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Abstract

We investigated the random variability of BOLD (blood oxygen level dependent) activation during rest, or null-hypothesis, conditions
in which the observers were neither receiving controlled sensory stimuli nor performing cognitive tasks. The data indicate that the
distributions for the BOLD variation across space are skewed, with non-Gaussian tails, while the distributions for the temporal variation
within individual voxels are predominantly Gaussian. The proportion of voxels that show non-Gaussian properties is highly correlated with
the magnitude of head movement of the observers. In all observers, the white matter showed less variability than the gray matter. The
distributions for the spatial and the temporal variations are robust across observers despite differences in the data acquisition methods (EPI
vs. spiral) and magnetic field strength (1.5 vs. 3 T). In most cases, the non-Gaussian tails of the spatial distribution can be eliminated by
normalizing the amplitude in each voxel to its standard deviation before cumulating across voxels. We therefore recommend such a
normalization procedure before any data manipulations are performed on fMRI data.
© 2003 Elsevier Inc. All rights reserved.
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Functional magnetic resonance imaging (fMRI) mea-
sures the regional change of blood oxygenation (Kwong et
al., 1992; Ogawa et al., 1992; Bandettini et al., 1992) that
signals neural activity in human brain when the observer is
stimulated with sensorimotor or cognitive tasks. Since its
inception, fMRI has evolved into a popular noninvasive tool
to investigate human brain function.

One major limiting factor for fMRI is the low signal-to-
noise ratio (SNR) of the blood-oxygen-level-dependent
(BOLD; Ogawa et al., 1990) activity. Here, “signal” means
the BOLD activity driven by the psychological tasks des-
ignated by the experimenters and �noise’ means the activity
unrelated to such tasks. In a typical fMRI experiment, he-
modynamic modulation induced by a psychological task is
about 1�5% from the mean level in a block design and less
in an event-related design. On the other hand, as shown
below, random variation of the BOLD activation can easily

reach 2�4% in magnitude. Thus, fMRI data analysis is
more susceptible to noise than many other neuroscience
methodologies.

There are many studies on the MRI noise and artifacts
resulting from the physics of the magnets (e.g., Henkelman,
1985; Gudbjartsson and Patz, 1995). However, since the
physical equipment noise is small compared with the phys-
iological noise (Krüger et al., 2001) these studies provide
limited information about fMRI noise.

Studies on the noise of BOLD activation have focused on
two issues: test-retest reliability and artifacts with well-
defined origins. The test-retest reliability measures how
well an experimental result can be reproduced in different
sessions (Noll et al., 1997; Aguirre et al., 1998a; Tegeler et
al., 1999; McGonigle, 2000; Waldvogel et al., 2000; Salli et
al., 2001). This measurement provides an index of the mag-
nitude of the noise, as high reliability is possible only when
the noise is small. There have been studies on identifying
distinct sources of artifacts in fMRI images, such as cardio-
vascular and respiratory activities (Hu et al., 1995; Noll,
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1998; Biswal et al., 1996), and correlated head or eye
movements (Hajnal et al., 1994; Glover and Lee, 1995;
Friston et al., 1996). The purpose of these studies was to
design appropriate filters or algorithms to correct specific
artifacts. Those analyses, of course, cannot cover all possi-
ble sources of fMRI noise. In addition, none of these anal-
yses provides information about the probability distribution
of the fMRI noise.

The latter, as it turns out, is crucial to current fMRI
research. With a few exceptions that used nonparametric
methods (Benson et al., 1996; Bullmore et al., 1996; Fer-
nandez et al., 1999), most statistical fMRI data analyses
assume a certain noise distribution. The most common ap-
proach is to apply a general linear model to the time series
of fMRI data (Friston et al., 1995; Baudendistel et al., 1995;
Worsley et al., 1997). It is assumed that the fMRI time
series is a convolution of a certain hemodynamic response
function with an experimental design sequence, corrupted
by Gaussian noise. Therefore, the problem of fMRI data
analysis is reduced to the general linear statistic problem.
The Gaussian assumption is essential for these analysis
using standard statistic tools such as the t test, the F test, or
the ANOVA.

On the other hand, other methods make non-Gaussian
assumptions. The most notable one is the independent com-
ponent analysis (ICA; McKeown et al., 1998; McKeown
and Sejnowski, 1998). ICA requires that the observed data
are from independent non-Gaussian sources (Cardoso,
1998; Hyvärinen and Oja, 2000) because solutions for
Gaussian sources can be found only up to an orthogonal
transform.

While different data analysis methods are valid only
under different noise distributions assumptions, there is
little consensus about the empirical noise distribution. For
instance, Hanson and Bly (2001) argued that the BOLD
activation noise is non-Gaussian but Gamma-distributed,
while Aguirre et al. (1998b) argued the noise distribution is
essentially Gaussian. Our purpose for this study is to pro-
vide an empirical analysis of the noise distribution in BOLD
activation within specified brain structures such as cerebral
cortex (gray matter) or connecting fiber tracts (white mat-
ter). We recorded BOLD activation during rest scans, or
null-hypothesis conditions, in which the human observers
received no controlled sensory stimulation and were not
instructed to perform any mental tasks. We then analyzed
the variation of BOLD activation from a certain mean ac-
tivation level.

Methods

Observers

Seven observers (5 males, 2 female, age 26–55 years)
with normal or corrected-to-normal vision were scanned for
this analysis. All observers provided informed consent to

participate in the project. Among them, observer R.K. was
scanned on a GE 1.5-T Signa, and A.W., L.K., and C.T.
were scanned on a GE 3-T Signa scanner at the Lucas
Center at Stanford University. Observers C.L., S.C., and
C.S. were scanned on a Bruker 3-T scanner at the MRI
Laboratory of the National Taiwan University.

Scanning procedure

To evaluate the statistical properties of fMRI noise, data
were collected for rest scans, in which observers were in-
structed to keep their eyes closed during the duration of the
scan. The observer’s head was immobilized using either a
bite bar or padding within the head coil. The data were
collected both at the Lucas Center in the Stanford Univer-
sity in Palo Alto and at the MRI center in the National
Taiwan University in Taipei.

Palo Alto
Observers were tested in a supine position in either a

1.5-T or 3-T GE Signa scanner equipped with a custom-
made full or semicylindrical head coil. A high-resolution
anatomical (T1-weighted) MRI volume scan of the entire
head was run once on each observer (voxel size � 0.9 � 0.9
� 1.2 mm). Within each scanning session, both functional
(T2*-weighted BOLD) responses and anatomical (T1-
weighted) images were acquired in identical planes. In the
GE 1.5-T scanner, images were collected in eight planes
perpendicular to the calcarine sulcus through the occipital
lobes. A 2D spiral sequence was used for the functional
images (Meyer et al., 1992) (two spiral interleaves, TR �
1500 ms, TE � 40 ms, flip angle � 90°, voxel resolution �
1.9 � 1.9 � 4 mm). In the GE 3.0-T scanner, images were
collected in 16 coronal planes spanning the posterior half of
the brain. A 2D spiral sequence was again used for acquir-
ing functional data (two spiral interleaves, TR � 1000 ms,
TE � 30 ms, flip angle � 61°, voxel resolution � 2 � 2 �
4 mm). Each scan lasted either 192 (96 images, 3 T), or 252
(84 images, 1.5 T) s. The first 16 s (8 images, 3 T) or 36 s
(12 images, 1.5 T) was not included in the analyses, to
remove any transient hardware-related artifacts at the be-
ginning of the scan. Therefore, the data analyzed for each
scan spanned 176 (88 images, 3 T) or 216 (72 images, 1.5
T) s.

Taipei
The images were collected with a Bruker 3-T scanner

with a cylindrical head coil. A high-resolution anatomical
(T1-weighted) MRI volume scan of the entire head was run
once on each observer (voxel size � 1 � 1 � 0.75 mm).
Within each scanning session, both functional (T2*-
weighted, BOLD) responses and anatomical (T1-weighted)
images were acquired in identical planes. The images were
collected in 18 transverse planes parallel to the AC-PC
(anterior commissure–posterior commissure) line. An echo-
planar imaging sequence (Stehling et al., 1991) was used to
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Fig. 1. Segmentation of the gray (blue area) and the white matter (red area). Notice that the borders between the gray matter and the white matter, and between
the gray matter and the CSF were not included in the analysis.
Fig. 2. Scatterplot for voxel means and standard deviations. Showing no correlation between the BOLD standard deviations and the mean levels. The blue
dots denote voxels from the gray matter and the red dots from the white matter. The cyan and magenta lines are the best-fitting linear regression lines for
the gray matter and the white matter respectively. Panel (a) shows data from one observer (C.T.) scanned with the spiral acquisition method while panel (b)
shows data from one observer (C.S.) scanned with the EPI acquisition method.



acquired the functional data (TR � 3500 ms, TE � 35 ms,
flip angle � 90°, voxel resolution � 2.34 � 2.34 � 3 mm).
Each scan lasted 262.5 s (75 images). The first 10.5 s (3
images) was excluded in the analyses. Thus, the data ana-
lyzed for each scan spanned 252 s (72 images).

Data analysis and visualization

Preprocessing
Voxels were selected in two categories: in the white

matter and in the gray matter (cerebral cortex) of the brain.
Voxels from the white matter and the gray matter were
selected and segmented based on anatomical images in
register with the functional images collected during each
scanning session using available software (Teo et al., 1997;
Wandell et al., 2000). The volume of the fMRI data from
each scanning session was also aligned, projected, and in-
terpolated to the high-resolution anatomical volume for
each observer. Hence, the functional data voxels could be
segmented into the gray matter and the white matter based
on their correspondence with the anatomical segmentations.
Fig. 1 shows an example of the segmentation. Notice that

we made an effort to avoid voxels near the border between
gray and white matter.

The images acquired in the Stanford facility only cov-
ered the rear half the brain. Hence, for a comparison pur-
pose, while the images acquired in the Taipei facility cov-
ered the whole brain, we only utilized the rear half of the
brain for data processing.

Formulation
The variability of the voxel activations may be parti-

tioned into two components: the within-voxel variability
and the between-voxel variability. If xij is the activation in
voxel i at time j, xij becomes

xij � Xi� � � xij � Xi�� (1)

where Xi. is the mean activation of voxel i over time in a
scan session. If we focus on a region of interest, then we can
rewrite Eq. (1) as

xij � Xr � �Xi� � Xr� � � xij � Xi�� (1�)

where Xi� is the overall mean activation of all voxels in a
scan session in region of interest r. For instance, in this

Fig. 3. Probability density functions for spatial variation of the voxel means. The blue dots denote the empirical probability density for the gray matter and
the red dots for the white matter. The blue and red smooth curves are the best-fit Gamma PDFs for the gray and white matter respectively. Panel (a) shows
the data from observer C.T. and panel (b), C.S., as in Fig. 1.
Fig. 4. Probability density functions for spatial variation of the voxel standard deviations. The blue and red smooth curves are the best-fit Gamma PDFs for
the white matter (red dots) and gray matter (blue dots), respectively. Panel (a) shows the data from observer C.T. and panel (b), C.S.
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study, we analyze activity for the voxels from the gray
matter and the white matter separately. Hence, Xr denotes
the mean activation of either the gray matter (r � g) or the
white matter (r � w). The term (xij � Xi�) is the deviation of
activation in a voxel i from a mean level, which gives us the
within-voxel variation. Since it is a variation across time,
the within-voxel variation also represents the temporal vari-
ation of the signal, denoted by the term Xi� while the com-
parative activity for different voxels gives us the between-
voxel variation. Since each voxel occupies a different
spatial location, the between-voxel variation also represents
the spatial variation.

Probability density
When the sample size is large, it is possible to estimate

the probability density function (PDF) directly. To do so,
we first create the histogram of the quantity of interest (e.g.,
Xi�) with a reasonable number of bins. We count the fre-
quency of occurrence in each bin, and scale the frequency
by the total number of samples and the bin width. The result
is taken as the probability density at the center of the bin.
We then fit a theoretical PDF to the empirical densities with
a least-squares algorithm.

Meta-analysis
There are situations where the sample size is too small to

allow an estimation of PDF directly. For instance, with
fewer than 100 data points in the time series for each voxel,
the data are insufficient to allow reliable estimation of the
single-voxel PDF. However, with a meta-analysis method,
it is possible to decide if the activations are from a certain
family of probability distributions. We may generate quan-
tile-quantile plot (qq-plot; Johnson and Wichern, 1992) to
test if the temporal variation in a voxel was Gaussian. For
each voxel, we first sort the activations and calculate their
corresponding probability values. We then calculate the
quantiles corresponding to the probability values (e.g., “z-
score” for the standard Gaussian distribution) and compare
them with the Gaussian quantiles calculated from the orig-
inal data. If the activations were Gaussian, the quantiles
calculated from probability values should accurately match
the quantiles calculated from the original data.

Head movement and motion index
One concern is the effect of head movement on the

BOLD readout. One common approach to deal with this
problem is to use a motion correction algorithm to align
images collected at different time points. Such algorithms
produce the voxel values in the transformed image by in-
terpolating, transforming, or combining the voxel values of
raw data. Hence, the statistical properties of the BOLD
readout may be altered by these algorithms. Since different
algorithms may alter the statistical properties in different
ways, we chose to analyze the BOLD data without applying
any motion correction. Instead, we designed a motion index

to study how head movement affect the statistic properties
of the BOLD noise.

We use the rigid-body transform algorithm provided by
the Statistic Parametric Mapping package (SPM; Friston et
al., 1995) to determine the rotation parameters (�xi, �yi, �yi)
and translation parameters (�xi, �yi �yi) required to realign
the i-th time periods to the first time period in a time series.
From those parameters, one can compute which location �0

� (x�, y�, z�) in the first time period corresponds to a
location �i � (xi, yi, zi) in the i-th time period. That is,

�
x�
y�
z�
1
� � �

0 0 0 0
0 cos �xi �sin �xi 0
0 sin �xi cos �xi 0
0 0 0 1

�
� �

cos �yi 0 �sin �yi 0
0 0 0 0

sin �yi 0 cos �yi 0
0 0 0 1

�
� �

cos �zi �sin �xi 0 0
sin �zi cos �zi 0 0

0 0 0 0
0 0 0 1

�
� �

1 0 0 �xi

0 1 0 �yi

0 0 1 �zi

0 0 0 1
��

xi

yi

zi

1
�

With this relationship, we can also calculate the correspond-
ing point of the same �0 in every image i, �i. We selected a
point �0 � (100, 100, 100) mm from the origin for the first
volume and then computed the corresponding position in
the following volumes. This point moves a distance di �
[(�i � �i�1)T(�i � �i�1)]1/2, where T denotes the vector
transpose, from image i � 1 to image i. The motion index
is the average of di for the whole time series. Notice that �0

is chosen as a point 10 cm away from the origin, set at the
anterior commissure. Given the size of most brains, �0

should be about the furthest point on the brain surface from
the origin. Hence, the motion index is actually the mean
motion of a hypothetic voxel near the surface of the brain
and its magnitude, in turn, is about the same as the largest
mean motion in brain voxels.

Results and discussion

Spatial variation

Fig. 2 shows examples of a scatter plot of the mean [Xi�

in Eq. (1)] and the standard deviation for each voxel in the
gray matter (blue dots) and in the white matter (red dots)
from two of the seven observers (one scanned with spiral
and the other with EPI) that we tested. The cyan and mag-
neta lines are the least-squares linear regression lines for the
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gray matter and the white matter regions, respectively.
Theslope of the linear regression lines and the correlation
between the standard deviation and the mean for all seven
observers are shown in Table 1 (rows 1 and 2). Some
observers showed a slight correlation between the standard
deviation and the mean of the voxels, but all slopes less than
0.01, giving the overall picture is that the standard deviation
is statistically independent of the mean activation level over
the full range from about 20 to 1000 (or 100 to 4000) in
relative BOLD activation units.

Fig. 3 shows the distribution of voxel means for the same
two observers. The blue dots represent the probability den-
sity of the distribution for the gray matter and red dots
represent the probability density for the white matter. The
smooth curves are best-fit Gamma density functions. In
general (except for one observer, A.W.), the distributions of
the voxel means are negatively (left) skewed, with the gray
matter consistently showing greater skewness toward the
left (Table 1, row 5). The voxel means also spread out more
in the gray matter than in the white matter, with the standard
deviation of the gray matter distributions being at least 25%
greater than the white matter distribution. The three observ-
ers from the 3-T scanner with the spiral acquisition method
show the greatest discrepancy between the gray matter and
the white matter, with the gray-matter standard deviations
being almost double those of the white matter. The white-
matter distribution means in some observers are greater than
those of the gray-matter distribution. These differences,
however, are not statistically significant for any observer

and may just reflect the difference in the standard deviation
and the skewness of the two distributions.

Next, we examine how the standard deviation for each
voxel changes over space. The standard deviation for a
voxel i, �i, is calculated as [�j �Xij � X � j�

2 t]1/ 2, where t is
the total number of samples in the time series of a voxel.
Fig. 4 shows the distribution of the standard deviations. In
both the gray matter and the white matter, the distributions
are positively (right) skewed (as contrasted with the nega-
tive skew of the mean distributions). For all observers, the
average voxel standard deviation is smaller in the white
matter than in the gray matter. Hence, the white matter not
only has smaller between-voxel variation over space, but
also, on average, has smaller within-voxel variation over
time.

Fig. 5 shows the distribution of the ratio between voxel
standard deviation and the voxel mean, �i/Xi� (SMR) for the
BOLD signal. The median voxel standard deviation-to-
mean ratio (SMR; or coefficient of variation) is between
1.5% and, in one extreme case, 5.0%. Notice that BOLD
signal strength is usually expressed as the percentage
change of activation from a baseline that is usually the mean
activation in a resting state (e.g., pre-stimulus activation).
The signal strength is commonly seen at around 1�3% for
event-related designs and 2�5% for block designs and,
hence, is in the same ballpark as random variation. The
distributions are positively skewed. For all observers, the
distributions of this quantity are close to Gamma probability
density functions (smooth curves in Fig. 5).

Table 1
Parameters for spatial variation

Observer A.W. C.T. L.K. R.K. C.S. S.C. C.L.
Scanning method 3T, spiral 3T, spiral 3T, spiral 1.5T, spiral 3T, EPI 3T, EPI 3T, EPI

Relation between voxel
mean and standard
deviation

1. Correlation ga 0.0592 �0.2064 �0.0107 �0.0455 0.0090 �0.0263 0.0184
w 0.0956 �0.0273 0.1561 0.1314 0.0385 0.0173 0.1318

2. Slope of linear
regression line

g 0.0014 �0.0059 �0.0005 �0.0017 0.0005 �0.0048 0.0004
w 0.0032 �0.0003 0.0109 0.0022 0.0018 0.0032 0.0037

Distribution of voxel
means

3. Mean g 877.4224 908.3182 1259.2353 1051.3474 2289.8989 12607.9745 13896.4382
w 923.8768 1091.7140 1430.5659 1026.8614 2208.6519 12315.0192 14101.7513

4. Standard
deviation

g 195.6271 226.0435 423.4837 148.0756 751.6882 3220.1486 3647.7267
w 117.1469 130.9665 205.9136 100.1934 531.0950 2453.1614 2544.6381

5. Skewness g 0.2419 �1.3543 �0.8760 �0.1137 �0.6873 �1.1904 �1.5658
w 0.3427 �0.2028 �0.3884 0.5682 �0.5991 �0.8877 �1.0781

Distribution of voxel
standard deviation

6. Mean g 23.6032 16.7333 36.6020 16.7698 95.1060 833.5960 396.2135
w 21.4714 13.6148 28.5594 12.5380 87.5916 663.4226 377.2543

7. Standard
deviation

g 4.4697 6.4736 18.2998 5.5768 38.2530 596.1706 76.7927
w 3.9452 1.3949 14.3844 1.6962 24.5002 455.5924 71.7557

8. Skewness g 1.3196 3.8697 1.9108 4.1636 9.2518 2.8077 3.5056
w 1.1280 0.8194 2.6861 2.2692 8.1744 3.3425 5.4680

Distribution of voxel
standard deviation to
mean ratio

9. Mean g 0.02880 0.0223 0.0387 0.0164 0.0531 0.0778 0.0393
w 0.02357 0.0127 0.0204 0.0123 0.0447 0.0588 0.0302

10. Standard
deviation

g 0.0130 0.0208 0.0412 0.0081 0.0507 0.0804 0.0569
w 0.0051 0.0021 0.0123 0.0019 0.0329 0.0568 0.0317

11. Skewness g 6.7471 4.2700 3.5278 12.6100 4.1831 9.9918 6.0274
w 1.0405 0.9005 6.5431 2.1456 6.5758 5.0995 9.9918

a g: gray matter; w: white matter.
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Fig. 5. Probability density functions for spatial variation of the ratio between voxel standard deviation and the voxel mean, which are both negatively skewed. The
blue and red smooth curves are the best-fit Gamma PDFs for white matter (red dots) and gray matter (blue dots), respectively. Panel (a) shows the data from observer
C.T. and panel (b), C.S.
Fig. 6. Quantile-quantile plot for two voxels. The blue triangles denote a voxel with a Gaussian temporal variation. Hence, all the data points lie close to a
straight line. The red circles denote a voxel with a non-Gaussian temporal variation. The data points markedly deviate from the straight line.



The above analysis shows that, despite the wide differ-
ences in the data acquisition methods (spiral vs. EPI) and
magnetic field strength (1.5 T vs. 3 T), the SMR are from
the same family of distributions for all observers. In addi-
tion, we did not observe a better SMR for 3-T observers
than the 1.5-T observer. We did notice that the smallest
SMR observed in the EPI observers was greater than the
largest SMR in the spiral observers. However, it is unclear
if this difference is due the difference in the acquisition
method or the quality of the magnets.

Temporal variation

Due to the limited number of data points in the series for
individual voxels, we use the quantile-quantile analysis to
test the normality of the temporal variation in a voxel [(xij �
Xi�) in Eq. (1)]. Fig. 6 shows an example of such analysis on
two voxels. The abscissa of the plot is the normal quantile
computed from the raw data while the ordinate is the quan-
tile computed from the percentiles of the Gaussian fit to the
data points. If the variation in a voxel is Gaussian-distrib-

uted, the qq-plot of its activation will fall on a straight line
and the correlation between the raw quantile and the per-
centile quantile will be close to 1.0. However, if the varia-
tion is non-Gaussian, the qq-plot of the voxel will deviate
significantly from a straight line and result in a lower cor-
relation. Thus, we can use the magnitude of the correlation
to test the normality of the temporal (within voxel) distri-
bution.

Table 2 lists the proportion of voxels that are classed as
non-Gaussian distributed with the correlation test at the 	 �
0.01 and 0.001 levels. In most observers, less than 5% of
voxel activations are non-Gaussian at the 	 � 0.01 level,
and less than 1% at the 	 � 0.001 level. However, in the
worst case (A.W.), there were 35% of voxels with non-
Gaussian activation. A possible cause of the non-Gaussian
behavior will be discussed in later sections.

Spatiotemporal variation

Hanson and Bly (2001) reported that the noise of BOLD
activations was Gamma distributed. However, in their anal-

Fig. 7. Probability density functions for spatial-temporal variation in the gray matter in log-linear coordinates. The blue dots are the empirical probability
densities. Note that, in this form, the Gaussian distribution appears as a parabola. The green dashed curves are the best Gaussian fit and the red solid curves
are the fit from a hybrid of a Gaussian and a hyperbolic secant density functions. Panel (a) shows the data from observer C.T. and panel (b), C.S.
Fig. 8. The spatiotemporal variation in the white matter. For most observers, the Gaussian probability density function alone can fit the variation in the white
matter as in panel (a) with observer C.T. In the worst case, (b) the white matter behaves like the gray matter and cannot be characterized by the hybrid
distribution. The green curves are the Gaussian fits and the red curves are best-fit Gaussian-hyperbolic hybrid density functions.
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ysis, they pooled data points from both temporal samples
and spatial locations. As shown above, separation of the set
of variables reveals that the temporal variation of BOLD
activation is essentially Gaussian but the spatial variation is
close to Gamma. Hence, Hanson and Bly’s result is likely to
be due to the confounding of the spatial with the temporal
variation (2001).

Fig. 7 shows the distributions of the within-voxel varia-
tion Xij � Xi� for all voxels i and time points j in the data sets
separated for the gray matter and the white matter. This
analysis is similar to that of Hanson and Bly (2001), except
that we first subtract the voxel mean from the data. The
distributions are plotted in semilog coordinates to give a
better look at the tails of the distributions down to densities
of 10�4. Notice that the distributions are symmetric and do
not conform to the Gamma distribution. Hence Hanson and
Bly’s (2001) conclusion applies only to the spatial variation
of the BOLD noise.

Nevertheless, these spatiotemporal distributions are not
Gaussian distributions either. In the gray matter, the distri-
butions show two components: (1) in the center, the prob-
ability density functions have the form of a projectile on this
logarithmic ordinate similar to the Gaussian; and (2) in the
tails, the probability density functions decrease exponen-
tially as the deviation from the voxel mean increases. The
“projectile” portion can be fit by a Gaussian distribution,
shown as the dashed curves in Fig. 7, while the linear tails
imply an exponential probability density.1 Therefore, we
can fit the probability density functions with a linear com-

bination of a Gaussian probability density function and a
hyperbolic secant (sech) probability density function; that
is, the probability density is defined by the function

p� x� � a*g�0, �� � �1 � a�*s�0, 
�

� a
1

�2��
e�� x2

2�2� � �1 � a�
2

�


1

ex/
 � e�x/


(2)

where g(0, �) is a Gaussian density function with mean 0
and space constant �, s(0, 
) is a hyperbolic secant density
function with mean 0 and space constant 
, and a is the
weight coefficient ranging between 0 and 1.

The advantage of the hyperbolic function is to have
linear tails in the semilog plot while avoiding the exponen-
tial function’s discontinuity at the center. This compound
distribution, as shown as the solid curves in Fig. 6, captures
the characteristics of the data well. The parameters of this
hybrid distribution for all observers are shown in Table 3.
For most observers, the weight of the Gaussian [a in Eq. (2)]
ranged from about 0.70 to about 0.90 in the gray matter.
Three observers with a larger proportion of non-Gaussian
voxels (Table 2) also show lower Gaussian weights. It is
worth noting that many other candidate distributions, such
as Student’s t, Cauchy, double exponential, log normal, and
inverse-Gaussian do not provide good fits to the data. Some
of these distributions can best fit either the central region or
the tails, but not both. Other distributions, such as Cauchy
and Student’s t, to minimize the sum of squared error, show
considerable deviation from data in both the center and the
tails.

In the white matter, the distributions for deviation from
the voxel mean are closer to the Gaussian density function

1 The Gaussian probability density function has the form y �
(2��2)�1/2 exp(�x2/2�2), where � is the standard deviation. Hence, ln y �
�0.5/ln(2��2) � x2/2�2, which appears as a projectile in a semilog
coordinate system. The probability density function for an exponential
distribution is y � c exp(�x/c) where c is the scale constant. Hence,
ln y � ln c � x/c implies a straight line in a semilog coordinate system.

Table 2
Percentage of non-Gaussian voxels in each observer at two type I error
(	) level in the gray (g) and the white matter

Observer ROI Proportion of non-Gaussian
voxels (%)

	 � 0.01 	 � 0.001

A.W. g 34.7122 23.3678
w 27.8418 18.1069

C.T. g 3.0462 0.8892
w 0.7997 0.1060

L.K. g 14.9523 6.6947
w 14.9303 5.3558

R.K. g 2.3988 0.4525
w 2.4017 0.2173

C.S. g 1.5842 0.2821
w 1.0992 0.1718

S.C. g 12.7841 4.0031
w 9.1330 2.2458

C.L. g 1.0553 0.2499
w 1.1693 0.0763

Table 3
The parameters for the hybrid distributiona

Observer ROI Empirical parameters
for the distributions

Fitted parameters for the
hybrid distributions

s.d. skewness a � 


A.W. g 19.6087 0.0696 0.7056 15.2279 17.4583
w 16.3924 0.0636 0.8175 14.1287 15.3173

C.T. g 17.8169 0.2139 0.7761 14.7029 16.5329
w 13.5907 0.0041 0.9739 9.1285 13.5905

L.K. g 40.6361 �0.2911 0.4148 24.9234 31.2743
w 31.7541 �0.5839 0.5824 21.2275 26.8724

R.K. g 15.2707 0.0047 0.8409 13.5139 13.9764
w 12.5463 �0.0066 1.0000 12.5095 N/A

C.S. g 101.7950 �0.1818 0.8521 86.8726 92.2935
w 90.3194 �0.09739 0.9449 83.6917 101.3071

S.C. g 1017.6578 �0.3361 0.4052 514.4062 731.8799
w 799.1692 �0.0330 0.4499 442.2795 590.9691

C.L. g 400.7730 �0.02956 0.9027 386.0048 348.5565
w 381.3407 �0.03567 0.9461 368.3021 384.3380

a The letter g and w in the second column denotes the gray and white
matter respectively. Column 3 and 4 are the standard deviation and the
skewness of raw data. The mean of the distributions is always zero.
Columns 5 to 7 are parameters in Eq. (3).

1104 C.-C. Chen et al. / NeuroImage 20 (2003) 1096–1109



than in the gray matter. For all observers, the non-Gaussian
proportion [a in Eq. (2)] is less in white matter than in the
gray matter. For some observers, the Gaussian density func-
tion alone provides a good description of the data (Fig. 8a)
while in the worst case the white matter behaves like the
gray matter (Fig. 8b).

In the previous section, we concluded that the activations
in the vast majority of the voxels have accurately Gaussian
distributions. In addition, we know that the standard devi-
ation varies from voxel to voxel, suggesting that the non-
normality of the overall distribution may be due to differ-
ences in the standard deviations of individual voxels. It
follows that, if the activations are scaled by the standard
deviations of the respective voxels, the resulting standard
scores should be identically distributed for all the voxels.
Thus, the overall distribution, normalized by the voxel stan-
dard deviations, should also be Gaussian.

Fig. 9 illustrates the result. In this figure, the same data
shown in Fig. 7 are replotted after normalization in panels
(a) and (b). Fig. 10 shows the qq-plots before and after
normalization for observer CT. In panel (a), the plot devi-
ates significantly from a straight line while in panel (b) the
standardized data lie on virtually the same line. It is clear
that the normalized distributions are much closer to Gauss-
ian, with virtually no voxels generating non-Gaussian tails.
For all observers, the sum-of-squared-error (SSE) for the
Gaussian fit improves 3- to 6-fold in the gray matter when
the distribution is normalized.

In summary, while the variability of voxels across space
is not Gaussian and the standard deviation is inhomoge-
neous across space, the variability of individual voxels over
time is uniformly Gaussian.

Head movement effects

It is known that head movements can produce artifacts
and increase noise in BOLD images. We characterize this
artifact by the head index described in the Methods section
for each observer (Table 4). The proportion of the non-
Gaussian voxels in the gray matter of an observer increases
with the head index in a linear relationship between the two
variables (R2 � 0.79) in log-log coordinates, and a corre-
lation between them of 0.89. Hence, we conclude that a
great proportion of the non-normality in BOLD temporal
activation is due to head movements.

It may be a concern that the head motion along one
dimension may be greater than the others or has a greater
influence on the statistic properties of voxels. A Tukey
multiple-comparison test shows that three of seven observ-
ers (A.W., R.K., and L.K.) had the same size of head motion
in all the three dimensions. Four observers had smaller head
motion on the lateral-medial dimension than on the other
two dimensions. However, none of the three dimensions of
head motion provided substantially better prediction of the
number of non-Gaussian voxels than the motion index: only
the motion in the slice selection dimension has a correlation

with the number of non-Gaussian voxels slightly (but non-
significantly) larger than the motion index (0.92 vs. 0.89),
the other two dimensions having a smaller correlation (0.86
and 0.88). Hence, the motion index is a valid representation
of the size of the head movement.

On the other hand, we found negligible correlation be-
tween the head motion and the spatial variation. The stan-
dard deviation of the voxel mean distribution (Fig. 2) char-
acterizes the extent of the spatial variation. The correlation
between the head motion index and the standard deviation
scaled by the mean (i.e., dividing row 4 by row 3 in Table
1) is �0.19 in the gray matter and 0.18 in the white matter,
while the critical point for a two-tailed correlation test at 	
� 0.05 and df � 5 (n � 7) is 0.754. Hence, the head motion
contributes little, if any, spatial variation of BOLD activity
compared with other possible sources such as the distribu-
tion of blood vessels.

Spatial distribution of non-Gaussian voxels

Fig. 11 shows examples of the distribution of the tem-
poral non-Gaussian voxels in the brain. The left column
shows the non-Gaussian voxels from an observer with little
head motion. The blues dots are the non-Gaussian voxels in
the gray matter and the red dots, the white matter. The
occurrence of non-Gaussian voxels is sparse. However,
there are still clusters of non-Gaussian voxels. Those clus-
ters tend to be at or near blood vessels (bright white spots or
curves in the images). Hence, the larger blood vessels pro-
vide another source of non-normality.

The right column of Fig. 11 shows another observer with
large head movements and in turn a greater proportion of
non-Gaussian voxels. For comparison, we identify the
Gaussian gray matter voxels in the image as cyan regions. It
is clear that the non-Gaussian voxels are concentrated in the
slices away from the center of the brain (top). The propor-
tion of the non-Gaussian voxels in the slices near the center
of the brain (bottom) is not much greater than that of the
observer with little head motion. Since the voxels near the
surface of the brain are more liable to the head motion
(either from the size of head movements and the overlap-
ping between brain and non-brain voxels in a time series),
this result further demonstrates the contribution of non-
normality from head movement.

Table 4
Head movement index (in mm)

Observer Head movement index

A.W. 3.2184
C.T. 0.1217
L.K. 2.4527
R.K. 0.0604
C.S. 0.1097
S.C. 0.1622
C.L. 0.1156
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Implications for data analysis

A common type of data analysis for BOLD activation is
to apply a general linear model to an fMRI time series and
to test whether the activation evoked by the cognitive/
perceptual tasks is significantly greater than the activation at
a base level (Friston et al, 1994, 1995; Baudendistel et al.,
1995; Worsley et al., 1997). These analyses are based on t
or F statistics to compare whether the mean activation for
the task is sufficiently larger than that of the base level or
whether the parameters for a hypothetic response structure
(e.g., regression coefficients) sufficiently deviate from zero.
Due to the definitions of the t and F distributions (Johnson
and Kotz, 1973), these statistics rely on the assumption that
the noise is Gaussian. We have shown that, when the head
motion is small, the temporal variation in individual voxels
is indeed Gaussian distributed. Hence, it is reasonable to
apply such linear analysis for individual voxels. However,
we also show that the activation pooled across locations
yields a non-Gaussian distribution with broad tails. Thus, it
is questionable to apply linear statistics after certain prepro-

cessing procedures such as spatial normalization and
smoothing (Ashburner and Friston, 1999). These procedures
pool activations from neighboring voxels together and dis-
tort the noise distribution when the voxel distributions are
nonhomogeneous. Hence, they introduce substantial non-
normality into the data, which invalidates the use of Gaus-
sian-based statistics in principle. The net result of the non-
normality is to increase the size of the tails from t and F
distributions that are used to test the significance of mean
differences or regression parameters. Hence, the experi-
menters have to either (1) increase the critical point to
control alpha level (type I error) and reduce the power of
statistics, or (2) keep the same critical point, and commit a
lot of type I errors and in turn pinpoint false activations. We
therefore recommend the normalization procedure of scal-
ing the voxel amplitudes to the standard deviation of each
voxel before any data manipulations are performed on fMRI
data.

A second problem is the use of independent component
analysis (ICA), which has been gaining popularity in fMRI
recently (e.g, McKeon and Sejnowski, 1998; Calhoun et al.,

Fig. 9. Probability density functions for spatiotemporal variation in the gray matter scaled by the standard deviations of the corresponding voxels. The blue dots are
the empirical probability densities. The green dashed curves are the best Gaussian fits. Panel (a) shows the data from observer C.T. and panel (b), C.S.
Fig. 10. The quantile-quantile plot for the spatiotemporal variation observer C.T. before (a) and after (b) standardization of the individual voxel distributions.
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2001; Stone et al., 2002; Svensen et al., 2002). The goal of
the analysis is to derive independent response components
from the overall distribution of voxel responses in a partic-
ular experimental paradigm. However, the analysis operates
only on signals from non-Gaussian sources. While ICA is
appropriate for spatial components, the temporal ICA may
not be appropriate for application to spontaneous activity
such as we have measured, because much of the non-
normality derives from head motion artifacts. Quigley et al.
(2002) reported that ICA performs better than conventional
linear statistics only when the data set is corrupted by head
motion or incorrect task performance. This conclusion is

consistent with our observation that head motion introduces
non-normality in the temporal data. However, this approach
is unlikely to provide any benefit in the component analysis
of the neural signals because the non-normality introduced
by head movements is extrinsic to the neural signals; the
ICA analysis will focus largely on independent components
of the motion artifact.

It is important to note, however, that these conclusions
may not apply to stimulus-driven BOLD activity, which can
readily be identified by ICA methods. Although the spon-
taneous activity is accurately Gaussian in each voxel, the
response to a stimulus is likely to be non-Gaussian. Multiple

Fig. 11. The spatial distribution of non-Gaussian voxels (the correlation between the raw quantile and the Gaussian quantile smaller than the critical point
of 0.01 	-level). The left column shows the distribution of observer C.T. and right column, observer A.W. In each column, images from top to bottom are
slices from posterior to anterior. The blue dots are non-Gaussian voxels in the gray matter and the red dots, the white matter. The cyan regions in the right
column are the Gaussian voxels in the gray matter.
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identifiable BOLD components with different spatial and
temporal signatures can be revealed by appropriate analysis
(Tyler et al., 2001, 2002).
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