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Abstract
This paper proposes a general mixture model framework for automobile warranty data that includes
parameters for product field performance, the manufacturing and assembly process, and dealer
preparation process. The model fits warranty claims as a mixture of manufacturing or assembly
defects (quality problems) and usage related failures (reliability problems). The model also
estimates the fraction of vehicles containing a manufacturing or assembly defect when leaving the
assembly plant. This parameter measures the quality of the entire vehicle production process, i.e.,
component manufacturing and final assembly. The model also measures the proportion of
manufacturing or assembly defects repaired by the automobile dealer prior to customer delivery.
This conditional probability quantifies the ability of the vehicle preparation process to identify and
repair defects prior to customer delivery. To apply the model to field failure or warranty data, the
practitioner must identify parametric distributions for each of the two failure processes. To
demonstrate the model, this paper develops a Weibull-Uniform mixture for manufacturer supplied

warranty claim data.

Key Words: Automobile Warranty Data, Mixture Distributions, Field Failure Data, Maximum
Likelihood Estimation.
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1. INTRODUCTION

Many consumer durable goods - such as automobiles, appliances and personal computers -
include a manufacturer’s warranty to insure product quality and reliability. The resulting warranty
claims contain field performance data, obtained under actual operating conditions, which
manufacturers use to track product lifetimes. Majeske, Lynch-Caris and Herrin [1] show how
automobile manufacturers apply statistical models to warranty data to make inference regarding
product design changes. Manufacturers also use warranty data to compare actual field performance
with pseudo-lifetime data generated in laboratory or bench test settings [2].

Automobile manufacturers provide customers with a basic two-dimensional warranty that
quantifies vehicle lifetime with two metrics: time and mileage. However, many manufacturers model
field performance in the time domain due to the uncertainty associated with mileage accumulation.
Wasserman [3] and Robinson and McDonald [4] define the statistic R(t) - claims per thousand
vehicles reported cumulatively by month in service — a non-parametric model that automobile
manufacturers use to track warranty performance. Wasserman [3] develops a dynamic linear
predictive model for R(t) using data from multiple model years of a given vehicle. Robinson and
McDonald [4] suggest plotting R(t) on log-log paper and fitting a line to the observed data.
Singpurwalla and Wilson [5] develop a bi-variate failure model for automobile warranty data
indexed by time and mileage. They derive the two marginal failure distributions and present a
method for predicting R(t) using a log-log model.

Manufacturers also use parametric models for automobile warranty data. Kalbfleisch,
Lawless and Robinson [6] develop a Poisson model for predicting automobile warranty claims in
the time domain. Moskowitz and Chun [7] suggest using a bi-variate Poisson model to predict
claims for a two dimensional warranty by fitting the cumulative Poisson parameter A with various
functions of time and mileage. Hu and Lawless [8] suggest a technique for modeling warranty
claims as truncated data that assumes warranty claims follow a Poisson process. Oh and Bai [9]
present a method for augmenting parametric warranty data models with selected observations from

products whose lifetime exceeded the warranty period.
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The warranty modeling techniques cited above fit warranty data using parametric and non-
parametric techniques. To make inference on product features or design changes, the authors
suggest stratifying data or making model parameters a function of co-variates. Unfortunately, none
of these models differentiate between failure types or provide feedback or assessment of supporting
business processes. For example, a manufacturer may want to know if field failures (warranty
claims) are a result of inadequate design, defects generated during component manufacturing, or
errors in the assembly process. The manufacturers response or corrective actions for these various
failure types are quite different.

Automobile manufacturers sell their products to automobile dealers, who in turn sell them to
the end customer, which defines time zero for warranty duration [10]. Some vehicles are repaired
under warranty in the interval between the two sales, generating a pre-delivery claim [4] or a claim
with a negative lifetime. These negative values invalidate many parametric models — Weibull,
exponential, log-Normal, etc. [11] — that reliability engineers fit to lifetime data. Many
manufacturers remove pre-delivery claims from the population to allow fitting data with traditional
methods, rather than developing techniques to accommodate this unconventional data that regularly
occurs in automobile warranty claims.

This paper develops a warranty data model that provides manufacturers with a variety of
information. The model captures information on product reliability by including a parametric model
of vehicle lifetime and assesses product quality using a parameter to indicate if a vehicle functioned
properly at time of manufacture. The model also has a parameter to measure the dealer preparation
process — a conditional probability assessing the ability to detect defects. The mixture model
presented in this paper allows including pre-delivery claims by assuming they represent
manufacturing or assembly defects. The remainder of this paper has the following organization.
Section 2 develops the generic mixture model framework for automobile warranty data. Section 3
outlines how to estimate the model parameters using maximum likelihood estimation and provides
the log-likelihood function for the model. Section 4 demonstrates the methodology by deriving a

specific Uniform- Weibull mixture for the manufacturer provided warranty data. Section 5 presents
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the conclusions and recommendations from this research. Appendix A & B contain the first order
(gradient) and the second order (hessian matrix) partial derivatives of the Uniform- Weibull mixture
distribution likelihood function. The gradient and Hessian matrix can be used for parameter

estimation and standard error calculations respectively.

2. MIXTURE MODEL FOR TIME TO FIRST WARRANTY CLAIM

This paper develops a mixture model that assumes (automobile) warranty claims represent a
combination of product reliability issues (usage related failures) and quality problems (manufacturing
defects). A usage related failure assumes that the product functioned properly when purchased.
Then, after some amount of customer usage, the product experienced a failure. It is common to
model these usage related failures with lifetime distributions such as Weibull, Exponential, log-
Normal, etc. The other type of warranty claim results from items that did not function properly
when the customer purchased the product. Technically, there is no associated time to failure for
these warranty claims; rather, the time associated with the customer identifying the defect and having
it repaired.

Chung, Wu, and Herrin [12] and Meeker [13] proposed mixed Weibull models equivalent

to

K=
(1) |

[ =

{p(l—e_(w)ﬁ) 0< 1< o0

to fit occupational injury data and integrated circuit data respectively. These authors motivate the
need for the mixtures by providing intuitive arguments regarding properties of lifetime and I take a
similar approach for the automobile warranty data. Mori, Arai, Kaneko and Yoshikawa [14]
model lifetime data when a product is exposed to two failure modes. In their example, the multiple
failure modes result in higher early failure rates than the single failure mode case. Martin, O’Sullivan
and Mathewson [15] model two types of failures (extrinsic and intrinsic) for MOS gate oxide

capacitors.
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To develop the model, let T' represent the lifetime (in the time domain) for the item under

study, e.g., a complete vehicle (Ford Taurus) or vehicle component (V-8 engine). Defining the

warranty coverage as 7., the first failure results in a warranty claim when the failure occurs during
the warranty coverage or 7 <¢_. Let Z, with cumulative distribution function

F,(z) z>0,
represent the time to first usage related failure. This represents the failure distribution generally
modeled by warranty and reliability engineers. Let Y, with cumulative distribution function,

F,(y) 0<y<r,
represent the time from delivery until repair for an assembly or manufacturing defect. This second
distribution does not represent a time to failure in the conventional sense; rather, the time for the
customer to diagnose an existing defect. Notice that this approach assumes customers have
manufacturing or assembly related defects repaired early in warranty lifetime, designated as the
interval (O to ¢ ]. This model formulation does not include t* as a parameter estimated from the
sample data. To use this approach, one must select t* prior to fitting the observational data. When
selecting t*, one must address the question “How long will it take the customer to determine there is
a defect and return the product for repair?” To a certain extent, this depends on the severity — how
significantly it impacts product performance — of the defect. Notice that the time it takes to identify
these defects and have them repaired may not follow standard lifetime distributions.

The mixture model contains two parameters that provide addition information regarding the
complete vehicle production and delivery process. Let p represent the probability a given vehicle
contained a manufacturing or assembly defect when leaving the assembly plant, a measure of vehicle
quality. Let O represent the fraction of defective vehicles repaired by the dealership. This
conditional probability captures the dealership's ability to identify and correct vehicle defects prior to
customer delivery. Assuming independence, the proportion of vehicles that experience a pre-
delivery claim is p© . The probability of a manufacturing or assembly defect related claim occurring

in the interval (0, ¢ ]is p(1—6). While not direct parameters of this model, these two

probabilities may be useful to reliability engineers, sales and marketing staff and financial planners.
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The mixture model divides the time axis into three regions. In the pre-delivery region,
T <0, the model assumes that all warranty claims represent manufacturing or assembly defects.
Warranty claims in the interval (0, ¢ ] represent a mixture of the two failure types. Lastly, all claims
with a lifetime 7 > ¢* represent usage related failures. From the above definitions and assumptions,

[ directly derive the cumulative distribution function for 7 as

PO t<0
Fr(0=1p8 +p(-0)F,(0+(-pF.0)  0<t<C ()
p+1=pF.@) >

One can easily extend the model by allowing p, 6 and the parameters that characterize F,(z) and

F, (¥) to be functions of covariates.

3. ESTIMATING MODEL PARAMETERS

Jiang and Kececioglu [16] describe the two types of observations that exist with mixture
processes. Postmortem describes the situation when an observation indicates the process that
contributed the data while a non-postmortem observation provides no information on sub-
population. For estimation purposes, claims prior to customer delivery and after ¢* are post-
mortem observations since pre-delivery claims represent assembly or manufacturing defects and
claims after ¢ represent usage related failures. All failures in the interval (0, ¢*) represent non-
postmortem observations unless the warranty claim records contain sufficient information to
determine failure type. Vehicles in the population that do not have a warranty claim can be modeled
as right censored observations. Estimating parameters via maximum likelihood allows incorporating

the right censored observations.

Let T;, i=12,..., n, represent the time to first claim for a population of n vehicles. Let
the censor code 8= 1 if the i" vehicle has an observed failure and .= 0 if the observation is right

censored. The observed data will then consist of the pairs (8,,,) for each of the n vehicles. The

likelihood function is the probability of observing the sample data or
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L=TTrreor isan™, @

with an associated log-likelihood function of
log (L) = )8, log(f 1))+ (18, log(S(t,) - 3)
i=1

To construct the log-likelihood function for the mixture model, let L, represent the contribution of

vehicle i to the likelihood function and condition on ¢, , resulting in

log (L1, =0) =log(p)+log(0)

log( Li 10< Il ST*) =8i log{ p(l_e)fy (ti)+(1_p)fz(ti)}
+(1—8,)10g{1_l79 _p(l_e)Fy(t,‘)_(l_p)Fz(tj)}

log(L, 1t, >T") =8, log{(1-p) f, (t)}+(1-0,)log(1- p)F, (t,)} 4)

Maximizing the log-likelihood with respect to the parameters results in the maximum likelihood

estimates.

4. APPLICATION TO AUTOMOBILE WARRANTY DATA

This paper uses a population of 9532 luxury cars, representing one month of production, to
demonstrate the methodology. One subsystem of these vehicles was experiencing higher than
expected levels of warranty claims, and the manufacturer provided me with the data available about
two years after final vehicle assembly. I constructed a database containing one row for each
vehicle, with columns defined by Table 1, to analyze the luxury car warranty data. Figure 1 shows
the empirical hazard function i;(t) for the luxury cars calculated with life tables using an interval
width of 7 days [17]. Unfortunately, the method does not allow for negative values so Figure 1
does not capture the 107 vehicles — representing 1.12% of the population — that experienced pre-
delivery claims.

To apply the mixture, one must identify parametric models for the two distributions comprising the

mixture. Product design and reliability engineers model the field performance in the time domain

Karl D. Majeske Revised 03-03-03 Page: 7



A Mixture Model for Automobile Warranty Data

with the Weibull distribution. Therefore, I model the usage related failure component of the mixture
with a Weibull distribution characterized by cumulative distribution function

F,(t)=1-exp[—(an’] t>0,0>0,>0

Manufacturing or assembly defects existed at customer delivery, therefore, the lifetime
associated with these warranty claims represents the time to identify the problem and have the
vehicle repaired. The manufacturer suggested that the customer is equally likely to have these
defects repaired over the first few months of ownership. Notice from Figure 1 that two distinct
claim levels exist: the initial high failure rate prior to 119 days and the ongoing relatively lower failure
rate above 119 days. After showing this figure to the manufacturer, we agreed touse 1 = 119

days and model time to repair for inherent defects with a uniform distribution characterized by

F=L  0<i<i*,
t*

Using the Weibull and uniform as inputs to the generic model of equation (1) leads to the specific

Weibull- Uniform mixture
po t=0
t
Fr()=1pB +p-0)—+(-p)l—-e ")  0<r<i 5)
t
pt+(1=p)l-e ") > 1%

with an associated log-likelihood of

log (Ll =0)  =log(p)+log(6)

p(1-6)
T*

+(1-p)lap (o) e "))

1 - [ (o,
+(1-8)log(1 = p(0 +— L)~ (1 - p)(1-e )

log (L10 < 1, < T*) = §, log(

log (L, >T%) =3, [log((1- pyap(ar)’ e )]

+(1-8,)log((1— p)e™ )] (©)
= log(1 - p) — (ar,’ +8,(B log(ou,)+log(r,)+log(B))
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Appendix A contains the gradient of equation (6) required by iterative maximization search
routines that could be used for parameter estimation. To make inference on model parameters one
can use large sample theory, that states under certain regularity conditions, the estimated parameter
vector (O, ,[g .D é) follows a multivariate normal with mean (ct,f3,p,8) and variance-covariance
matrix equal to the inverse of the Fisher information matrix. Estimating the Fsher information matrix
with the observed data allows making statistical inference (hypothesis tests and confidence intervals)
on model parameters. Appendix B contains the second order partial derivatives for equation (6)
needed to calculate the observed Fisher information matrix.

[ used Hide and Seek, a simulated annealing algorithm developed by Romeijn and Smith
[18], to estimate parameters by directly maximizing the log-likelihood function. Table 2 contains the
parameter estimates and associated standard errors for the Weibull- Uniform mixture fit to the luxury
car warranty data. Figure 2 adds the mixture hazard function characterized with the parameter
estimates from Table 2 to the empirical hazard plot of Figure 1. Figure 2 provides a visual
assessment of the model aptness or goodness of fit. To further assess the model appropriateness, I
used simulate a set of 9532 observations from a mixture distribution with cumulative distribution
function of equation 5 using the parameter values from Table 2. Figure 3 shows the empirical
hazard function for this data that appears quite similar to the observed automobile warranty data.

The fit model suggests that 5.6% of the vehicles left the assembly plant with the component
under study not functioning properly. This rate of more than one in 20 defects lead the manufacturer
to take two courses of action. First, the manufacturer investigated ways to reduce vehicle defects
and implemented changes in the final assembly process. Secondly, until the vehicle defect rate
decreases, the manufacturer added a test procedure to identify defective vehicles for repair at the
assembly plant. This analysis also suggests that the dealer preparation process only identified
26.1% of the defective vehicles. This led the manufacturer to review the ability of the dealership to

identify defective vehicles.
5. CONCLUSIONS AND RECOMMENDATIONS
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This research suggests that manufacturers can develop richer statistical models for warranty
data that provide better fits and additional feedback. For example, the mixture model presented in
this paper provides the manufacturer the ability to separate two failure modes and include pre-
delivery claims. In addition, this mixture provides the manufacturer quantitative measures of vehicle
quality when leaving the assembly plant and the dealer preparation process. Using a similar
approach, one could develop higher order mixtures or models with parameters to represent other
business processes of interest. This paper develops a specific Uniform / Weibull mixture to
demonstrate how to apply this modeling framework to a specific problem. The distribution easily
extends to include co-variates by making p,8, t* and the Weibull parameters o , B functions of

engineering design and assembly process parameters.

Karl D. Majeske Revised 03-03-03 Page: 10



A Mixture Model for Automobile Warranty Data

APPENDIX A

GRADIENT OF THE LOG LIKELIHOOD FUNCTION FOR THE THREE REGIONS

Assume aset of N vehicles: n, vehicles with pre-delivery claims, n, vehicles with unknown

failure types, and n, vehicles with usage related failure claims. Then N =n, +n, + n,.

The n, vehicles with pre-delivery claims (¢, <0 ):

d log(L)

=0
oo

The 7, vehicles with unknown failure types (0 <t, <t"):

QlogL) _y 5 | (- p)B @)’ e [1-(ou,)" ]

a i=1 i p(lt e)+(1 p)[aB((xt )B*I *(OU)B]
_ -1 —(u,)?
+(1-5) (p( ?B; (o) e
1-p®+ L= (1= p)l-e ™)

J log( L) _y" s (1-prrer,)*™ e [1-B (ar,)" loglor,) + B log(a,)]

” N p(t e)+(1 plapar)? e ]
L ~(o,)?
+(1-5.) (p—- 1)(_w) log( ai,)
1-p®+ a ) D)= (1= p)l—e ")
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1-6 p-1 —(ar)P
(Z—*j—aﬁ(tia) e

alog(L) Z
ap i=1 i p(lt e)+(1 p)[OLB(OCt )[31 (Oct) ]
1-6 —(_(1—[2)ti j-e‘“”f)ﬁ
+(1_8i) _
1-pO+ =2 == pri-e )
_p
alog(L) t*
le l P(l 9) B-1 —(ar)ﬁ
———+(1-p)laf(ot,) ]
t.
p(—’—l)
1-96,
+d=9) <— o,

1-p@®+ L—(1-p)i-e @)

The n, vehicles with usage related failure claims (#; > t):

ﬁg(_ 2’13 Baﬁ_ltiﬁ + 8[ g

ﬁ%:_ =Y —(ar)’ In(at) +8,(n (oc)+E1 +In(2,))

810g(L)_ -n,
p l-p

d log(L)
a0

=0
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APPENDIX B

SECOND ORDER PARTIAL DERIVATIVES OF THE LOG LIKELIHOOD FUNCTION
FOR THE THREE REGIONS

Second order partial derivatives of the log likelihood function for each of the three regions.
Assume a set of N vehicles, n; vehicles with pre-delivery claims, n, vehicles with unknown failure

types, n, vehicles with usage related failures type claims. Then N =n, +n, + n,. Below appear

the upper right entries of the symmetric matrix by region.

The n, vehicles with pre-delivery claims (z, <0 ):

9’ log(L) 9’log(L) 9’log(L) d’log(L) 0
da’ dad B d0dp 00,00
d’log(L) 9’log(L) 9’log(L)
B>  oPop  opoe
d*log(L) -n,  0’log(L) 0
p> P opod

0

0% log(L) _om
00’ 9’

The n, vehicles with unknown failure types (0 <t < t):

Define the following identities :

C,=(1-pP(at)Pe @’

C :—e—w+l—(g_(w“')ﬁ

2i T*

C3i =(1 —P)(()Cti)B log(wi)Ze—(oai P
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|
C, = 5t log(aut,)— (aut,)’ log(aut,)

CSi = #
t

~(ar,)P

2
Co = (at,)’ log(atr) - Slog(at) —g

D, :@‘F(l _P)[OCB(OCti )B_le_(‘)"")ﬁ ]

D, =1-p(® + (1;2)”')— (1-p)i-e ")

d”log(L)
oo’

:ijll e (Bz B+ (aut) IR (o, * = 3)+B])

-3, [DJ (B-Blot,)y

i

l ll _atclt
+(1-8)— oD, (1-B+(@)"B D,

azlog(L) ny Cn' 1
Taop - L7y (CuB=2(a1)") =B (o)) log(ar)

2

-3, [D“] (1 —(at)"HaC,,

t.C; octiCh. log(ait,)
(C, +
D2z BDZi

- (1-5)- )

0% log(L) _ Y CBI(our, )P =11 C,GBII—(0u)]
d0dp =7\ - p)b, h

+(]_6i)[ Cl:t: 4 ClitiC;Zi]
(1-p)D, D,,
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t.
of.p(l—-—+

aaae Dli t (X‘D2i2

d’log(L) C,olog(ait,)
aBz _Zz 181 D

li

2
cCC, C.. C ot
_8[ o 1i " 4i +(]_8[) 3i (atl)ﬁ_]_ ll(xt
Dli DZi BDZi

[B +log(air,) +(oct)ﬁ[C6,]J

azlog(L) _ Zﬂz —8[ (X‘CUCM +aC1iC4iC5i]
aﬁap =l - P)Dli l)li2

+ (1_ 81) C3i + C2iC3i 5
(1-p)log(az,)D,;  log(ar)D;,
!
d *log( L) _an aC, pC, —(1- Cupll=5)
dpad SUUp "log(au,)D,”

2
0 log(L) _ an C (1 5. )

apz = i Dll 21
—_— Pl LT
9 IOg(L) - +(1- 6) + :
dpdo 0 t'D,’ 1D, D,, D,’
y 2
2 pl1-—+
d “log( L) n p t
5. -(1-9
002 Zi=l 14" . ( ’) ”i

Karl D. Majeske Revised 03-03-03 Page: 15



A Mixture Model for Automobile Warranty Data
The n, vehicles with usage related failure claims (7, > t"):

9’ log(L) _ Z;’jl% ()’ -B(ar,)’ -38))

do’

82log(L)_ w e 5 ) .
aaaB _Zizl(x(si B((X'ti) log (o, )—(at,) )

d’log(L) 9*log(L)
dodp 9000

=0

9’ log(L)
B’ =L

—L — (or,)’ log(air,)’

i=1 B

d’log(L) d’log(L) _
Bap  0poe

d*log(L)  -n, 0°log(L)
o’  (1-p) dpdb

=0

d*log(L)

367 0
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Figures and Tables
Table 1: Test Data for Luxury Cars
Variable Description
VIN  Vehicle Identification Number
t Time from final sale to first claim in days
d Censor Code: 0= Observed, 1 = Censored
c
9o )
-g- 0.0010
z 000089 °
Ke) e
£ 0.0006 {oe o e
g e .0
T 0.0004 A o o
B o slxe v Adoy o e, e
£ 0.0002 7 N, T :o:so ‘o0 o %
g 0.0000 . . ; .
w 0 200 400 600 800

Time in Service: days

Figure 1: Empirical Hazard Function of Time to First Warranty Claim

Table 2: Mixture Parameter Estimates for Time to First Claim
Parameter Estimate Std error
o 0.00018 0.0000043
B 091626  0.0167756
p 0.05604 0.003939
0 0.26081 0.0227802
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Mixture and Empirical Hazard Functions for Time to First Failure
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Figure 3: Empirical Hazard Function for Simulated Mixture Data
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