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Abstract

In content-based image retrieval (CBIR), experimental (trial-and-error) query with

relevance feedback is essential for successful retrieval. Unfortunately, the traditional user

interfaces are not suitable for trying different combinations of query examples. This is because

first, these systems assume query examples are always added incrementally. Second, the query

and the result display are done on the same workspace. Once the user removes an image from

the query examples, the image may disappear from the user interface. In addition, it is difficult

to combine the result of different queries.

In this paper, we propose a new interface for Content-based image retrieval named

ImageGrouper. ImageGrouper is a Group-Oriented user interface in that all operations are

done by creating groups of images. This approach has several advantages. First, the users can

interactively compare different combinations of the query examples by dragging and grouping

the images on the workspace (Query-by-Group). Because the query results are displayed on

another pane, the user can quickly review the results and modify the query. Combining

different queries is also easy. Furthermore, the concept of ‘‘Image Groups’’ is also applied for

annotating and organizing many images. The Annotation-by-Groups method relieves the user

of tedious task of annotating textual information on a large number of images. This method

realizes a hierarchical annotation of the images as well as Bulk Annotation. The Organize-by-

Group method lets the users manipulate the image groups as ‘‘Photo Albums’’ to organize the

ARTICLE IN PRESS

*Corresponding author. Tel.: +1-217-244-1089; fax: +1-217-244-8371.

E-mail addresses: nakazato@uiuc.edu (M. Nakazato), l.manola@el.utwente.nl (L. Manola).

1045-926X/03/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/S1045-926X(03)00034-X



images. Finally, the usability of the system is compared with the traditional user interfaces. By

incorporating the lessons from the experiments, the usability of ImageGrouper is further

improved.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Many researchers have proposed systems to search images from large image
databases. These systems can be divided into two types of interactions: Browsing and
Searching. In the image browsing systems, the users look through the entire
collections. In most image browsing systems, the images are clustered in a
hierarchical manner and the user can traverse the hierarchy by zooming and
panning [1–4]. In [4], browsing and searching are integrated so that the user can
switch back and forth between browsing and searching.

Meanwhile, enormous amounts of research have been done for content-based
image retrieval (CBIR) [5–7]. In CBIR systems, the user searches images by visual
similarity, that is, low-level image features such as color [8], texture [9] and structure
[10]. They are automatically extracted from the images and stored in the database.
Then, the system computes the similarity between the images based on these features.

The most popular method of CBIR interaction is Query-by-Examples. In this
method, the users select example images (as relevant or irrelevant) and ask the
system to retrieve visually similar images. In addition, in order to improve the search
further, CBIR systems often employ Relevance Feedback [6,11,12], in which the users
can refine the search incrementally by giving feedback to the result of the previous
query.

In this paper, we propose a new user interface for digital image retrieval and
arrangement, named ImageGrouper. ImageGrouper is a Group-Oriented User

Interface, in that all operations are done by creating groups of the images on the
workspace. First, a new concept the Query-by-Groups is introduced for the CBIR.
The users construct queries by making groups of the relevant and irrelevant images.
The groups are easily created by dragging images on the workspace. Because the
image groups can be easily reorganized, a flexible relevance feedback is achieved.
Moreover, with the similar operations, the user can effectively annotate and organize
a large number of images.

In the next section, we discuss how the groups are used for image retrieval. Then,
the following two sections describe the use of the image groups for image annotation
and organization. Then, the usability of the new user interface is compared with
the traditional user interfaces in Section 5. Section 6 discusses in detail the
implementation of the system. The future work and the conclusion are presented in
Sections 7 and 8.
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2. User interface support for content-based image retrieval

2.1. Current approaches: incremental search

Not many researches have been done regarding User Interface support for CBIR
systems [4,13]. Fig. 1(a) shows a typical graphical user interface (GUI) for CBIR
system that supports the Query-by-Examples. Here, a number of images are aligned
in grids. In the beginning, the system displays randomly selected images. The
effective ways to align images are studied in [14]. On some systems, the initial images
are found by browsing or keyword-based search.

Under each image, a slide bar is attached so that the user can tell the system which
images are relevant (or irrelevant). If the user thinks an image is relevant, s/he moves
the slider to the right. If s/he believes the image is not relevant and should be
avoided, s/he moves the slider to the left. The amount of slider movement represents
the degree of relevance (or irrelevance.) In some systems, the user selects example
images by clicking the images or the check boxes under the images (Fig. 1(b) [15]). In
these cases, the degrees of relevance are not specified.

When the ‘‘Query’’ button is pressed, the system computes the similarity between
the selected images and the database images, then retrieves the N most similar
images. The images on the user interface are replaced with the newly retrieved
images. These images are ranked based on the similarity.

If the user finds additional relevant images in the result, s/he selects them as new
query examples. If a highly irrelevant image appears in the result set, the user can
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(a) Slider-Based GUI (b) Click-Based GUI

Fig. 1. Typical GUI for CBIR Systems: Images are tiled in the workspace. In the Slider-based GUI, a

slider is attached under each image so that the user can specify his/her interest.
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select it as a negative example. Then, the user press ‘‘Query’’ again to obtain the
refined search results. The user can repeat this process until s/he is satisfied or there is
no additional image to add. This process is called Relevance Feedback [6,12].
Moreover, in many systems, the users are allowed to directly weight the importance
of the image features such as color and texture.

In [16], Smeulders et al. classified Query by Image Example and Query by Group

Example into two different categories. From the user interface viewpoint, however,
these two are very similar. The only difference is whether the user is allowed to select
multiple images or not. In this paper, we classify both approaches as the Query-by-
Examples method. In stead, we use term ‘‘Query by Groups’’ to refer our new model
of query specification method described later.

2.1.1. Disadvantages of the traditional approaches

The Query-by-Example approach has several drawbacks. First of all, these
systems assumed that The More Query Examples are Available, the Better Result We
Can Get. Therefore, the users were supposed to refine the search incrementally by
adding new example images from the result of the previous query. However, this
assumption is not always true. Additional examples may contain undesired features
and degenerate the retrieval performance.

Fig. 2 shows an example of situations where more query examples could lead to
worse results. In this example, the user is trying to retrieve pictures of cars. The
upper row shows the query result when only one image of ‘‘car’’ is used as a query
example. The bottom row shows the result of two query examples. The results are
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Fig. 2. Example of ‘‘More is not necessarily better’’. The upper row is the case of one example, the lower

row is the case of two examples.
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ordered based on the similarity ranks. In both cases, the same relevance feedback
algorithm (Section 6.2. and [12]) was used and tested on Corel image set of 17,000
images. In this example, even if this additional example image looks visually relevant
for human eyes, it introduces undesirable features into the query. Thus, no car image
appears in the top 8 images. An image of car appears in the rank 13th for the first
time.

This example is not a special case. It happens often in actual image retrieval
scenarios and confuses the users. This problem happens because of Semantic Gap

[13,16] between the high-level concept in the user’s mind and the extracted low-level
image features. Furthermore, finding good combinations of query examples is very
difficult because the image features are numerical values that are impossible to be
estimated by human. The only way to find the right combination is trial-and-error.
Otherwise, the user can be trapped in a small part of image database [4].

Unfortunately, the traditional user interfaces were designed for ‘‘Incremental
Search’’ and are not suitable for ‘‘Experimental (trial-and-error) Query.’’ This is
because in these systems, both the query specification and the result display use the
same workspace. Thus, the images on the grid are replaced by the query result. Once
the user removes an image from the query examples during relevance feedback loops,
the image may disappear from the user interface for good unless the image is
retrieved in the search again. Thus, it is awkward to bring it back later for another
query.

Second, the traditional interface does not allow the user to put aside the query
results for later uses. This type of interaction is desired because the users are not
necessarily looking for only one type of images. The users’ interest may change
during retrieval. This behavior is known as berry picking [17] and has been observed
for text documents retrieval by O’Day and Jeffries [18].

Moreover, because of Semantic Gap [13,16] mentioned above, the users often need
to make more than one query to satisfy his/her need [17]. For instance, a user may be
looking for images of ‘‘beautiful flowers.’’ The database may contain many different
‘‘flower’’ images. These images might be completely different in terms of the low-
level visual features. Thus, the user needs to retrieve ‘‘beautiful flowers’’ as a
collection of different types of images.

Finally, sometimes, the user had better start from a generic concept of the objects
and narrow down to more specific ones. For example, suppose the user is looking for
images of ‘‘red cars.’’ Because image retrieval systems use various image features
[9,10] as well as the colors [8], even cars with different colors may have many
common features with ‘‘red cars.’’ In this case, it is better to start by collecting
images of ‘‘cars of any color.’’ Once enough number of car images are collected, the
user can specify ‘‘red cars’’ as positive examples, and other cars as negative examples.
Current interfaces for CBIR systems, however, do not support these types of query
behavior.

Another interesting approach for the Query-by-Example has been proposed by
Santini et al. [13]. In their El Nin *o system, the user specifies a query by the mutual
distance between the example images. The user drags images on the workspace so
that more similar images (in the user’s mind) are located closer to each other. The
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system then reorganizes the images’ locations reflecting the user’s intent. There are
two drawbacks in El Nin *o system. First, it is unknown to the users how close similar
images should be located and how much the negative examples should be moved
at a distance from the good examples. It may take a while for the user to learn ‘‘the
metric system’’ used in this interface.

The second problem of the El Nin *o system is that like traditional interfaces, the
query specification and the result display are done on the same workspace. Thus, the
user’s previous decision (in the form of the mutual distance between the images) is
overridden by the system when it displays the results. This makes trial-and-error

query difficult. Given the analogue nature of this interface, trial-and-error support
might be essential. Even if the user gets an unsatisfactory result, there is no way to
redo the query with a slightly different configuration. Any experimental result is not
provided in [13].

2.2. Query-by-groups: the ImageGrouper approach

We are developing a new user interface for CBIR systems named ImageGrouper.
In this system, a new concept Query-by-Groups was introduced. The Query-by-

Groups mode is an extension to the Query-by-Example mode described above. The
major difference is that while the Query-by-Example handles the images individually,
a ‘‘group of images’’ is considered as the basic unit of the query in the Query-by-

Group.
Fig. 3 shows the display layout of ImageGrouper. The interface is divided into two

panes. The left pane is the ResultView that displays the results of content-based
retrieval, keyword-based retrieval, and random retrieval. This is similar to the
traditional GUI except for there are no sliders or buttons under the images. The right
pane is the GroupPalette, where the user specifies the image query information by
creating image groups.

Fig. 4 shows the sequence of the typical image retrieval with the Query-by-Group.
In order to create an image group, the user first drags one or more images from the
ResultView into GroupPalette (Fig. 4(a)) Then, the user encloses the images by
drawing a rectangle (box) as we draw a rectangle in drawing applications (Fig. 4(b)).
All the images within the group box become the member of this group. Any number
of groups can be created in the palette. The user can move the images from one
group to another at any moment. In addition, the groups can be overlapped to each
other (i.e. each image can belong to multiple groups.) To remove an image from a
group, the user simply drags it out of the box. When the right mouse button is
pressed over a group box, a popup menu appears so that the user can select query
properties (positive, negative, or neutral) of the group (Fig. 4(b)). The properties of
the groups can be changed at any moment. The colors of the corresponding boxes
change accordingly. To retrieve images based on these groups, the user press the
‘‘Query’’ button placed at the top of the window (Fig. 3). Then, the system retrieves
new images that are similar to the images in the positive groups while avoiding those
images that are similar to the negative groups. The search results are displayed in the
ResultView (Fig. 4(c)). If the user find new relevant images in the result, s/he can
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refine the search by dragging these images to the Palette, then press ‘‘Query’’ again
(Fig. 4(d)). S/he can repeat until s/ he is satisfied or no additional relevant images can
be found in the ResultView.

When a group is specified as Neutral (displayed as a white box), this group does
not contribute to the search at the moment. This group can be turned to a positive or
negative group for another search later. If a group is Positive (displayed as a blue
box), the system uses common features among the images in the group. Meanwhile,
if a group is given Negative (red box) property, the common features in the group are
used as a negative feedback. The user can specify multiple groups as positive or
negative. In this case, these groups are merged into one group (i.e. the union of the
groups is taken.) The detail of the algorithm is described in Section 6.2.

While the user created only one group in Fig. 4, the user can create multiple
groups on the workspace. Fig. 3 shows an example of three groups. As in Fig. 4, the
user is retrieving images of ‘‘flowers.’’ On the GroupPalette, three flower images are
grouped as a positive group. On the right of this group, a red box is representing a
negative group that contains several ‘‘non-flower’’ images. Below the ‘‘flowers’’
group, there is a neutral group (white box), which is not used for retrieval now. The
images can be moved outside of any groups in order to temporarily remove the
images from the groups.
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Fig. 3. The ImageGrouper: The users create an image groups by dragging images from the left pane to the

right pane, then enclose them by enclosing them with a rectangle.
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The gestural operations of ImageGrouper are similar to file operations of a
Window-based OS. Furthermore, because the user’s mission is to collect images, the
operation ‘‘Dragging Images into a Box’’ naturally matches the user’s cognitive state.

2.3. Flexible image retrieval

The main advantage of the Query-by-Groups is flexibility.

2.3.1. Trial and error query by mouse dragging

In ImageGrouper, the images can be easily moved between the groups by mouse
drags. In addition, the neutral groups and space outside of any groups in the palette
can be used as storage area [19] for the images that are not used at the moment. They
can be reused later for another query. This makes Trial and Error of the relevance
feedbacks easier. The user can quickly explore different combinations of query
examples by dragging the images into or out of the box. Moreover, the query
specification that the user made is preserved and visible in the palette. Thus, it is easy
to modify the previous decision when the query result is not satisfactory.
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(a) Drag a Flower image to the palette. (b) Draw a rectangle around the image, then
chose "Relevant" from the popup menu. 

(c) The result after the first query. (d) More relevant images are being dragged
into the group.

Fig. 4. The sequence of the basic query operation on ImageGrouper.
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2.3.2. Groups in a group

ImageGrouper allows the users to create a new group within a group (Groups in a

Group). With this method, the user begins with collecting relatively generic
images first, then narrows down to more specific images. Fig. 6 shows an example
of Groups in a Group. Here, the user is looking for ‘‘Red Cars.’’ When s/he does
not have enough number of examples, however, the best way to start is to retrieve
images of ‘‘cars with any color.’’ This is because these images may have many
common features with the red car images, though their colors features are different.
The large white box is a group for ‘‘Cars with any colors.’’ Once the user found
enough number of car images, s/he can narrow down the search only for red cars. In
order to narrow down the search, the user divides the collected images into two
sub-groups by creating two new boxes for the red cars and the other cars. Then
the user specifies the red car group as positive and the other cars group as negative
(or neutral,) respectively. In Fig. 6, the left smaller (blue, i.e. positive) box is the
group of red cars, and the right box (red, i.e. negative) is the group of the
non-red cars. This narrow down search was not possible on the conventional CBIR
systems.

2.4. Experiment on trial-and-error query

In order to examine the effect of ImageGrouper’s experimental query support, we
compared the query performance of our system with that of a traditional incremental
approach (Fig. 1(a)). In this experiment, we used Corel photo stock that contains
17 000 images as the data set. For both interfaces, the same image features and
relevance feedback algorithms (described in Section 6.2) are used.

For the traditional interface, the top 30 images were displayed and examined by
the user in each relevance feedback. For ImageGrouper, the top 20 images were
displayed in the ResultView. Only one positive group and one neutral group were
created for this test. On both interfaces, no negative feedback was used. Feedback
loops are repeated up to 10 rounds or until convergence.

We tested over eight classes of images as shown in Table 1. For each class, a query
started from one image. In the case of the traditional interface, the query is repeated
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Table 1

The number of feedback loops until convergence. 10 means that it did not converge until 10th round

Object Traditional Grouper

Red car 4 10

Tiger 3 10

Bird 4 8

Yellow flower 3 10

Citrus 2 4

Polar bear 5 10

Elephant 3 10

Swimmer 2 10
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by giving additional example from the result of previous query. When no more good
example appears, the search stops (convergence). Meanwhile, for ImageGrouper, the
search is refined incrementally at first. When the incremental search converges, the
trial-and-error search is applied by moving some images out of the positive group
into a neutral group (This means that the number of positive examples was
temporarily decreased). Then, the search was refined incrementally again until
another convergence occurred. The user repeats this until trial-and-error query has
no effect.

Fig. 5 shows the number of correctly retrieved images after the convergence (or the
10th rounds.) This value is proportional to the recall rate. Thus, larger value means
better retrieval performance. Table 1 shows the number of relevance feedback loops
until convergence. The value 10 means the query did not converge before the 10th
round.

Clearly, ImageGrouper can achieve better retrieval (higher recall) even if the
underlying technologies (relevance feedback algorithm and visual features) are
identical. In addition, the search with ImageGrouper is less likely to converge
prematurely even when the search with the traditional interface converges into a
small number of images after a few iterations. This result suggests the importance of
support for Trial-and- Error query.

Meanwhile, the Query-by-Group can introduce a new problem. In an experimental
query, the users need to decide which images should be included in the current query
set. The search may be improved by adding or removing the images. This is not
always easy to predict. Although ImageGrouper enables fast and easy trial-and-error,
the user may have to try many different combinations until s/he obtains a better
result. Unfortunately, it is difficult to automate this process because the judgement
of the query results is subjective and depends on the user. However, it is still
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Fig. 5. The comparison on the number of hits until the 10th round or convergence.

M. Nakazato et al. / Journal of Visual Languages and Computing 14 (2003) 363–386372



desirable that the system suggests some promising query combinations. For example,
the system can find an outlier in the current set of query examples.

3. Text annotations on images

The keyword-based search is a very powerful method for searching images.
However, it works well only when all the images in the database are annotated with
textual information. For commercial photo stocks, it may be feasible to enter
keywords to every image manually. For home users, however, it is too tedious.

When the keyword search is integrated with CBIR like our system or [4], keyword-
based search can be used to find the initial query examples for the content-based
search. For this scheme, the user does not have to annotate all images. In any cases,
it is very important to provide easy and quick ways to annotate text on many images.

3.1. Current approaches for text annotation

The most primitive way for text annotation is to select an individual image, then
type in keywords. Because this interaction requires the user to use the mouse and
keyboard repeatedly in turn, it is very frustrating for a large image database.

Several researchers have proposed smarter user interfaces for keyword annotation
on images. In Bulk Annotation method of FotoFile [20], the user selects multiple
images on the display, selects several attribute/value pairs from a menu, and then
presses the ‘‘Annotate’’ button. Therefore, the user can add the same set of keywords
on many images simultaneously. To retrieve images, the user selects entries from the
menu, and then presses the ‘‘Search’’ button. Because of visual and gestural symmetry

[20], the user needs to learn only one tool for both annotation and retrieval.
PhotoFinder [21] introduced Drag-and-Drop method, where the user selects a label

from a scrolling list, then drags it directly onto an image. Because the labels remain
visible at the designated location on the images and these locations are stored in the
database, these labels can be used as ‘‘captions’’ as well as for the keyword-based
search. For example, the user can annotate the name of a person directly on his/her
portrait in the image, so that other users can associate the person with his/her name.
When the user needs new words to annotate, s/he adds them to the scrolling list.
Because the user drags keywords into individual images, bulk annotation is not
supported in this system.

3.2. Annotation by groups

Most home users do not want to annotate their images one by one, especially
when the number of images is large. Often, the same set of keywords is enough for
several images. For example, a user may just want to annotate ‘‘My Roman Holiday,
1997’’ on all images taken in Rome. Annotating the same keywords repeatedly is
painful enough to discourage him/her from using the system.
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ImageGrouper introduces Annotation-by-Groups method where the keywords are
annotated not on individual images, but on groups. As in the Query-by-Groups, the
user first creates a group of images by dragging the images from the ResultView into
the GroupPalette and drawing a rectangle around them. In order to give keywords to
the group, the user opens Group Information Window by selecting ‘‘About This
Group’’ from the pop-up menu (Fig. 3). In this window, arbitrary number of words
can be added. Because the users can simultaneously annotate the same keywords on
many images, the annotation becomes much faster and less error prone. Although
the Annotation-by-Groups is similar to bulk annotation of FotoFile [20], there are
several advantages described below.

3.2.1. Annotating new images with the same keywords

In the Bulk Annotation [20], once the user finished annotating keywords to some
images, there is no fast way to give the same annotation to another image later. The
user has to repeat the steps (i.e. select images, select keywords from the list, then
press the ‘‘Annotate’’ button.) This is awkward when the user has to add many
keywords. Meanwhile, in Annotation-by-Group, the system attaches annotations not
on each image, but on the groups. Therefore, by dragging new images into an
existing group, the same keywords are automatically given to it. The user does not
have to type the same words again.

3.2.2. Hierarchical annotation with groups in a group

In ImageGrouper, the user can annotate the images hierarchically using Groups in a

Group method described above (Fig. 6). For example, the user may want to add a
new keyword ‘‘Trevi Fountain’’ to only a part of the image group that has been
labeled ‘‘My Roman Holiday, 97.’’ This is easily done by creating a new sub-group
within the group and annotating only on the sub-group.

In order to annotate hierarchically on FotoFile [20] with bulk annotation, the user
has to select a subset of images that are already annotated, and then annotate them
again with more keywords. On the other hand, ImageGrouper allows the user to
visually construct a hierarchy of the images on the GroupPalette first, then edit the
keywords on the Group Information Window. This method is more intuitive and less
error prone.

3.2.3. Overlap between images

An image often contains multiple objects or people. In such cases, the image can
be referred in more than one context. ImageGrouper support this multiple reference
by allowing overlaps between the image groups, i.e. an image can belong to multiple
groups at the same time. For example, in Fig. 7, there are two image groups:
‘‘Cloud’’ and ‘‘Mountains.’’ Because some images contain both cloud and mountain,
these images belong to both groups (in overlapped region.) Once these two groups
are annotated with ‘‘Cloud’’ and ‘‘Mountain’’ respectively, the images in the
overlapped region are automatically referred as ‘‘Cloud and Mountain.’’ This
concept is not supported in other systems.
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4. Organizing images by groups

In the previous two sections, we described how ImageGrouper supports the
content-based query as well as the keyword annotation. These features are closely
related and complementary to each other. In order to annotate images, the user can
collect visually similar images first, using the content-based retrieval with the Query-

by-Groups. Then s/he can annotate textual information to the group of collected
images. After this point, the user can quickly retrieve the same images using
keyword-based search.

Conversely, the results of the keyword-based search can be used as a starting point
for content-based search. This method is useful especially when the image database is
only partially annotated.

4.1. Photo albums and group icons

As described above, ImageGrouper allows the groups to be overlapped. In
addition, the user can attach textual information on these groups. Therefore, the
groups in ImageGrouper can be used to organize the pictures as ‘‘photo albums [20]’’
Similar concepts are proposed in FotoFile [20] and Ricoh’s Storytelling system [22].
In both systems, albums are used for ‘‘slide shows’’ to tell stories to the other users.
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‘‘red’’ to annotate the red car group (smaller rectangle in the left).
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In ImageGrouper, the user can convert an image group into a Group Icon (Fig. 3).
When the user selects ‘‘Iconify’’ from the popup menu (Fig. 3) images in the group
disappear and a new icon for the group appears in the GroupPalette. When the group
has an overlap with another group, images in the overlapped region remain in the
display.

Furthermore, the users can manipulate those group icons as they handle
individual images. They can drag the group icons anywhere in the palette. The
icons can be even moved into another group rectangle realizing groups in a group.

Finally, the group icons themselves can be used as examples for the content-based
query. A group icon can be used as an independent query example or combined with
other images and groups. In order to use a group icon as a normal query group, the
user right clicks the icon and opens a popup menu. Then, s/he can select ‘‘relevant,’’
‘‘irrelevant’’ or ‘‘neutral.’’ On the other hand, in order to combine a group icon with
other example images, the user simply draws a new rectangle and drags them into it.

Organize-by-Groups method described here is partially inspired by the Digital
Library Integrated Task Environment (DLITE) [23]. In DLITE, each text document
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The user only needs to annotate two groups. Images in the overlapped region are automatically annotated

with both keywords.
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as well as the search results is visually represented by icons. The user can directly
manipulate those documents in a workcenter (direct-manipulation). In [19], Jones
proposed another graphical tool for query specification, named VQuery. In VQuery,
the user specifies the query by creating Venn diagrams. The number of matched
documents is displayed in the center of each circle.

While DLITE and VQuery are designed for text document retrieval systems [24],
the idea of direct-manipulation [23] is applicable more naturally to image databases.
In the text document database, it is difficult to determine the contents of text
documents from the icons. Therefore, the user has to open another window to
examine the detail [23] (in DLITE, a web browser is opened). On the other hand, in
the image databases, the images themselves (or their thumbnails) are the objects that
the user operates on. Therefore, instant judgment by the user is possible on a single
workspace [4,16].

5. Usability study

Even if ImageGrouper provides a powerful search ability, the users cannot take
advantages of the system unless the system is easy to use. In order to compare the
usability of ImageGrouper with the traditional graphical user interfaces (GUIs), we
conducted usability tests. ImageGrouper was compared with two traditional GUIs: a
simple Click-based Interface (Fig. 1(b)) and a Slider-based Interface (Fig. 1(a)). An
example of the Click-based Interface is QBIC [5] and an example of the Slider-based

Interface is the original MARS [6]. Each GUI employs different relevance feedback
method and has different expressiveness. For example, the Click-based GUI is very
simple and easy to use, but only positive feedback was allowed. The Slider-based
GUI allows the user to specify the degree of relevance (from �1.0 to 1.0.) Both the
Click-based and the Slider-based lose the previous query information when the
search results are returned. Meanwhile, ImageGrouper requires drag-and-drop
operations, but it realizes a more flexible query with trial-and-error query. Therefore,
it is very difficult to compare the usabilities of these systems in the actual image
retrieval scenarios. Instead, we compared the task completion time and the error rate
of the image selection tasks in a simplified scenario as described below.

5.1. Experiment settings

5.1.1. Subjects

Ten people volunteered to participate in this experiment. All subjects were familiar
with the commonly used widgets that require mouse operations such as sliders and
check boxes. The ages ranged from 20s to 30s. One was a female and nine were male.
Most subjects did not have experiences in any content-based image retrieval systems.

5.1.2. Apparatus

Both training and tests are conducted with a PC with Dual Intel Xeon 2GHz
Processors with 1GB of Main Memory running Windows XP. The PC was located
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in a small quiet room. The video card was nVIDIA. Quadro2 with 32MB Video
RAM. For the display, a 17 in LCD monitor set at 1280 by 960 in 32-bit color was
used. All user operations were done with a Microsoft Optical USB Mouse.

Each system was implemented in Java2 (version 1.3.x) with Swing API.
ImageGrouper requires slightly more graphics computation than the other two
because the images have to be dragged over the workspace. Above specs, however,
are more than enough to run each GUI smoothly, eliminating the differences in the
computational overhead. Note that ImageGrouper does not require such high-spec
machines. It runs smoothly on average PCs or workstations.

5.2. Scenarios

5.2.1. Experimental task

The task of this experiment is to find and select relevant images on each GUI. In
each run, when a subject presses the ‘‘start’’ button, a sample image and its
description (in text) are displayed on a separate window located to the left of the
main GUI. At the same time, 16 different images are tiled on the main GUI. Then,
they are asked to find and select all images that are ‘‘semantically similar’’ to the
sample images. The correct images do not have to be visually similar to the sample
image. For example, if a sample image is a picture of a standing penguin and the
description is ‘‘Penguin,’’ the subject has to choose all pictures of penguins even if
the pictures look different from the sample image (for example a picture of two
penguins lying on ice).

Each user interface requires different operations to select the images. In the case of
the Click-based system, ‘‘Select’’ means simply clicking the pictures on the GUI. In
the case of the Slider-based Interface, the user selects an image by moving the slider
to the right. For ImageGrouper, the images are selected by dragging images from the
ResultView to the GroupPalette. In any cases, the subjects can examine all images
without scrolling. When the subject believes every relevant image is selected, s/he
presses the ‘‘Next’’ button. Then the system displays the next problem (a new sample
images and another set of 16 images on the GUI.) For both training and
experiments, the task was repeated 10 times with different sample images such as
‘‘elephant,’’ ‘‘flowers,’’ ‘‘airplane,’’ ‘‘cars,’’ and ‘‘fireworks.’’ The number of the
correct images was different from one problem to another. The size of each image
was fixed to 120 by 80 pixels (or 80 by 120).

Each subject was tested with all three GUIs one by one. The order of the GUIs
was randomly chosen for each subject. For each interface, the subjects were first
trained with the sample problems, then they were tested with the same interface
immediately after the training.

5.2.2. Training

Before the training and testing of each GUI began, each subject individually
received a brief instruction about the concept of the GUI (how to select and deselect
images) and the procedure of the experiment. Then, s/he was asked to conduct the
image selecting operation on the GUI with 10 training problems under the trainer’s
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supervision. Because the purpose of this training is to make him/her familiar with the
GUI, the subject was allowed to ask the trainer assistance during the session.

5.2.3. Experiment

After the subject became familiar enough with the user interface, the subject began
the same procedure with new problem sets. The number of images to be selected was
not known to the subject and was different for each problem. Unlike the training
phase, the subject was encouraged to conduct the operations as fast as possible and
as accurate as possible. No question was allowed during the sessions. The
completion time and the number of errors (the number of images missed and the
number of image incorrectly selected) were recorded. The subjects were interviewed
after the experiment.

5.3. The results

5.3.1. Error rate

To see the effects of the user interfaces on the accuracy of the tasks, we compared
the number of missed images and the number of incorrectly selected images during
the image selection tasks. Table 2 shows the total of 10 problems. The values are
averaged over ten subjects. With each interface, the subjects rarely selected wrong
images (at most once in ten problems.) The differences among the user interfaces was
not significant ðF ð2; 27Þ ¼ 0:144; p ¼ 0:254Þ:

Meanwhile, the subjects failed to select the correct images up to four times in ten
problems (the average was less than 1.5 times per 10 runs in any interface). In each
problem, most subjects missed at most one image. The differences in the total
number of missed images were not statistically significant among the three interfaces
ðF ð2; 27Þ ¼ 0:0859; p ¼ 0:918Þ:

During the experiments, we informed the subjects that the tasks were timed and
encouraged them to finish the tasks as fast as possible. Therefore, most subjects
focused on the speed over the accuracy. The subjects, however, achieved fairly
accurate image selection with these user interfaces.

5.3.2. Task completion time

The task completion time was measured by the duration from the time the subject
pressed the start button to the moment the user pressed the finish button after s/he
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Table 2

The number of missed and incorrectly selected images in ten problems

Missed Incorrectly selected Total

Click 1.1 0.2 1.3

Slider 1.3 0.3 1.6

Grouper 1.1 0.5 1.6

The values are averaged over ten subjects. There is no statistically significant differences in the accuracy.
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completed the ten problems. The number of images to be selected varies from 2 to 6,
depending on the problem. Fig. 8 shows the average time required to select each
single image. The differences in completion time were significantly different among
the user interfaces ðF ð2; 27Þ ¼ 21:05; po0:001Þ: The Slider-based GUI was the
slowest. Its average selection time was significantly slower than that of ImageGrouper
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(F ð1; 18Þ ¼ 17:32ðpo0:001Þ). The Click-based user interface achieved the shortest
task completion time and significantly faster than ImageGrouper (F ð1; 18Þ ¼
4:455ðpo0:05Þ). This result is not surprising since ImageGrouper requires dragging

operations in addition to the mouse clicks on the images. The difference between the
Click-based and Grouper was smaller than the difference between Grouper and the
Slider-based GUI.

The number of images to be selected was different among the problems. The
number ranged from two to six. Fig. 9 shows how the time required to select one
image differs with the total number of images to be selected. Before the experiments,
we expected the Time Per Image in ImageGrouper decreases significantly as the total
number increases. This is because on ImageGrouper, as the user drags the images to
the workspace, the number of images on the grid (ResultView) decreases, making it
easier to examine the remaining images. Interestingly, the similar effects also
occurred on the traditional user interfaces.

In the interview, the several subjects claimed they felt frustrated with the Slider-
based GUI. In order to move the mouse pointer to the small slider handles and move
them, the users need to focus their concentration on the handles instead of the tasks.
Therefore, the Slider-based GUI is not suitable for repetitive image retrieval tasks
with the relevance feedback.

5.4. Improving ImageGrouper based on the lesson we learned

As shown in the previous section, the Click-based GUI is the simplest and achieves
the shortest task completion time for the simplified tasks. However, the Click-based
interface is limited to positive-only relevance feedbacks, where the user can select
only relevant images and cannot select irrelevant images as the negative feedback. In
addition, as discussed in Section 2.1 the Click-based GUI is not suitable for the trial-

and-error relevance feedback since it uses the same workspace both for the query
creation and the result display. In order to incorporate the advantages of the Click-
based GUI into ImageGrouper, we modified ImageGrouper so that it allows the user
to select and moves the images by double clicking. When the user double clicks an
image on the ResultView, the image is moved to the selected group on the
GroupPalette. If no group is selected, the image is moved to the positive group that is
created first. If there is no group on the GroupPalette, the system creates a new
group and place the image in the new group. This is effective especially when many
images have to be dragged to the GroupPalette. Of course, the user can also move
the images by drag and drop.

6. Implementation

A prototype of ImageGrouper is implemented as a client-server system, which
consists of User Interface Clients and Query Server. They are communicating via
hyper-text transfer protocol (HTTP).
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6.1. The user interface client

The user interface client of ImageGrouper is implemented as a Java2 Applet with
Swing API (Fig. 3). Thus, the users can use the system through Web browsers on
various platforms such as Windows, Linux, Unix and Mac OS X.

The client interacts with the user and determines his/her interests from the group
information or keywords input. When the ‘‘Query’’ button is pressed, it sends the
information to the server. Then, it receives the result from the server and displays it
on the ResultView. Because the client is implemented in a multi-thread manner, it
remains reactive while it is downloading the images. Thus, the user can drag a new
image into the palette as soon as it appears in the ResultView.

Note that the user interface of ImageGrouper is independent of the relevance
feedback algorithms [6,12] and the extracted image features (described below.) Thus,
as long as the communication protocols are compatible, the user interface clients can
access to any image database servers with various algorithms and image features.
Although the retrieval performance depends on the underlying algorithms and the
image features used, the usability of ImageGrouper is not affected by those factors.

6.2. The query server

The Query Server stores the image files and their low-level visual features. These
visual features are extracted and indexed off line. When the server receives a request
from a client, it computes the weights of the features and compares the user-selected
images with the images in the database. Then, the server sends back the IDs of the k

most similar images.
The server is implemented as a Java Servlet that runs on the Apache HTTP Server

and Jakarta Tomcat Servlet container. It is written in Java and C++. In addition,
the server is implemented as a stateless server: that is, the server does not hold any
information about the clients. This design allows different types of clients such as the
traditional user interfaces [25] (Fig. 1) and 3D Virtual Reality interfaces [26–28] can
access to the same server simultaneously.

For the home users who want to organize and retrieve the images locally on their
PCs’ hard disks, ImageGrouper can be configured as a standalone application, in
which the user interface and the query server reside on the same machine and
communicate directly without a Web server.

6.2.1. Image features

As the visual features for content-based image retrieval, we use three types of
features: Color, Texture, and Edge Structure. For the color features, HSV color space
is used. We extract the first three moments from each of HSV channels [8].
Therefore, the total number of color features is nine. For the texture, each image is
applied into wavelet filter bank [9] where the images are decomposed into 10 de-
correlated sub-bands. For each sub-band, the standard deviation of the wavelet
coefficients is extracted. Therefore, the total number of this feature is 10. For the
edge structures, we used Water-Fill edge detector [10] to extract the image structures.
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We first pass the original images through the edge detector to generate their
corresponding edge maps. Then, 18 elements are extracted from the edge maps.

6.2.2. Relevance feedback algorithm

The similarity ranking is computed as follows. First, the system computes the
similarity of each image for one of the three features. For each feature i; (i={color,
texture, structure}), the system computes a query vector ~qqi based on the positive and
negative examples specified by the user. Then, it calculates the feature distance gni

between each image n and the query vector as follows:

gni ¼ ð~ppni �~qqiÞ
TWið~ppni �~qqiÞ ð1Þ

where ~ppni is the feature vector of image n regarding the feature i: For the
computation of the distance Wi; matrix , we used biased discriminant analysis
(BDA.) The detail of BDA is described in [29]. After the feature distances are
computed, the system combines each feature distance gni into the total distance dn:
The total distance of image n is the weighted sum of each gni;

dn ¼ ~uuT~ggn ð2Þ

where ~ggn ¼ ½gn1;y; gnI �: I is the total number of the features. In our case, I is 3. The
optimal solution of the feature weighting vector ~uu ¼ ½u1;yuI � is solved by Rui et al.
[12] as follows:

ui ¼
Xl

j¼1

ffiffiffiffiffiffiffiffiffi
fj=fj

q
ð3Þ

where fi ¼
PN

n¼1 gni; and N is the number of the positive examples. This gives a
higher weight to that feature whose total distance is small. This means that if the
positive examples are similar with respect to a certain feature, this feature gets higher
weight. Finally, the images in the database are ranked by the total distance. The
system returns the k most similar images.

7. Future work

We plan to evaluate our system further with respect to both usability and query
performance. Especially, we will investigate the effect of Groups in a Group query
described in Section 2.3. As mentioned in [30], the traditional precision/recall
measure is not very suitable for the evaluation for interactive retrieval systems.
Therefore, we may need to consider suitable evaluation methods for the system
[16,31].

Next, in the current system, when more than one group is selected as positive, they
are merged into one group, i.e. all images in those groups are considered as positive
examples. This method, however, does not take advantages of the new user interface.
We are investigating a scheme where different positive groups are considered as
different classes of examples [32].
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In addition, for the advanced users, we are going to add support for the group-wise
feature selection. Although our system automatically determines the feature weights, the
advance users might know which features are important for their query. Thus, we will
allow the users to specify which features are supposed to be considered for each group.
Some groups might be important in terms of the color features only, while others might
be important in terms of the structures. Finally, because the implementation of
ImageGrouper does not depend on the underlying retrieval technologies, it can be used
as a benchmarking tool [31] for various image retrieval systems.

8. Conclusion

In this paper, we presented ImageGrouper, a new group-oriented user interface for
digital image retrieval and organization. In this system, the users search, annotate,
and organize digital images by groups. ImageGrouper has several advantages
regarding image retrieval, text annotation, and image organization.

First, in the content-based image retrieval (CBIR), predicting a good combination
of the query examples is very difficult. Thus, the trial-and-error is essential for
successful retrieval. However, the previous systems assumed only incremental

relevance feedback and do not support trial-and-error search. On the other hand, the
Query-by-Groups concept of ImageGrouper allows the user to try different
combinations of query examples quickly and easily. We showed this simple
operation helps the users to achieve higher recall rate. Second, with the Groups in a

Group configuration, the user can search images by narrowing down the scope of the
search from the general concept to more specific concept.

Next, typing text information to many images is very tedious and time consuming.
Annotate-by-Groups method eases the users of this task by allowing them to annotate
multiple images simultaneously. Groups in a group method realizes a hierarchical
annotation, which was difficult in the previous systems. Moreover, by allowing the
groups to overlap to each other, ImageGrouper further reduces typing.

In addition, our concept of image groups is also applied for organizing the image
collections. A group in the GroupPalette can be shrunk into a small icon. These icons
can be used as ‘‘photo albums’’ which can be directly manipulated and organized by
the users.

Furthermore, we compared the usability of our system with those of two
traditional GUIs in a simple scenario. The lesson we learned from the experiments
helped us to improve the usability of our system further while preserving the greater
flexibility of the system.

Finally, these three concepts: Query-by-Groups, Annotation-by-Groups and

Organize-by-Groups share the similar gestural operations: that is, dragging images

and drawing a rectangle surrounding them. Thus, once the user learned one task, s/he
can easily adapt herself/himself to the other tasks. The operations in ImageGrouper

are also similar to the file operations used in Windows and Macintosh computers as
well as most drawing programs. Therefore, the user can easily learn to use the
system.
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The prototype of ImageGrouper is available at http://www.ifp.uiuc.edu/Bnaka-
zato/grouper/.
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