3.0 0.0225 
ANHBCEXP 5.0 0.0496 5.0 0.0595 4.0 0.0655 18.5 0.5739 9.0 0.1938 9.0 0.2535 
ANHBCVGP 6.0 0.0899 16.0 0.4884 6.0 0.1248 13.0 0.2942 4.0 0.0894 5.0 0.1248 
SHRBRSAT 9.0 0.1923 7.0 0.0823 8.0 0.1464 7.0 0.1850 21.0 0.6859 15.0 0.4559 
BPPRM 10.0 0.2010 4.0 0.0477 7.0 0.1350 18.5 0.5739 22.0 0.7069 14.0 0.4329 
WGRCOR 19.0 0.5386 17.0 0.5249 10.0 0.2320 3.0 0.0003 14.0 0.4688 18.0 0.6601 
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7. Uncertainty in Analyses for 
Complex Systems (adapted from 
Ref. 275, Chapt. 10) 

7.’, Stochastic and Subjective 
Uncertainty 

Many large analyses maintain a separation between 
two categorizations of uncertainty: (i) stochastic uncer- 
tainty, which arises because the system under study can 
behave in many different ways (e.g., many different 
accidents are possible at a nuclear power station), and 
(ii) subjective uncertainty, which arises from a lack of 
knowledge about quantities assumed to have fixed val- 
ues in a particular analysis (e.g., a reactor containment 
building might be assumed to have a fixed failure 
strength, with the exact value of this strength being un- 
known). Thus, stochastic uncertainty in a property of 
the system under study, and subjective uncertainty is a 
property of the analysis and the associated analysts. 
Alternative terminology includes the use of aleatory, 
variability, irreducible and type A as alternatives to the 
designation stochastic and the use of epistemic, state of 
knowledge, reducible and type B as alternatives to the 
designation subjective. The categorization and treat- 
ment of stochastic and subjective uncertainty in analy- 
ses for complex systems has been widely discussed 
from a variety of perspectives. 7* 8, 282-294 Further, the 
use of probability to characterize both subjective and 
stochastic uncertainty can be traced back to the begin- 
nings of the formal development of probability in the 
late seventeenth centq?95-297 

The distributions in Eq. (1.2) were assumed to 
characterize subjective uncertainty, and the probability 
space associated with these distributions was repre- 
sented by (S’,, d,,, psu), with the subscript “su” used as 
a designation for “subjective.” Analyses that involve 
stochastic and subjective uncertainty have two underly- 
ing probability spaces: a probability space (S’,, d,,, pst) 
for stochastic uncertainty, and a probability space ( S’,, 
d,,,, p,,) for subjective uncertainty. In the preceding, 
the subscript “st” is used as a designator for “stochas- 
tic.” 

An example of a large analysis that maintained a 
separation between stochastic and subjective uncer- 
tainty is the NRC’s reassessment of the risk from com- 
mercial nuclear reactors in the United States (i.e., 
NUREG-1 150), where stochastic uncertainty arose from 
the many possible accidents that could occur at the 
power plants under study and subjective uncertainty 

arose from the many uncertain quantities required in the 
estimation of the probabilities and consequences of 
these accidents.171. 1727 182 Numerous other examples 
also exist (e.g., Refs. 183-186,298-307). 

7.2 Performance Assessment for the 
WIPP 

This presentation will use the PA carried out in 
support of the DOE’S 1996 CCA for the WIPP as an 
example of an analysis involving both stochastic and 
subjective un~ertainty.’~~. l9O> 248 Parts of this analysis 
involving the model for two-phase flow implemented in 
the BRAGFLO program have already been introduced 
and used to illustrate uncertainty and sensitivity analysis 
in the presence of subjective uncertainty (Sect. 6.1). 
Although the analyses with BRAGFLO were an impor- 
tant part of the 1996 WIPP PA, they constitute only one 
component of a large analysis. The following provides 
a high-level overview of sampling-based uncertainty 
and sensitivity analysis in the 1996 WIPP PA. The 
need to treat both stochastic and subjective uncertainty 
in the 1996 WIPP PA arose from regulations promul- 
gated by the EPA and briefly summarized in the next 
paragraph. 

The following is the central requirement in the 
EPA’s regulation for the WIPP, 40 CFR 191, Subpart 
B, and the primary determinant of the conceptual and 
computational structure of the 1996 WIPP PA 
(p. 38086, Ref. 191): 

8 191.13 Containment requirements: 

(a) Disposal systems for spent nuclear fuel 
or high-level or transuranic radioactive wastes 
shall be designed to provide a reasonable ex- 
pectation, based upon performance assess- 
ments, that cumulative releases of radionu- 
clides to the accessible environment for 10,000 
years after disposal from all significant proc- 
esses and events that may affect the disposal 
system shall: (1) Have a likelihood of less 
than one chance in 10 of exceeding the quanti- 
ties calculated according to Table 1 (Appendix 
A);a and (2) Have a likelihood of less than one 
chance in 1,000 of exceeding ten times the 

a Radionuclide releases normalized to amount of radio- 
active material placed in the disposal facility; see Ref. 
191 or Ref. 193 for a description of the normalization 
process. 
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quantities calculated according to Table 1 
(Appendix A). 

(b) Performance assessments need not 
provide complete assurance that the require- 
ments of 191.13(a) will be met. Because of the 
long time period involved and the nature of the 
events and processes of interest, there will in- 
evitably be substantial uncertainties in project- 
ing disposal system performance. Proof of the 
future performance of a disposal system is not 
to be had in the ordinary sense of the word in 
situations that deal with much shorter time 
frames. Instead, what is required is a reason- 
able expectation, on the basis of the record be- 
fore the implementing agency, that compliance 
with 191.13(a) will be achieved. 

The EPA also promulgated 40 CFR 194,192 where the 
following elaboration on the intent of 40 CFR 191.13 is 
given (pp. 5242-5243, Ref. 192): 

Q 194.34 Results of performance assess- 
ments. 

(a) The results of performance assess- 
ments shall be assembled into “complemen- 
tary, cumulative distribution functions” 
(CCDFs) that represent the probability of ex- 
ceeding various levels of cumulative release 
caused by all significant processes and events. 
(b) Probability distributions for uncertain dis- 
posal system parameter values used in per- 
formance assessments shall be developed and 
documented in any compliance application. 
(c) Computational techniques, which draw 
random samples from across the entire range 
of the probability distributions developed pur- 
suant to paragraph (b) of this section, shall be 
used in generating CCDFs and shall be docu- 
mented in any compliance application. (d) The 
number of CCDFs generated shall be large 
enough such that, at cumulative releases of 1 
and 10, the maximum CCDF generated ex- 
ceeds the 99th percentile of the population of 
CCDFs with at least a 0.95 probability. (e) 
Any compliance application shall display the 
full range of CCDFs generated. (f) Any com- 
pliance application shall provide information 
which demonstrates that there is at least a 95 
percent level of statistical confidence that the 
mean of the population of CCDFs meets the 
containment requirements of 0 191.13 of this 
chapter. 

In addition to the requirements in 40 CFR 191.13 and 
40 CFR 194.34 just quoted, 40 CFR 191 and 40 CFR 
194 contain many additional requirements for the certi- 
fication of the WIPP for the disposal of TRU waste.3o8 
However, it is the indicated requirements that determine 
the overall structure of the 1996 WIPP PA. 

Together, 191.13(a) and 194.34(a) lead to a CCDF 
and boundary line309-311 as illustrated in Fig. 7.1, with 
the CCDF for releases to the accessible environment 
required to fall below the boundary line. The CCDF 
derives from disruptions that could occur in the future 
and is thus characterizing the effects of stochastic un- 
certainty. In contrast, 194.34(b) and (c) require the 
characterization and propagation of the effects of sub- 
jective uncertainty. Ultimately, this uncertainty will 
lead to a distribution of CCDFs of the form illustrated 
in Fig. 7.1, with this distribution deriving from subjec- 
tive uncertainty. 

The probability space ( S,,, d,,, psu) for subjective 
uncertainty used in the 1996 WIPP PA has already been 
introduced in Sect. 6.1, with Table 6.1 listing examples 
of the 57 uncertain variables associated with the ele- 
ments x,, of S,,. Specifically, x,, is a vector of the 
form 

in the 1996 WIPP PA. The probability space ( Ssu, d,,,, 
psu) was defined by specifying distributions for the ele- 
ments of x,, as indicated in Eq. (1.2) and illustrated in 
Fig. 6.1. 

w 

pro6 (Re/ > R)] 

in 191.13(a) 

Q 10-6 \ -  
0 - 

I I I I I I I .  

0104 10-4 104 l e  lo-‘ 100 10’ I d  
R : Release to Accessible Environment 

Fig. 7.1. Boundary line and associated CCDF specified 
in 40 CFR 191, Subpart B (Fig. 2, Ref. 312). 
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In the 1996 WIPP PA, the probability space (s’,, 
dSr, psr) for stochastic uncertainty derives from the 
many different disruptions that could occur at the WIPP 
over the 10,OOO yr regulatory time frame imposed on it. 
In particular, regulatory guidance308 and extensive re- 
view of potential features, events and processes (FEPs) 
that could affect the WIPP3I3 led to the elements x,, of 
the sample space S’, being defined as vectors of the 
form 

where n is the number of exploratory drilling intrusions 
for natural resources (i.e., oil or gas) that occur in the 
immediate vicinity of the repository, ti is the time (yr) of 
the ith intrusion, li designates the location of the tTh in- 
trusion, ei designates the penetration of an excavated or 
nonexcavated area by the 3” intrusion, bi designates 
whether or not the iqh intrusion penetrates pressurized 
brine in the Castile Formation, pi designates the plug- 
ging procedure used with the ith intrusion (Le., continu- 
ous plug, two discrete plugs, three discrete plugs), ai 

E 
U. 
0 x 
i3 rn 

designates the type of waste penetrated by the ith intru- 
sion (i.e., no waste, contact-handled waste, and re- 
motely handled waste, with ai represented as a vector 
because a single drilling intrusion can penetrate several 
“waste streams” that have different properties), and t k n  
is the time at which potash mining occurs within the 
land withdrawal boundary. The definition of (s’,, dst9 
p,,) was then completed by assigning a distribution to 
each element of xs,.314 

The FEPs review process also led to the identifica- 
tion of processes and associated models for use in the 
estimation of consequences (e.g., normalized radionu- 
clide releases to the accessible environment in the con- 
text of the EPA regulations) for elements X,, of s’, (Fig. 
7.2, Table 7.1). Symbolically, this estimation process 
can be represented by 

(Release of Cuttings. Cavings. Spallings. Brine to 
BRAGFLO-DBR 
CUTTINGS-S 

w I 
GRASP-INV (Transmissivity Fields) I 

SECOFLZDEECOTPPD I Culebra ‘L 
Dolomite 

I I s: I k U p p e r  Shaft S d l  System ! 

Subsurface ! 
Boundary -: 
of Accessible I 

Not to Scale Environment I 
W 

TRI-83424401-1l 

Fig. 7.2. Computer programs (models) used in 1996 WIPP PA (Fig. 5, Ref. 312). 
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Table 7.1. Summary of Computer Models Used in the 1996 WlPP PA (Table 1, Ref. 312). 

BRAGFLO: Calculates multiphase flow of gas and brine through a porous, heterogeneous reservoir. Uses finite 
difference procedures to solve system of nonlinear partial differential equations that describes the mass conserva- 
tion of gas and brine along with appropriate constraint equations, initial conditions and boundary conditions. Ad- 
ditional information: Sect. 4.2, Ref. 244; Ref. 245. 

BRAGFLO-DBR: Special configuration of BRAGFLO model used in calculation of dissolved radionuclide re- 
leases to the surface &e., direct brine releases) at the time of a drilling intrusion. Uses initial value conditions 
obtained from calculations performed with BRAGFLO and CUTTINGS-S. Additional information: Sect. 4.7, 
Ref. 244; Ref. 315. 

CUTTINGS-S: Calculates the quantity of radioactive material brought to the surface in cuttings and cavings and 
also in spallings generated by an exploratory borehole that penetrates a waste panel, where cuttings designates 
material removed by the drillbit, cavings designates material eroded into the borehole due to shear stresses result- 
ing from the circular flow of the drilling fluid (i.e., mud), and spallings designates material carried to the borehole 
at the time of an intrusion due to the flow of gas from the repository to the borehole. Spallings calculation uses 
initial value conditions obtained from calculations performed with BRAGFLO. Additional information: Sects. 
4.5,4.6, Ref. 244; Ref. 316. 

GRASP-INV: Generates transmissivity fields (estimates of transmissivity values) conditioned on measured 
transmissivity values and calibrated to steady-state and transient pressure data at well locations using an adjoint 
sensitivity and pilot-point technique. Additional information: Refs. 3 17, 3 18. 

NUTS: Solves system of partial differential equations for radionuclide transport in vicinity of repository. Uses 
brine volumes and flows calculated by BRAGFLO as input. Additional information: Sect. 4.3, Ref. 244; Ref. 
319. 

PANEL: Calculates rate of discharge and cumulative discharge of radionuclides from a waste panel through an 
intruding borehole. Discharge is a function of fluid flow rate, elemental solubility and radionuclide inventory. 
Uses brine volumes and flows calculated by BRAGFLO as input. Based on solution of system of linear ordinary 
differential equations. Additional information: Sect. 4.4, Ref. 244; Ref. 3 19. 

SANTOS: Solves quasistatic, large deformation, inelastic response of two-dimensional solids with finite element 
techniques. Used to determine porosity of waste as a function of time and cumulative gas generation, which is an 
input to calculations performed with BRAGFLO. Additional information: Sect. 4.2.3, Ref. 244; Refs. 320, 321. 

SECOFL2D: Calculates single-phase Darcy flow for groundwater flow in two dimensions. The formulation is 
based on a single partial differential equation for hydraulic head using fully implicit time differencing. Uses 
transmissivity fields generated by GRASP-INV. Additional information: Sect. 4.8, Ref. 244; Ref. 322. 

SECOTP2D: Simulates transport of radionuclides in fractured porous media. Solves two partial differential 
equations: one provides two-dimensional representation for convective and diffusive radionuclide transport in 
fractures and the other provides one-dimensional representation for diffusion of radionuclides into rock matrix 
surrounding the fractures. Uses flow fields calculated by SECOFL2D. Additional information: Sect. 4.9, Ref. 
244; Ref. 322. 
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where AX,,) - normalized radionuclide release to the 
accessible environment associated with x,, and, in gen- 
eral, many additional consequences, xsr - particular 
future under consideration, xsr,o - future involving no 
drilling intrusions but a mining event at the same time 
tmin as in 51, fc(x,,) - cuttings and cavings release to 
accessible environment for Xst calculated with 
CU"GS-S,  f ~ ( x , , )  - results calculated for xsr 
with BRAGFLO (in practice,fB(x,,) is a vector contain- 
ing a large amount of information including time- 
dependent pressures and saturations for gas and brine), 
fSp[X,,, fB(x,,)] - spallings release to accessible en- 
vironment for Xst calculated with the spallings model 
contained in CUTTINGS-S, ~ D B R {  Xst. fsp[X,p f , (x~~) ] ,  
fB(xs,)) - direct brine release to accessible environment 
for Xst calculated with a modified version of BRAGFLO 
designated BRAGFLO-DBR, fMB[xSr, fB(x,,)] - release 
through anhydrite marker beds to accessible environ- 
ment for Xsr calculated with NUTS, f ~ ~ [ x , , ,  fB(xsr)] - release through Dewey Lake Red Beds to accessible 
environment for Xsr calculated with NUTS, fS[x,,, 
fB(xs,)] - release to land surface due to brine flow up a 
plugged borehole for x,, calculated with NUTS or 
PANEL as appropriate, f~-F(x,,,~) - flow field calcu- 
lated for XSt.0 with SECOFL2D, f&[Xsr, fB(x,,)] - re- 
lease to Culebra for x,, calculated with NUTS or 
PANEL as appropriate, and fs-dx,,,O, ~S-F{X,~,O), fN- 
p[X,t, fB(x,t)] ) - groundwater transport release through 
Culebra to accessible environment calculated with 
SECOTP2D (XSr.0 is used as an argument t0fs-T be- 
cause drilling intrusions are assumed to cause no per- 
turbations to the flow field in the Culebra). 

The probability space (s,,, A,,, psr) for stochastic 
uncertainty and the functionfindicated in Eq. (7.3) lead 
to the required CCDF for normalized releases to the 
accessible environment (Fig. 7.1). In particular, this 
CCDF can be represented as an integral involving (S,,, 
J,,, psr) andf(Fig. 7.3). If ( Ssr, AS,, psi) andfcould be 
unambiguously defined, then the CCDF in Fig. 7.3 
could be determined with certainty and compared 
against the specified boundary line. Unfortunately, such 
certainty does not exist in the 1996 WIPP PA, which 
leads to the probability space ( sSu, A&,, p,,) for subjec- 
tive uncertainty. 

When the elements X,, of S,, are included, the 
function f i n  Eq. (7.3) has the formflx,,, x,,). In turn, 
the expression defining the CCDF in Fig. 7.3 becomes 

e 10-6 " k  4 

CCDF Specified \ 4 
in 191.13(a) 

\ "L, I I 1 I I I I 

0 io* 10-4 10-3 10-2 10-1 100 10' Id 
R : Release to Accessible Environment 
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Fig. 7.3. Definition of CCDF specified in 40 CFR 191, 
Subpart B as an integral involving the prob- 
ability space ( S',, ld,,, p,,) for stochastic uncer- 
tainty and a function f defined on s,, (Fig. 4, 
Ref. 312). 

prob(Re1 >RlX,,) 

where 8RmXsp x,,)] = 1 ifflx,,, x,,) > R and 0 iffix,,, 
x,,) S R. Uncertainty in x,, as characterized by 
(s,,, &, psu) then leads to a distribution of CCDFs, 
with one CCDF resulting for each X,, in S,, (Fig. 7.4). 

7.3 Implementation of 1996 WlPP PA 

The guidance in 194.34(a) was implemented by de- 
veloping the probability space (&,, & p,,), the func- 
tion AX,,, x,,), and a Monte Carlo procedure based on 
simple random sampling (Sect. 5.1) for the approxima- 
tion of the integral, and hence the associated CCDF, in 
Eq. (7.4). Conditional on an element x,, of s',, the 
Monte Carlo approximation procedure has the form 

where x,t,i, i = 1,2 ,..., nS = 10,OOO, is a random sample 
from (Ssr ld,,, PSI). This approximation procedure re- 
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quired evaluating the models in Table 7.1 for a rela- 
tively small number of elements of S,, and then using 
these evaluations to the construct AX,,,+ X s u )  for the 
large number of sample elements (i.e.. nS = l0,OOO) 
used in the summation in Eq. (7.5) (see Ref. 244 and 
Refs. 314-316,319,322,323 for numerical details). 

The guidance in 194.34(b) was implemented by 
developing the probability space ( S,,, J,,, p,,). Latin 
hypercube sampling was selected as the sampling tech- 
nique required in 194.34(c) because of the efficient 
manner in which it stratifies across the range of each 
sampled variable. For a Latin hypercube or random 
sample of size n, the requirement in 194.34(c) is 
equivalent to the inequality 

1 - 0.99" > 0.95, (7.6) 

which results in a minimum value of 298 for n. In con- 
sistency with the preceding result, the 1996 WIPP PA 
used an LHS of size 300 from the probability space 
( Ssu, JSu, p,,) for subjective uncertainty. Actually, as 
discussed below, three replicated LHSs of size 100 each 
were used, which resulted in a total sample size of 300 
(Sect. 6.1). Further, the requirement in 194.34(d) is met 
by simply providing plots that contain all the individual 
CCDFs produced in the analysis (i.e., one CCDF for 
each LHS element, which generates plots of the form 
indicated in Fig. 7.4). 

The requirement in 194.34(f) involves the mean of 
the distribution of CCDFs, with this distribution result- 
ing from subjective uncertainty (Fig. 7.4). In particular, 
each individual CCDF in Fig. 7.4 is conditional on an 
element x,, of S,, and is defined by the points [R, 
prob(Re1 > Rlx,,)], with prob(Re1 > Rlx,,) given in Eq. 
(7.5). Similarly, the mean CCDF is defined by the 
points [R,  prob(Re1 > R)] , where 

- 

- 
prob(Rel> R )  = mean probability of a release 

greater than size R 

- prob (Ref > R I x,, )dsu (x , ,  )dV,, - Is,, 

(7.7) 

: 1.0 

t 
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EPA Containment- 
Requirement 
40CFR 191.13 (a) 
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R : Release to Accessible Environment 
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Fig. 7.4. Individual CCDFs conditional on elements x,, 
of S,, (Le., CCDFs represented by [R, 
prob(Ref > RIxsu)]; see Eq. (7.4)) and associ- 
ated mean CCDF (Le., CCDF represented by 
[R, prob (Ref > R)];  see Eq. (7.7)). 
- 

and dsu(xsu) is the density function associated with ( S',, 
J,,, p,,). The integral over S,, in the definition of - 
prob(Rel> R )  is too complex to be determined ex- 
actly. The EPA anticipated that a sampling-based inte- 
gration procedure would be used to estimate this inte- 
gral, with the requirement in 194.34(f) placing a 
condition on the accuracy of this procedure. 

Given that Latin hypercube sampling is to be used 
to estimate the outer integral in Eq. (7.7), the confi- 
dence intervals required in 194.34(f) can be obtained 
with the replicated sampling technique proposed by 
Iman (Sect. 5.3). As discussed in Sect. 5.3, the LHS to 
be used is repeatedly generated with different random 
seeds. These samples lead to a sequence prob, (Ref > 
R), r = 1, 2,  ..., nR, of estimated mean exceedance 
probabilities, where prob, (Ref > R)  defines the mean 

CCDF obtained for sample r (i.e., prob,(Ref > R)  is 
the mean probability that a normalized release of size R 
will be exceeded; see Eq. (7.7)) and nR is the number of 
independent LHSs generated with different random 
seeds. Then, 

- 

- 

- 
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= nR - 
prob(Re1 > R ) =  prob, (Re1 > R) /nR (7.8) 

r=l 

and 

SE(R) = 

I2 r2 - { g [ z ( R e l >  R)-prob,  (Re1 > R )  lnR(nR-1) 
r=l 

(7.9) 

provide an additional estimate of the mean CCDF and 
estimates of the standard errors associated with the in- 
dividual mean exceedance probabilities. The r- 
distribution with nR-1 degrees of freedom can be used 
to place confidence intervals around the mean ex- 
ceedance probabilities for individual R values (Le., 

around prob(Re1 > R )  ), Specifically, the 1-a confi- 

dence interval is given by prob(Rel> R ) +  t ld2  

SE(R), where rld2 is the 1-d2 quantile of the r- 
distribution with nR-1 degrees of freedom (e.g.. rld2 
= 4.303 for a = 0.05 and nR = 3; Ref. 217, Table A25). 
The same procedure can also be used to place pointwise 
confidence intervals around percentile curves. The im- 
plementation of this procedure is the reason for the 
three replicated LHSs indicated in Sect. 6.1. 

- 
- - 

At the beginning of the computational implementa- 
tion of the 1996 WIPP PA, only the 31 variables in X,, 
that are used as input to BRAGFLO had been fully 
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specified (i.e., their distributions 0, had been unambi- 
guously defined); the remaining variables that would be 
incorporated into the definition of x,, were still under 
development. To allow the calculations with 
BRAGFLO to proceed, the LHSs indicated in Sect. 6.1 
were actually generated from nX = 75 variables, with 
the first 31 variables being the then specified inputs to 
BRAGFLO and the remaining 44 variables being as- 
signed uniform distributions on [0, 1 3 .  Later, when the 
additional variables were fully specified, the uniformly 
distributed variables were used to generate sampled 
values from them consistent with their assigned 
distributions. This procedure allowed the analysis to go 
forward while maintaining the integrity of the Latin 
hypercube sampling procedure for the overall analysis. 
As previously indicated, 26 additional variables were 
eventually defined, with the result that the elements x,, 
of S,, had an effective dimension of nX = 57. 

7.4 Uncertainty and Sensitivity 
Analysis Results in 1996 WIPP 
PA 

The CCDF used in comparisons with the EPA re- 
lease limits (Figs. 7.1, 7 .3)  is the most important single 
result generated in the 1996 WIPP PA. This CCDF 
arises from stochastic uncertainty. However, because 
there is subjective uncertainty in quantities used in the 
generation of this CCDF, its value cannot be unambigu- 
ously known. The use of Latin hypercube sampling 
leads to an estimate of the uncertainty in the location of 
this CCDF (Fig. 7 . 3 ,  with the individual CCDFs falling 

Total Normalized Releases: R1, R2, R3 
300 Observations, loo00 FuturedObservation 
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Fig. 7.5. Distribution of CCDFs for total normalized release to the accessible environment over 10,OOO yr: (a) 100 
individual CCDFs for replicate R1, and (b) mean and percentile curves estimated from 300 CCDFs obtained 
by pooling replicates R1, R2 and R3 (Figs. 6 , 7 ,  Ref. 312). 
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substantially to the left of the release limits. The left 
frame (Fig. 7.5a) shows the individual CCDFs obtained 
for replicate R1, and the right frame (Fig. 7.5b) shows 
the mean and selected percentile curves obtained from 
pooling the three replicates. The mean curve in Fig. 
7.5b is formally defined in Eq. (7.7), and the construc- 
tion procedures used to obtain the individual curves in 
Fig. 7.5b are described in conjunction with Fig. 6.4. 

The replicated samples described in Sect. 6.1 were 
used to obtain an indication of the stability of results 
obtained with Latin hypercube sampling. For the total 
release CCDFs in Fig. 7.5, the results obtained for the 
three replicates (i.e., R1, R2, R3) were very stable, with 
little variation in the locations of the mean and 
percentile curves occurring across replicates (Fig. 7.6a). 
Indeed, the mean and percentile curves for the individ- 
ual replicates overlie each other to the extent that they 
are almost indistinguishable. As a result, the procedure 
indicated in conjunction with Eqs. (7.8) and (7.9) pro- 
vides a very tight confidence interval around the esti- 
mated mean CCDF (Fig. 7.6b). 

The sampling-based approach to uncertainty analy- 
sis has created a pairing between the individual LHS 
elements and the individual CCDFs in Fig. 7.5a that can 
be explored with the previously discussed sensitivity 
analysis techniques (Sect. 6). One possibility for inves- 
tigating the sources of the uncertainty that give rise to 
the distribution of CCDFs in Fig. 7.5a is to determine 
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what is giving rise to the variation in exceedance prob- 
abilities for individual release values on the abscissa. 
This variation in exceedance probabilities can be inves- 
tigated in exactly the same manner as the variation in 
cumulative gas generation (GAS-MOLE) and brine in- 
flow (BRAALIC) at individual times was investigated 
for the curves in Fig. 6.2 and presented in Fig. 6.8. 
Specifically, PRCCs, SRRCs, or some other measure of 
sensitivity can be calculated for the exceedance prob- 
abilities associated with individual release values. This 
measure for different sampled variables can be plotted 
above the corresponding release values on the abscissa 
and then connected to obtain a representation for how 
sensitivity changes for changing values on the abscissa. 
For the CCDFs in Fig. 7Sa, this analysis approach 
shows that the exceedance probabilities for individual 
release values are primarily influenced by WMICDFLG 
and WAUFAIL, with the exceedance probabilities 
tending to increase as WMICDFLG increases and tend- 
ing to decrease as WTAUFAIL increases (Fig. 7.7). 

Another possibility is to reduce the individual 
CCDFs to expected values over stochastic uncertainty 
and then to perform a sensitivity analysis on the resul- 
tant expected values. In the context of the CCDF repre- 
sentation in Eq. (7.4), this expected value can be for- 
mally defined by 
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Fig. 7.6. Stability of estimated distribution of CCDFs for normalized release to the accessible environment: (a) mean 
and quantile curves for individual replicates, and (b) confidence interval around mean CCDF obtained by 
pooling the three individual replicates (Fig. 8, Ref. 3 12). 
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Expected Normalized Release 

Variableb SRRCC R2d 
WMICDFLG 0.60 0.40 
WTA UFAIL -0.39 0.55 
WGRCOR 0.2 1 0.59 
WPRTDIAM -0.19 0.63 
HALPOR 0.17 0.65 
BHPRM -0.17 0.68 
HALPRM 0.16 0.7 1 
WASTWICK 0.1 1 0.72 
ANHPRM 0.09 0.73 

The LHS then results in a sequence of values 
E(R I x ~ , , ~ ) ,  k = 1, 2, . .., nLHS = 300, that can be ex- 
plored with the previously discussed sensitivity analysis 
procedures. For example, stepwise regression analysis 
shows that WMICDFLG and WAUFAIL are the domi- 
nant variables with respect to the uncertainty in 
E(R I x,, ), with lesser effects due to a number of addi- 
tional variables (Table 7.2). 

This section briefly describes the 1996 WIPP PA 
and illustrates uncertainty and sensitivity analysis pro- 
cedures based on Latin hypercube sampling in the con- 
text of this PA. Additional details are available in other 
presentations.*9@2~ 248,324 

104 10-4 10-3 10-2 10-1 100 10' 102 
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Fig. 7.7. Sensitivity analysis based on PRCCs for 
CCDFs for normalized release to the accessi- 
ble environment (Fig. 14, Ref. 324). 

Table 7.2. Stepwise Regression Analysis with Rank-Transformed Data for Expected Normalized Re- 
lease Associated with Individual CCDFs for Total Release Due to Cuttings and Cavings, 
Spallings and Direct Brine Release (Table 5, Ref. 324). 
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8. Discussion 

Latin hypercube sampling has become a widely 
used sampling technique for the propagation of uncer- 
tainty in analyses of complex systems. A check of the 
original article31 in Science Citation Index or SciSearch 
can be used to obtain both a list of all citations and also 
the most recent citations to this technique. This review 
ends with a discussion of some of the reasons for the 
popularity of Latin hypercube sampling (Sect. 8.1) and 
some additional thoughts on the propagation of uncer- 
tainty in analyses for complex systems (Sect. 8.2). 

8.1 Popularity of Latin Hypercube 
Sampling 

Reasons that have led to the popularity of Monte 
Carlo techniques in general and Latin hypercube sam- 
pling in particular for uncertainty and sensitivity analy- 
sis of complex models include (i) conceptual simplicity 
and ease of implementation, (ii) dense stratification 
over the range of each sampled variable, (iii) direct 
provision of uncertainty analysis results without the use 
of surrogate models as approximations to the original 
model, (iv) availability of a variety of sensitivity analy- 
sis procedures, and (v) effectiveness as a model verifi- 
cation procedure. The preceding reasons are discussed 
in more detail below. 

Conceptual Simplicity and Ease of Implementation. 
A Monte Carlo approach to the propagation of uncer- 
tainty is easy to explain. Further, the definition of Latin 
hypercube sampling is straightforward, and the reason 
why its enforced stratification improves the results of an 
analysis for a given sample size is easy to grasp on an 
intuitive level. Thus, the presentation of Monte Carlo 
and Latin hypercube results to individuals of different 
levels of technical sophistication (e.g., other scientists 
working in the same or related fields, private or gov- 
ernmental decision makers, the general public) is rela- 
tively straightforward. In contrast, some of the other 
techniques for the propagation and analysis of uncer- 
tainty are less transparent (e.g., RSM, FAST, Sobol’ 
variance decomposition, fast probability integration) 
and thus more difficult to present. 

Analyses based on Latin hypercube sampling are 
typically easy to implement. Software is available to 
generate LHSs and also to implement the Imad Cono- 
ver restricted pairing technique for the control of corre- 
lations within the sample (e.g., Ref. 164). Further, 
propagation of the sample through the model under 
consideration is straightforward in most analyses. In 
practice, this propagation often involves little more than 

putting a “DO Loop” around the model which (i) reads 
the individual sample elements, (ii) uses these elements 
to generate input in the form required by the model, 
(iii) runs the model, and (iv) saves model results for 
later analysis. 

In contrast, implementation of the other analysis 
procedures can be considerably more difficult: (i) RSM 
requires the development of both a suitable experimen- 
tal design and the construction of a surrogate model, 
(ii) differential analysis requires the determination of 
the necessary model derivatives, (iii) FAST and Sobol’ 
variance decomposition require the development and 
evaluation of suitable integrals involving the model to 
obtain the associated variance decompositions, and 
(iv) fast probability integration requires the evaluation 
and use of model derivatives in the location of the MPP. 
Not only are the above procedures conceptually and 
computationally complex but, in many analyses, they 
can require more computational effort (i.e., model 
evaluations) than a Monte Carlo analysis with Latin 
hypercube sampling. 

Analyses that involve a single model are relatively 
easy to implement and explain. Analyses that involve a 
sequence of linked, and possibly quite complex, models 
are more difficult to implement and explain. Examples 
of such analyses are the NRC’s reassessment of the risk 
from commercial nuclear power reactors (Le., NUREG- 
1150)171* 172, 182 and the DOE’S PA in support of a 
CCA for the WIPP.190. 244, 248, 324 However, in such 
analyses, a sampling-based approach provides a way to 
examine results at model interfaces and develop a com- 
putational strategy for the overall assembly of the 
analysis. Analyses using the other techniques described 
in Sect. 2 seem less useful in the design, integration and 
ultimate performance of an analysis that involves the 
propagation of uncertainty through a sequence of linked 
models. 

Dense Stratification over Range of Each Sampled 
Variable. Latin hypercube sampling results in a denser 
stratification over the range of each sampled variable 
than would be obtained with a classical experimental 
design of the type typically used in conjunction with 
RSM and a more uniform stratification than would be 
obtained with random sampling. Further, the random 
pairing associated with Latin hypercube sampling 
spreads the sampled points throughout the high- 
dimensional sample space. 

Real analyses typically have a large number of 
analysis outcomes of interest. Further, these outcomes 
are often spatially or temporally dependent. The result 
is that most, if not all, of the sampled variables can be 
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important to one or more of the analysis outcomes. The 
dense stratification over the range of each sampled vari- 
able with Latin hypercube sampling results in each vari- 
able being sampled in a manner that allows its effects to 
be recognized if such effects exist. 

It is a mistake to assume that the important effects 
associated with a variable only occur at the end points 
of its range. Instead, it is quite possible that the most 
important effects associated with a variable could occur 
in an interior part of its range (e.g., Fig. 6.9a). The 
dense stratification associated with Latin hypercube 
sampling allows the identification of such effects when 
they occur. Further, this stratification also facilitates the 
identification of interactions involving multiple vari- 
ables (e.g., Fig. 6.7; also Figs. 8,9, Ref. 170). 

Direct Provision of Uncertainty Analysis Results. 
Because probabilistic weights can be associated with 
individual sample elements, Latin hypercube sampling, 
random sampling and stratified sampling can be used to 
obtain estimates of distribution functions directly from 
model results. Further, these estimates are unbiased, 
although some bias may be introduced if the Imad 
Conover restricted pairing technique (Sect. 5.1) is used. 

Latin hypercube sampling tends to produce more 
stable results (i.e., less variation in estimated distribu- 
tion functions from sample to sample) than random 
sampling. However, examples can be obtained in which 
Latin hypercube sampling and random sampling pro- 
duce results of similar stability by constructing a model 
in which variations in model behavior take place on a 
scale that is much smaller than the interval sizes in the 
LHS that result from the sample size selected for use. 
Stratified sampling can produce better distribution func- 
tion estimates than either Latin hypercube or random 
sampling provided enough information is available to 
define the strata and calculate the associate strata prob- 
abilities. Thus, stratified sampling is typically used 
only when a substantial knowledge base has already 
been obtained about the problem under consideration 
and is usually not appropriate in an initial exploratory 
analysis. Further, it is difficult to define a meaningful 
stratified sampling plan when many analysis outcomes 
are under consideration, as is usually the case in most 
real analyses. 

In contrast to Latin hypercube, random and strati- 
fied sampling, fast probability integration is intended 
primarily for estimating the tails of a distribution rather 
than the full distribution. Differential analysis in con- 
junction with the associated Taylor series provides an 
estimate for model variance rather than the full distribu- 
tion function; further, the expected values of analysis 

outcomes are usually taken to be the outcome of the 
model evaluated at the expected values of the inputs. 
The FAST approach and Sobol’ variance decomposi- 
tion are also used to estimate expected values and vari- 
ances rather than full distribution functions, although 
the calculations used to obtain expected values can also 
be used to produce estimated distribution functions. 

An important characteristic of Latin hypercube and 
random sampling is that the resultant model evaluations 
can be used to provide estimated distribution functions 
for all analysis outcomes. In particular, a different 
analysidcomputational strategy does not have to be 
developed and implemented for each analysis outcome. 
As already indicated, real analyses typically have a 
large number of outcomes of interest, and the necessity 
to develop a separate investigation for each of them can 
impose unreasonable demands on both human and 
computational resources. 

Variety of Sensitivity Analysis Procedures. Latin 
hypercube and random sampling generate a mapping 
from uncertain analysis inputs to analysis results. Once 
generated, this mapping can be explored with a variety 
of techniques, including examination of scatterplots, 
correlation analysis, regression analysis, rank transfor- 
mations, tests for nonmonotonic patterns, and tests for 
random patterns. This variety of techniques allows 
flexibility in developing a sensitivity analysis that is 
appropriate for the particular analysis situation under 
consideration. Again, Latin hypercube sampling is par- 
ticularly effective in sensitivity analyses with small 
samples due to its efficient stratification across the 
range of each uncertain variable. 

Sensitivity analyses in differential analysis and 
RSM are typically based on assessing either the effects 
of perturbations away from base values or fractional 
contributions to variance. In either case, the resultant 
sensitivity analyses are no better than the surrogate 
models (i.e., Taylor series or response surfaces) over 
the range of uncertainty under consideration. Fast 
probability integration is primarily an uncertainty analy- 
sis procedure and is usually not used in sensitivity 
analysis. 

The FAST approach and Sobol’ indices provide 
very appealing sensitivity analysis results. In particular, 
they provide a complete decomposition of variance into 
the components due to individual variables and interac- 
tions between variables. Unfortunately, if the model 
under consideration is expensive to evaluate or a large 
number of analysis outcomes are being investigated, the 
computational cost of implementing these procedures 
may be prohibitive. Although the FAST approach and 
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the Sobol’ variance decomposition are calculated under 
the assumption that model inputs are independent, vari- 
ance decomposition procedures exist that can be used 
with correlated inputs.135-137 

Model Verijication. Sampling-based uncertainty 
and sensitivity analysis provides a very powerful tool in 
model verification. Here, model verification is used to 
mean checking the correctness of the implementation of 
a model and/or an analysis and thus is distinct from 
model validation, which involves checking the capabil- 
ity of the model and/or analysis to represent the physi- 
cal system under study. Propagation of a sample 
through an analysis provides a very extensive exercising 
of its many components. Gross errors will often be re- 
vealed by the failure of the analysis for some sample 
elements or possibly by the appearance of clearly erro- 
neous results. Further, subtler errors are often revealed 
in sensitivity analyses (e.g., a variable having a small 
negative effect when the underlying physics implies that 
it should have a small positive effect or when a variable 
is shown to affect an analysis result on which it should 
have no effect). 

Sensitivity analysis provides a way to examine a 
large number of analysis outcomes for anomolous 
behavior in a very rapid manner. Further, relatively 
small effects can be observed. Sampling-based sensitiv- 
ity analysis is much more effective in searching for 
analysis errors than simply running the model for a lim- 
ited number of cases and then examining the results of 
these calculations. A sampling-based sensitivity analysis 
should be included as part of any serious modeYanalysis 
verification effort. Latin hypercube is particularly 
effective in model verification due to the dense stratifi- 
cation across the range of each sampled variable. 

8.2 Additional Thoughts 

Uncertainty and sensitivity analyses for complex 
systems are typically iterative. An initial study is often 
performed to gain perspectives on (i) the behavior of 
the model(s) involved, (ii) strategies for carrying out a 
final and defensible analysis, and (iii) the most impor- 
tant variables with respect to the uncertainty in out- 
comes of interest. In such preliminary analyses, rather 
crude characterizations of variable uncertainty may be 
adequate. Once system behavior is better understood 
and the more important variables with respect to this 
behavior are identified, resources can be focused on 
improving the characterization of the uncertainty in 
these important variables. Further, iterative analyses 
facilitate quality assurance by providing repeated op- 
portunities to check the correctness of model and analy- 

sis implementation. Sampling-based approaches to un- 
certainty and sensitivity analysis are particularly 
effective in iterative analyses due to the extensive exer- 
cising of the model(s) and associated analysis structure 
and the availability of a variety of uncertainty and sensi- 
tivity analysis results. 

Concern is often expressed about the computational 
cost of carrying out a Monte Carlo analysis. In most 
analyses, the human cost of developing the model, car- 
rying out the analysis, and documenting and defending 
the analysis will be far greater than the computational 
cost (i.e., for CPU time) of performing the necessary 
calculations. Latin hypercube sampling was developed 
to improve the quality of uncertainty and sensitivity 
analysis results relative to those that could be obtained 
with a random sample of the same size. However, if the 
model is inexpensive to evaluate, a large sample size 
can be used, and whether Latin hypercube or random 
sampling is used will have little effect on either the cost 
of the analysis or the quality of the results obtained. 

Some individuals express a broad, almost philoso- 
phical, dislike for Monte Carlo analysis procedures. 
This makes little sense. Monte Carlo procedures are 
just a way of carrying out a numerical integration and 
developing a mapping between model inputs and out- 
puts. There may be reasons to question the model in 
use or the distributions assigned to uncertain variables, 
but these are not reasons to question Monte Carlo pro- 
cedures themselves. Of course, a Monte Carlo analysis 
has to be carried out with a sufficiently large sample to 
produce results with a resolution appropriate for the 
purposes of the analysis. Replicated sampling provides 
one way to investigate the robustness of analysis out- 
comes and thus the appropriateness of the sample size 
selected for use; further, the individual replicates can be 
pooled to produce the final presentation results of the 
analysis. 

Many large analyses involve a separation of subjec- 
tive (i.e., epistemic) uncertainty and stochastic (i.e., 
aleatory) uncertainty (e.g., the NUREG-1 150 probabil- 
istic risk assessments (PRAs) and the WIPP PA as pre- 
viously mentioned). In such analyses, a common strat- 
egy is to use Latin hypercube sampling to propagate the 
effects of subjective uncertainty, and random or strati- 
fied sampling to propagate the effects of stochastic 
uncertainty. With this approach, the effect of stochastic 
uncertainty is being calculated conditional on individual 
LHS elements. Typical analysis outcomes are distribu- 
tions of CCDFs, with the individual CCDFs arising 
from stochastic uncertainty and the distributions of 
CCDFs arising from subjective uncertainty. The effi- 
cient stratification associated with Latin hypercube 
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sampling is important in analyses of this type due to the 
possibly large computational effort required in the de- 
termination of the effects of stochastic uncertainty. 

Random or stratified sampling is often a better 
choice than Latin hypercube sampling for the incorpora- 
tion of stochastic uncertainty into an analysis. With 
random sampling, it is possible to build up a sample by 
selecting one sampled value at a time. In contrast, Latin 
hypercube sampling requires the entire sample to be 
selected at one time. As a result, random sampling of- 
ten works better than Latin hypercube sampling when 
the values to be sampled are closely linked to effects 
that derive from previously sampled values (e.g., when 
the stopping point for a sampling process is determined 
by previously sampled values). The WIPP PA used 
random sampling to incorporate the effects of stochastic 
uncertainty due to the need to determine the effects of 
randomly occurring drilling intrusions over a 10,OOO yr 
period. With stratified sampling, it is possible to force 
the inclusion of low-probability but high-consequence 

events into the analysis. The NUREG-1 150 PRAs used 
stratified sampling implemented by event trees to assure 
the inclusion of, and also to calculate the probability of, 
low-probabilityhigh-consequence accidents. 

No approach to the propagation and analysis of un- 
certainty can be optimum for all needs. For example 
and depending on the particular problem, stratified 
sampling or fast probability integration can be more 
appropriate than Latin hypercube sampling for the esti- 
mation of the extreme quantiles of a distribution. Like- 
wise, differential analysis may be the preferred ap- 
proach if it is necessary to determine the effects of small 
perturbations away from base-case values, and the 
FAST approach or Sobol’ variance decomposition may 
be the preferred approach if it is necessary to determine 
a complete variance decomposition. However, it is the 
authors’ view that Monte Carlo analysis with Latin hy- 
percube sampling is the most broadly applicable a p  
proach to the propagation and analysis of uncertainty 
and often the only approach that is needed. 

56 



References 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

NCRP (National Council on Radiation Protec- 
tion and Measurements). 1996. A Guide for 
Uncertainty Analysis in Dose and Risk As- 
sessments Related to Environmental Contami- 
nation, NCRP Commentary No. 14. Be- 
thesda, MD: National Council on Radiation 
Protection and Measurements. 

NRC (National Research Council). 1994. 
Science and Judgment in Risk Assessment, 
Washington, DC: National Academy Press. 

NRC (National Research Council). 1993. 
Issues in Risk Assessment. Washington, DC: 
National Academy Press. 

U.S. EPA (U.S. Environmental Protection 
Agency). 1993. An SAB Report: Multi-Media 
Risk Assessment for Radon, Review of Uncer- 
tainty Analysis of Risks Associated with Expo- 
sure to Radon, EPA-SAB-RAC-93-014. 
Washington, DC: U.S. Environmental Protec- 
tion Agency. 

IAEA (International Atomic Energy Agency). 
1989. Evaluating the Reliability of Predic- 
tions Made Using Environmental Transfer 
Models, Safety Series No. 100. Vienna: In- 
ternational Atomic Energy Agency. 

Beck, M.B. 1987. "Water-Quality Modeling: 
A Review of the Analysis of Uncertainty," Wa- 
ter Resources Research. Vol. 23, no. 8, pp. 
1393-1442. 

Helton, J.C. and D.E. Burmaster. 1996. 
"Guest Editorial: Treatment of Aleatory and 
Epistemic Uncertainty in Performance As- 
sessments for Complex Systems," Reliability 
Engineering and System Safety. Vol. 54, no. 
2-3, pp. 91-94. 

Helton, J.C. 1997. "Uncertainty and Sensitiv- 
ity Analysis in the Presence of Stochastic and 
Subjective Uncertainty," Journal of Statistical 
Computation and Simulation. Vol. 57, no. 1- 
4, pp. 3-76. 

Cook, I. and S.D. Unwin. 1986. "Controlling 
Principles for Prior Probability Assignments in 
Nuclear Risk Assessment," Nuclear Science 
and Engineering. Vol. 94, no. 2, pp. 107-1 19. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

Mosleh, A., V.M. Bier, and G. Apostolakis. 
1988. "A Critique of Current Practice for the 
Use of Expert Opinions in Probabilistic Risk 
Assessment," Reliability Engineering and Sys- 
tem Safety. Vol. 20, no. 1, pp. 63-85. 

Hora, S.C. and R.L. Iman. 1989. "Expert 
Opinion in Risk Analysis: The NLJREG-1150 
Methodology," Nuclear Science and Engineer- 
ing. Vol. 102, no. 4, pp. 323-331. 

Svenson, 0. 1989. "On Expert Judgments in 
Safety Analyses in the Process Industries," Re- 
liability Engineering and System Safety. Vol. 
25, no. 3, pp. 219-256. 

Keeney, R.L. and D. von Winterfeldt. 1991. 
"Eliciting Probabilities from Experts in Com- 
plex Technical Problems," IEEE Transactions 
on Engineering Management. Vol. 38, no. 3, 
pp. 191-201. 

Bonano, E.J., S.C. Hora, R.L. Keeney, and D. 
von Winterfeldt. 1990. Elicitation and Use of 
Expert Judgment in Pegormance Assessment 
for High-Level Radioactive Waste Reposito- 
ries. Albuquerque: Sandia National Laborato- 
ries. 

Bonano, E.J. and G.E. Apostolakis. 1991. 
"Theoretical Foundations and Practical Issues 
for Using Expert Judgments in Uncertainty 
Analysis of High-Level Radioactive Waste 
Disposal," Radioactive Waste Management 
and the Nuclear Fuel Cycle. Vol. 16, no. 2, 
pp. 137-159. 

Cooke, R.M. 1991. Experts in Uncertainry: 
Opinion and Subjective Probability in Science. 
Oxford; New York: Oxford University Press. 

Meyer. M.A. and J.M. Booker. 1991. Elicit- 
ing and Analyzing Expert Judgment: A Prac- 
tical Guide. New York: Academic Press. 

Ortiz, N.R., T.A. Wheeler, R.J. Breeding, S. 
Hora, M.A. Myer, and R.L. Keeney. 1991. 
"Use of Expert Judgment in NUREG-1150,'' 
Nuclear Engineering and Design. Vol. 126, 
no. 3, pp. 313-331. 

Chhibber, S., G. Apostolakis, and D. Okrent. 
1992. "A Taxonomy of Issues Related to the 
Use of Expert Judgments in Probabilistic 

57 



20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

Safety Studies," Reliability Engineering and 
System Safety. Vol. 38, no. 1-2, pp. 27-45. 

Kaplan, S. 1992. "Expert Information Versus 
Expert Opinions: Another Approach to the 
Problem of Eliciting Combining Using Expert 
Knowledge in PRA," Reliability Engineering 
and System Safety. Vol. 35, no. 1, pp. 61-72. 

Otway, H. and D.V. Winterfeldt. 1992. "Ex- 
pert Judgement in Risk Analysis and Manage- 
ment: Process, Context, and Pitfalls," Risk 
Analysis. Vol. 12, no. 1, pp. 83-93. 

Thorne, M.C. and M.M.R. Williams. 1992. 
"A Review of Expert Judgement Techniques 
with Reference to Nuclear Safety," Progress in 
Nuclear Safety. Vol. 27, no. 2-3, pp. 83-254. 

Thorne, M.C. 1993. "The Use of Expert 
Opinion in Formulating Conceptual Models of 
Underground Disposal Systems and the Treat- 
ment of Associated Bias," Reliability Engi- 
neering and System Safety. Vol. 42, no. 2-3, 
pp. 161-180. 

Evans, J.S., G.M. Gray, R.L. Sielken Jr., A.E. 
Smith, C. Valdez-Flores, and J.D. Graham. 
1994. "Use of Probabilistic Expert Judgement 
in Uncertainty Analysis of Carcinogenic Po- 
tency," Regulatory Toxicology and Pharma- 
cology. Vol. 20, no. 1, pt. 1, pp. 15-36. 

Budnitz, R.J., G. Apostolakis, D.M. Boore, 
L.S. Cluff, K.J. Coppersmith, C.A. Cornell, 
and P.A. Moms. 1998. "Use of Technical 
Expert Panels: Applications to Probabilistic 
Seismic Hazard Analysis," Risk Analysis. Vol. 
18, no. 4, pp. 463-469. 

Goossens, L.H.J. and F.T. Harper. 1998. 
"Joint ECAJSNRC Expert Judgement Dnven 
Radiological Protection Uncertainty Analysis," 
Journal of Radiological Protection. Vol. 18, 
no. 4, pp. 249-264. 

Siu, N.O. and D.L. Kelly. 1998. "Bayesian 
Parameter Estimation in Probabilistic Risk As- 
sessment," Reliability Engineering and System 
Safety. Vol. 62, no. 1-2, pp. 89-116. 

Goossens, L.H.J., F.T. Harper, B.C.P. Kraan, 
and H. Metivier. 2000. "Expert Judgement 
for a Probabilistic Accident Consequence Un- 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

certainty Analysis," Radiation Proteetion Do- 
simetry. Vol. 90, no. 3, pp. 295-301. 

McKay, M. and M. Meyer. 2000. "Critique of 
and Limitations on the use of Expert Judge- 
ments in Accident Consequence Uncertainty 
Analysis," Radiation Protection Dosimetry. 
Vol. 90, no. 3, pp. 325-330. 

Feller, W. 197 1. An Introduction to Probabil- 
ity Theory and Its Applications. Vol. 2, 2nd 
ed. New York John Wiley & Sons. 

McKay, M.D., R.J. Beckman, and W.J. Cono- 
ver. 1979. "A Comparison of Three Methods 
for Selecting Values of Input Variables in the 
Analysis of Output from a Computer Code," 
Technometrics. Vol. 21, no. 2, pp. 239-245. 

Iman, R.L. 1992. "Uncertainty and Sensitivity 
Analysis for Computer Modeling Applica- 
tions," Reliability Technology - 1992, The 
Winter Annual Meeting of the American Soci- 
ety of Mechanical Engineers, Anaheim, Cali- 
fornia, November 8-13, 1992. Vol. 28, pp. 
153-168. 

MacDonald, R.C. and J.E. Campbell. 1986. 
"Valuation of Supplemental and Enhanced Oil 
Recovery Projects with Risk Analysis," Jour- 
nal of Petroleum Technology. Vol. 38, no. 1, 
pp. 57-69. 

Breshears, D.D., T.B. Kirchner, and F.W. 
Whicker. 1992. "Contaminant Transport 
Through Agroecosystems: Assessing Relative 
Importance of Environmental, Physiological, 
and Management Factors," Ecological Appli- 
cations. Vol. 2, no. 3, pp. 285-297. 

Ma, J.Z. and E. Ackerman. 1993. "Parameter 
Sensitivity of a Model of Viral Epidemics 
Simulated with Monte Carlo Techniques. 11. 
Durations and Peaks," International Journal of 
Biomedical Computing. Vol. 32, no. 3-4, pp. 
255-268. 

Ma, J.Z., E. Ackerman, and J.-J. Yang. 1993. 
"Parameter Sensitivity of a Model of Viral 
Epidemics Simulated with Monte Carlo Tech- 
niques. I. Illness Attack Rates," International 
Journal of Biomedical Computing. Vol. 32, 
no. 3-4, pp. 237-253. 

58 



37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

Whiting, W.B., T.-M. Tong, and M.E. Reed. 
1993. "Effect of Uncertainties in Thermody- 
namic Data and Model Parameters on Calcu- 
lated Process Performance," Industrial and 
Engineering Chemistry Research. Vol. 32, no. 
7, pp. 1367- 137 1. 

Blower, S.M. and H. Dowlatabadi. 1994. 
"Sensitivity and Uncertainty Analysis of Com- 
plex Models of Disease Transmission: an HIV 
Model, as an Example," International Statisti- 
cal Review. Vol. 62, no. 2, pp. 229-243. 

45. 

46. 

47. 
Gwo, J.P., L.E. Toran, M.D. Morris, and G.V. 
Wilson. 1996. "Subsurface Stormflow 
Modeling with Sensitivity Analysis Using a 
Latin-Hypercube Sampling Technique," 
Ground Water. Vol. 34, no. 5, pp. 81 1-818. 

Helton, J.C., D.R. Anderson, B.L. Baker, J.E. 
Bean, J.W. Berglund, W. Beyeler, K. Econ- 
omy, J.W. Garner, S.C. Hora, H.J. Iuzzolino, 
P. Knupp, M.G. Marietta, J. Rath, R.P. Re- 
chard, P.J. Roache, D.K. Rudeen, K. Salari, 
J.D. Schreiber, P.N. Swift, M.S. Tierney, and 
P. Vaughn. 1996. "Uncertainty and Sensitiv- 
ity Analysis Results Obtained in the 1992 Per- 
formance Assessment for the Waste Isolation 
Pilot Plant," Reliability Engineering and Sys- 
tem Safety. Vol. 51, no. 1, pp. 53-100. 

Chan, M.S. 1996. "The Consequences of Un- 
certainty for the Prediction of the Effects of 
Schistosomiasis Control Programmes," Epide- 
miology and Infection. Vol. 117, no. 3, pp. 
537-550. 

Sanchez, M.A. and S.M. Blower. 1997. "Un- 
certainty and Sensitivity Analysis of the Basic 
Reproductive Rate: Tuberculosis as an Exam- 
ple," American Journal of Epidemiology. Vol. 
145, no. 12, pp. 1127-1137. 

Blower, S.M., H.B. Gershengorn, and R.M. 
Grant. 2000. "A Tale of Two Futures: HIV 
and Antiretroviral Therapy in San Francisco," 
Science. Vol. 287, no. 5453, pp. 650-654. 

Cohen, C., M. Artois, and D. Pontier. 2000. 
"A Discrete-Event Computer Model of Feline 
Herpes Virus Within Cat Populations," Pre- 
ventative Veterinary Medicine. Vol. 45, no. 3- 
4, pp. 163-181. 

48. 

49. 

50. 

51. 

52. 

53. 

54. 

55. 

Kolev, N.I. and E. Hofer. 1996. "Uncertainty 
and Sensitivity Analysis of a Postexperiment 
Simulation of Nonexplosive Melt-Water Inter- 
action," Experimental T h e m 1  and Fluid Sci- 
ence. Vol. 13, no. 2, pp. 98-116. 

Caswell, H., S. Brault, A.J. Read, and T.D. 
Smith. 1998. "Harbor Porpoise and Fisheries: 
An Uncertainty Analysis of Incidental Mortal- 
ity," Ecological Applications. Vol. 8, no. 4, 
pp. 1226-1238. 

Hofer, E. 1999. "Sensitivity Analysis in the 
Context of Uncertainty Analysis for Computa- 
tionally Intensive Models," Computer Physics 
Communications. Vol. 117, no. 1-2, pp. 21- 
34. 

Metropolis, N. and S. Ulam. 1949. "The 
Monte Carlo Method," Journal of the Ameri- 
can Statistical Association. Vol. 44, no. 247, 
pp. 335-341. 

Hammersley, J.M. and D.C. Handscomb. 
1964. Monte Carlo Methods. London: 
Methuen; New York: Wiley. 

Teichroew, D. 1965. "A History of Distribu- 
tion Sampling Prior to the Era of the Computer 
and Its Relevance to Simulation," Journal of 
the American Statistical Association. Vol. 60, 
pp. 27-49. 

Halton, J.H. 1970. "A Retrospective and Pro- 
spective Survey of the Monte Carlo Method," 
SIAM Review. Vol. 12, no. 1, pp. 1-63. 

James, F. 1980. "Monte Carlo Theory and 
Practice," Reports on Progress in Physics. 
Vol. 43, no. 9, pp. 1145-1 189. 

Rubinstein, R.Y. 1981. Simulation and the 
Monte Carlo Method. New York: John Wiley 
& Sons. 

Turner, J.E., H.A. Wright, and R.N. Hamm. 
1985. "A Monte Carlo Primer for Health 
Physicists," Health Physics. Vol. 48, no. 6, 
pp. 717-733. 

Kalos, M.H. and P.A. Whitlock. 1986. Monte 
Carlo Methods. New York: John Wiley & 
Sons. 

59 



56. Rief, H., E.M. Gelbard, R.W. Schaefer, and 
K.S. Smith. 1986. "Review of Monte Carlo 
Techniques for Analyzing Reactor Perturba- 
tions," Nuclear Science and Engineering. Vol. 
92, no. 2, pp. 289-297. 

67. Lewins, J. and M. Becker, eds. "Sensitivity 
and Uncertainty Analysis of Reactor Perform- 
ance Parameters," Advances in Nuclear Sci- 
ence and Technology. Vol. 14. 1982, New 
York Plenum Press. 

Fishman, G.S. 1996. Monte Carlo: Concepts, 
Algorithms, and Applications. New York: 
Springer-Verlag New York, Inc. 

68. Rabitz, H., M. Kramer, and D. Dacol. 1983. 
"Sensitivity Analysis in Chemical Kinetics," 
Annual Review of Physical Chemistry. Vol. 
34. Eds. B.S. Rabinovitch, J.M. Schurr, and 
H.L. Strauss. Palo Alto, CA: Annual Reviews 
Inc, pp. 419-461. 

57. 

58. Albano, E.V. 1996. "The Monte Carlo Simu- 
lation Method: A Powerful Tool For the Study 
of Reaction Processes," Heterogeneous Chem- 
istry Reviews. Vol. 3, no. 4, pp. 389-418. 69. 

70. 

Ronen, Y. 1988. Uncertainty Analysis., Boca 
Raton, FL: CRC Press, Inc. 

59. Binder, K. 1997. "Applications of Monte 
Carlo Methods to Statistical Physics," Reports 
on Progress in Physics. Vol. 60, no. 5, pp. 
487-559. 

Turhyi, T. 1990. "Sensitivity Analysis of 
Complex Kinetic Systems. Tools and Applica- 
tions," Journal of Mathematical Chemistry. 
Vol. 5, no. 3, pp. 203-248. 

60. Hurtado, J.E. and A.H. Barbat. 1998. "Monte 
Carlo Techniques in Computational Stochastic 
Mechanics," Archives of Computational Meth- 
ods in Engineering. Vol. 5, no. 1, pp. 3-29. 

71. Cacuci, D.G., C.F. Weber, E.M. Oblow, and 
J.H. Marable. 1980. "Sensitivity Theory for 
General Systems of Nonlinear Equations," Nu- 
clear Science and Engineering. Vol. 75, no. l, 
pp. 88-1 10. 61. 

62. 

Hahn, G.J. and S.S. Shapiro. 1967. Statistical 
Models in Engineering. New York: John 
Wiley & Sons. 72. 

73. 

Cacuci, D.G. 1981. "Sensitivity Theory for 
Nonlinear Systems. I. Nonlinear Functional 
Analysis Approach," Journal of Mathematical 
Physics. Vol. 22, no. 12, pp. 2794-2802. 

Tukey, J.W. 1957. The Propagation of Er- 
rors, Fluctuations and Tolerances: Basic 
Generalized Formulas, Report No. 10. Prince- 
ton, NJ: Statistical Techniques Research 
Group, Princeton University Press. 

Cacuci, D.G. 1981. "Sensitivity Theory for 
Nonlinear Systems. 11. Extensions to Addi- 
tional Classes of Responses," Journal of 
Mathematical Physics. Vol. 22, no. 12, pp. 
2803-2812. 

63. Tukey, J.W. 1957. The Propagation of Er- 
rors, Fluctuations and Tolerances: Supple- 
mentary Formulas, Report No. 1 1. Princeton, 
NJ: Statistical Techniques Research Group, 
Princeton University Press. 

74. Cacuci, D.G. and M.E. Schlesinger. 1994. 
"On the Application of the Adjoint Method of 
Sensitivity Analysis to Problems in the Atmos- 
pheric Sciences," Atmdsfera. Vol. 7, no. 1, pp. 
47-59. 

64. Tukey, J.W. 1957. The Propagation of Er- 
rors, Fluctuations and Tolerances: An Exer- 
cise in Partial Diflerentiation, Report No. 12. 
Princeton, NJ: Statistical Techniques Research 
Group, Princeton University Press. 

75. Dougherty, E.P. and H. Rabitz. 1979. "A 
Computational Algorithm for the Green's 
Function Method of Sensitivity Analysis in 
Chemical Kinetics," International Journal of 
Chemical Kinetics. Vol. 11, no. 12, pp. 1237- 
1248. 

65. 

66. 

Tomovic, R. and M. Vukobratovic. 1972. 
General Sensitivity Theory. New York EI- 
sevier. 

Frank, P.M. 1978. Introduction to System 
Sensitivity Theory. New York Academic 
Press. 

76. Dougherty, E.P., J.T. Hwang, and H. Rabitz. 
1979. "Further Developments and Applica- 
tions of the Green's Function Method of Sensi- 

60 



77. 

78. 

79. 

80. 

81. 

82. 

83. 

84. 

tivity Analysis in Chemical Kinetics," Journal 
of Chemical Physics. Vol. 71, no. 4, pp. 1794- 
1808. 

Hwang, J.-T., E.P. Dougherty, S. Rabitz, and 
H. Rabitz. 1978. "The Green's Function 
Method of Sensitivity Analysis in Chemical 
Kinetics," Journal of Chemical Physics. Vol. 
69, no. 11, pp. 5180-5191. 

Vuilleumier, L., R.A. Harley, and N.J. Brown. 
1997. "First- and Second-Order Sensitivity 
Analysis of a Photochemically Reactive Sys- 
tem (a Green's Function Approach)," Envi- 
ronmental Science & Technology. Vol. 31, no. 
4, pp. 1206-1217. 

Griewank, A. and G. Corliss. 1991. "Auto- 
matic Differentiation of Algorithms: Theory, 
Implementation, and Application," Proceed- 
ings of the first SIAM Workshop on Automatic 
Differentiation, Breckenridge, Colorado, 
January 6-8, 1991. Philadelphia: Society for 
Industrial and Applied Mathematics. 

Berz, M., C. Bischof, G. Corliss, and A. 
Griewank. 1996. Computational Differentia- 
tion: Techniques, Applications, and Tools. 
Philadelphia: Society for Industrial and Ap- 
plied Mathematics. 

Bischof, C., P. Khademi, A. Mauer, and A. 
Carle. 1996. "Adifor 2.0: Automatic Differ- 
entiation of Fortran 77 Programs," IEEE Com- 
putational Science & Engineering. Vol. 3, no. 
3, pp. 18-32. 

Griewank, A., D. Juedes, and J. Utke. 1996. 
"Algorithm 755: ADOL-C: A Package for the 
Automatic Differentiation of Algorithms Writ- 
ten in C/C++," ACM Transactions on Mathe- 
matical Software. Vol. 22, no. 2, pp. 131-167. 

Bischof, C.H., L. Roh, and A.J. Mauer-Oats. 
1997. "ADIC: An Extensible Automatic Dif- 
ferentiation Tool For ANSI-C," Software: 
Practice and Experience. Vol. 27, no. 12, pp. 
1427- 1456. 

Carmichael, G.R., A. Sandu, and F.A. Potra. 
1997. "Sensitivity Analysis for Atmospheric 
Chemistry Models Via Automatic Differentia- 
tions," Atmospheric Environment. Vol. 3 l ,  no. 
3, pp. 475-489. 

85. 

86. 

87. 

88. 

89. 

90. 

91. 

92. 

93. 

94. 

95. 

Giering, R. and T. Kaminski. 1998. "Recipes 
for Adjoint Code Construction," ACM Trans- 
actions on Mathematical Software. Vol. 24, 
no. 4, pp. 437-474. 

Tolsma, J.E. and P.I. Barton. 1998. "On 
Computational Differentiation," Computers & 
Chemical Engineering. Vol. 22, no. 4-5, pp. 
475-490. 

Eberhard, P. and C. Bischof. 1999. "Auto- 
matic Differentiation of Numerical Integration 
Algorithms," Mathematics of Computation. 
Vol. 68, no. 226, pp. 7 17-73 1. 

Griewank, A. 2000. Evaluating Derivatives: 
Principles and Techniques of Algorithmic Dq- 
ferentiation. Philadelphia: Society for A p  
plied and Industrial Mathematics: 

Andres, T.H. 1997. "Sampling Methods and 
Sensitivity Analysis for Large Parameter Sets," 
Journal of Statistical Computation and Simu- 
lation. Vol. 57, no. 1-4, pp. 77-110. 

Kleijnen, J.P.C. 1997. "Sensitivity Analysis 
and Related Analyses: A Review of Some Sta- 
tistical Techniques," Journal of Statistical 
Computation and Simulation. Vol. 57, no. 1- 
4, pp. 11 1-142. 

Bates, R.A., R.J. Buck, E. Riccomagno, and 
H.P. Wynn. 1996. "Experimental Design and 
Observation for Large Systems," Journal of 
The Royal Statistical Society Series B- 
Methodological. Vol. 58, no. 1, pp. 77-94. 

Draper, N.R. and F. Pukeisheim. 1996. "An 
Overview of Design of Experiments," Statisti- 
cal Papers. Vol. 37, no. 1, pp. 1-32. 

Draper, N.R. and D.K.J. Lin. 1996. "Re- 
sponse Surface Designs," Handbook of Statis- 
tics. Vol. 13, pp. 343-375. New York El- 
sevier. 

Koehler, J.R. and A.B. Owen. 1996. "Com- 
puter Experiments," Handbook of Statistics. 
Vol. 13, pp. 261-308. New York Elsevier. 

Morris, M.D. and T.J. Mitchell. 1995. "Ex- 
ploratory Designs for Computational Experi- 
ments," Journal of Statistical Planning and In- 
ference. Vol. 43, no. 3, pp. 381-402. 

61 



96. 

97. 

Bowman, K.P., J. Sacks, and Y.-F. Chang. 
1993. "Design and Analysis of Numerical Ex- 
periments," Journal of Atmospheric Sciences. 
Vol. 50, no. 9, pp. 1267-1278. 

R E M , "  Nuclear Technology. Vol. 93, no. 
1, pp. 65-81. 

106. Aceil, S., M. and D.R. Edwards. 1991. "Sen- 
sitivity Analysis of Thermal-Hydraulic Pa- 
rameters and Probability Estimation of Boiling 
Transition in a Standard BWW6," Nuclear 
Technology. Vol. 93, no. 2, pp. 123-129. 

Kleijnen, J.P.C. 1992. "Sensitivity Analysis 
of Simulation Experiments: Regression- 
Analysis and Statistical Design," Mathematics 
and Computers in Simulation. Vol. 34, no. 3- 
4, pp. 297-315. 107. Lee, S.H., J.S. Kim, and S.H. Chang. 1987. 

"A Study on Uncertainty and Sensitivity of 
Operational and Modelling Parameters for Fe- 
edwater Line Break Analysis," Journal of the 
Korean Nuclear Society. Vol. 19, no. 1,  pp. 
10-21. 

98. 

99. 

Moms, M.D. 1991. "Factorial Sampling 
Plans for Preliminary Computational Experi- 
ments," Technometrics. Vol. 33, no. 2, pp. 
161- 174. 

Currin, C., T. Mitchell, M. Moms, and D. Y1- 
viskaker. 1991. "Bayesian Prediction of De- 
terministic Functions, With Applications to the 
Design and Analysis of Computer Experi- 
ments," Journal of the American Statistical 
Association. Vol. 86, no. 416, pp. 953-963. 

108. Kim, H.K., Y.W. Lee, T.W. Kim, and S.H. 
Chang. 1986. "A Procedure for Statistical 
Thermal Margin Analysis Using Response Sur- 
face Method and Monte Carlo Technique," 
Journal of the Korean Nuclear Sociefy. Vol. 
18, no. 1, pp. 38-47. 

100. Sacks, J., W.J. Welch, T.J. Mitchel, and H.P. 
Wynn. 1989. "Design and Analysis of Com- 
puter Experiments," Statistical Science. Vol. 
4, no. 4, pp. 409-435. 

109. Myers, R.H. 1999. "Response Surface Meth- 
odology - Current Status and Future Direc- 
tions," Journal of Quality Technology. Vol. 
31, no. 1,  pp. 30-44. 

101. 

102. 

Sacks, J., S.B. Schiller, and W.J. Welch. 
1989. "Designs for Computer Experiments," 
Technometrics. Vol. 31, no. 1, pp. 41-47. 

110. Myers, R.H., A.I. Khuri, and J. Carter, Walter 
H. 1989. "Response Surface Methodology: 
1966-1988," Technometrics. Vol. 31, no. 2, 
pp. 137-157. 

Cryer, S.A. and P.L. Havens. 1999. "Regional 
Sensitivity Analysis Using a Fractional Facto- 
rial Method for the USDA Model GLEAMS," 
Environmental Modelling & Sofnvare. Vol. 
14, no. 6, pp. 613-624. 

1 1 1 .  

112. 

Morton, R.H. 1983. "Response Surface 
Methodology," Mathematical Scientist. Vol. 
8, pp. 31-52. 

Mead, R. and D.J. Pike. 1975. "A Review of 
Response Surface Methodology from a Bio- 
metric Viewpoint," Biometrics. Vol. 3 1,  pp. 
803-85 1. 

103. Rao, G.P. and P.K. Sarkar. 1997. "Sensitivity 
Studies of Air Scattered Neutron Dose From 
Particle Accelerators," Journal of Statistical 
Computation and Simulation. Vol. 57, no. 1-  
4, pp. 261-270. 113. Hill, W.J. and W.G. Hunter. 1966. "A Re- 

view of Response Surface Methodology: A 
Literature Review," Technometrics. Vol. 8, 
no. 4, pp- 571-590. 

104. Kleijnen, J.P.C., G. van Ham, and J. Rotmans. 
1992. "Techniques for Sensitivity Analysis of 
Simulation Models: A Case Study of the C02 
Greenhouse Effect," Simulation. Vol. 58, no. 
6, pp. 410-417. 

114. 

115. 

Myers, R.H. 197 1 .  Response Surface Meth- 
odology. Boston, MA: Allyn and Bacon. 

105. Engel, R.E., J.M. Sorensen, R.S. May, K.J. 
Doran, N.G. Trikouros, and E.S. Mozias. 
199 1 .  "Response Surface Development Using 

Box, G.E.P. and N.R. Draper. 1987. Empiri- 
cal Model-Building and Response Surfaces. 
New York Wiley. 

62 



116. 

117. 

118. 

119. 

120. 

121. 

122. 

123. 

124. 

125. 

Khuri, A.I. and J.A. Cornell. 1987. Response 
Su#aces: Designs and Analyses. New York 
Marcel Dekker. 

Kleijnen, J.P.C. 1987. Statistical Tools for 
Simulation Practitioners. New York Marcel 
Dekker. 

Cukier, R.I., C.M. Fortuin, K.E. Shuler, A.G. 
Petschek, and J.H. Schiably. 1973. "Study of 
the Sensitivity of Coupled Reaction Systems to 
Uncertainties in Rate Coefficients, I. Theory," 
Journal of Chemical Physics. Vol. 59, no. 8, 
pp. 3873-3878. 

Schaibly, J.H. and K.E. Shuler. 1973. "Study 
of the Sensitivity of Coupled Reaction Systems 
to Uncertainties in Rate Coefficients, 11. Ap- 
plications," Journal of Chemical Physics. Vol. 
59, no. 8, pp. 3879-88. 

Cukier, R.I., H.B. Levine, and K.E. Shuler. 
1978. "Nonlinear Sensitivity Analysis of Mul- 
tiparameter Model Systems," Journal of Com- 
putational Physics. Vol. 26, no. 1, pp. 1-42. 

Sobol', I.M. 1993. "Sensitivity Estimates for 
Nonlinear Mathematical Models," Mathemati- 
cal Modeling & Computational Experiment. 
Vol. 1, no. 4, pp. 407-414. 

126. 

127. 

128. 

129. 

130. 

131. 
Chan, K., A. Saltelli, and S. Tarantola. 2000. 
"Winding Stairs: A Sampling Tool to Compute 
Sensitivity Indices," Statistics and Computing. 
Vol. 10, no. 3, pp. 187-196. 

Jansen, M.J.W. 1999. "Analysis of Variance 
Designs for Model Output," Computer Physics 
Communications. Vol. 117, no. 1-2, pp. 35- 
43. 

Jansen, M.J.W., W.A.H. Rossing, and R.A. 
Daamen, "Monte Carlo Estimation of Uncer- 
tainty Contributions from Several Independent 
Multivariate Sources," in Predictability and 
Nonlinear Modeling in Natural Sciences and 
Economics, J. Grasman and G. van Straten, 
Editors. 1994, Boston: Kluwer Academic Pub- 
lishers. p. 334-343. 

Rabitz, H., O.F. Alis, J. Shorter, and K. Shim. 
1999. "Efficient Input-Output Model Repre- 
sentations," Computer Physics Communica- 
tions. Vol. 1 17, no. 1-2, pp. 1 1-20. 

132. 

133. 

134. 

135. 

Saltelli, A., S. Tarantola, and K.P.-S. Chan. 
1999. "A Quantitative Model-Independent 
Method for Global Sensitivity Analysis of 
Model Output," Technometrics. Vol. 41, no. 
1, pp. 39-56. 

Homma, T. and A. Saltelli. 1996. "Impor- 
tance Measures in Global Sensitivity Analysis 
of Nonlinear Models," Reliability Engineering 
and System Safety. Vol. 52, no. 1, pp. 1-17. 

McRae, G.J., Tilden, J.W. & Seinfeld, J.H. 
1981. "Global Sensitivity Analysis - A Com- 
putational Implementation of the Fourier Am- 
plitude Sensitivity Test (FAST)," Computers & 
Chemical Engineering. Vol. 6, no. 1, pp. 15- 
25. 

Saltelli, A. and I.M. Sobol'. 1995. "About the 
Use of Rank Transformation in Sensitivity 
Analysis of Model Output," Reliability Engi- 
neering and System Safety. Vol. 50, no. 3, pp. 
225-239. 

Archer, G.E.B., A. Saltelli, and I.M. Sobol'. 
1997. "Sensitivity Measures, ANOVA-like 
Techniques and the Use of Bootstrap," Journal 
of Statistical Computation and Simulation. 
Vol. 58, no. 2, pp. 99-120. 

Saltelli, A. and R. Bolado. 1998. "An Alter- 
native Way to Compute Fourier Amplitude 
Sensitivity Test (FAST)," Computational Sta- 
tistics & Data Analysis. Vol. 26, no. 4, pp. 
267-279. 

Rabitz, H. and O.F. Alis. 1999. "General 
Foundations of High-Dimensional Model Rep- 
resentations," Journal of Mathematical Chem- 
istry. Vol. 25, no. 2-3, pp. 197-233. 

Saltelli, A., S. Tarantola, and F. Campolongo. 
2000. "sensitivity Analysis as an Ingredient of 
Modeling," Statistical Science. Vol. 15, no. 4, 
pp. 377-395. 

Cox, D.C. 1982. "An Analytic Method for 
Uncertainty Analysis of Nonlinear Output 
Functions, with Applications to Fault-Tree 
Analysis," IEEE Transactions on Reliability. 
Vol. 3, no. 5, pp. 465-468. 

McKay, M.D. 1995. Evaluating Prediction 
Uncertainty, LA-12915-MS; NUREGKR- 

63 



136. 

137. 

138. 

139. 

140. 

141. 

142. 

143. 

144. 

145. 

631 1. Los Alamos, NM: Los Alamos Na- 
tional Laboratory. 

McKay, M.D. 1997. "Nonparametric Vari- 
ance-Based Methods of Assessing Uncertainty 
Importance," Reliability Engineering and Sys- 
tem Safety. Vol. 57, no. 3, pp. 267-279. 

McKay, M.D., J.D. Morrison, and S.C. Upton. 
1999. "Evaluating Prediction Uncertainty in 
Simulation Models," Computer Physics Com- 
munications. Vol. 1 17, no. 1-2, pp. 44-5 1. 

Haskin, F.E., B.D. Staple, and C. Ding. 1996. 
"Efficient Uncertainty Analyses Using Fast 
Probability Integration," Nuclear Engineering 
and Design. Vol. 166, no. 2, pp. 225-248. 

Wu, Y.-T. 1987. "Demonstration of a New, 
Fast Probability Integration Method for Reli- 
ability Analysis," Journal of Engineering for  
Industry, Transactions of the ASME, Series B. 
Vol. 109, no. 1, pp. 24-28. 

Schanz, R.W. and A. Salhotra. 1992. 
"Evaluation of the Rackwitz-Fiessler Uncer- 
tainty Analysis Method for Environmental Fate 
and Transport Method," Water Resources Re- 
search. Vol. 28, no. 4, pp. 1071-1079. 

Wu, Y.-T., H.R. Millwater, and T.A. Cruse. 
1990. "Advanced Probabilistic Structural 
Method for Implicit Performance Functions," 
AIAA Journal. Vol. 28, no. 9, pp. 1663-1669. 

Wu, Y.-T. and P.H. Wirsching. 1987. "New 
Algorithm for Structural Reliability," Journal 
of Engineering Mechanics. Vol. 113, no. 9, 
pp. 1319-1336. 

Chen, X. and N.C. Lind. 1983. "Fast Prob- 
ability Integration by Three-Parameter Normal 
Tail Approximation," Structural Safety. Vol. 
1, no. 4, pp. 169-176. 

Rackwitz, R. and B. Fiessler. 1978. "Struc- 
tural Reliability Under Combined Random 
Load Sequences," Computers & Structures. 
Vol. 9, no. 5, pp. 489-494. 

Hasofer, A.M. and N.C. Lind. 1974. "Exact 
and Invariant Second-Moment Code Format," 
Journal of the Engineering Mechanics Divi- 
sion, Proceedings of the American Society of 

146. 

147. 

148. 

149. 

150. 

151. 

152. 

153. 

154. 

155. 

Civil Engineers. Vol. 100, no. EMl, pp. 11 1- 
121. 

Castillo, E., C. Solares, and P. G6mez. 1997. 
"Tail Uncertainty Analysis in Complex Sys- 
tems," Artificial Intelligence. Vol. 96, no. 2, 
pp. 395-419. 

Castillo, E., J.M. Sarabia, C. Solares, and P. 
G6mez. 1999. "Uncertainty Analyses in Fault 
Trees and Bayesian Networks Using 
FOWSORM Methods," Reliability Engi- 
neering and System Safety. Vol. 65, no. 1, pp. 
29-40. 

Press, W.H., S.A. Teukolsky, W.T. Vetterling, 
and B.P. Flannery. 1992. Numerical Recipes 
in FORTRAN: The Art of Scientific Comput- 
ing. 2nd ed. Cambridge; New York Cam- 
bridge University Press. 

Barry, T.M. 1996. "Recommendations on the 
Testing and Use of Pseudo-Random Number 
Generators Used in Monte Carlo Analysis for 
Risk Assessment," Risk Analysis. Vol. 16, no. 
1, pp. 93-105. 

L'Ecuyer, P. 1998. "Random Number Genera- 
tion," Handbook of Simulation: Principles, 
Methodology, Advances, Applications, and 
Practice. Eds. J. Banks. John Wiley & Sons: 
New York. 93-137. 

Iman, R.L. and W.J. Conover. 1982. "A Dis- 
tribution-Free Approach to Inducing Rank 
Correlation Among Input Variables," Cornmu- 
nications in Statistics: Simulation and Com- 
putation. Vol. B1 1, no. 3, pp. 31 1-334. 

Steinberg, H.A. 1963. "Generalized Quota 
Sampling," Nuclear Science and Engineering. 
Vol. 15, pp. 142-145. 

Raj, D. 1968. Sampling Theory. New York: 
McGraw-Hill. 

Stein, M. 1987. "Large Sample Properties of 
Simulations Using Latin Hypercube Sam- 
pling," Technometrics. Vol. 29, no. 2, pp. 
143-151. 

Owen, A.B. 1992. "A Central Limit Theorem 
for Latin Hypercube Sampling," Journal of the 

64 



156. 

157. 

158. 

159. 

160. 

161. 

162. 

163. 

164. 

Royal Statistical Society. Series B. Methodo- 
logical. Vol. 54, no. 2, pp. 541-551. 

Billingsley, P. 1968. Convergence of Prob- 
ability Measures. New York John Wiley & 
Sons. 

Matht, P. 2001. "Hilbert Space Analysis of 
Latin Hypercube Sampling," Proceedings of 
the American Mathematical Society. Vol. 129, 
no. 5 ,  pp. 1477-1492. 

Hoshino, N. and A. Takemura. 2000. "On 
Reduction of Finite-sample Variance by Ex- 
tended Latin Hypercube Sampling," Bernoulli. 
Vol. 6, no. 6, pp. 1035-1050. 

U.S. NRC (U.S. Nuclear Regulatory Commis- 
sion). 1975. Reactor Safety Study-An As- 
sessment of Accident Risks in US. Commercial 
Nuclear Power Plants, WASH-1400 
(NUREG-75/014). Washington, DC: U.S. 
Nuclear Regulatory Commission. 

Lewis, H.W., R.J. Budnitz, H.J.C. Kouts, W.B. 
Loewenstein, W.D. Rowe, F. von Hippel, and 
F. Zachariasen. 1978. Risk Assessment Re- 
view Group Report to the U.S. Nuclear Regu- 
latory Commission, NUREGKR-0400. Wash- 
ington: U.S. Nuclear Regulatory Commission. 

McKay, M.D., W.J. Conover, and D.W. 
Whitehead. 1976. Report on the Application 
of Statistical Techniques to the Analysis of 
Computer Codes, Los Alamos, NM: Los 
Alamos Scientific Laboratory. 

Steck, G.P., R.L. Iman, and D.A. Dahlgren. 
1976. Probabilistic Analysis of LOCA, Annual 
Reporr for 1976, SAND76-0535. Albuquer- 
que, NM: Sandia National Laboratories. 

Iman, R.L., J.M. Davenport, and D.K. Ziegler. 
1980. Latin Hypercube Sampling (Program 
User's Guide), SAND79-1473. Albuquerque, 
NM: Sandia National Laboratories. 

Iman, R.L. and M.J. Shortencarier. 1984. A 
FORTRAN 77 Program and User's Guide for 
the Generation of Latin Hypercube and Ran- 
dom Samples for Use with Computer Models, 

querque, NM: Sandia National Laboratories. 
NUREG/CR-3624, SAND83-2365. Albu- 

165. 

166. 

167. 

168. 

169. 

170. 

171. 

172. 

Iman, R.L., J.C. Helton, and J.E. Campbell. 
1978. Risk Methodology for Geologic Dis- 
posal of Radioactive Waste: Sensitivity Anuly- 
sis Techniques, SAND78-09 12, NUREGKR- 
0390. Albuquerque, NM: Sandia National 
Laboratories. 

Campbell, J.E., R.T. Dillon, M.S. Tiemey, 
H.T. Davis, P.E. McGrath, F.J. Pearson, H.R. 
Shaw, J.C. Helton, and F.A. Donath. 1978. 
Risk Methodology for Geologic Disposal of 
Radioactive Waste: Interim Report, SAND78- 
0029, NUREG/CR-0458. Albuquerque, NM: 
Sandia National Laboratories. 

Cranwell, R.M., J.E. Campbell, J.C. Helton, 
R.L. Iman, D.E. Longsine, N.R. Ortiz, G.E. 
Runkle, and M.J. Shortencarier. 1987. Risk 
Methodology for Geologic Disposal of Radio- 
active Waste: Final Report, SAND8 1-2573, 
NUREGKR-2452. Albuquerque, NM: San- 
dia National Laboratories. 

Sprung, J.L., D.C. Aldrich, D.J. Alpext, M.A. 
Cunningham, and G.G. Weigand, "Overview 
of the MELCOR Risk Code Development Pro- 
gram," in Proceedings of the International 
Meeting on Light Water Reactor Severe Acci- 
dent Evaluation. 1983: Cambridge, MA, Au- 
gust 28-September 1, 1983. Boston, MA: 
Stone and Webster Engineering Corporation. 
p. TS-10.1-1 to TS-10.1-8. 

Iman, R.L. and J.C. Helton. 1985. A Com- 
parison of Uncertainty and Sensitivity Analysis 
Techniques for Computer Models, 

querque, NM: Sandia National Laboratories. 
NUREGKR-3904, SAND84-1461. Albu- 

Iman, R.L. and J.C. Helton. 1988. "An Inves- 
tigation of Uncertainty and Sensitivity Analy- 
sis Techniques for Computer Models," Risk 
Analysis. Vol. 8, no. 1, pp. 71-90. 

U.S. NRC (U.S. Nuclear Regulatory Commis- 
sion). 1990- 1991. Severe Accident Risks: An 
Assessment for Five U.S. Nuclear Power 
Plants, NUREG-1 150, Vols. 1-3. Washington, 
DC: U.S. Nuclear Regulatory Commission, 
Offce of Nuclear Regulatory Research, Divi- 
sion of Systems Research. 

Breeding, R.J., J.C. Helton, E.D. Gorham, and 
F.T. Harper. 1992. "Summary Description of 

65 



the Methods Used in the Probabilistic Risk As- 
sessments for NUREG-1 150," Nuclear Engi- 
neering and Design. Vol. 135, no. 1, pp. 1-27. 

173. Breeding, R.J., J.C. Helton, W.B. Murfin, and 
L.N. Smith. 1990. Evaluation Severe Acci- 
dent Risks: Surry Unit I ,  NUREGlCR-4551, 
SAND86-1309, Vol. 3, Rev. 1. Albuquerque, 
NM: Sandia National Laboratories. 

174. Payne, A.C., R.J. Breeding, H.-N. Jow, J.C. 
Helton, L.N. Smith, and A.W. Shiver. 1990. 
Evaluation of Severe Accident Risks: Peach 
Bottom Unit 2, NUREGKR-4551, SAND86- 
1309, Vol. 4, Rev. 1. Albuquerque, NM: 
Sandia National Laboratories. 

175. Gregory, J.J., R.J. Breeding, W.B. Muffin, J.C. 
Helton, S.J. Higgins, and A.W. Shiver. 1990. 
Evaluation of Severe Accident Risks: Se- 
quoyah Unit I ,  NUREGKR-4551, SAND86- 
1309, Vol. 5 ,  Rev. 1. Albuquerque: Sandia 
National Laboratories. 

176. Brown, T.D., R.J. Breeding, H.-N. Jow, J.C. 
Helton, S.J. Higgins, C.N. Amos, and A.W. 
Shiver. 1990. Evaluation of Severe Accident 
Risks: Grand Gulf Unit I ,  NUREGKR-455 1, 
SAND86-1309, Vol. 6, Rev. 1. Albuquerque, 
NM: Sandia National Laboratories. 

177. Park, C.K., E.G. Cazzoli, C.A. Grimshaw, A. 
Tingle, M. Lee, and W.T. Pratt. 1993. 
Evaluation of Severe Accident Risks: Zion 
Unit I ,  NUWGKR-455 1, B " U R E G -  
5209, Vol. 7, Rev. 1. Upton, NY: Brook- 
haven National Laboratory. 

178. Breeding, R.J., J.C. Helton, W.B. Murfin, L.N. 
Smith, J.D. Johnson, H.-N. Jow, and A.W. 
Shiver. 1992. "The NUREG-1 150 Probabilis- 
tic Risk Assessment for the Suny Nuclear 
Power Station," Nuclear Engineering and De- 
sign. Vol. 135, no. l ,  pp. 29-59. 

179. Payne, A.C., Jr., R.J. Breeding, J.C. Helton, 
L.N. Smith, J.D. Johnson, H.-N. Jow, and 
A.W. Shiver. 1992. "The NUREG-1150 
Probabilistic Risk Assessment for the Peach 
Bottom Atomic Power Station," Nuclear Engi- 
neering and Design. Vol. 135, no. 1, pp. 61- 
94. 

180. 

181. 

182. 

183. 

184. 

185. 

186. 

187. 

Gregory, J.J., R.J. Breeding, J.C. Helton, W.B. 
Murfin, S.J. Higgins, and A.W. Shiver. 1992. 
"The NUREG-1150 Probabilistic Risk As- 
sessment for the Sequoyah Nuclear Plant," Nu- 
clear Engineering and Design. Vol. 135, no. 
1, pp. 92-115. 

Brown, T.D., R.J. Breeding, J.C. Helton, H.-N. 
Jow, S.J. Higgins, and A.W. Shiver. 1992. 
"The NUREG-1150 Probabilistic Risk As- 
sessment for the Grand Gulf Nuclear Station," 
Nuclear Engineering and Design. Vol. 135, 
no. 1, pp. 117-137. 

Helton, J.C. and R.J. Breeding. 1993. "Calcu- 
lation of Reactor Accident Safety Goals,'' Re- 
liability Engineering and System Safety. Vol. 
39, no. 2, pp. 129-158. 

Payne, A.C., Jr. 1992. Analysis of the LuSalle 
Unit 2 Nuclear Power Plant: Risk Methods In- 
tegration and Evaluation Program (RMIEP). 
Summary, NUREGiCR-4832; SAND92-0537, 
Vol. 1. Albuquerque, NM: Sandia National 
Laboratories. 

Payne, A.C., Jr., T.T. Sype, D.W. Whitehead, 
and A.W. Shiver. 1992. Analysis of the La- 
Salle Unit 2 Nuclear Power Plant: Risk Meth- 
ods Integration and Evaluation Program 
(RMIEP), SAND92-0537, Vol. 2. Albuquer- 
que, NM: Sandia National Laboratories. 

Payne, A.C., Jr., S.L. Daniel, D.W. Whitehead, 
T.T. Sype, S.E. Dingman, and C.J. Shaffer. 
1992. Analysis of the LaSalle Unit 2 Nuclear 
Power Plant: Risk Methods Integration and 
Evaluation Program (RMIEP) Internal Events 
Accident Sequence Qualification. Main Re- 
port, SAND92-0537, Vol. 3, pt. 1. Albuquer- 
que, NM: Sandia National Laboratories. 

Payne, A.C., Jr., S.L. Daniel, D.W. Whitehead, 
T.T. Sype, S.E. Dingman, and C.J. Shaffer. 
1992. Analysis of the LaSalle Unit 2 Nuclear 
Power Plant: Risk Methods Integration and 
Evaluation Program (RMIEP) Internal Events 
Accident Sequence Quantification, Appendi- 
ces, SAND92-0537, Vol. 3, pt.2. Albuquer- 
que, NM: Sandia National Laboratories. 

NAS/NRC (National Academy of Sci- 
enceaational Research Council). 1996. The 
Waste Isolation Pilot Plant, A Potential Solu- 

66 



tion for the disposal of Transuranic Waste. 
Washington DC: National Academy Press.: 
Committee on the Waste Isolation Pilot Plant, 
Board on Radioactive Waste Management, 
Commission on Geosciences, Environment, 
and Resources, National Research Council. 

188. Rechard, R.P. 2000. "Historical Background 
on Performance Assessment for the Waste Iso- 
lation Pilot Plant," Reliability Engineering and 
System Safety. Vol. 69, no. 1-3, pp. 5-46. 

189. U.S. DOE (U.S. Department of Energy). 
1996. Title 40 CFR Part 191 Compliance 
Certification Application for  the Waste Isola- 
tion Pilot Plant, DOWCAO- 1996-2 184. 
Carlsbad, NM: U.S. Department of Energy, 
Carlsbad Area Office. Waste Isolation Pilot 
Plant. 

190. Helton, J.C. and M.G. Marietta. 2000. "Spe- 
cial Issue: The 1996 Performance Assessment 
for the Waste Isolation Pilot Plant," Reliability 
Engineering and System Safety. Vol. 69, no. 
1-3, pp. 1-45 1. 

191. U.S. EPA (U.S. Environmental Protection 
Agency). 1985. "40 CFR Part 191: Environ- 
mental Standards for the Management and 
Disposal of Spent Nuclear Fuel, High-Level 
and Transuranic Radioactive Wastes; Final 
Rule," Federal Register. Vol. 50, no. 182, pp. 
38066-38089. 

192. U.S. EPA (U.S. Environmental Protection 
Agency). 1996. "40 CFR Part 194: Criteria 
for the Certification and Re-Certification of the 
Waste Isolation Pilot Plant's Compliance With 
the 40 CFR Part 191 Disposal Regulations; Fi- 
nal Rule," Federal Register. Vol. 61, no. 28, 
pp. 5224-5245. 

193. Helton, J.C. 1993. "Risk, Uncertainty in Risk, 
and the EPA Release Limits for Radioactive 
Waste Disposal," Nuclear Technology. Vol. 
101, no. 1, pp. 18-39. 

194. Helton, J.C., D.R. Anderson, M.G. Marietta, 
and R.P. Rechard. 1997. "Performance As- 
sessment for the Waste Isolation Pilot Plant: 
From Regulation to Calculation for 40 CFR 
191.13," Operations Research. Vol. 45, no. 2, 
pp. 157-177. 

195. 

196. 

197. 

198. 

199. 

200. 

201. 

202. 

U.S. DOE (U.S. Department of Energy). 
1998. Viability Assessment of a Repository at 
Yucca Mountain, DOE/RW-0508. Washing- 
ton, D.C.: U.S. Department of Energy, Office 
of Civilian Radioactive Waste Management. 

CRWMS M&0 (Civilian Radioactive Waste 
Management System Management and Operat- 
ing Contractor). 2000. Total System Perform- 
ance Assessment for the Site Recommendation, 
TDR-WIS-PA-000001 REV 00. Las Vegas, 
Nevada: CRWMS M&0. 

CRWMS M&O (Civilian Radioactive Waste 
Management System Management and Operat- 
ing Contractor). 2000. Total System Perfonn- 
ance Assessment (TSPA) Model for Site Rec- 
ommendation, MDL-WIS-PA-000002 REV 
00. Las Vegas, Nevada: CRWMS M&O. 

Kincaid, C.T., P.W. Eslinger, W.E. Nichols, 
A.L. Bunn, R.W. Bryce, T.B. Miley. M.C. 
Richmond, S.F. Snyder, and R.L. Aaberg. 
2000. Groundwaterfludose Zone Integration 
Project: System Assessment Capacity (Revi- 
sion 0) Assessment Description, Requirements, 
Soji'ware Design, and Test Plan, BHI-01365. 
Richland, Washington: Bechtel Hanford, Inc. 

BHI (Bechtel Hanford, Inc.). 1999. Ground- 
watermadose Zone Integration Project: Pre- 
liminary System Assessment Capability Con- 
cepts for Architecture, Plarfonn and Data 
Management, CCN 05 12242. Richland, 
Washington: BHI. 

Gilbert, R.O., E.A. Bittner, and E.H. Essing- 
ton. 1995. "On the Use of Uncertainty Analy- 
ses to Test Hypotheses Regarding Determinis- 
tic Model Predictions of Environmental 
Processes," Journal of Environmental Radio- 
activity. Vol. 27, no. 3, pp. 231-260. 

Hyman, T.C. and D.M. Hamby. 1995. "Pa- 
rameter Uncertainty and Sensitivity in a Liq- 
uid-Effluent Dose Model," Environmental 
Monitoring and Assessment. Vol. 38, no. 1, 
pp. 51-65. 

Toran, L., A. Sjoreen, and M. Moms. 1995. 
"Sensitivity Analysis of Solute Transport in 
Fractured Porous Media," Geophysical Re- 
search Letters. Vol. 22, no. 11, pp. 1433- 
1436. 

67 



203. 

204. 

205. 

206. 

207. 

208. 

209. 

210. 

Anderson, R.M., C.A. Donnelly, N.M. Fergu- 
son, M.E.J. Woolhouse, C.J. Watt, H.J. Udy, 
S. MaWhinney, S.P. Dunstan, T.R.E. South- 
wood, J.W. Wilesmith, J.B.M. Ryan, L.J. Ho- 
inville, J.E. Hillerton, A.R. Austin, and G.A.H. 
Wells. 1996. "Transmission Dynamics and 
Epidemiology of BSE in British Cattle," Na- 
ture. Vol. 382, no. 6594, pp. 779-788. 

Fish, D.J. and M.R. Burton. 1997. "The Ef- 
fect of Uncertainties in Kinetic and Photo- 
chemical Data on Model Predictions of Strato- 
sphere Ozone Depletion," Journal of 
Geophysical Research. Vol. 102, no. D21, pp. 
25,537-25,542. 

Keramat, M. and R. Kielbasa. 1997. "Latin 
Hypercube Sampling Monte Carlo Estimation 
of Average Quality Index for Integrated Cir- 
cuits," Analog Integrated Circuits and Signal 
Processing. Vol. 14, no. 1-2, pp. 131-142. 

Ellerbroek, D.A., D.S. Durnford, and J.C. 
Loftis. 1998. "Modeling Pesticide Transport 
in an Irrigated Field with Variable Water Ap- 
plication and Hydraulic Conductivity," Journal 
of Environmental Quality. Vol. 27, no. 3, pp. 
495-504. 

Chen, C.H., S.J. Finch, N.R. Mendell, and D. 
Gordon. 1999. "Comparison of Empirical 
Strategies to Maximize GENEHUNTER Lod 
Scores," Genetic Epidemiology. Vol. 17, no. 
S1, pp. S103-S108. 

Considine, D.B., R.S. Stolarski, S.M. Hol- 
landsworth, C.H. Jackman, and E.L. Fleming. 
1999. "A Monte Carlo Uncertainty Analysis 
of Ozone Trend Predictions in a Two- 
Dimensional Model,'' Journal of Geophysical 
Research. Vol. 104, no. D1, pp. 1749-1765. 

Kros, J., E.J. Pebsema, G.J. Reinds, and P.A. 
Finke. 1999. "Uncertainty Assessment in 
Modeling Soil Acidification at the European 
Scale: A Case Study," Journal of Environ- 
mental Quality. Vol. 28, no. 2, pp. 366-377. 

Mrawira, D., W.J. Welch, M. Schonlau, and R. 
Haas. 1999. "Sensitivity Analysis of Com- 
puter Models: World Bank HDM-I11 Model," 
Journal of Transportation Engineering. Vol. 
125, no. 5 ,  pp, 421-428. 

211. 

212. 

213. 

214. 

215. 

216. 

217. 

218. 

219. 

220. 

221. 

Padmanabhan, S.K. and R. Pitchumani. 1999. 
"Stochastic Modeling of Nonisothermal Flow 
During Resin Transfer Molding," International 
Journal of Heat and Mass Transfer. Vol. 42, 
no. 16, pp. 3057-3070. 

Soutter, M. and A. Musy. 1999. "Global Sen- 
sitivity Analyses of Three Pesticide Leaching 
Models Using a Monte Carlo Approach," 
Journal of Environmental Quality. Vol. 28, 
no. 4, pp. 1290-1297. 

Fischer, F., I. Hasemann, and J.A. Jones. 
2000. "Techniques Applied in the COSYMA 
Accident Consequence Uncertainty Analysis," 
Radiation Protection Dosimetry. Vol. 90, no. 
3, pp. 317-323. 

Oh, B.H. and I.H. Yang. 2000. "Sensitivity 
Analysis of Time-Dependent Behavior in PSC 
Box Girder Bridges," Journal of Structural 
Engineering. Vol. 126, no. 2, pp. 171-179. 

Morris, M.D. 2000. "Three Technometrics 
Experimental Design Classics," Technomet- 
rics. Vol. 42, no. 1, pp. 26-27. 

Helton, J.C. 1993. "Uncertainty and Sensitiv- 
ity Analysis Techniques for Use in Perform- 
ance Assessment for Radioactive Waste Dis- 
posal," Reliability Engineering and System 
Safety. Vol. 42, no. 2-3, pp. 327-367. 

Conover, W.J. 1980. Practical Nonparamet- 
ric Statistics. 2nd ed. New York: John Wiley 
& Sons. 

Golub, G.H. and C.F. van Loan. 1983. Matrix 
Computations. Baltimore: Johns Hopkins 
University Press. 

Anderson, T.W. 1984. An Introduction to 
Multivariate Statistical Analysis. 2nd ed. New 
York John Wiley & Sons. 

Iman, R.L. and J.M. Davenport. 1980. Rank 
Correlation Plots for Use with Correlated In- 
put Variables in Simulation Studies, SAND80- 
1903. Albuquerque, NM: Sandia National 
Laboratories. 

Iman, R.L. and J.M. Davenport. 1982. "Rank 
Correlation Plots for Use with Correlated Input 
Variables," Communications in Statistics: 

68 



222. 

223. 

224. 

225. 

226. 

227. 

228. 

229. 

230. 

231. 

Simulation and Computation. Vol. B 1 1, no. 3, 
pp. 335-360. 

Ye, K.Q., W. Li, and A. Sudjianto. 2000. 
"Algorithmic Construction of Optimal Sym- 
metric Latin Hypercube Designs," Journal of 
Statistical Planning and Inference. Vol. 90, 
no. 1, pp. 145-159. 

Pebesma, E.J. and G.B.M. Heuvelink. 1999. 
"Latin Hypercube Sampling of Gaussian Ran- 
dom Fields," Technometrics. Vol. 41, no. 4, 
pp. 303-312. 

Avramidis, A.N. and J.R. Wilson. 1998. 
"Correlation-Induction Techniques for Esti- 
mating Quantiles in Simulation Experiments," 
Operations Research. Vol. 46, no. 4, pp. 574- 
591. 

Ye, K.Q. 1998. "Orthogonal Column Latin 
Hypercubes and Their Application in Com- 
puter Experiments," Journal of American Sta- 
tistical Association. Vol. 93, no. 444, pp. 
1430- 1439. 

Tang, B.X. 1998. "Selecting Latin Hyper- 
cubes Using Correlation Criteria," Srarisrica 
Sinica. Vol. 8, no. 3, pp. 965-977. 

Salagame, R.R. and R.R. Barton. 1997. "Fac- 
torial Hypercube Designs for Spatial Correla- 
tion Regression," Journal of Applied Statistics. 
Vol. 24, no. 4, pp. 453-473. 

Owen, A.B. 1997. "Monte Carlo Variance of 
Scrambled Net Quadrature," Siam Journal on 
Numerical Analysis. Vol. 34, no. 5, pp. 1884- 
1910. 

Loh, W.-L. 1997. "Estimating the Integral of 
a Squared Regression Function with Latin Hy- 
percube," Statistics & Probability Letters. 
Vol. 3 1, no. 4, pp. 339-349. 

Loh, W.-L. 1996. "On Latin Hypercube Sam- 
pling," Annals of Statistics. Vol. 24, no. 5, pp. 
2058-2080. 

Avramidis, A.N. and J.R. Wilson. 1996. "In- 
tegrated Variance Reduction Strategies for 
Simulation," Operations Research. Vol. 44, 
no. 2, pp. 327-346. 

232. 

233. 

234. 

235. 

236. 

237. 

238. 

239. 

240. 

241. 

Loh, W.-L. 19%. "A Combinatorial Central 
Limit Theorem for Randomized Orthogonal 
Array Sampling Designs," Annals of Statistics. 
Vol. 24, no. 3, pp. 1209-1224. 

Streltsov, S. and P. Vakili. 1996. "Variance 
Reduction Algorithms for Parallel Replicated 
Simulation of Uniformized Markov Chains," 
Discrete Event Dynamic Systems: Theory and 
Applications. Vol. 6, no. 2, pp. 159-180. 

Harris, C.M., K.L. Hoffman, and L.-A. Yar- 
row. 1995. "Obtaining Minimum-Correlation 
Latin Hypercube Sampling Plans Using an IP- 
Based Heuristic," OR Spektrum. Vol. 17, no. 
2-3, pp. 139-148. 

Owen, A.B. 1994. "Controlling Correlations 
in Latin Hypercube Samples," Journal of the 
American Statistical Association. Vol. 89, no. 
428, pp. 1517-1522. 

Owen, A. 1994. "Lattice Sampling Revisited: 
Monte-Carlo Variance of Means Over Ran- 
domized Orthogonal Arrays," Annals of Statis- 
tics. Vol. 22, no. 2, pp. 930-945. 

Tang, B.X. 1994. "A Theorem for Selecting 
OA-Based Latin Hypercubes Using a Distance 
Criterion," Communications in Statistics- 
Theory and Methods. Vol. 23, no. 7, pp. 
2047-2058. 

Park, J.-S. 1994. "Optimal Latin-Hypercube 
Designs for Computer Experiments," Journal 
of Statistical Planning and Inference. Vol. 39, 
no. 1, pp. 95-1 11. 

Tang, B.X. 1993. "Orthogonal Array-Based 
Latin Hypercubes," Journal of American Sta- 
tistical Association. Vol. 88, no. 424, pp. 
1392- 1397. 

Owen, A.B. 1992. "Orhogonal Arrays for 
Computer Experiments, Integration and Visu- 
alization," Statistica Sinica. Vol. 2, no. 2, pp. 
439-452. 

Iman, R.L. and W.J. Conover. 1980. "Small 
Sample Sensitivity Analysis Techniques for 
Computer Models, with an Application to Risk 
Assessment," Communications in Statistics: 
Theory and Methods. Vol. A9, no. 17, pp. 
1749-1842. 

69 



242. Beckman, R.J. and M.D. McKay. 1987. 
"Monte-Carlo Estimation Under Different Dis- 
tribution Using the Same Simulation," Tech- 
nometrics. Vol. 29, no. 2, pp. 153-160. 

243. Iman, R.L. 1982. "Statistical Methods for In- 
cluding Uncertainties Associated with the Geo- 
logic Isolation of Radioactive Waste Which 
Allow for a Comparison with Licensing Crite- 
ria," Proceedings of the Symposium on Uncer- 
tainties Associated with the Regulation of the 
Geologic Disposal of High-Level Radioactive 
Waste, Gatlinburg, nV, March 9-13, 1981. 

Kocher. Washington, DC: U.S. Nuclear 
Regulatory Commission, Directorate of Tech- 
nical Information and Document Control. 145- 
157. 

NUREG/CP-0022; COW-810372. Eds. D.C. 

244. Helton, J.C., J.E. Bean, J.W. Berglund, F.J. 
Davis, K. Economy, J.W. Garner, J.D. John- 
son, R.J. MacKinnon, J. Miller, D.G. O'Brien, 
J.L. Ramsey, J.D. Schreiber, A. Shinta, L.N. 
Smith, D.M. Stoelzel, C. Stockman, and P. 
Vaughn. 1998. Uncertainty and Sensitivity 
Analysis Results Obtained in the 1996 Per- 
formance Assessment for  the Waste Isolation 
Pilot Plant, SAND98-0365. Albuquerque, 
NM: Sandia National Laboratories. 

245. Vaughn, P., J.E. Bean, J.C. Helton, M.E. Lord, 
R.J. MacKinnon, and J.D. Schreiber. 2000. 
"Representation of Two-Phase Flow in the Vi- 
cinity of the Repository in the 1996 Perform- 
ance Assessment for the Waste Isolation Pilot 
Plant," Reliability Engineering and System 
Safety. Vol. 69, no. 1-3, pp. 205-226. 

246. Helton, J.C., J.E. Bean, K. Economy, J.W. 
Garner, R.J. MacKinnon, J. Miller, J.D. 
Schreiber, and P. Vaughn. 2000. "Uncertainty 
and Sensitivity Analysis for Two-Phase Flow 
in the Vicinity of the Repository in the 1996 
Performance Assessment for the Waste Isola- 
tion Pilot Plant: Undisturbed Conditions," Re- 
liability Engineering and System Safety. Vol. 
69, no. 1-3, pp. 227-261. 

248. 

249. 

250. 

251. 

252. 

253. 

254. 

255. 
247. Helton, J.C., J.E. Bean, K. Economy, J.W. 

Garner, R. J. MacKinnon, J. Miller, J.D. 
Schreiber, and P. Vaughn. 2000. "Uncertainty 
and Sensitivity Analysis for Two-Phase Flow 
in the Vicinity of the Repository in the 1996 
Performance Assessment for the Waste Isola- 
tion Pilot Plant: Disturbed Conditions," Reli- 

ability Engineering and System Safety. Vol. 
69, no. 1-3, pp. 263-304. 

Helton, J.C., D.R. Anderson, H.-N. Jow, M.G. 
Marietta, and G. Basabilvazo. 1999. "Per- 
formance Assessment in Support of the 1996 
Compliance Certification Application for the 
Waste Isolation Pilot Plant," Risk Analysis. 
Vol. 19, no. 5, pp. 959 - 986. 

Helton, J.C., M.-A. Martell, and M.S. Tierney. 
2000. "Characterization of Subjective Uncer- 
tainty in the 1996 Performance Assessment for 
the Waste Isolation Pilot Plant," Reliability 
Engineering and System Safety. Vol. 69, no. 
1-3, pp. 191-204. 

Ibrekk, H. and M.G. Morgan. 1987. "Graphi- 
cal Communication of Uncertain Quantities to 
Nontechnical People," Risk Analysis. Vol. 7, 
no. 4, pp. 519-529. 

Iman, R.L. and J.C. Helton. 1991. "The Re- 
peatability of Uncertainty and Sensitivity 
Analyses for Complex Probabilistic Risk As- 
sessments," Risk Analysis. Vol. 11, no. 4, pp. 
591-606. 

Helton, J.C., J.D. Johnson, M.D. McKay, 
A.W. Shiver, and J.L. Sprung. 1995. "Ro- 
bustness of an Uncertainty and Sensitivity 
Analysis of Early Exposure Results with the 
MACCS Reactor Accident Consequence 
Model," Reliability Engineering and System 
Safety. Vol. 48, no. 2, pp. 129-148. 

Iman, R.L. and W.J. Conover. 1979. "The 
Use of the Rank Transform in Regression," 
Technometrics. Vol. 21, no. 4, pp. 499-509. 

Kleijnen, J.P.C. and J.C. Helton. 1999. "Sta- 
tistical Analyses of Scatterplots to Identify Im- 
portant Factors in Large-Scale Simulations, 1 : 
Review and Comparison of Techniques," Reli- 
ability Engineering and System Safety. Vol. 
65, no. 2, pp. 147-185. 

Kleijnen, J.P.C. and J.C. Helton. 1999. "Sta- 
tistical Analyses of Scatterplots to Identify Im- 
portant Factors in Large-Scale Simulations, 2: 
Robustness of Techniques," Reliability Engi- 
neering and System Safety. Vol. 65, no. 2, pp. 
187- 197. 

70 



256. 

257. 

258. 

259. 

260. 

261. 

262. 

263. 

264. 

265. 

266. 

Iman, R.L. and W.J. Conover. 1987. "A 
Measure of Top-Down Correlation," Tech- 
nometrics. Vol. 29, no. 3, pp. 351-357. 

Assunqao, R. 1994. "Testing Spatial Ran- 
domness by Means of Angles," Biometrics. 
Vol. 50, pp. 531-537. 

Ripley, B.D. 1987. "Spatial Point Pattern 
Analysis in Ecology," Developments in Nu- 
merical Ecology. NATO AS1 Series, Series G: 
Ecological Sciences. Vol. 14. Eds. P. Legen- 
dre and L. Legendre. Berlin; New York: 
Springer-Verlag, pp. 407-430. 

Zeng, G. and R.C. Dubes. 1985. "A Compari- 
son of Tests for Randomness," Pattern Recog- 
nition. Vol. 18, no. 2, pp. 191-198. 

Diggle, P.J. and T.F. Cox. 1983. "Some Dis- 
tance-Based Tests of Independence for 
Sparsely-Sampled Multivariate Spatial Point 
Patterns," International Statistical Review. 
Vol.51,no. 1,pp. 11-23. 

Byth, K. 1982. "On Robust Distance-Based 
Intensity Estimators," Biometrics. Vol. 38, no. 
1, pp. 127-135. 

Byth, K. and B.D. Ripley. 1980. "On Sam- 
pling Spatial Patterns by Distance Methods," 
Biometrics. Vol. 36, no. 2, pp. 279-284. 

Diggle, P.J. 1979. "On Parameter Estimation 
and Goodness-of-fit Testing for Spacial Point 
Patterns," Biometrics. Vol. 35, no. 1, pp. 87- 
101. 

Diggle, P.J. 1979. "Statistical Methods for 
Spatial Point Patterns in Ecology," Spatial and 
Temporal Analysis in Ecology. Vol. Eds. 
R.M. Cormack and J.K. Ord. Fairfield, MD: 
International Co-operative Pub. House, pp. 95- 
150. 

Besag, J. and P.J. Diggle. 1977. "Simple 
Monte Carlo Tests for Spatial Pattern," Ap- 
plied Statistics. Vol. 26, no. 3, pp. 327-333. 

Diggle, P.J., J. Besag, and J.T. Gleaves. 1976. 
"Statistical Analysis of Spatial Point Patterns 
by Means of Distance Methods," Biometrics. 
Vol. 32, pp. 659-667. 

71 

267. 

268. 

269. 

270. 

271. 

272. 

273. 

274. 

275. 

276. 

277. 

Ripley, B.D. 1979. "Tests of "Randomness" 
for Spatial Point Patterns," Journal of the 
Royal Statistical Society. Vol. 41, no. 3, pp. 
368-374. 

Cox, T.F. and T. Lewis. 1976. "A Condi- 
tioned Distance Ratio Method for Analyzing 
Spatial Patterns," Biometrika. Vol. 63, no. 3, 
pp. 483-491. 

Holgate, P. 1972. "The Use of Distance 
Methods for the Analysis of Spatial Distribu- 
tion of Points," Stochastic Point Processes: 
Statistical Analysis, Theory, and Applications. 
P.A.W. Lewis, Editor. 1972, New York 
Wiley-Interscience. pp. 122-1 35. 

Holgate, P. 1965. "Tests of Randomness 
Based on Distance Methods," Biornetrika. 
Vol. 52, no. 3-4, pp. 345-353. 

Garvey, J.E., E.A. Marschall, and R. Wright, 
A. 1998. "From Star Charts to Stoneflies: De- 
tecting Relationships in Continuous Bivariate 
Data," Ecology. Vol. 79, no. 2, pp. 442-447. 

Fasano, G. and A. Franceschini. 1987. "A 
Multidimensional Version of the Kolmogorov- 
Smirnov Test," Monthly Notices of the Royal 
Astronomical Society. Vol. 225, no. 1, pp. 
155- 170. 

Gosset, E. 1987. "A 3-Dimensional Extended 
Kolmogorov-Smirnov Test as a Useful Tool in 
Astronomy," Astronomy and Astrophysics. 
Vol. 188, no. 1, pp. 258-264. 

Peacock, J.A. 1983. "Two-Dimensional 
Goodness-Of-Fit Testing in Astronomy," 
Monthly Notices of the Royal Astronomical 
Society. Vol. 202, no. 2, pp. 615-627. 

Helton, J.C. and F.J. Davis. 2000. Sampling- 
Based Methods for Uncertainty and Sensitivity 
Analysis, SAND99-2240. Albuquerque, NM: 
Sandia National Laboratories. 

Hamby, D.M. 1995. "A Comparison of Sensi- 
tivity Analysis Techniques," Health Physics. 
Vol. 68, no. 2, pp. 195-204. 

Hamby, D.M. 1994. "A Review of Tech- 
niques for Parameter Sensitivity Analysis of 
Environmental Models," Environmental Moni- 



278. 

279. 

280. 

281. 

282. 

283. 

284. 

285. 

286. 

toring and Assessment. Vol. 32, no. 2, pp. 
135- 154. 

Saltelli, A., T.H. Andres, and T. Homma. 
1993. "Sensitivity Analysis of Model Output. 
An Investigation of New Techniques," Compu- 
tational Statistics and Data Analysis. Vol. 15, 
no. 2, pp. 21 1-238. 

Saltelli, A. and J. Marivoet. 1990. "Non- 
parametric Statistics in Sensitivity Analysis for 
Model Output. A Comparison of Selected 
Techniques," Reliability Engineering and Sys- 
tem Safety. Vol. 28, no. 2, pp. 229-253. 

Iman, R.L., J.C. Helton, and J.E. Campbell. 
198 1. "An Approach to Sensitivity Analysis of 
Computer Models, Part 1. Introduction, Input 
Variable Selektion and Preliminary Variable 
Assessment," Journal of Quality Technology. 
Vol. 13, no. 3, pp. 174-183. 

Iman, R.L., J.C. Helton, and J.E. Campbell. 
198 1. "An Approach to Sensitivity Analysis of 
Computer Models, Part 2. Ranking of Input 
Variables, Response Surface Validation, Dis- 
tribution Effect and Technique Synopsis," 
Journal of Quality Technology. Vol. 13, no. 4, 
pp. 232-240. 

Kaplan, S. and B.J. Garrick. 1981. "On the 
Quantitative Definition of Risk," Risk Analy- 
sis. Vol. 1, no. 1, pp. 11-27. 

Parry, G.W. and P.W. Winter. 1981. 
"Characterization and Evaluation of 
Uncertainty in Probabilistic Risk Analysis," 
NuclearSafety. Vol. 22, no. 1, pp. 28-42. 

Haan, C.T. 1989. "Parametric Uncertainty in 
Hydrologic Modeling," Transactions of the 
ASAE. Vol. 32, no. 1, pp. 137-146. 

Apostolakis, G. 1990. "The Concept of Prob- 
ability in Safety Assessments of Technological 
Systems," Science. Vol. 250, no. 4986, pp. 
1359-1 364. 

Helton, J.C. 1994. "Treatment of Uncertainty 
in Performance Assessments for Complex Sys- 
tems," Risk Analysis. Vol. 14, no. 4, pp- 483- 
511. 

287. 

288. 

289. 

290. 

291. 

292. 

293. 

294. 

295. 

296. 

Hoffman, F.O. and J.S. Hammonds. 1994. 
"Propagation of Uncertainty in Risk Assess- 
ments: The Need to Distinguish Between Un- 
certainty Due to Lack of Knowledge and Un- 
certainty Due to Variability," Risk Analysis. 
Vol. 14, no. 5, pp. 707-712. 

Pat6-Cornell, M.E. 1996. "Uncertainties in 
Risk Analysis: Six Levels of Treatment," Re- 
liability Engineering and System Safety. Vol. 
54, no. 2-3, pp. 95-1 11. 

Winkler, R.L. 1996. "Uncertainty in 
Probabilistic Risk Assessment," Reliability 
Engineering and System Safety. Vol. 54, no. 
2-3, pp. 127-132. 

Barnett, V. and A. OHagan. 1997. Setting 
Environmental Standards: The Statistical Ap- 
proach to Handling Uncertainty and Varia- 
tion. London: Chapman & Hall. 

Cullen, A. 1999. "Addressing Uncertainty- 
Lessons From Probabilistic Exposure Analy- 
sis," Inhalation Toxicology. Vol. 11, no. 6-7, 
pp. 603-610. 

Francis, R.I.C.C. and R. Shotton. 1997. 
""Risk' in Fisheries Management: A Review," 
Canadian Journal of Fisheries and Aquatic 
Sciences. Vol. 54, no. 8, pp. 1699-1715. 

Cullen, A.C. and H.C. Frey. 1999. Probabil- 
istic Techniques in Exposure Assessment: A 
Handbook for Dealing with Variability and 
Uncertainty in Models and Inputs. London; 
New York: Plenum Press. 

Kelly, E.J. and K. Campbell. 2000. "Separat- 
ing Variability and Uncertainty in Environ- 
mental Risk Assessment - Making Choices," 
Human and Ecological Risk Assessment. Vol. 
6, no. 1, pp. 1-13. 

Hacking, I. 1975. The Emergence of Prob- 
ability: A Philosophical Study of Early Ideas 
About Probability, Induction and Statistical 
Inference. London; New York: Cambridge 
University Press. 

Shafer, G. 1978. "Non-additive Probabilities 
in Work of Bernoulli and Lambert," Archive 
for History of Exact Sciences. Vol. 19, no. 4, 
pp. 309-370. 

72 



297. 

298. 

299. 

300. 

301. 

302. 

303. 

304. 

305. 

Bernstein, P.L. 1996. Against the Gods: The 
Remarkable Story of Risk. New York: John 
Wiley & Sons. 

Lohman, K., P. Pai, C. Seigneur, D. Mitchell, 
K. Heim, K. Wandland, and L. Levin. 2000. 
"A Probabilistic Analysis of Regional Mercury 
Impacts on Wildlife," Human and Ecological 
Risk Assessment. Vol. 6, no. 1,  pp. 103-130. 

Maxwell, R.M. and W.E. Kastenberg. 1999. 
"Stochastic Environmental Risk Analysis: An 
Integrated Methodology for Predicting Cancer 
Risk from Contaminated Groundwater," Sto- 
chastic Environmental Research and Risk As- 
sessment. Vol. 13, no. 1-2, pp. 27-47. 

Maxwell, R.M. and W.E. Kastenberg. 1999. 
"A Model for Assessing and Managing the 
Risks of Environmental Lead Emissions," Sto- 
chastic Environmental Research and Risk As- 
sessment. Vol. 13, no. 4, pp. 231-250. 

Maxwell, R.M., W.E. Kastenberg, and Y. Ru- 
bin. 1999. "A Methodology to Integrate Site 
Characterization Information into Groundwa- 
ter-Driven Health Risk Assessment," Water 
Resources Research. Vol. 35, no. 9, pp. 2841- 
2855. 

McKone, T.E. 1994. "Uncertainty and Vari- 
ability in Human Exposures to Soil Contami- 
nants Through Home-Grown Food: A Monte 
Carlo Assessment," Risk Analysis. Vol. 14, 
no. 4, pp. 449-463. 

Allen, B.C., T.R. Covington, and H.J. Clewell. 
1996. "Investigation of the Impact of Pharma- 
cokinetic Variability and Uncertainty on Risks 
Predicted with a Pharmacokinetic Model for 
Chloroform," Toxicology. Vol. 1 1  1,  no. 1-3, 
pp. 289-303. 

0vreberg, O., E. Damsleth, and H.H. Hal- 
dorsen. 1992. "Putting Error Bars on Reser- 
voir Engineering Forecasts," Journal of Petro- 
leum Technology. Vol. 44, no. 6, pp. 732-738. 

Price, P.S., S.H. Su, J.R. Harrington, and R.E. 
Keenan. 1996. "Uncertainty and Variation of 
Indirect Exposure Assessments: An Analysis 
of Exposure to Tetrachlorodibenzene-p-Dioxin 
from a Beef Consumption Pathway," Risk 
Analysis. Vol. 16, no. 2, pp. 263-277. 

306. 

307. 

308. 

309. 

310. 

311. 

312. 

313. 

314. 

PLG (Pickard, Lowe and Garrick, Inc.). 1983. 
Seabrook Station Preliminary Probabilistic 
Safety Assessment, PLG-0300, Vols. 1-6, 
Summary. Prepared for Public Service Com- 
pany of New Hampshire, Manchester and 
Yankee Atomic Electric Company, Framing- 
ham, MA. Irvine, CA: Pickard, Lowe and 
Garrick, Inc. 

PLG (Pickard, Lower and Garrick, Inc., West- 
inghouse Electric Corporation, and Fauske & 
Associates, Inc.). 1982. Indian Point Prob- 
abilistic Safety Study, Prepared for the Power 
Authority of the State of New York and Con- 
solidated Edison Company of New York, Inc. 
Irvine, CA: Pickard, Lowe and Garrick, Inc. 

Howard, B.A., M.B. Crawford, D.A. Galson, 
and M.G. Marietta. 2000. "Regulatory Basis 
for the Waste Isolation Pilot Plant Perform- 
ance Assessment," Reliability Engineering and 
System Safety. Vol. 69, no. 1-3, pp. 109-127. 

Farmer, F.R. 1967. "Reactor Safety and Sit- 
ing: A Proposed Risk Criterion," Nuclear 
Safety. Vol. 8, no. 6, pp. 539-548. 

Cox, D.C. and P. Baybutt. 1982. "Limit Lines 
for Risk," Nuclear Technology. Vol. 57, no. 3, 
pp. 320-330. 

Munera, H.A. and G. Yadigaroglu. 1986. "On 
Farmer's Line, Probability Density Functions, 
and Overall Risk," Nuclear Technology. Vol. 
74, no. 2, pp. 229-232. 

Helton, J.C., J.D. Johnson, H.-N. Jow, R.D. 
McCurley, and L.J. Rahal. 1998. "Stochastic 
and Subjective Uncertainty in the Assessment 
of Radiation Exposure at the Waste Isolation 
Pilot Plant," Human and Ecological Risk As- 
sessment. Vol. 4, no. 2, pp. 469-526. 

Galson, D.A., P.N. Swift, D.R. Anderson, D.G. 
Bennett, M.B. Crawford, T.W. Hicks, R.D. 
Wilmot, and G. Basabilvazo. 2000. "Scenario 
Development for the Waste Isolation Pilot 
Plant Compliance Certification Application," 
Reliability Engineering and System Safety. 
Vol. 69, no. 1-3, pp. 129-149. 

Helton, J.C., F.J. Davis, and J.D. Johnson. 
2000. "Characterization of Stochastic Uncer- 
tainty in the 1996 Performance Assessment for 

73 



the Waste Isolation Pilot Plant," Reliability 
Engineering and System Safety. Vol. 69, no. 
1-3, pp. 167-189. 

315. Stoelzel, D.M., D.G. O'Brien, J.W. Gamer, 
J.C. Helton, J.D. Johnson, and L.N. Smith. 
2000. "Direct Releases to the Surface and As- 
sociated Complementary Cumulative Distribu- 
tion Functions in the 1996 Performance As- 
sessment for the Waste Isolation Pilot Plant: 
Direct Brine Release," Reliability Engineering 
and System Safety. Vol. 69, no. 1-3, pp. 343- 
367. 

316. Berglund, J.W., J.W. Gamer, J.C. Helton, J.D. 
Johnson, and L.N. Smith. 2000. "Direct Re- 
leases to the Surface and Associated Comple- 
mentary Cumulative Distribution Functions in 
the 1996 Performance Assessment for the 
Waste Isolation Pilot Plant: Cuttings, Cavings 
and Spallings," Reliability Engineering and 
System Safety. Vol. 69, no. 1-3, pp. 305-330. 

317. LaVenue, A.M. 1996. Analysis of the Gen- 
eration of Transmissivity Fields for the Cule- 
bra Dolomite, Available in Sandia WIPP Re- 
cords Center as WPW40517. Albuquerque, 
NM: Sandia National Laboratories. 

318. LaVenue, A.M. and B.S. RamaRao. 1992. A 
Modeling Approach to Address Spatial Van- 
ability Within the Culebra Dolomite Transmis- 
sivity FieM, SAND92-7306. Albuquerque, 
N M :  Sandia National Laboratories. 

319. Stockman, C.T., J.W. Garner, J.C. Helton, J.D. 
Johnson, A. Shinta, and L.N. Smith. 2000. 
"Radionuclide Transport in the Vicinity of the 
Repository and Associated Complementary 
Cumulative Distribution Functions in the 1996 
Performance Assessment for the Waste Isola- 

tion Pilot Plant," Reliability Engineering and 
System Safety. Vol. 69, no. 1-3, pp. 397-420. 

320. Stone, C.M. 1997. SANTOS- A Two- 
Dimensional Finite Element Program for the 
Quasistatic, Large Deformation, Inelastic Re- 
sponse of Solids, SAND90-0543. Albuquer- 
que, NM: Sandia National Laboratories. 

321. Stone, C.M. 1997. Final Disposal Room 
Structural Response Calculations, SAND97- 
0795. Albuquerque, NM: Sandia National 
Laboratories. 

322. Ramsey, J.L., R. Blaine, J.W. Gamer, J.C. 
Helton, J.D. Johnson, L.N. Smith, and M. Wal- 
lace. 2000. "Radionuclide and Colloid Trans- 
port in the Culebra Dolomite and Associated 
Complementary Cumulative Distribution Func- 
tions in the 1996 Performance Assessment for 
the Waste Isolation Pilot Plant," Reliability 
Engineering and System Safety. Vol. 69, no. 
1-3, pp. 397-420. 

323. Helton, J.C., D.R. Anderson, G. Basabilvazo, 
H.-N. Jow, and M.G. Marietta. 2000. "Sum- 
mary Discussion of the 1996 Performance As- 
sessment for the Waste Isolation Pilot Plant," 
Reliability Engineering and System Safety. 
Vol. 69, no. 1-3, pp. 437-451. 

324. Helton, J.C. 1999. "Uncertainty and Sensitiv- 
ity Analysis in Performance Assessment for the 
Waste Isolation Pilot Plant," Computer Phys- 
ics Communications. Vol. 117, no. 1-2, pp. 
156-180. 

74 



Appendix A 

On a Better Method for Selecting Input Variables 
W. J. Conover 

May, 1975 

Comment Supplied by W.J. Conover on Sept. 3,2001 : 

This entire manuscript, including remarks, was supported by Los Alamos National Laboratories, and submitted 

to Ron Lohrding in May, 1975. He was the Group Leader who got me working on this problem. This was not 

reviewed, and therefore contains a few typos. I worked alone on this research while at Texas Tech, and am the sole 

author of this report. Parts of it appeared later in the Technomerrics paper. Otherwise, this was never published. 

A- 1 



On a better method f o r  s e l e c t i n g  inpu t  va r i ab le s  

W. J . Conover 

1. Descript ion of t h e  problem: 

= X e n t e r s  a system and emerges a s  an output  var iab le  Y = h(X). 

The d i s t r i b u t i o n  funct ion F(x) of X i s  known, but  t he  sys t em h ( * )  

i s  unknown. The problem i s  t o  determine information concerning 

the output  Y ,  such as obta in ing  es t imates  of 

A set of input  var iab les  (XI,...,%) 

- - 
-. I 

a) E W ) ,  

b) Var(Y) , 
c) the  p e r c e n t i l e s  of Y, and 

d)  t h e  d i s t r i b u t i o n  funct ion of Y. 

Obviously information may be obtained about Y only by observing Y 

f o r  s eve ra l  s e l ec t ed  values  of X. W e  are l imi ted  to  M values of 

X. How should w e  s e l e c t  those N values  i n  order  t o  obta in  t h e  most 

information about Y? 

- 
- 

The t e r m  "most information" is vague. L e t ' s  be more s p e c i f i c  

and say t h a t  w e  a r e  i n t e r e s t e d  i n  information about E(Y) and wish 

to  choose the  input  i n  order  t o  minimize the  var iance of an unbiased 

es t imator  of E(Y). It is  reasonable t o  th ink  t h a t  t h i s  choice of 

inpu t s  w i l l  a l s o  give good es t imates  for t h e  o ther  q u a n t i t i e s  w e  

wish t o  es t imate .  

2. Random sample: One way of s e l e c t i n g  t h e  inputs  i s  to select 

a random sample of s i z e  N. That is, a set  of pseudo-random uniform 

A-2 



2 

random numbers i s  generated on a computer, and a s u i t a b l e  inverse 

funct ion F-'(*) i s  used t o  opera te  on t h e  uniform v a r i a t e s  t o  obta in  

a pseudo-random value of X ,  which is used as an input  t o  obta in  a 

value Y. The process  i s  repeated N t i m e s  to  obta in  X1, -. . . . , I t N ,  and 

hence Y1, ..., YE,. 
body of s t a t i s t i c a l  l i t e r a t u r e  may be used t o  estimate the  mean, 

var iance,  percenti1es;and d i s t r i b u t i o n  func t ion  of Y. 

-. 

The Y.'s c o n s t i t u t e  a random sample and the  e n t i r e  
1 

The only way t o  obta in  an unbiased es t imator  f o r  t he  mean 

E(Y) is by choosing t h e  inputs  i n  such a way t h a t  every poss ib le  

input  (and, hence, ou tput  a l s o )  has some chance, however remote, 

of occuring. If some region of poss ib le  values  of X is excluded 

from t h e  sampling p lan ,  no p robab i l i t y  statements may be made con- 

cerning C(Y) , Var(Y) , o r  o ther  moments of y. With the  random sample, 

every poss ib le  input  has some chance of being se l ec t ed ,  and hence 

every poss ib le  output  has some chance of being obtained. I f  w e  le t  

- 

be t h e  es t imator ,  it is  w e l l  known t h a t  t he  est imator  i s  unbiased, 

and the  var iance of yR is  given by 
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W e  w i l l  consider  one method of s e l e c t i n g  input  va r i ab le s  to  be 

better than another  i f  t h e  corresponding var iance of t h e  est imator  

is smaller. This leads  u s  t o  s t r a t i f i e d  sampling. 

3. A s t r a t i f i e d  sample: 

i n t o  I subspaces a,, . . . ?aI. 
L e t  t he  range space 8 of X - be pa r t i t i oned  

Denote the  s i z e  of di by pi? where 

A s t r a t i € i e d  sampling scheme cons i s t s  of drawing a random sample 

of s i z e  ni from $i, f o r  each i = l,.. .,I. 
N 

Obviously N = 1 n: and 
N 
1 pi = 1. Denote t h e  

L e t  Y i j  

i= 1 
j = 1 ,..., n . .  

.I 

Then ys is an unbiased 

follows, 

i=l 

input  var iab les  by ICilj; i = l#...?I: 

= h(X. . )  and choose a s  an est imator  - 11 

es t imator  of E ( Y ) .  This may be Been as 

where Xi = ?Isi, because t h e  X i j  a r e  i d e n t i c a l l y  d i s t r i b u t e d  f o r  

j = 1, ..., ni. 

by F i j  (if) r which s a t i s f i e s  

- 
Note t h a t  t he  d i s t r i b u t i o n  funct ion of X i j  I i s  given 
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dFij ( 5 )  = - dF(x1 

= o  

i f  x E si 
if x ." $ Bi 

P i  

From (3.3) and t h e  'above r e l a t i o n s h i p  w e  ob ta in  

Furthermore, by independence w e  have 

(3.5) 

A t  t h i s  po in t  w e  may examine the po r t ion  of (3.5) which a r i s e s  

from t h e  random sample of s i z e  ni from subspace si, namely 

and compare it wi th  what would happen t o  t h a t  po r t ion  if Si were 

f u r t h e r  subdivided i n t o  subspaces,  let 's say  subspaces $ of equal  

s i z e  pi 
i j  

= pi/ni, j = 1,. . . tni. Then (3.6) would be replaced by 

(3.7) 
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where X i j  now represents  

smaller than (or equal  to) (3.6) : 

I t  is  easy t o  see t h a t  (3.7) is  - ... 

n 
= P i  7 fniEIh 2 (Xi)] - niE 2 [h(Xi)l - "i 1 E[h2(xi j f l+ 1 i 2  E Ih(Xij) l I  

2 

j=l j= l  "i 

Therefore any s t r a t i f i e d  sampling scheme wi th  ni > 1 can be improved, 

i.e., t h e  term V a r ( y s )  can be decreased, by s t r a t i f y i n g  i n t o  f i n e r  

subdivis ions u n t i l  a l l  ni equal  1. 

Thus w e  a r e  l e d  t o  t h e  fol lowing improved design. Subdivide 

t h e  sample space $ of X i n t o  1? subspaces Sl,.. . 
sample one value of X from each gi. 

and randomly - 
Let t h e  es t imator  be 

I 

which is an unbiased es t imator  of E(Y). 

from (3.5) I 

The var iance of ys is, 

A-6 



6 

I f  t h e  strata ai are selected so t h a t  a l l  the pi a r e  equal ,  

then (3.10 ) represents  an improvement over (2.3) : 

as  w a s  i l l u s t r a t e d  i n  showing ( 3 . 8 ) .  Therefore s t r a t i f i e d  sampling 

r e s u l t s  i n  an es t imate  ys t h a t  is  a t  l e a s t  as good a s  t h e  estimate 

Y 
- 

obtained using a random sample, i f  t h e  s t r a t a  have equal  size R 
pi = l / N .  

I n  f a c t ,  t h e  b e s t  s t r a t i f i e d  design is obtained by s t r a t i f y i n g  

so t h a t  every stratum has t h e  same value f o r  

(3.12) 

This i s  seen by noting t h e  i d e n t i t y  from (3.10) , 

(3.13) 

which r evea l s  t h a t  Var(ys) is minimized when (3.12) holds. 

fo r tuna te ly  the  numerical value of (3.12) depends t o  a g r e a t  ex ten t  

on t h e  p a r t i c u l a r  p a r t i t i o n  employed. The b e s t  p a r t i t i o n  of 

8 is  one which a l s o  p a r t i t i o n s  t h e  range of Y i n t o  nonoverlapping 

subsets, but  t h i s  i s  very d i f f i c u l t  t o  do when so l i t t l e  is known 

about t h e  func t ion  h(X). ... 

be one i n  which each choice f o r  X as  an inpu t  depends on the  in- 

Un- 

This suggests  t h a t  an optimal design would 

- 
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formation obtained from Previous inpu t s  and t h e i r  corresponding 

outputs.  

t h e  s tandpoin t  of s ta t i s t ica l  theory,  so w e  w i l l  no t  pursue it 

fu r the r .  We w i l l  restrict our  a t t e n t i o n  to  designs i n  which t h e  

ai's have equal  p robab i l i t y  pi, because t h i s  guarantees us  a design 

no worse than t h a t  obtained from random sampling, a s  w e  demonstrated 

i n  (3.11).  

Such a sequent ia l  design is no t  easy to work with from 

4. A random s t r a t i f i e d  sample: Attempts t o  reduce the  var iance of 

an unbiased es t imator  of E(Y) have l ed  us  t o  s t r a t i f i e d  sampling 

with equal  s i zed  s t ra ta .  Now two o the r  f e a t u r e s  of t h e  s y s t e m  

should be considered. One is  t h a t  t he  output  of t he  system i s  

e s s e n t i a l l y  a monotonic func t ion  of its inputs .  Without l o s s  of 

gene ra l i t y  we may assume it  i s  monotonicly - increasing.  The o the r  

f ea tu re  i s  t h a t  although many var iab les  may be used as input  var- 

i a b l e s  many t i m e s  only a few of these (perhaps one o r  two) input  

va r i ab le s  w i l l  account f o r  most (o r  near ly  a l l )  of t h e  va r i a t ion  

of t h e  output  var iab les .  Exactly which input  va r i ab le s  a r e  most 

important might no t  be known, b u t  a proper choice of inpu t  var iab les  

should revea l  t h e i r  i d e n t i t y .  

Suppose one component X1 of X dominates the output  Y. Then 

t h e  r e s u l t s  of t he  previous sec t ion  i n d i c a t e  t h a t  t he  range of XI 

should be p a r t i t i o n e d  i n t o  N i n t e r v a l s  Ii of equal p robab i l i t y ,  

." 

I i .e.,  P ( X 1  E Ii) = z. Because h(X) ... is increas ing ,  t hese  i n t e r v a l s  

should be connected. That i s ,  w e  don ' t  want t h e  p o i n t s  i n  one in- 

t e r v a l  t o  s t r a d d l e  po in t s  from another i n t e r v a l .  One po in t  should 
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be selected a t  random f r o m  each i n t e r v a l ,  and these  N po in t s  

should be t h e  components which r ep resen t  X1 i n  t h e  N inputs  of X 

i n t o  t h e  system. In  t h i s  way w e  n o t  only g e t  a good estimate of 

t h e  mean of Y, but  w e  a l s o  g e t  a good idea  of t h e  behavior of Y 

over  t h e  e n t i r e  range of X1, and hence X which i s  dominated by X1. 

Suppose w e  don ' t  know which component of X i s  t h e  most important. 

... 

... 
I 

Then s e v e r a l ,  or perhaps a l l ,  components of X should rece ive  t h e  

above treatment.  

Iij  of equal  p robab i l i t y ,  so P ( X i  

one observat ion from each i n t e r v a l .  Use those observat ions a s  t h e  

inputs  i n t o  the  system. 

... 
P a r t i t i o n  t h e  range of each Xi i n t o  i n t e r v a l s  

) = 1/N. Select a t  random 
E I i j  

Denote t h e  value obtained from Ii j  by 

..., X Then t h e  inpu t s  X1, - c o n s i s t  of Xk ... = (X1 j # x2 j, I - - , x 1 , 
'ij. -n Kj, 
where t h e  components of Xk are obtained by combining t h e  elements 

of {Xij3 i n  s o m e  random manner. A s u i t a b l e  random manner w i l l  be 

descr ibed i n  t h e  next  s ec t ion .  

- 

Note t h a t  each p o i n t  (X , . . . ,X  ) r ep resen t s  one K-dimensional 
l j  K j ,  

K 
subse t  Bij = I X. . .XI  of  8 ,  and t h a t  t h e r e  a r e  N such subse ts ,  

11 K j  K 

which toge ther  c o n s t i t u t e  a p a r t i t i o n i n g  of b. 

to  samp1.e from N of these.  

of these  subse t s ,  N subse t s  i n  each group, so t h a t  each element of 

{ X . . }  is represented exac t ly  once i n  each group. 
13 

forming these  groups is  discussed i n  t h e  next  sec t ion .  Then one 

oE these  groups $i is  chosen i n  a random manner, so t h a t  each group 

is equal ly  l i k e l y  t o  be selected. 

I t  is only poss ib le  

This suggests  t h a t  w e  form groups gi 

A method for 

I n  t h i s  way each po r t ion  of 8 
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has some chance of being se l ec t ed ,  and t h e  e n t i r e  range of each Xi, 

properly s t r a t i f i e d ,  i s  guaranteed inc lus ion  i n  t h e  sample. With 

this i n  mind w e  may be comfortable i n  knowing t h a t  no matter which 

component o r  components of X may be dominating t h e  output ,  t h e  

s t r a t i f i c a t i o n  employed i n  t h e  above design i s  l i k e l y  to  r e s u l t  i n  

a s u b s t a n t i a l  improvement i n  t h e  estimate of E(Y) over t h a t  obtained 

by random sampling. 

- 

The es t imator  F is  equal ly  l i k e l y  t o  equal  any of t h e  Ti, 
NK- 1 where Ti represent  the  sample mean obtained from si, i = l,.. ., 

That i s ,  

where the  summation over  j E $i i n d i c a t e s  t h e  summation over t h e  

N p a r t i c u l a r  subsets t h a t  c o n s t i t u t e  si. 
Note t h a t  the d i s t r i b u t i o n  funct ion of is given by 

Therefore t h e  expected value of F equals  

A-10 
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where t h e  d i s t r i b u t i o n  funct ion Fij(x) -. of X - i j  s a t i s f i e s  

dFij(x) = I? K dF(x) i f  5 E Pij ... 

= o  i f  x $ Bij. 
(4 .4 )  

Theref o r e  

and i s  an unbiased est imator  of E ( Y ) .  I n  a s imilar  manner w e  get 

- -  - I. (E(P1) - 2E(Y)E(yi )  + E 2 ( Y ) l .  (4 .6)  
i NK- 1 

By adding and sub t r ac t ing  E2(Ti )  i n s i d e  t h e  brackets  w e  ob ta in  

as the  var iance of t h e  est imator .  

Direct comparisons of (4 .7 )  and (3.10) a r e  d i f f i c u l t  t o  make 

except  i n  p a r t i c u l a r  cases. 

sampling scheme was designed, namely where one of t h e  input  variables 

In  the  p a r t i c u l a r  case f o r  which t h i s  

A-1 1 
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tends t o  dominate the  output  va r i ab le s ,  (4 .7 )  tends to  equal  (3.10). 

5. A method of s t r a t i f y i n g :  

j = 1,. . . , N  are grouped i n  a completely random manner i n t o  input  

va r i ab le s  it is poss ib l e  t o  achieve some undesireable 

s i t u a t i o n s .  For example, i f  by chance t h e  smallest values  of X1 

and X2 w e r e  pu t  i n t o  t h e  process  toge ther ,  and t h e  

second smallest va lues ,  t h i r d  smallest, and so on, it would be 

d i f f i c u l t  t o  d i s t i n g u i s h  between t h e  e f f e c t s  of X1 and X2 on t h e  

output  because t h e i r  e f f e c t s  w e r e  confounded. 

i n a n t  input  va r i ab le ,  X2 would appear t o  be equal ly  important 

merely because of the unfortunate  choice of design. Because the  

output  i s  a monotonic func t ion  of each inpu t  variable, it is  prudent 

to  match t h e  input  va r i ab le s  i n  such a way t h a t  they appear t o  be 

uncorrelated.  One such way i s  the  following. 

I f  the i npu t  values {X . I ,  i = 1, ..., k, 
i J  

same with the  

If X1 were the  dom- 

L e t  the  d i f f e r e n t  l e v e l s  of each input  va r i ab le  be deuoted, 

as before ,  by Xi , where Xil<. . . < XiN. L e t  Xll,X12,. . . ,X 1 N  rep- 

r e sen t  t he  "pa t te rn"  f o r  X1. 

X21 as a "seed", and a t tach ing  X22,X23,  etc. a l t e r n a t e l y  t o  t h e  

r i g h t ,  then t h e  l e f t ,  of t h e  pa t t e rn  a l ready  formed: XZ1, then 

XZl, X22, then X 2 3 ,  X21, X 2 2 ,  etc., u n t i l  t h e  p a t t e r n  f o r  X2  is 

es t ab l i shed  

The pa t t e rn  f o r  X2  is formed by placing 

The pa t t e rn  f o r  X 3  is es t ab l i shed  by using two seeds f o r  two c l u s t e r s ,  
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'31 '32 

then adding t o  t h e  l e f t  of each c l u s t e r ,  r i g h t  to l e f t ,  

'34 '31 '33' '32 

then  adding t o  the r i g h t  of each c l u s t e r ,  l e f t  t o  r i g h t ,  

- tX34 t X31 t X35 r - - X33r X32t X361.m- 

and so on. 

forming t h r e e  c l u s t e r s  as descr ibed above, and so on. This may be 

extended e a s i l y  f o r  up to  (N/2) + 1 random var iab les .  Since w e  

a n t i c i p a t e  t h a t  N w i l l  exceed twice t h e  number of inpu t  variables 

no d i f f i c u l t y  i s  expected, b u t  another  scheme could be used with 

more inpu t  var iab les .  

The p a t t e r n  for X4 is es t ab l i shed  with t h r e e  seeds,  

Once t h e  p a t t e r n s  are es t ab l i shed ,  t h e  matching, i .e. ,  t he  

subspace ai, is determined a s  follows. One of t h e  d i g i t s  from 1 

to N i s  selected a t  random, say R2. Then t h e  f i r s t  R2 elements i n  

the p a t t e r n  f o r  X2 are removed from t h e  f r o n t  of t h e  p a t t e r n  ( l e f t  

s i d e ) ,  and added t o  t h e  back of t h e  p a t t e r n  ( r i g h t  side) without  

d i s tu rb ing  t h e  r e l a t i v e  order of t h e  R2 elements. This  new o rde r  

determines t h e  order  i n  which t h e  var ious  values  of X2 a r e  placed 

i n t o  t h e  system. 

i n t e g e r  R3 €or  X3, R4 f o r  X4.  etc. 

may he used without  l o s s  of genera l i ty .  Thus one of t h e  NK"' sub- 

spaces  # i s  selected i n  a random manner. The subspaces si them- 

se lves  are formed so t h a t  a simple graph of Y vs. Xi should r evea l  

t h e  ex ten t  of t h e  inf luence  of each inpu t  var iable  on t h e  output.  

The same procedure i s  repeated by s e l e c t i n g  an 

The n a t u r a l  o rder ing  for X1 

i 

A-13 



1 3  

As an example c o n s i d e r  K = 4 and N = 8. The pattern for  X1 i s  

'11' '12' '13' '14, '15' '16' *17? '18' 

The p a t t e r n  fo r  X2 is 

'27' '25' '23' '21, '22' '24' '26' '28; 

f o r  X3 it is 

'38' '34' '31' '35, '37' x33t  '32' '36' 

and €or X4 it is 

'46, '41, '47' '45' x4at '44' '43- 

The first p a t t e r n  remains i n t a c t .  

between 1 and 8, the f i n a l  order for  the o t h e r  p a t t e r n s  is determined.  

Suppose t h e  random numbers selected were 2,  2 ,  and 8 (or 0 ) .  The 

new orders are as fo l lows:  

By s e l e c t i n g  random numbers 

'1: 

'2: 

'3: 

'11, '12' '13' '14' '15' '16' '17' '18 

'23' '21, '22' '24' '26' '28, '27' '25 

'31' '35' '37' '33' '32' '36' '38, '34 

X4: X46t ' 41 '  X47r '45' '421 '481 '44, X43- 

The f i rs t  i n p u t  is 

X35, X41) and so on. 

X23, X31, X 4 6 ) ,  t h e  second is (Xlz,  Xzl' 

T h i s  p rocedure  h a s  no claim to  o p t i m a l i t y .  Any p rocedure  for 

p a i r i n g  t h e  i n p u t  v a r i a b l e s  may b e  used ,  as long  as t h e  procedure  

avoids embarassing p a t t e r n s ,  and as long  as t h e  p r o b a b i l i t y  of 

b e i n g  p a i r e d  w i t h  X. , il # i2, remains 1 / N  fo r  a l l  com- 
'ilj = 2 j 2  
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bina t ions  of subscr ip ts .  

6. An estimate of tlie var iance of Y: In t h e  case of random sampling 

tlie usua l  estimator of t h e  var iance i s  Si N / ( N - l )  where 

- 2  N 

i=1 
1 (Yi - YR) . 2 1  

N 
s, = - 

It i s  w e l l  known t h a t  

(6 .1 )  

which, from (2.3) becomes 

2 which has a s m a l l  known b ias .  

es t imator  of t h e  var iance of Y. 

Therefore SR N / ( N - l )  is an unbiased 

With s t r a t i f i e d  sampling the  bias is  smaller than i n  (6.3) 

bu t  is unknown andtherefore  not  ab le  t o  be removed. 

es t imator  of t h e  var iance be 

L e t  t h e  

where T, is  given by (3.9) with p i = 1/N. Then 
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Because of (3.4) t h i s  becomes 

which, because of (3.11) shows t h a t  

2 Thus Ss has a s l i g h t  bu t  unknown b i a s  a s  an es t imator  f o r  Var(Y). 

I n  the  random s t ra t i f ied  plan descr ibed i n  sec t ion  4 w e  can 

l e t  the es t imator  be 

which is simply the  sample var iance computed from t h e  observations 

ac tua l ly  obtained. W e  can show 

2 
as follows. 

where Si is the  sample var iance when t h e  stratum li is  known, w e  

have, a s  i n  (4 .21 ,  

Because S2 i s  equal ly  l i k e l y  t o  be any one of the  Si, 

A-16 
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so t h a t ,  as i n  (4.31, 

E(S 2 ) = 7 1 1 E(Si)- 2 
N~ i 

This  i n  t u r n  becomes 

(6.11) 

= - 1 1 1 h 2 ( x ) d F . .  - 11 (x) - - NK-l - 1 E ( T t )  (6.12) 
i . K  N i ] E d i  

where, as i n  ( 4 . 3 ) ,  Fij(x) is the d i s t r i b u t i o n  func t ion  of Xij. 

Because of ( 4 . 4 )  w e  have 
- - 

(6.13) 

W e  can a1 

t o  g e t  

2 1 and subtract E (Y) and use  t h e  -3ent i ty ,  from (4.51, 

However this becomes, using the middle l i n e  of (4.6) '  (6.9) and w e  

have a form fo r  E ( S  ) analogous t o  the cases i n  random sampling 

(6.2) and s t r a t i f i e d  sampling (6.6). Because t h e  purpose of using 

t h e  random s t ra t i f ied sample is to  obta in  a s m a l l  Var(T) without 

2 

A-17 



17 

knowing which input  var iab les  are the  most important, w e  can have 

some assurance t h a t  t he  b i a s  of SL is about as small  as t he  bias 

of Ss i n  t he  case of s t r a t i f i e d  sampling. 2 

7. Changing t h e  input  d i s t r i b u t i o n  function: It may happen t h a t  the  

e n t i r e  simulation of t he  system i s  conducted under the  assumption 

t h a t  t he  inputs  are governed by t h e  d i s t r i b u t i o n  funct ion F(x), - and 

then we want t o  see how t h e  system behaves when t h e  d i s t r i b u t i o n  

funct ion i s  G ( x )  r a t h e r  than F(5). I f  G(x) is  not  d r a s t i c a l l y  

d i f f e r e n t  than F(x) it may no t  be necessary t o  repea t  t h e  simulation. 
- - 

- 
As before,  t h e  sample space 6 of t h e  input  var iab le  X " is 

s t r a t i f i e d  i n t o  subspaces a,,. . . ,% of  size pi = P (X I E 8,). 
d i s t r i b u t i o n  funct ion of X is F(?) , and of lCi = X l l j  E E!i i s  Fi(x) 

where dFi(z) = dF(x)/pi (see sec t ion  3) .  

from each fli using random sampling mttthods. 

i = l , . . . r N  a r e  fed i n t o  the  system t o  obtain h ( z i ) ,  i = l,...rN, 

which may be used t o  es t imate  E(h(X)) .  

The 

One value is obtained 

These values Xi, " 

.. 
However now w e  wish t o  estimate E (h(2)  ) , where the  d i s t r ibu t ion  .. 

funct ion of 2 is G ( x )  d i f f e r e n t  from F(3). A s s u m e  t h a t  t he  range . .  - - 
space f o r  2 is  t h e  same as f o r  ... 
as before,  let qi = P (2 E si). 

where the  values f o r  h(xi)  are 

o r i g i n a l  study of t h e  system. 

X. - Using t h e  same p a r t i t i o n  of 9 

And consider t he  est imator  

t h e  same ones obtained from the  

Therefore, as i n  sec t ion  3, 
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N N 

At this point we need to 

havior of 2, and X within 

tribution of 2 given 2 E 

tribution of X given X E: 

I - 
- - 
" - 

assume something about the relative be- 

di. 
bi is the same as the conditional dis- 

8,. Under most circumstances, if G ( x )  

We assume that the conditional dis- 

.., 
is not drastically different than F(x), if both are reasonably 

smooth functions, and if gi is sufficiently small, then the 
assumption will be very good. In fact, under the conditions stated 

., 

both G(x) and F(x) may be approximated reasonably well by a uniform 

distribution within ai for each i. 
- - 

The above assumption implies 

so ( 7.2) becomes 

(7.4) 

as desired for an unbiased estimator. 

To see how realistic the above assumption might be in a real 

situation, consider a simple model with h(x) = x, F ' ( x )  = 1 for 

0 < x < 1, and G ' ( x )  = 2 - 2x in the same region. 



i-1 i L e t  t h e  N subspaces be given by fli = (T, g)  so t h a t  

Then an unbiased estimate of E(X) is 8 ,  

19 

(7.5)  

Now suppose Z has t h e  d i s t r i b u t i o n  G ( x )  and w e  wish to est imate  

( 7 . 7 )  

i 
N 

qi = P(Z E si) = I 
i-1 1J 

where - 
(7 .8)  211+1-2i ( 2  - 2x)dx = 

-~ - 
N 

TO see i f  t h i s  es t imate  is unbiased consider  

A-20 
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which is  almost equal  t o  t h e  exac t  E ( Z )  = i. 
is considerably d i f f e r e n t  than F(x) , t h e  b i a s  of ySlG is q u i t e  s m a l l  

€or any reasonable sample s i z e  N. 

Even though G(x) 

If w e  l e t  l_zi be 2 ,  given Z E: ai, then t h e  above assumption is 
-, " 

merely t h a t  zi has t h e  same d i s t r i b u t i o n  as Xi. 
of (7 .4 )  i s  g r e a t l y  s impl i f ied :  

Then t h e  der iva t ion  

with a l i t t l e  he lp  from ( 7 . 4 ) .  Furthermore 

var(?fs,G) = N 2  1 qiVar{h(Xi)) = N 2  1 qiVar{h(Zi)). (7.11) 
i=l i= 1 

It is  n o t  poss ib le  a t  t h i s  po in t  t o  compare (7.11)  with the  var iance 

t h a t  would arise by random sampling, because w e  have not  discussed 

how t o  a d j u s t  a random sample of h ( X ) ' s  - t o  estimate E{h(Z)). " 

I n t u i t i v e l y  one might use  t h e  es t imator  (compare wi th  (2.1)) 

where 
-1 i -1 i-1 

pz = GF (E) - GF 

(7.12) 

(7.13) 

i n  the  un iva r i a t e  case (K = 1) , but  j u s t i f i c a t i o n  of (7.13) , or an 

extension of (7.13) t o  t h e  mul t iva r i a t e  case,  is  not  easy t o  do 

and won't be discussed fu r the r .  
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I f  w e  use 

(7.14) 2 N 

i=l 

2 
SS,G = 1 - yG) 

is - S IG  
a s  an es t imator  of V a r  (h (2)  1 ,  it is ' easy t o  show t h a t  S 

biased: 

= Var(h(Z1) I - Var(yG). (7.15) 

However, e f f o r t s  a t  determining t h e  approximate e x t e n t  of t h e  b i a s  

have no t  been very informative.  

Bow l e t  us t u rn  our a t t e n t i o n  t o  t h e  random s t r a t i f i e d  sample 

described i n  sec t ion  4. Consider the same pa r t ions  8 descr ibed 

i n  sec t ion  4, se l ec t ed  i n  t h e  same manner descr ibed i n  sec t ions  4 

be t h e  p robab i l i t y  of 2 being i n  Sij. and 5. 

u se  t h e  assumption of t h i s  s ec t ion ,  t h a t  t he  condi t iona l  d i s t r i b u t i o n  

of 2,  given 2 6 gi I is t h e  same a s  X 

is  a r e l a t i v e l y  small por t ion  of 8, the range space o f  X, f o r  even 

moderately l a r g e  N, t h i s  assumption should be reasonable f o r  f a i r l y  

i j  

Again w e  
Let 'ij - 

= XlX E gij. Because S. 
- i j  -, - lj 

- 
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smooth d i s t r i b u t i o n  func t ions  that  do not d i f f e r  r a d i c a l l y  from 

each o ther .  

L e t  the estimator of E(h(Z)) 1 be 

- 
- 
YG = 1NK-'qijh(X. .), (7.16) -13 

t h e  weighted average .of t h e  same observa t ions  recorded i n  t h e  

o r i g i n a l  s imula t ion  s tudy.  

each of the si, i = 1,. . . ,NK-'. 

Then yG i s  equal ly  l i k e l y  t o  come from 

As i n  section 4 w e  have 

P ( H  <Y) = - 1 I: P(HGPi 2 y )  6 -  N K - l  i 
where 

(7.17) 

(7.18) 

The unbiasedness of yG is  shown as follows. 

(7.19) 
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The var iance of y, is  found a s  i n  (4 .6)  and ( 4 . 7 ) ;  

The d e t a i l s  a r e  given i n  (4 .6 )  and (4.7).  

To es t imate  t h e  var iance of h ( Z ) ,  consider  

(7.21) = 1 NK-'qij(h(X. ,)  - - 2  Y,) 
'G - 1 3  

where the  s u m a t i o n  extends over t h e  p o i n t s  a c t u a l l y  observed. 

that S, i s  equal ly  l i k e l y  to  be computed f r o m  any of t h e  s t ra ta  si. 
so 

Note 

2 

2 1 2 
E ( S G )  = - K - 1  E ( S G , i )  

N 
where 

(7.22) 

2 is sG given di. The expected value of Sz becomes 
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because of t h e  second l i n e  i n  (7.19). 

with t h e  f i r s t  l i n e  of (7.20) t o  g ive  

The above equation combines 

(7.25) 

t o  show t h a t  S: is  a biased es t imator  of t he  var iance of h ( Z ) ,  

tending t o  underestimate t h e  t r u e  var iance.  

8 .  Estimating quant i les :  Up t o  t h i s  po in t  w e  have no t  used the  

fac t  t h a t  Y i s  a monotonic funct ion of each of the  components of 

X = (X1,.-.,X 1 ,  except  i n  s e c t i o n  4 where w e  discussed t h e  reason -. K 
f o r  using a random s t r a t i f i e d  sample r a t h e r  than an ordinary 

s t r a t i f i e d  sample. However, the f a c t  t h a t  Y is  monotonically in- 

creasing i n  each Xi, i = 1, ..., K ,  i s  of considerable  he lp  i n  es- 

t imat ing the  d i s t r i b u t i o n  funct ion of Y, and hence i n  est imat ing 

the  quan t i l e s  of  Y. 

L e t  x = (ICC, ..., x ) be an observed value of X used a s  an input  - -K - 
t o  ob ta in  y = h(x )  as an output.  

property of Y w e  have 

Because of t h e  monotonicity 
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and 

Note t h a t  (8.3) g ives  abso lu te  bounds on t h e  d i s t r i b u t i o n  func t ion  

of Y for any known inpu t  5 and ou tpu t  y ,  wi thout  regard  to what 

sampling scheme i f  any is used t o  ob ta in  x. ." 
As a numerical  example cons ider  the e i g h t  p o i n t s  obtained i n  

s e c t i o n  5. 

t h e  octants des igna ted  f o r  each variable. 

l e t  us  assume t h a t  t h e  observed value of each X i j  fills r i g h t  a t  

i t s  median, and t h a t  t h e  X i j  are mutually independent. 

w e  are choosing 

The a c t u a l  values  obtained would be random values wi+hln 

For t h e  sake  of i l l u s t r a t i o n  

Therefore 

j - 1 / 2  P ( X i j  5 x ) = , j = 1 ,..., 8. i j  ( 8 . 4 )  

This  l eads  t o  t h e  fol lowing upper and lower bounds. 
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Table 1. An example of upper and lower bounds for P ( Y  5 y ) .  

L (y) =lower bound U (y) =upper bound 5; 

x )  (xll 'x23'x31' 46 

('12 "21"35 "41) 
(x13px22'x37' X I  47 

''14 rX24rX33'X45) 

('15 "26 "32 "42) 

('16 ,'28 ,'36 "48) 

('17 ?'27? x3 8 ? x44) 

(X18rX25'X34tX43) 

.0008 

.0004 

.0387 

.0336 

.0136 

. 4 1 5 4  

.2708 

.0721 

.8112 

.6876 

.9804 

.9048 

.9097 

.9996 

.9988 

.9894 

The bounds i n  Table  1 may be sharpened somewhat af ter  ob- 

s e r v i n g  t h e  va lues  of Y r  because the d i s t r i b u t i o n  function of Y, 

and hence the upper and lower bounds, are i n c r e a s i n g  func t ions  of 

y. That  is, t h e  a c t u a l  lower and upper bounds L* (y) and U* (y) 

s a t i s f y  

where yl, ...,yH denote  t h e  observed poin ts .  

are i n  t h e  same order as i n  Table  1, i n d i c a t i n g  p e r f e c t  agreement 

i n  order w i t h  xl, t h e n  t h e  lower and upper bounds would be t h e  

following. 

If t h e  observed yi 
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Table 2. I l l u s t r a t i o n  when Y agrees  i n  order wi th  X1. 

.0008 

.0008 

.0387 

.0387 

.0387 

.4154 

.4154 

.4154 

.6876 

.6876 

.9048 

.904 8 

.9097 

.9894 

.9894 

.9894 

,0625 

.1875 

.3125 

.4375 

.5625 

.6875 

.8125 

.9375 

Because Y agrees  wi th  t h e  order of X 

X.'s, it i s  reasonable t o  assume t h a t  t h e  input  X1 has  a dominating 

e f f e c t  on Y. This leads to  using P(X1 x ) as an estimate of 

P(Y 5 y.). A similar  table could be devised f o r  the case where 

t h e  o r d e r  of { y . )  w a s  i n  p e r f e c t  agreement wi th  t h e  order of any- 
3 

one of t h e  X i ' s .  

and therefore w i t h  no other .1' 

1 

lj 

3 
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1. Remark fol lowing s e c t i o n  3 ,  p. 7 .  

An i n e q u a l i t y  concerning Var(ys) may be obtained as follows. 

For convenience we w i l l  now l e t  Yi = h(Xi). 

From (3.9) and (3.10) we have 

As before  pi = P ( X  E Si). - 

(3.14) 
Note t h a t  i f  pi = 1 / N  f o r  a l l  i, w e  have 

2. Remark following sec t ion  4 ,  p. 11. 

The expression f o r  Var(P) may be  w r i t t e n  i n  var ious forms. 

L e t  Yi r ep resen t  h(lCi) = h(X) IX E Si ,  and l e t  Y 

(4 .1)  may be s u b s t i t u t e d  i n t o  (4.7) t o  ob ta in  one of t h e  more use fu l  

= h(lfi j) .  Then 
i j  . . -  

forms: 

l 2  
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A-30 

i 

which follows e a s i l y  because of E (Yi) = E(!fi). 

term V a r ( Y  ) may be expected t o  be much smaller than t h e  term 

Var(Y), because t h e  monotonicity property g r e a t l y  restricts t h e  range 

of Yi j  r e l a t i v e  t o  Y. 

11 .above should be q u i t e  s m a l l  compared wi th  V a r ( y R ) .  

For each S t h e  
i j  

i j  

Therefore under m o s t  circumstances t h e  f i r s t  

That is, 

(4.9) 

under usual  condi t ions.  

E ( Y )  f o r  a l l  i t h e  remaining terms disappear  and i? becomes much 

more accura te  than yR as an est imator  of E (Y) . 
with (6.91, shows t h a t  t h e  b i a s  of S should be q u i t e  s m a l l  under 

reasonable circumstances. 

If t h e  s t ra ta  Si are selected so E(Yi) = 

This  r e s u l t ,  combined 
2 

j 
Also, i f  a l l  of t h e  v a r i a t i o n  i n  Y i e  due to one component X 

of X ,  then E(Yi) = E(Y) and ( 4 . 8 )  reduces t o  (3.10) with pi = 1 / N .  .., 

3. Remark following sec t ion  6, p. 17. 

The following example i l l u s t r a t e s  some of t h e  ideas  thus  f a r  

presented. 

uniform random va r i ab le s  and l e t  Y = 

response surface.  Then 

Consider X = (X1, ..., XK) where t h e  Xi a r e  i.i.d. s tandard 
I K 

1 aiXi r epresent  t h e  l i n e a r  
i=l 

(6.16) 

(6.17) 
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are the parameters w e  wish t o  estimate. 

The sample mean yR from random sampling has a variance, from 

(2.3) 

(6.18) 

I€ w e  use t h e  random s t ra ta  sampling plan with cells of equal  

s i z e  l / N K ,  t h e  var iance of Y i s  given by 
i j  

Because the  X i ' s  a te i . i .d . ,  each component X l l , ( i , j )  has a uniform 

marginal d i s t r i b u t i o n  wi th  var iance 

i 

(6.20) 
and (6.19 1 becomes 

l 2  K 2  l a i .  var(Y. . I  = - 
1 2 N  i=l 

(6.21) 

K 
1 f i ( X i )  w e  have E(Yi) = E(Y). 

i=l 
A l s o ,  f o r  any a d d i t i v e  model Y '  = 

In our  case t h i s  becomes 

(6.22) 
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Thus (4.8) becomes, from ( 6 . 2 1 ) ,  (6.221, and (6.161, 

1 K 2  va r (F )  = - 3 c a i '  
1 2 N  i=l 

(6.23) 

The random s t ra ta  sampling p lan  reduces t h e  variance of t h e  es t imator  

of t h e  mean by a f a c t o r  of l/NL compared wi th  random sampling i n  

t h i s  example. 

s i d e r a b l e  improvement. 

For any reasonable sample s i z e  t h i s  represents  a con- 

a r e  4 and E, ( i , j )  
The max imum and minimum values  for X 

respec t ive ly .  Therefore the  max imum and minimum values  of P become 

and 

min Y = - N-l E ( Y )  N 

which leads  t o  100% confidence bounds on E(Y), 

(6 .24 )  

(6 .25 )  

independent of t h e  c o e f f i c i e n t s  {ail .  

The es t imator  S2 of t h e  var iance V a r ( Y )  has a very small  b i a s ,  

because of t h e  s m a l l  s i z e  of Var compared with Var (Y) . From 

(6.9) w e  have 

2 1 
N 

E ( S  = (1 - T)Var(Y) .  (6.26) 
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4. Remark following s e c t i o n  7, p. 24. 

We can w r i t e  V a r ( j y ( ; ) ,  g iven by (7.20), i n  s e v e r a l  u s e f u l  forms. 

F i r s t  w e  w i l l  develop one analogous t o  (4.8). 

It  i s  easy to  show t h a t  

E ( F ~ , ~ )  = NK'l 1 qijE{h(Z . ) I  = N K - 1  qiE(YGIi) (7.26) 
j €Si - i J  

where qi = P(,Z E Si) and E(YG,i) i s  the mean of h(Z),  given 

W e  also have from (7.181, 

E Si. - 

These and (7.19) combine i n  (7.20) t o  g i v e  

(7.27) 

(7.28) 

which reduces to (4.8) when a l l  q are equal. ij 
Ins tead  of expressing V a r ( Y G )  as a sum of t h e  var iances  wi th in  

t h e  sub-s t ra ta  SijI w e  may wish to w r i t e  Var(yG) i n  terms of t h e  

overall var iance of h (2 ) .  F i r s t ,  from (7.181, (we have 

Var(yG,i) = 1 (NK"q. .)2J h2(x)&G(x) - 1 (NK-1qij)2. 
i 1 3  - q i j  - j cS j E S i  si j 
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which is subs t i t u t ed  i n t o  (7.20) t o  get 

(7.30) 

This  may be w r i t t e n  e i t h e r  as 

A-34 
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I f  a l l  q i j  are equal ,  t h e  i n e q u a l i t i e s  i n  (7.30) , (7.31) , and (7.32) 

become e q u a l i t i e s ,  and t h e  expressions s impl i fy  to give  a l t e r n a t i v e  

' forms for V a r ( Y )  , i n s t e a d  of (4.7). 

5. Remark following s e c t i o n  8, p. 27. 

. A f u r t h e r  sharpening of t h e  upper and lower bounds is poss ib l e  

by not ing  t h a t  i f  h ( x )  5 h(xl)  , and h(zc) 5 h b 2 )  , then h (x )  5 h(z2 )  

That is, order t h e  observed values  of Y = h(X) ,  

h(xl)  5 h(52)  5. .( h(zN) , 

and l e t  Ai = {x such t h a t  h(x) 5 h(z i )  1. Then 
," ... 

Simi la r ly ,  l e t  Bi = {xlh(x)  - - ,  > h ( z i ) ) ,  so 

I n  the above example t h e  bounds (the best poss ib l e )  are given i n  

Table 3;for t h e  same order  of y ' s  as before.  

Table 3. Optimal bounds f o r  P (Y 2 y ) j 

y j  = p o i n t  L** (Y 1 U** (y) 
I 

.0008392 .5436249 

.0012359 .6260224 

.0390167 .E460846 

.062088 .E54599 

.0689544 .go67231 

.4213714 -9883271 

.5209197 .9886017 

.5305328 .9894257 

Y 1  
y2 

y3 
y4 
y5 

y7 
Y8 

y6 

A-35 



35 

These bounds are c a l l e d  t h e  b e s t  poss ib le ,  because it is poss ib le  

f o r  a func t ion  hl(X) ," t o  touch each value i n  L**(y) ,  and f o r  another 

func t ion  h2(X) - t o  a t t a i n  each given value of U**(y). 

poss ib l e  t o  make p robab i l i t y  s ta tements  wi th in  those bounds unless  

some f u r t h e r  assumptions are made concerning the form of h ( 5 ) .  

t h a t  the bounds given i n  T a b l e  3 form a 100% confidence band on t h e  

d i s t r i b u t i o n  func t ion  of Y. 

It is  no t  

Note 

Perhaps it is  adviseable  t o  select t h e  values  of X ... i n  o rde r  

t o  form better ( i n  some sense)  bounds on P ( Y  5 y ) .  For example, 

the upper bound U**(y) i n  t h e  above example never goes lower than 

. 5 4 4 .  

l i k e l y  value",  say t h e  one t h a t  g ives  P(X -. 
reasonable  K, say K f 10,  w e  have U**(h(xo)) .-" f .01,  which "c loses  

o f f "  t h e  l e f t  s i d e  of t he  band f o r  P ( Y  5 y ) .  A similar "max imum 

l i k e l y  value" would c lose  o f f  t h e  r i g h t  s i d e  of t h e  band. 

a judicious choice of i n t e r i o r  po in ts  would provide a narrower 

band than would be  obtained by random s t r a t i f i e d  sampling. 

is an open quest ion.  

I f  w e  chose one value of 5 = xo ... which represents  t h e  "minimum 

x,) = .001, then f o r  

Perhaps 

This 

I t  should be noted t h a t  a change of d i s t r i b u t i o n  funct ion from 

F(x)  - t o  G(x) - does n o t  cause any d i f f i c u l t i e s ,  o the r  than recomputing 

t h e  bounds L** (y) and U** (y) . 
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The Evolution of Latin Hypercube Sampling 

compiled by 

R. L. Iman 

February 1980 

Latin hypercube sampling was first suggested by W. J. 

Conover in the early fall of 1975 when Mike McKay told Conover 

that LASL had a problem with selecting input values for a 

computer code which had 200 input variables and took 8 1/2 hours 

to do a single run (this was a LOCA type computer code). 

At the First ERDA Statistical Symposium held at LASL from 

November 3-5, 1975, McKay gave a presentation which included 

comments about stratified sampling and referenced some work done 

by Conover in this area (W. J. Conover, Private Comunication, 

1975). At this same symposium, Conover, in discussing George 

Steck‘s presentation of the work done by Steck and Easterling 

on the LOCA problem, clearly outlined the scheme now called 

Latin hypercube sampling although the name was not used. 

In the fall of 1975 I started working on the LOCA problem 

after corning to Sandia in August. In my communications with 

Conover, I was informed of the efforts at LASL and Conover sent 

me a copy of his unpublished manuscript entitled “On a Better 
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Method of Selecting Input Variables" which described in detail 

how to do LHS and the benefits of LHS although not using the 

name LHS. 

Dahlgren, and Easterling (1975). The results were much better 

fits (i.e., smaller residuals) with fewer (at least 1/31 runs. 

Thus encouraged I continued using LHS (in a sequential manner) 

on the LOCA problem as reported in Steck, Iman, and Dahlgren 

(1976). 

I used LHS and repeated the examples given by Steck, 

In September 1976, McKay, Conover, and Whiteman issued an 

informal LASL report which compared LHS with random sampling 

and fractional factorial sampling using a model called SOLA-PLOOP. 

This was the first written report to use the name Latin hypercube 

sampling. 

In January 1977 a manuscript by McKay, Conover, and 

Beckman detailing how to do LEIS and comparing it with random and 

stratified sampling was submitted to Technometrics. This article 

appeared in May 1979. 

During 1977 I started work on the waste isolation project 

and in the fall of that year I started using sequential LHS on 

the Pathways model with good results. 

sensitivity analysis techniques appear in Iman, Helton, and 

Campbell (1978). 

These results along with 

Since that time LHS has been used on the SWIFT transport 

model, on the NWFT transport model, on a salt dissolution model 

developed by Herb Shaw at USGS, in a repeated extensive sensitivity 

analysis on the Pathways model, in a study of the asymptotic 
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properties of the Pathways model, and on a flow model for the 

geologically complex (64 input variables) Nevada Test Site. 

In each case the results were carefully studied by both the 

modeler and myself with the modeler satisfied with the results 

each time. 

In addition, in a unique application LHS was used to study 

the numerical dispersion of the NWFT model. 

the first time that sensitivity analysis techniques had been 

used in this manner and led to significant changes in the way 

the model did the calculations with the immediate results that 

the greatly simplified NWFT model was able to quickly and 

accurately reproduce the time consuming and costly SWIFT 

calculations. 

This represented 

At the annual ASA meeting in San Diego in August 1978, 

a session chaired by Easterling entitled 'Statistical Problems 

in Nuclear Regulation" was held. During this meeting response 

surface'was discussed and during this meeting Dick Beckman from 

LASL said he had set up every difficult situation he could think 

of to test LAS and in every case the people at LASL had been 

able to determine the important variables. 

$ W v  

In the summer of 1978 Conover and I started work on a 

report entitled "Small Sample Sensitivity Analysis Techniques 

with an Application to Risk Assessment" which generalized LHS 

w.r.t. to changing input distribution assumptions. This work 

was presented at the annual ASA meeting in Washington, D.C. in 
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August 1979. This work was recently expanded to make direct 

comparisons with random sampling and replicated (sequential) 

Latin hypercube sampling and has just been completed. 

In November 1978, McKay, Ford, Moore, and Witte issued 

an informal LASL report which used a 72 input variable model 

called COAL2 as a basis for comparing the ability of LHS and a 

3 point sampling scheme to determine important variables with 

samples of size 10, 15, 20, and 25. "Truth" was determined by 

comparing the variable selection with a sample of size 100. 

In the fall of 1979 a distribution free procedure was 

developed (Iman and Conover (1980)) that allows dependence 

among input variables (i.e., correlations) to be included with 

LHS or random sampling. This is something that cannot be done 

with fractional factorial sampling. This document is currently 

undergoing review. 
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