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Abstract 

 

This paper presents the results of using a novel Negative Feedback Artificial 

Neural Network for extraction of models of the thermal structure of 

oceanographic water masses and to forecast time series in real time. The results 

obtained using this model are compared with those obtained using a Linear 

Regression and an ARIMA model. The paper presents the Negative Feedback 

Artificial Neural Network, shows how it extracts the model behind the data set 

and discuses the Artificial Neural Network’s forecasting abilities.  
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* At the time the research presented in in this paper was performed this author was at the Department of Computing 

and Information Systems of the University of Paisley, UK. 

1. Oceanographic Systems. 

Every system, even the most complicated ones, such as the oceans of the world, 

can be modelled if its behaviour is fully known and understood1. However the 

current knowledge of the ocean structure is still too weak to create a full model 

of its behaviour. The goal of the experiments presented here is to create an 

Artificial Neural Network (ANN) capable of modelling a Thermal Time Series 

and of forecasting its future values.  

 

Ocean water masses are extremely heterogeneous. Each water mass has 

certain properties that differentiate it from the others, and the convergence area 

between different water masses can be very noisy. For example the Arctic and 

Antarctic convergence zones are extremely heterogeneous and very variable. 

These water masses have their own general characteristic that can be described 

and simulated. This has been previously shown with a Neural Network2 that 

produces good results when trained and tested with samples taken from the 

same province but which does not forecast reliably when tested with data from 

a different province. This Artificial Intelligence (AI) approach to the problem of 

describing the ocean environment scene potentially offers advantages over a 

conventional algorithmic data processing approach, as it is able to deal with 

uncertain, incomplete and even inconsistent data. This capability appears 

particularly useful for the problem of describing and predicting the ocean 

environment.  
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This paper focuses on a time series (see Figure 1) recorded over almost 15000 

km, in 1995, from a vessel going from the UK (latitude: 50.48, longitude: -1.25),  

to the  Falkland  Islands  (latitude:  -51.94,  longitude:  -58.19). The vessel 

crossed a number of water masses and well known fronts (See Table 1).  

 

This time series exhibit high multicollinearity and heteroscedastidity3 and 

therefore requires a model capable of adapting itself to the spatial and temporal 

changes in the water masses. Figure 1 shows how much the temperature 

changes from the UK to the Falkland Islands. Fronts (boundaries between 

different water masses) are easy to spot in the plot but difficult to forecast in 

real time as will be shown in the following sections. The difficulty in forecasting 

the shape of a front and in general the thermal structure of any water mass is 

due to the fact that the water temperature depends on many factors such as 

atmospheric weather, sea floor geography, currents, seasonal variations, latitude, 

longitude, depth, etc. In addition the thermal structure of a front can be very 

different from one year to the next as shown in Figure 2. Changes are always 

within known limits, but these limits can be very wide (hundreds of kilometres 

and several degrees Celsius in temperature). 

 

2. Time Series Prediction. 

Time series4 prediction is based on the assumption that an observable feature of 

a system is determined by an underlying deterministic system. If the evolution of 

the system can be described by a set of n ordinary differential equations in n 

variables, there exists a unique trajectory through every point a in Rn. In order to 
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make a prediction it is desirable to know both the underlying rules of the 

deterministic system and the current state of the system. For example, consider 

a system in which we can observe a single scalar quantity, xt, which is the value 

of x at time t and which is determined by the state, at, of the system at time t. 

Now if the underlying system is based on the n dimensional set of differential 

equations referred to above, then the state, at+1, of the system at time t+1 can be 

described by the set of equations at+1=F(at) , while the observable at time t+1 is 

given by xt+1 = g(at+1) = g(F(at)). It can be shown that there exists a value d 

such that the vector x = (x1,x2,…,xd)T, consisting of d consecutive observations 

of x, fully characterises the system. i.e. the evolution of the system may be 

specified absolutely using the function F() or equally by using the function H() 

where xt+1 =H(xt) =H(xt,xt-1,…,xt-d+1). Therefore merely by finding a sufficiently 

long set of consecutive observations of x (d is known as the embedding 

dimension of the system) a complete specification of the future values of the 

future observations of the system may be obtained. It is well known, of course, 

that, for non-linear systems, the underlying dynamics are often such that there 

will be divergence of trajectories from nearby initial conditions. Thus, since it is 

not possible to measure observables to infinite precision, such systems may only 

be predicted a finite length into the future.  

 

This paper presents a novel ANN method, and an application of  this method, to 

find the embedding function H() for the data set presented in the previous 

section. 
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3. The Finite Impulse Response Hebbian Model. 

The architecture of the ANN5 used for time series prediction, in this experiment, 

is shown in Figure 3. Input data is fed in from the left of the diagram and in 

successive time steps is passed onto the further neurons as shown. At time t, 

y t f xi i t( ) ( )= , for 1≤ i ≤ n, where n is the number of inputs to the network and 

the actual values of the inputs are a function of the observed time series. 

 

The feedback lines signify trainable connections; there are no self connections 

i.e. from a set of inputs to the equivalent y-neuron. The equations governing the 

activation transfer and learning in the network are given by 

y t x w xi i ijk
k

d

j j i

m

jk( )
,

= −
== ≠

∑∑0
11

 

where x jk  is the value of the jth input at time (t-k), and wijk  is the weight from 

the ith neuron to this input.  The parameter d measures the length of the 

embedding dimension and m is the number of neurons in parallel in each 

embedded layer. 

 

Learning is achieved by simple Hebbian learning with momentum: 

 

∆ ∆w t M y x M w tijk i jk ijk( ) ( ) ( ) ( )= + − −η 1 1  

 

 where η is a learning rate which may be decreased during the course of the 

simulation, and M is a parameter which determines the magnitude of the 

momentum. The negative feedback in the network ensures that the network 
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does not suffer from the usual Hebbian problem of weights growing without 

bound. Now since the expected value of ∆wijk = 0  only when yi  and x jk  are 

decorrelated, yi  and x j0  are consecutively decorrelated and then yi  and x j1  

etc. (similarly with respect to the time-delayed values of the other inputs). At 

convergence an approximation to independence exists between the neuron’s 

outputs and the input data stream. To extract the value of the embedding 

function, H(), from the network’s weights it is required to create a basis of the 

function space using predefined f() functions. Several experiments have been 

done using polynomials and sinusoidal functions. The best results have been 

found using a function of the type:  

 

y t xt1( ) =  and  

yn t n xt( ) sin(( ) * )= − 1  ∀ n > 1 

 

So 

y t x data t1 10( ) ( )= = and 

yn t xn n data t( ) sin(( ) * ( ))= = − 1 ∀ n > 1  

 

Thus x k data t k k1 = − ∀( ),  and xnk n data t k k n= − − ∀ ∀ >sin(( ) * ( )),1 1and  

 

We have previously described this network as a Finite Impulse Response (FIR) 

network, in which each neuron sees a weighted sum of the inputs but this is not 

fed back to the other neurons. 
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4. Application of the FIR model to the Oceanographic Data Set. 

The aim of this experiment is to extract a model of the structure of the thermal 

data set plotted in Figure 1. A window of 500km was used to train the NN and 

then used to forecast the temperature at 5km, 10km, 15km and 20km ahead.  

 

This window was moved from the beginning of the data set to the end in 2 km 

steps. Every time that the window was moved, the NN was retrained and the 

forecast performed. The NN weights were randomly initialised, with a value 

between 0.01 and -0.01 prior to training. 

 

Once the NN was trained for a sufficient number of iterations of the 500 km 

data set, the value of the temperature 5 kilometres ahead was forecast and this 

value was fed back and used to forecast the value of the temperature 10 km 

ahead, and so on up to 20 km ahead. Initially a NN with 4 layers of embedding 

(d=4) and 4 neurons in parallel (m=4) was used. The value of the learning 

constant was 0.01 and the momentum value was 0.5. The NN was trained for 

1000 iteration of the 500km data set or until the average error in the training was 

smaller than 0.05. The errors or residuals of the forecasting can be seen in 

Figure 5(a, b, c and d). Figure 4 shows that the values of the weights, wijk, 

stabilise after the ANN has been trained for 1900 kilometres and then the ANN 
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does not seem to response to changes until the Falkland Islands Front (-48,-56) 

is reached.  

 

Since the aim of this experiment is to extract a general model of the whole data 

set, it was crucial to ensure that the network did not over-learn any particular 

section of data and thus memorise the local characteristics of the data in the 

training set. As can be seen from Figure 4, the absolute value of the means of 

w11 (1.95), w12 (1.04), w21 (0.40) and w22 (0.54) are much higher than the 

absolute value of the other weights which are always below 0.1 except for w14 

and w32, whose means are 0.21 and 0.20. From these results it would be easy to 

conclude that the data set presented in Figure 1 can be modelled by a polynomial 

based on the functions y t data t1 ( ) ( )=  and y t data t1 ( ) sin( ( ))=  for the two first levels 

of embedding, but if only these functions are used the error of the forecast (for 5 

km) increases by a factor of 2.5.  Data presented in Figure 1 can be modelling 

by this ANN. Comparing Figures 5(a to d) with Figure 1, it is observed that the 

higher errors in the forecast are exactly in areas where the temperature changes 

more.  So the error in the forecast is directly related to the magnitude of the 

change in temperature.  

 

A second FIR network has been reviewed for comparison purposes. In this case 

a NN with 8 embedded layers (d=8) and 8 neurons in parallel per layer (m=8) 

was used. Again the learning constant was 0.01 and the momentum was 0.5. 

Figure 6 shows the evolution on the weights, and the errors in the forecast are 

shown in Figure 7(a to d). The training time was longer (2000 iterations of the 
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500 km training vector or until the average error in the training was smaller than 

0.02). Figure 6 shows how the ANN responds to all the fronts by adjusting its 

weights in frontal areas and stabilising them in areas where the structure of the 

water maintain its properties. Looking at the changes in the weights it is possible 

to determine the limits of the water masses. Fronts between water masses are 

identifiable by changes in the weights (compare Figure 1 and Figure 6). 

 

In this case, as can be seen by comparing Figure 7(a to d) and Figure 5(a to d), 

both the error in the forecasting and its Standard Deviation are higher for the 

8*8 ANN than for the 4*4 ANN. This increment in the error may suggest that 

increasing the number of neurons in the ANN does not improve its performance, 

but when the forecast is analysed on a case by case basis from a qualitative 

point of view, it can be observed that the 8*8 ANN reacts to changes before the 

4*4 ANN. It reacts between 1 and 2 km before the 4*4 ANN to major changes 

in the temperature; in other words, the 8*8 ANN gives warning of a change in 

the behaviour of the water mass before the 4*4 ANN. This reaction has the 

disadvantage that the 8*8 ANN overreacts to changes and misleads the 

forecasting. This is an instance of the well known bias-variance trade off6. If the 

network has too many weights, it will tend to model the noise as well as the 

underlying structure of the data set. This increases the variance of the errors 

from such a network. If it has too few weights, it will not be powerful enough to 

model the structure of the data set. This increases the errors and the forecast 

will be perceived to have a bias. 
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 So even though the averaged error in the forecasting increases, the ANN 

improves its ability to predict major changes. Thus this 8*8 ANN can 

complement the 4*4 ANN because the first performs better in areas with big 

changes in the water temperature, where the second gives the higher errors in 

the forecast. With the 8*8 ANN the bigger errors occur after a big change in 

the temperature has been forecast, because it over reacts to these changes due 

to the excess of  neurons. 

 

5. Linear Regression Forecasting. 

Linear Regression is a method that can be used for forecasting7. In this 

particular case it is only used as a means of comparing its performance with the 

results obtained using the FIR model. Surprisingly, no method has been 

developed for forecasting this type of data, except the ORKA system8. The 

ORKA system is based on a Linear Regression Algorithm for forecasting up to 

5 km ahead of an ongoing submarine. Since results of this system have not been 

published, it was decided to use a Linear Regression for comparison.  

 

In this experiment a prediction of the value of the temperature x at point y can 

be obtained using the vector of temperatures (dependent variable) recorded 

between y-1 and y-n (independent variable), where n-1 is the number of 

kilometres of temperature used to carry out the regression.  

 

The equation used for the forecast is y=a+bx, where: 

a Y bX= −  
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and: 

b
n xy x y

n x x
=

∑ − ∑ − ∑

−∑ ∑

( ) ( )

( )2 2  

This method has been used to calculate the value of the temperature at 5, 10, 15 

and 20km. In each cases, the optimum dimension for the vector used to carry 

out the regression has been chosen empirically. In this case, the optimum 

number of temperature values and distance are those that give the smallest error 

in the forecasting. Table 2 shows the results obtained with the Linear 

Regression: 

 

As is shown in Figure 8(a, b, c and d) the absolute value of the error of the 

forecast is higher using the Linear Regression than the ANN. Figure 9 shows 

how the Linear Regression tends to react to changes a few km after the real 

change occurs.  

 

The error in the forecast of the Linear Regression is also smother than the one 

obtained with the ANNs because this is a much more conservative method. The 

changes in the absolute value of the error obtained with the Linear Regression 

are very smooth, therefore even though the average value of the errors is higher 

than those obtained with the FIR ANN, the Standard Deviation of the error is 

less than that of the FIR methods when forecasting at 10 and 15 km.  

 
 
6. ARIMA model. 
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Modeling and forecasting involve knowledge about the mathematical model of 

the processes. The ARIMA methodology was developed by Box and Jenkins9 

and it allows the modelling and forecasting of complex data sets. It has gained 

enormous popularity in many areas and research practice10 confirms its power 

and flexibility. 

 

To find the ARIMA parameters a stationary data set is required as input, the 

data set presented in Figure 1 needs to be differentiated in order to obtain a 

stationary data set. The average forecasting errors and the standard error of the 

forecast using the ARIMA(1,1,0) model are shown in Table 3. The shape of the 

evolution of the error is very similar to the one obtained with the linear 

regression.  

 

The high herocedasticity and multicolinearity of the data makes very difficult to 

obtain an accurate global statistical forecasting system even using ARIMA 

models.  

 

7. Conclusions 

The FIR model can be used (i) for modelling this system, (ii) as a method to 

forecast with reasonable accuracy (FIR 4*4) and (iii) for detecting changes 

accurately (FIR 8*8), in the behaviour of the thermal structure of the data set 

shown in Figure 1. Each ANN complements each other; they both forecast 

better than the method of Linear Regression. The FIR ANN is capable of  
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adapting its weights to the spatial and temporal variations of the continuous time 

series presented to it. 

 

The FIR ANN are capable of accurately forecasting whether the temperature 

of the water 5 km ahead of the vessel is going to ascend or descend more than 

90% of the times for the time series presented in Figure 1. This percentage is 

reduced with the distance ahead of the forecast, so that when forecasting the 

temperature of the water 20 km ahead the percentage is 65%.  

 

Research is being carried out in order to study if different basis functions 

provide more accurate prediction. Different methods to automate the process of 

defining the optimum number of neurons are also under investigation.    
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