A case-based approach to planar linkage design*

Ashim Bosefand Maria Gini
Department of Computer Science
University of Minnesota, Minneapolis, MN 55455

Donald Riley
Department of Mechanical Engineering
University of Minnesota, Minneapolis, MN 55455

Abstract

We describe a method to store and retrieve design cases of four-bar linkages.
The method abstracts relevant features from the planar curve that characterizes
each linkage design, and records these features at several levels of abstraction. This
allows to use a fast multi-level retrieval procedure, that successively eliminates
inappropriate cases at each level. The retrieval incorporates tolerance measures
and allows for incomplete problem specifications. Adaptation methods are then
used to transform the cases retrieved to match the new design problem. Results of
experimental studies to evaluate the efficacy of our method are presented.

Keywords: case-based design, planar linkages, mechanical linkage design, mechan-
ical linkage synthesis.

1 Introduction

One way in which design knowledge can be captured is by storing particulars of pre-
viously designed artifacts as cases. When a new design problem is encountered, cases
that most closely match the new requirements are retrieved and adapted to suit these
requirement [Adelson, 1989, Gero, 1990, Maher, 1990]. Case-based Design [Riesbeck
and Schank, 1989, Sycara and Navinchandra, 1989)] reflects a commonly used design
method where designers look up standard artifacts and/or design solutions in design
catalogs or handbooks published for this purpose.

*This work was funded in part by the NSF under grant DDM 8717731-01
fCurrent affiliation: Space Telescope Science Institute, Baltimore, MD 21218

The objective of this paper is to describe our work in storing design cases of four-bar
planar linkages, and retrieving the most similar ones using incomplete specifications.
The context of this work is planar linkage design, though the methods used can be
extended to cover other domains that are characterized by planar geometric information.

Our main contribution is in extending the applicability of case-based methods to
problems that are characterized predominantly by their geometric properties. Other
Artificial Intelligence based methods, such as expert systems [Bertini, 1993], have been
used for design mechanisms. When the problems are geometric, like in the case of
linkage design, it is easier for the designer to sketch the desired path or fragments of it
that to describe it by words. More details on related work are given later in Section 9.

A brief discussion of the domain of planar linkage design is in order [Erdman and
Sandor, 1984].

Coupler Curve

’ Output Link

Figure 1: A four-bar linkage

Input Link

A linkage consists of rigid links, which are connected by joints to form open or
closed chains (or loops). All the links of a planar linkage move in parallel planes. The
simplest closed loop planar linkage is the four-bar, which has three moving links, four
pin joints, and a single degree of freedom. The link used to impart the motion is called
input link or crank. As the crank rotates, the coupler link rotates and translates, so
that a coupler point on it traces a planar curve, called the coupler curve. This curve,
with the corresponding crank and coupler rotations, constitutes the basic functional

characteristics of the linkage. A four-bar linkage is shown in Figure 1. In the rest of the
paper we will often use the term linkage to refer to a four-bar planar linkage whenever
it is clear from the context what we mean.

The shape of the coupler curve depends on the dimensions of the links and on the
position of the coupler point in the coupler link. This is what is called the structure of
the linkage, The relationship between function and structure is governed by equations
of motion that can be represented using vector algebra and/or complex number algebra.
Given the structure of a linkage it is simple enough to obtain its functional features.
However, the converse is seldom true. Linkage design entails finding the structural
characteristics of a linkage, given some desirable functional features that the linkage
should possess. Since the shape of the coupler curve is described by highly non-linear
equations, it is very difficult, given a desired coupler curve, to design a linkage that
will produce it. As a service to designers, [Hrones and Nelson, 1951] have produced a
catalogue of several thousand coupler curves.

In the case-based paradigm that we use, we store the functional and structural fea-
tures of several linkage cases, retrieve the cases that are closest to the desired functional
features, and then adapt them. What makes linkage design challenging for Case-Based
Design is the fact that the design of a linkage cannot be easily decomposed into inde-
pendent subproblems, the function-structure relationships are seldom monotonic, and
the component dimensions are important even in preliminary design stages [Bose et al.,
1991].

2 Storing and Indexing Cases

Linkage designs that are unique in their functional characteristics are stored as cases.
Since design problems consist mainly of functional specifications, we index the cases
on the basis of their functional characteristics. As mentioned earlier, the functional
characteristics of a four-bar linkage include the coupler curve (i.e. the path described
by the coupler point), and the corresponding crank and coupler rotations.

The coupler curve can vary greatly depending on the structural parameters of the
linkage. If there are no bounds on the length of the links, the number of linkage designs is
infinite. However, physical realizability and physical constraints on the relative lengths
of the links provide limits to the actual number of linkages. To make the design space
finite we limit the link lengths (in our implementation we use 1-5 length units for the
crank, 5-20 for the coupler, 5-20 for the follower; the coupler point angle ranges from
—150° to 150° inclusive). We also normalize the cases by keeping the distance between
ground pivots constant. We use a value of 10 units for the distance between ground
pivots. This value is arbitrary and could be easily changed. The horizontal lines shown
in the examples in Figures 2 and case2 represent the plane of the ground pivots with

the end points indicating the ground pivot locations.
We will now describe how we represent the functional characteristics of a linkage
and motivate our representational choices. This requires introducing a few definitions.

Attributed Coupler Curve. We discretize the coupler curve and store it as an at-
tributed curve, which we call the Attributed Coupler Curve. We generate an
Attributed Coupler Curve by recording N.. positions of the coupler point corre-
sponding to N, positions of the crank. Each crank position is obtained by rotating
the crank 360/N¢. from the previous position in the counterclockwise direction.
All coupler curves are closed since the crank is always rotated 360°. The initial
crank position corresponds to a 0° crank angle. This discretization corresponds to
approximate the actual curve by straight line segments joining adjacent points in
2D space. In our experiments we use a value of 50 for N, which corresponds to
increments of the crank of 7.2°. We have found that this value of N, gives a suffi-
ciently accurate representation of the coupler curve without creating an excessive
number of points.

The coupler curve, at this level, can be viewed as a list of N,. records with each
record containing information on the position of the coupler point in 2-D space,
and the corresponding crank and coupler rotations.

Unfortunately, this representation does not capture in an abstract way the shape of
the curve, and so we need to represent the coupler curve at a higher level of abstraction.
For this purpose we introduce the notion of segments. A segment is a component of a
curve. A segment can be either an arc segment or a point segment, a point segment can
be either a cusp or a crossing.

Arc segments. Arc segments are constructed using a measure of curvature called the
Arc Index. The Arc Index is defined as ArcIndex = sense x ceiling(logy(p + 1)),
where b is a constant, p is the approximate radius of curvature, and sense is used
to distinguish between concave and convex arcs.

The radius of curvature p is computed using the points in the Attribute Coupler
Curve. We start with the first three points, and compute the intersection of the
perpendicular bisectors of the two segments joining adjacent points. The distance
from this intersection point to any of the three points is the approximate radius
of curvature. The process is repeated for all adjacent three point sets. Adjacent
arcs with the same Arc Index are then merged to form segments.

We have experimented with different values of b. The value we used for all exam-
ples reported here is 5, which is half the distance between the ground pivots. The
logarithmic transformation is used to collapse the radius of the curvature space

to the arc-index space. This reduction of the feasible curvature space facilitates
matching between curves during case retrieval. Also, the Arc Index is more sensi-
tive to changes in smaller curvatures than to larger ones, and this more accurately
abstracts the shape of the curve.

Point segments. There are two kinds of point segments: cusps and crossings. A cusp
is defined as a point on the curve where the angle included between the straight
lines representing the curve is greater than or less than certain thresholds (270°
and 90° respectively). A crossing is a point at which the curve crosses itself. These
two kinds of points aid in characterizing the curve, and thus aid in retrieving the
right kind of curve.

Now we are ready to summarize what we have described above.

Functional Information. The functional information about the coupler curve is rep-
resented at three levels as follows:

Level 1 A case C is a closed string of segments
C = 81.82...8C8

where C'S is the number of segments in the case. Each segment s; can be
one of the following:

a; the Arc Index (used for arc segments),
si =14 x a crossing (a type of point segment),
¢ acusp (a type of point segment).

The string is closed in the sense that there is in effect no first or last segment
(the first segment follows the last one in the sequence).

Level 2 For each arc segment with signature a; in C, the following attributes are
recorded in an attribute-value table A/V = {(a,v)| a is an attribute and v is

its value}:
l; = length of the arc segment,
0; = angle swept by crank thru i*” segment,
o; = rotation of coupler thru i** segment.

Level 3 The coupler curve in C' is represented as an ordered set of N.. points

C= {p1-p2---pN}'

where each point is the position of the coupler point corresponding to regu-
larly spaced positions of the crank (obtained, as described earlier, by rotating

the crank 360/NZ.). The points are ordered by following the coupler curve
in the counterclockwise direction.

Each segment s; contains the points (in order) it is made up of. In the
ordering along the curve

S = {pa7~--7pb}7a§b;
Si+1 = {pb7 o apc}, b < c,
scs = A{pn,...,p1}-

Structural Information. The structural information in a case consists of the struc-
tural dimensions that define the four-bar planar linkage. These are the lengths of
all the links, and the position of the coupler point relative to the coupler link. An-
gles are in radians, all other dimensions in length units. The structural information
is stored with the functional information at Level 3. All cases are normalized by
making the distance between ground pivots equal to 10 units. These are recorded
in an attribute-value table A/V = {(a,v)|a is an attribute and v is its value}.
The attributes are:

- length of the crank link,
- length of the coupler link,
- length of the follower link,

- length of the fixed link, or distance between the ground pivots. In the im-
plementation we keep this constant and equal to 10 units,

- distance of the coupler point from the crank end of the coupler link,

- angle locating the coupler point with respect to the coupler link.

In summary, the coupler curve at the top level (Level 1) is represented as a segment
sequence of arc indices and point segments. At a lower level (Level 2), each arc segment
has associated a length index, which is a measure of the length of the arc that makes up
the segment. This is to distinguish between segments that may have similar curvature
but vary considerably in length. Also included at this level are the crank rotation and
the coupler rotation angles for each arc segment. At the lowest level (Level 3), the
coupler curve is represented as a list of N records as described earlier.

One example of this representation scheme is shown in Figure 2. Case 1 has two
point segments, both of which are cusps, and ten arc segments.

Another example is shown in Figure 3. Case 2 includes one crossing segment and
one cusp segment, along with nineteen arc segments. Note that the segment sequence

- "Case 17 1

6 -4 -2 0 2 4 6 8 10

Level 1:
4.3.c.2.c.2.3.4.2.3.4.5

Level 2 (partial description):

’ Arc Index ‘ Length of Arc Segment ‘

4 33
126
0
30
0
9
8
263
13
145
18
19

QU | WIN| AW NO IO | W

Level 3 (only the structural information is shown here):

’ Linkage Dimensions
Length of Crank Link 5.0
Length of Coupler Link 3.0
Length of Follower Link 15.0
Length of Fixed Link 10.0
Coupler Point Radius 3.0
Coupler Point Angle 0.15708

Figure 2: Descr;}ption of Case 1

has two z’s indicating the location of the same crossing point in relation to the other
segments as the curve is traced segment by segment in the same order as the coupler
curve is traced when the crank rotates.

3 Specifying a Problem

A problem consists of the functional and structural properties desired in the four-bar
planar linkage to be designed. Problem specification are often incomplete and there
might be multiple designs the designer has to choose from.

The functional information in a problem at the very least consists of curve fragments
that the coupler curve should contain. Each curve fragment is specified, at the lowest
level of abstraction, as a list of points. There may be more than one curve fragment
specified. A tolerance is specified in conjunction with the curve fragments, thus making
the constraints on the coupler curve “tubular” in the sense that the trace has to lie within
the two dimensional “tube” formed by considering the tolerance above and below the
straight line connecting the points. This is illustrated in Figure 4. Default values of
tolerances (of £10%) are assumed if none are specified.

Additional requirements about specific points that need to be traversed by the cou-
pler point may be specified. These points are called mandatory points and the tolerances
for these points are much tighter. Additional information on coupler rotation require-
ments between given points may also be specified. These are useful in describing motion
problems where the rotation of the coupler in relation to its translation is important.
Timing information in the form of crank rotations between given coupler point positions
or coupler rotations may also be specified. Tolerances may also be associated with these
requirements.

The only structural information that is required in a problem is the location of
the two ground pivot points. Additional structural requirements that may be specified
include upper and lower bounds on link length ratios, velocity of the coupler point, linear
and angular acceleration of the coupler link. If velocity and acceleration requirements
are specified, the angular velocity of the crank has to be specified also.

The problem specification is first transformed to a normal form, by performing
translation, rotation, and scaling. It is then abstracted at the same three levels used for
representing cases. The only major difference is due to the presence of “gaps” between
the curve fragments. Segments adjacent to a gap are called boundary segments, all other
are called internal. This distinction is used later in the matching process.

Segmentation of the curve fragments yields a partial string sequence (the string
sequence is partial because of the gaps between each individual fragment). Don’t cares
(meaning one or more segments of any type or curvature can be inserted in their place)

% | | » Case 5”

e
\
-2 0 2 4 6 8 10

Level 1:
3.2.-1.x.1.2.¢.2.-7.-4.x.4.3.2.3.-6.-2.-1.-2.1.3.4

Level 2 (partial description):

’ Arc Index ‘ Length of Arc Segment ‘

3 33
2 27
-1 22
X 0
1 0
2 1
c 0
2 7
-7 7
-4 8
X 0
4 47

Level 3 (only the structural information is shown here):

’ Linkage Dimensions
Length of Crank Link 4.0
Length of Coupler Link 6.0
Length of Follower Link 15.0
Length of Fixed Link 10.0
Coupler Point Radius 3.0
Coupler Point Angle -0.733

Figure 3: Descr%ption of Case 2

“Tubes” (due to tolera

Curve Fragments

Figure 4: Effect of tolerance on curve fragments specified in a problem

are inserted at appropriate places in the string sequence to provide a regular expression’.

Formally, a problem instance is described as follows:

Level 1 A problem P is a string of segments

P = {811.812 . .Slps.d.821 . .Sgps.d. ..SF1 .. .Spps},

where:
F = number of curve fragments in the problem,
iPS = number of segments in the i*" fragment of the problem,
d = dont’care; any combination of 1 or more arc segments and 0 or

more point segments.

Each segment s;. can be one of the following:

a;r the Arc Index,
Sik =4 T a crossing,
c a cusp.

LA regular expression is a language accepted by a finite state automaton. See [Hopcroft and Ullman,
1979] for a detailed introduction.

10

Level 2 Each arc segment s;; of the k£ segment in P has attributes recorded in an
attribute-value table A/V = {(a,v)|a is an attribute and v is its value}. The at-
tributes are:

liz = length of the arc segment,

tir = type of segment (boundary or internal),
0;. = angle swept by crank thru i*" segment,
a;, = rotation of coupler thru i segment.

Level 3 The input curve in P is represented as an ordered set of PP points

P = {plap27" . apPP}

The structural information, that must include at least the location of the two
ground pivots, is also stored at this level.

We illustrate this by showing an example of a problem specification. The problem
description consist of ground pivot locations and curve-fragment sketches shown in Fig-
ure 5. The horizontal lines represent the plane of the ground pivots with the end points
indicating the ground pivot locations in relation to the curve fragments. The curve
fragments constitute what we call the Problem Curve. Each Problem Curve is made of
a small number of Non-Empty Sectors (Nsy). The curve shown in Figure 5 has three
Non-Empty Sectors.

4 The Mechanics of Case Retrieval

Cases are retrieved by matching the problem specifications to the cases available in case
memory. To reduce processing, successive matches are performed hierarchically at the
different levels of the representation, that correspond to different levels of abstraction.
Before the process of retrieval begins all cases that have no potential are eliminated
through preprocessing.

4.1 Preprocessing

Before a match between a case and the problem can be attempted, all cases that do not
satisfy the global attributes of the problem are eliminated from further consideration.
The global attributes are obtained from the Level 1 segment sequences and consist
of the maximum Arc Index, minimum Arc Index, and the number of segments. The
elimination of unsuitable cases is done by traversing a modified version of the k-d tree.

11

6 T T T T T T T

n ”Problem 17

2 L 4
O [T
2 i
4 i
—6 B _— T
86120 2 4 6 810

Level 1:
d.5.4.3.d.4.d.3

Level 2 (partial description):

’ Curve Fragment ‘ Arc Index | Length ‘ Segment Type ‘

1) 38 boundary

1 4 33 internal

1 3 14 boundary
’ 2 ‘ 4 ‘ 156 ‘ boundary ‘
’ 3 \ 3 \ 62 ‘ boundary ‘

Figure 5: Sketches of curve fragments and representation for Problem 1

The k-d tree is a binary tree in which each node represents a subset of the cases and
a partitioning of those cases. The root of the tree represents the entire set of available
cases. Each nonterminal node has two successors, that represent the two subsets of cases
defined by the partitioning. The terminal or leaf nodes represent mutually exclusive
small subsets of cases, which collectively form a partition of the space. Each case has
k global attributes, any one of which can serve as the discriminator for partitioning.
Hence the discriminating key number? can range from 1 to k.

We use a variation of the optimized k-d tree reported in [Friedman et al., 1977] that
minimizes the expected number of cases examined.

e The discriminator at every non-terminal node N is the one with the greatest spread

2In the original k-d tree proposed by Bentley in [Bentley, 1975], the discriminator for each node is
chosen on the basis of its level in the tree; the discriminator for each level is obtained by cycling through
the keys in order, i.e. D = Lmodk + 1, where D is the discriminating key number for level L and the
root node is defined to be at level zero. The partition values are chosen to be random key values.

12

’ Size of Case-base ‘ Cases Eliminated | Percentage of Nodes Visited

100 65 39
200 134 36
300 198 36

Figure 6: Results of preprocessing for Problem 1

in values for the leaves of the sub-tree with root N. The spread is measured by
the variance normalized by the square of the mean. The discriminators we use
are the global attributes described earlier, i.e. the maximum Arc Index, minimum
Arc Index, and the number of segments.

e The partition value for node N is the median value for the discriminator of all the
leaves of the sub-tree with root N.

The results of preprocessing before case retrieval for Problem 1 are presented in
Figure 6. The preprocessor eliminates at least 60 percent of the cases.

4.2 Matching

A match between a problem P and a case C' at Level 1 occurs if the partial segment
sequence of the problem is embedded in the segment sequence of the case. These
embeddings are detected by first constructing a finite state automaton from the partial
segment sequence, and then running the segment sequences through this automaton. If
an accepting state is reached, a match has been found and the case is added to the set
S1 of candidate cases for matching at Level 2.

In order to construct a finite state automaton, the partial segment sequence of the
problem P has to be first converted to a regular expression. The difference between
the partial segment sequence and the regular expression is that the latter has more
information on the possible values for the d’s i.e. don’t cares. Note that since d can be
any possible combination of integers, the positive closures that replace the d’s could in
theory be infinitely long. However, the actual range of the arc indices we have in our
case-base is -10 to 11 inclusive, and so the length of the positive closure is considerably
constrained. Besides, because of the continuity constraints on smooth curves the differ-
ences between adjacent arc indices is seldom very large, and this property can be used
to make the positive closure sets even smaller. If a designer desires to place constraints
on the curvatures in the “gaps”, these constraints can be used to further shorten the
set, of a particular positive closure. Details of this matching algorithm can be found in
[Aho, 1990].

13

Match 1:

.-4.-6.5.4.3.4.3.-10.3.2.5.7.6

g — o,

4
I
4

w — w

.4. .3.
I I
d 4. d. 3.

Match 2:
.4.3.c.2.c.2.3.4.2.3.4
[I I
4.3, d .4.4.3.d

g — o,

Figure 7: Two of the matches at Level 1 for Problem 1

Possible alignments of the segment sequences for two of the matches for Problem 1
are illustrated in Figure 7.

Once a match is found at Level 1, a more detailed match is attempted at Level 2.
Depending on the information in the problem specification, the match algorithm uses
the corresponding information in the case at Level 2 (the length, the coupler and crank
rotation for each arc). The tolerance provided in the problem is also used at this level.

For each case in S7, matching at Level 2 is done using the following procedure. Each
non-null value vy,; for the attributes in each segment s of the problem P is compared to
the value v.; of the same attribute of the corresponding segment in the case C. Assuming
that ¢; is the percent tolerance for the it" attribute, a match for s occurs if

s is an internal segment and vp;.(1 —t;) < ve < vpi.(1 + ;)
or
s is a boundary segment and vp;.(1 — ;) < v

The solution set Sy at the end of matching at Level 2 is then used for matching at
Level 3. For each point pp; in P that belongs to segment spy, find the closest point pc;
in C that belongs to segment sc; where spi has been aligned with s¢; during the match
at Level 1. A match is obtained if, assuming dt; is the threshold distance for the i
problem point, for each pair of pp; and pc;,

distance(ppi, pcj) < dt;

For Problem 1, out of a total of 36 cases that survived the preprocessing, five cases
provided a match at Level 1. At Level 2, four of the cases were eliminated. The

14

remaining case survived the matching at Level 3. The surviving case that is a solution
to the problem has been described earlier as Case 1 in Figure 2.

5 Case Adaptation

Adaptation is necessary only when the differences between the problem and the func-
tional properties of a case exceed the specified tolerances. Adaptation, in our context,
entails making small changes to the structural parameters so that the functional dif-
ferences become within the tolerances. The task of adaptation in general is difficult
because of the non-monotonic relationships that exist between the structural and func-
tional parameters of a linkage. There is no certainty that changing a parameter in one
direction by increasing or decreasing it, will bring about a corresponding change in one
direction (increase or decrease) in any functional feature. This makes it particularly
difficult to qualitatively reason about the functional differences.

In our system, adaptation rules play an important part in evaluating potential can-
didates for a solution. They provide a mapping from functional to structural differences.
In order for adaptation rules to be effective, the functional differences have to be qual-
itative in nature or easily categorizable into groups through abstraction. The inclusion
of tolerances in the problem specification affects adaptation also. The threshold for
functional differences allowed between retrieved cases and the problem specifications
depends on the tolerances. If a larger tolerance is allowed, more cases are retrieved.
Thus in the process of adaptation, the mapping is between larger functional and design
spaces.

All adaptation rules have antecedents that contain qualitative categorizations of the
functional differences between a case and the problem specifications. Also present in
the antecedents are the contexts in which the rules are relevant. The consequents of
these rules cause alterations in structure. These alterations consist of changes in link
lengths or the location of the tracer point on the coupler.

A forward-chaining architecture is used. If more than one rule is applicable in a
situation, a rule is randomly selected and then the rules fire in order of recency. This is
to minimize the chance that a rule undoes what had been accomplished by a previously
fired rule. The search is depth-first with a depth-bound arbitrarily selected to be 15.
Once this bound is reached, the system backtracks and tries alternate paths. There is
also an upper bound on the total number of trials (50). If this bound is exceeded, or
no other rules are applicable, failure is reported.

Let us consider an example of an adaptation rule that is listed in Figure 8. The
purpose of rule Shrink_Curve is to cause a contraction in the coupler curve by altering
the location of the tracer point with respect to the pivot points of the coupler link. The
context for this rule is fit_tube. In order for this rule to fire, the curve has to be closed,

15

Rule Shrink Curve

Antecedents
fit_tube
closed_curve
crossings_absent
(shrinkage_percent < 10%)

Consequents
(couplerPoint_radius := 1.1xcouplerPoint_radius)
(couplerPoint_angle := 1.1xcouplerPoint_angle)

Figure 8: An adaptation rule

there must be no crossings present, and the fraction by which the curve is to be shrunk
is less than 10%. The consequents update the values of the two variables that determine
the location of the tracer point on the coupler link.

In addition to the adaptation rules, we have developed another method for adapt-
ing the retrieved cases to the problem specification, based on algorithmic constraint
satisfaction (Modifier Matrix Method). The Modifier Matrix Method is an algorith-
mic method that transforms a retrieved case to suit the given problem by computing
an approximate mapping between the structural changes and the functional changes of
a four-bar planar linkage. More details on both adaptation methods and a complete
listing of the adaptation rules are given in [Bose, 1992].

6 A complete example

Since retrieval and adaptation are intimately related in our paradigm, we now present
a rather complete example that includes a little of all that has been discussed till now.

The problem specification, shown later in Figure 12 superimposed on the solution
found, includes two curve fragments. The ground pivot locations and the tolerance of
the curve fit are specified, but no angular constraints are provided. Hence, this is what
in linkage design is called a path generation problem. The solution for this problem
will be a four-bar linkage whose fixed link can fit between the specified ground pivot
locations and whose coupler point curve trace includes the curve fragments within the
tolerance limits specified. In other words, the two conditions that are to be satisfied are
fit_pivot for each ground pivot and fit_tube for each curve fragment.

Before case retrieval can commence, the problem specifications are normalized. Nor-
malization entails the three elementary transformations of scaling, translation, and ro-

16

Level 1:
d.9.-9.-10.d.7.6.5

Level 2 (partial description):

’ Curve Fragment \ Arc Index | Length \ Segment Type

1 9 26 boundary
1 -9 79 internal
1 -10 23 boundary
2 7 10 boundary
2 6 17 internal
2) 20 boundary

Figure 9: Representation for Problem 2

tation on the basis of the ground pivot locations. This automatically takes care of the
fit_pivot conditions. In the next step, the curve fragments are segmented and the multi-
level representation is constructed. A summary of the segment information is given in
Figure 9. Features of the regular expression obtained from the Level 1 representation
are used to eliminate unsuitable cases from the case-base during preprocessing.

One of the cases that is retrieved is shown in Figure 10. Only the information that
is relevant to this problem is presented. Each segment also shows the number of points
that are included within it. Needless to say, every case has additional information that
is organized as described earlier in Section 2.

A finite state automaton is constructed from the regular expression of the problem
fragments®. When the segment sequence of the candidate case is run through the
automaton, as shown in Figure 11, an accepting state is reached twice. This implies
that there are two possible alignments between the regular expression and the segment
sequence. These are also shown in Figure 11. Each of these alignments is now inspected
in closer detail.

For both alignments, the length indices of the interior segments derived from the
curve fragments of the problem are compared to the corresponding length indices of the
case segments. In the case of the first alignment, the length indices are close enough,
but for the second alignment there is a large difference between the length indices of
one interior segment (in fragment 2) and so the second alignment is rejected. The case,
along with the first alignment, has then to be evaluated to see if it can be adapted to

3The d’s are for “don’t cares”, i.e. any integer(s) is (are) acceptable at that position in the sequence.

17

Level 1:
9.-9.-10.9.8.7.6.5.6.7.8.7.6.5.6.7.8

Level 2 (partial description):

Arc Index | Length of Arc Segment ‘ Number of Points ‘

9 26 3
-9 86
24
20
16
12
16
19
18
64
163
82
33
14
34
18
22

1
—_
o

o] w| w|w|w|o

—_
w

NSO OJ[00|J| OO O | 00| ©

W W U x| O ©

Level 3 (only the structural information is shown here):

’ Linkage Dimensions
Length of Crank Link 4.0
Length of Coupler Link 6.5
Length of Follower Link 10.0
Length of Fixed Link 10.0
Coupler Point Radius 6.0
Coupler Point Angle 45°

Figure 10: Description of a candidate case for Problem 2

18

First Alignment : 9.-9.-10. 4 .7.6.5 d.
o Ll
Segment Sequence : 9.-9.-10.9.8.7.6.5.6.7.8.7.6.5.6.7.8
o L1
Second Alignment : 9.-9.-10 d .7.6.5. d.

The accepting state (10) is reached twice corresponding to the two
alignments shown above.

Figure 11: The Finite State Automaton constructed from the regular expression of the
problem and the two alignments of the case segment sequence that match the regular
expression

solve the problem.

For the first alignment, the condition fit_tube is true for fragment 2, but not for
fragment 1. The actual fit is illustrated in Figure 12. A displacement vector metric
is used to compute the approximate distance and the direction the relevant portion of
the case curve needs to be moved in to fit into the tube for fragment 1. The value,
4 %, and the direction, inwards, causes the system to accept the case because of the
existence of rule Shrink_Curve (shown earlier in Figure 8). The rule Shrink_Curve is
activated, and, as a result, the location of the tracer point with respect to the coupler is
changed. Before accepting the solution, the modified coupler point curve is computed
and checked against the problem specifications. The new curve fits in the “tubes” and
fit_tube is now true for both fragments, as illustrated in Figure 13. Hence, one solution
has been found.

19

Figure 12: The coupler curve from the retrieved case compared to the curve fragments
of the problem

7 Experimental Results

The methods we described for storing cases, retrieving the relevant ones, and adapting
them based on their differences with the problem at hand, were tested through extensive
experimentation.

For our experiments, we randomly generated 300 cases of crank-rocker mechanisms,
which are four-bar linkages where the crank rotates 360° but the follower link only
oscillates. In [Hrones and Nelson, 1951] approximatively 7,000 such mechanisms are
listed. The main reason for random generation is that we want to cover the search
space without introducing any bias in the selection of the mechanisms.

The distribution of the segment indices for all the cases we have generated is shown
in Figure 14. The distribution has two peaks, the largest corresponding to a positive
Arc Index, the smallest to a negative Arc Index. The fact that the frequencies for the
positive arc indices are much higher than the corresponding negative indices, indicates
that the coupler curves are predominantly concave. With a few simplifying assumptions,
we have estimated the theoretical bounds for the magnitude of the arc indices to be 1
and (~)45. As can be seen from the distribution, the upper bound is never achieved,
indicating that the coupler curve never approaches the limiting case of a straight line.

The problems used to test the ability of the system to retrieve and adapt cases were

20

Figure 13: The coupler curve from the adapted case compared to the curve fragments
of the problem

created by selecting specific cases from the case-base (called reference cases). Out of
the case-base of 300 cases, we selected 30 reference cases with “interesting” features
while keeping in mind that all features were represented. Some features that were
considered were crossings, cusps, “balloon curves”, “banana curves”, “pear curves”,
etc. The coupler curves of the 30 reference cases we used are shown in [Bose, 1992].

Once a reference case was selected, five problems were generated from each refer-
ence case by making specific alterations to a specific part of the coupler curve. These
alterations were one or more of the following types: deletion, translation, rotation.

For purposes of alteration, the coupler curve was divided into five parts, and alter-
ations were done to one or more parts, depending on the number of Non-Empty Sectors
(Ns4) in the problem curve. Since each case is stored at Level 3 as a list of 50 points, we
found it convenient to split it into five sectors with ten points in each sector. We always
start from the lower right portion of the curve because that is the general area where the
curve begins to be traced as the crank angle increases from zero in the counterclockwise
direction.

As we already mentioned, each problem was derived from a reference case. We
generated problems in this manner to ensure that the problems were not so different
from the reference cases to make it impossible to retrieve any useful case. The search
space is very large (more than 7,000 mechanisms) but only a small portion of it (300

21

200 v T \

180 ” Afe-Index Distribution” N
160 - I
140 - I
120 I
100 I
80 & & N
60 B

20 + R |
-10 -5 0 5 10 15

Figure 14: Frequency distribution of the arc indices for a case-base size of 300. In the
case-base the number of crossings is 6, the number of cusps is 16

cases) is in the case-base. Arbitrarily sketching curves would not provide a reliable
indicator to the efficacy of our methods.

The experiments we describe here were designed to study the efficacy of our methods
for a different number of Non-Empty Sectors (Ns4) in the problem curve. For each
problem derived from a reference case, Ny is varied from one to five. So, we considered
five instances of each problem with a number of non-empty sectors ranging from Ny,
= 1 to Nsy = 5. The first instance of the problem has a fragment in the SouthEast
sector, and for each increment in Ny for the problem, we add another fragment as we
move through the sectors in the counterclockwise direction.

The design space in this case is real-valued both along the function and structure
dimensions, and in order for our paradigm to be effective, each case along with its
adaptation strategies, should cover as large of the real-valued space around it as possible.
So, in effect, our testing is geared towards finding out the efficacy of our retrieval and
adaptation methods for problems with solutions in the space around a reference case,
and also the extent of this space.

The system is implemented in C++ and CLP(R) on a Unix workstation.

The average number of cases eliminated by preprocessing for the five values of Ny
are plotted in Figure 15.

22

208

206 - *
204 .
202 & .
200 - & -

198 - *

196 | | |

Figure 15: The average number of cases eliminated by preprocessing is shown as a
function of the number of Non-Empty Sectors Ngi in the problem curve. The number
increases with the number of Non-Empty Sectors Ny .

The results of Level 1 retrieval indicate the number of cases retrieved at level 1
for each instance of the problem. Problems where the arc-index ranges lie close to the
“twin-peaks” of the arc-index distribution of the case-base (Figure 14) cause a greater
number of cases to be retrieved.

Level 2 retrieval results indicate that the cases that survive have parts of their case
curves with the same approximate shape as those of the problem curve. Hence there is
a big drop in the number of cases retrieved at Level 2 for each instance of the problem.
Cases with similar shapes are retrieved even when the location of the case curves in
relation to the ground pivots are quite different. This is because the representation and
retrieval until Level 2 is based on the shape of the curves and not their locations along
the coordinate axes.

The number of cases retrieved at Level 3 indicate that, in most instances, a case
is uniquely identified by the time Ng; = 3. This is because the curves of the cases in
the case-base are unique and different from each other, if not in shape then at least in
location with respect to the ground pivots, and by the time Ny > 3, a case is, in most
instances, uniquely identified.

The results of retrieval at the three levels are plotted in Figure 16. As expected,
an increase in Ng4 causes a smaller number of cases to be retrieved at all three levels,

23

18 \

16 - "Level 17 &

"Level 27 +

14 [<> 77Level 377 D
12 + & |
10 - © .
64: -
L N |
2[1 + B
; ; g 7
1 2 3 5

Figure 16: Number of cases retrieved at the 3 levels for different numbers of Non-Empty
Sectors N .

though the effect becomes less pronounced at the later levels.

Once retrieval at Level 3 is complete, we use adaptation rules to change linkage
dimensions to tailor the retrieved case to the specifications of the problem curve for
each problem.

The results for 30 problems with different numbers of non-empty sectors are pre-
sented in Figure 17.

As it can be seen from the results, some problems were harder to solve than others,
because of the alterations we performed on the coupler curves of the reference cases to
construct the problems. For example, if a crossing was present in the reference case, it
added complexity to the retrieval and adaptation, particularly if the crossing was left
out of the problem.

8 Computational Complexity

The segmenting algorithms for both the problems and cases have a space and time
complexity of O(N,.) where N, is the number of points used to define the attributed
coupler curve. The preprocessing algorithm is based on the optimized k-d tree described
in [Friedman et al., 1977]. The number of nodes in the tree, assuming a case-base of N
cases, is 2N —1 (N terminal leaves + N — 1 nonterminal nodes). Hence the tree requires

24

Solution found for Ng4=
Problem Number i ‘ 5 ‘ 3 ‘ 1 ‘ 7
1 yes | yes | yes | yes | yes
2 yes | yes | no | no | no
3 yes | yes | no | no | no
4 yes | yes | yes | yes | no
5 yes | yes | no | no | no
6 yes | no | no | no | no
7 yes | yes | yes | yes | yes
8 yes | yes | yes | yes | yes
9 yes | yes | yes | yes | yes
10 yes | yes | no | no | no
11 yes | yes | yes | no | no
12 yes | yes | yes | yes | yes
13 yes | yes | yes | yes | yes
14 yes | yes | no | no | no
15 yes | yes | no | no | no
16 yes | yes | yes | yes | yes
17 yes | yes | no | no | no
18 yes | yes | yes | no | no
19 yes | yes | yes | yes | yes
20 yes | yes | yes | no | no
21 no | no | no | no | no
22 yes | yes | yes | yes | no
23 yes | yes | no | no | no
24 yes | yes | yes | yes | no
25 yes | yes | yes | no | no
26 yes | no | no | no | no
27 yes | yes | yes | yes | no
28 yes | yes | yes | no | no
29 yes | yes | yes | yes | no
30 yes | yes | yes | no | no
| >_yes |29 [2719 | 13] 8 |

Figure 17: Number of problems solved (out of 30) for different Ny .

25

O(N) space. Since all k attributes of all cases have to be inspected at each level of the
tree, and the tree has depth logN, the construction of the tree requires O(kNlogN)
time. The expected search time to find the promising cases is O(logN).

We use a deterministic finite automaton for the matching at Level 1. The algorithm
we use is described in [Adelson, 1989]. This algorithm runs in O(2™ + n) time and
O(2™) space where m is the number of segments in the problem and n is the number
of segments in a case. The matching at Level 2 runs is O(m) time with constant space.
At Level 3 where a detailed match occurs, the time is O(Ng.).

9 Related Work

A large amount of work has been done in the design and simulation of linkages and
mechanisms using ideas and methods from Artificial Intelligence [Gero, 1992]. Among
the approaches most used are geometric constraints [Kramer, 1992], qualitative methods
[Faltings, 1990, Weld and de Kleer, 1990], expert systems [Bertini, 1993], or mixed
methods [Joskowicz and Sacks, 1991].

In the case of four-bar planar linkages, Hoeltzel and Chieng [Hoeltzel and Chieng,
1989] developed a system called Pattern Matching Synthesis (PMS). From a set of
parametrically generated coupler curves, their system extracts a set of clusters, that are
then used as patterns for training a neural network. The neural network can retrieve the
entire curve (with the associated linkage dimensions) that best matches a given curve.
This method cannot deal with incomplete information. Hoskins and Kramer [Hoskins
and Kramer, 1993] describe how to construct and train a neural network to compute the
parameters of the four-bar linkage that best approximates a user-specified curve. The
resulting design is then tuned using optimization techniques. Also this method requires
a completely specified curve and so it won’t work with partial problem specifications.

Kota et al.[Kota et al., 1988a] describe a system called MINN-DWELL for interactive
kinematic synthesis and analysis of multi-link dwell mechanisms. The designer selects
a linkage from an atlas of four-bar linkages containing approximatively 350 different
linkages. The system then derives the design parameters and computes the four-bar
linkage parameters. An expert system that helps with the initial selection of models
for dwell linkages is reported in [Kota et al., 1988b]. Both systems operate at a more
abstract level than ours and do not allow the user to specify geometrically the desired
coupler curve.

Our approach to four-bar linkage design uses Case-Based Design, a relatively new
computational paradigm. Case-Based Design has been used for other synthesis applica-
tions, such as the design of faucets in the system CADET [Navinchandra et al., 1991].
CADET focuses on functional behavior and qualitative modeling, and does not deal
with geometric aspects like we do. As we discussed earlier in the paper, designers often

26

use past cases to help them in their design, and so case-based design appears an obvious
choice. Our contribution has been in extending the applicability of case-based methods
to problems that are characterized predominantly by their geometry.

Most work in segmenting and indexing curve segments has been performed in Com-
puter Vision [Shapiro and Haralick, 1981]. String matching algorithms are sometimes
used to detect matches between a line drawing and a template. Fourier transformations
have also been used in matching line drawings. Reference [Dougherty and Giardina,
1988] contains an overview of these techniques. Our matching method allows for incom-
plete information (the don’t care elements in the string) and allows matching strings of
different length.

Our method for representing the coupler curve is similar to geometric hashing meth-
ods [Lamdan et al., 1990, Lamdan and Wolfson, 1988]. Geometric hashing relies on
computing invariant geometric features for the models and storing them in a hash-
table. Given an object to be recognized, its features are matched against the model
features at the appropriate place in the hash-table. A voting scheme is used to select
the best candidates for full matching. Curve geometric hashing [Wolfson, 1990] uses
shape signatures, such as the curvature of a curve, to index curve segments. A curve is
then converted into a shape signature string. String matching algorithms are used to
find the longest matching subcurve that appears in two curves.

Instead of a hash-table, we use the hierarchical representation we described earlier.
In addition to the geometric specification of the coupler curve there are other attributes
needed to specify a four-bar linkage. These other attributes, such as the location of the
ground pivots, are not used for retrieval at the Level 1 but start playing an important role
at Level 2. The arc indexes we use to represent curves are different from the curvature
representation commonly used in geometric hashing. Our representation reduces the
curvature space and so facilitates matching during case retrieval.

Our representation is particularly appropriate for hierarchical matching. Cases that
survive the first level match are then matched more accurately at the second level,
and finally at the third level. Reducing the number of candidates as soon as possible
without eliminating any of the correct cases decreases the overall processing time. We
use optimized k-d trees for preprocessing, which reduces retrieval time. Considering that
the set of cases could be extremely large, savings in retrieval time are very important
for the success of any case-based approach. We also allow the user to specify different
tolerances for different points on the coupler curve. Tolerances are used in the matching
process, and by having the user specifying what is acceptable we give him/her finer
control over the retrieval and modification of similar cases.

27

10 Concluding remarks

We have presented a method to store and retrieve design artifacts based on functional
features that can be defined in terms of planar curves. Retrieval is inexact and can
be done using incomplete specifications. This method can be extended to cover other
domains where cases can be described in terms of planar curves, with a few changes in
the representation and abstraction schemes to suit the particular domain under consid-
eration. Experimental validation studies show the viability of our methods.

Since no system is perfect, we have found a few weaknesses in our method of repre-
sentation and retrieval. The most obvious one is the effect of non-smooth descriptions
of the problem curve on the derived partial segment sequence. Any unnecessary un-
dulations in the sketches will yield additional members in the segment sequence that
could prevent matches with cases. One way to overcome this problem is to “smooth”
the partial segment sequence using a smoothness operator like the averaging neighbors
used in [Wolfson, 1990].

Another problem has its roots in the implicit assumption that a designer, when
sketching the problem curves will specify fragments that are “complete” in the sense
that a solution could not possibly have just one segment that would match with part of
one fragment and part of another. This assumption manifests itself in matching using
regular expressions, where the same input string member (a segment in a case) cannot
match with more than one member in the pattern (the problem partial sequence). This
assumption can be eliminated by using algorithms for string “warping” where multiple
matches between one member of one string and two or more adjacent members of the
other string are possible, at a greater computational expense.

There is room for expanding the scope of this work also. In the adaptation of
the cases retrieved, we have concentrated on path problems, but all our representation
schemes and matching algorithms are general enough to handle motion and function
problems. The rule-base can be extended to cover these problems. In generating the
test cases, we have limited our scope to crank-rocker mechanisms and did not consider
more than one branch of a linkage, but our retrieval and adaptation methods are general
enough to handle other mechanisms and multiple branches of a linkage. Attention could
also be paid to higher order linkages, especially the six and eight-bar linkages.

References

[Adelson, 1989] B. Adelson. Cognitive research: Uncovering how designers design; cog-
nitive modeling: Explaining and predicting how designers design. Research in Engi-
neering Design, 1(1):35-42, Jan-Mar 1989.

28

[Aho, 1990] A.V. Aho. Algorithms for finding patterns in strings. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science - Vol A, chapter 5, pages 255-300.
Elsevier Science Publishers, 1990.

[Bentley, 1975] J.L. Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509-517, 1975.

[Bertini, 1993] Leonardo Bertini. A prototype expert system for embodiment design of
mechanisms and articulated systems. A[in Engineering, 8:57-65, 1993.

[Bose et al., 1991] A. Bose, A. Esterline, D.R. Riley, and A.G. Erdman. Case-based
preliminary linkage design. In Proceedings of The Design Productivity Conference,
Hawazi, 1991.

[Bose, 1992] A. Bose. Case-based Design of Planar Linkages. PhD thesis, University of
Minnesota, November 1992.

[Dougherty and Giardina, 1988] E.R. Dougherty and C.R. Giardina. Mathematical
Methods for Artificial Intelligence and Autonomous Systems. Prentice-Hall, Inc, 1988.

[Erdman and Sandor, 1984] A.G. Erdman and G.N. Sandor. Mechanism Design: Anal-
ysis and Synthesis, Vol 1. Prentice-Hall, Inc, 1984.

[Faltings, 1990] Boi Faltings. Qualitative kinematics in mechanisms. Artificial Intelli-
gence, 44:89-119, 1990.

[Friedman et al., 1977] J.H. Friedman, J.L. Bentley, and R.A. Finkel. An algorithm for
finding best matches in logarithmic expected time. ACM Transactions on Mathemat-
ical Software, 3(3):209-226, 1977.

[Gero, 1990] J.S. Gero. Design prototypes: A knowledge representation schema for
design. Al Magazine, 11(4), 1990.

[Gero, 1992] J.S. Gero, editor. Artificial Intelligence in Design. Kluwer Academic Publ,
1992.

[Hoeltzel and Chieng, 1989] D.A. Hoeltzel and W-H Chieng. Pattern matching synthe-
sis as an automated approach to mechanism design. ASME J. Mechanisms, Trans-
missions and Automation in Design, 1989.

[Hopcroft and Ullman, 1979] J.E. Hopcroft and J.D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley Inc, 1979.

29

[Hoskins and Kramer, 1993] J.C. Hoskins and G. A. Kramer. Synthesis of mechanical
linkages using artificial neural networks and optimization. In Proceedings of 1993
IEEE International Conference on Neural Networks (ICNN ’93), volume 2, pages
822J-822N, 1993.

[Hrones and Nelson, 1951] J.A. Hrones and G.J. Nelson. Analysis of the Four-Bar link-
age: Its Application to the Synthesis of Mechanisms. The MIT Press, 1951.

[Joskowicz and Sacks, 1991] L. Joskowicz and E. P. Sacks. Computational kinematics.
Artificial Intelligence, 51:381-416, 1991.

[Kota et al., 1988a] S. Kota, A.G. Erdman, and D.R. Riley. MINN-DWELL - Com-
puter Aided Design and analysis of linkage-type dwell mechanisms. Mechanisms and
Machine Theory, 4(1):1-8, 1988.

[Kota et al., 1988b] S. Kota, A.G. Erdman, D.R. Riley, A. Esterline, and J.R. Slagle. A
network based expert system for intelligent design of mechanisms. Al in Engineering
Design and Manufacturing, 2(1):17-32, 1988.

[Kramer, 1992] G. A. Kramer. A geometric constraint engine. Artificial Intelligence,
58:327-360, 1992.

[Lamdan and Wolfson, 1988] Y. Lamdan and H.J. Wolfson. Geometric hashing: a gen-
eral and efficient model-based recognition scheme. In Second International Conference
on Computer Vision, pages 238249, 1988.

[Lamdan et al., 1990] Y. Lamdan, J.T. Schwartz, and H.J. Wolfson. Affine invariant
model-based object recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 6(5):578-598, 1990.

[Maher, 1990] M. L. Maher. Process models for design synthesis. AI Magazine,
11(4):49-58, 1990.

[Navinchandra et al., 1991] D. Navinchandra, K. Sycara, and S. Narasimhan. A trans-
formational approach to case-based synthesis. AT EDAM, 5(1):31-45, 1991.

[Riesbeck and Schank, 1989] C.K. Riesbeck and R.C. Schank. Inside Case-based Rea-
soning. Lawrence Erlbaum Associates, Publishers, 1989.

[Shapiro and Haralick, 1981] L.G. Shapiro and R.M. Haralick. Structural descriptions
and inexact matching. IEEFE Transactions on Pattern Analysis and Machine Intelli-
gence, 3(5):504-519, 1981.

30

[Sycara and Navinchandra, 1989] K.P. Sycara and D. Navinchandra. Integrating case-
based reasoning and qualitative reasoning in engineering design. In J. Gero, editor,
Al in Engineering Design. Computational Mechanics Publ., 1989.

[Weld and de Kleer, 1990] D. Weld and J. de Kleer, editors. Readings in Qualitative
Reasoning about Physical Systems. Morgan Kaufman, 1990.

[Wolfson, 1990] Haim J. Wolfson. On curve matching. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(5):483-489, 1990.

31

