

Neural substrates participating in acquisition of facial familiarity: an fMRI study

メタデータ	言語: eng
	出版者:
	公開日: 2009-01-05
	キーワード (Ja):
	キーワード (En):
	作成者: KOSAKA, H, OMORI, M, IIDAKA, T, MURATA, T,
	SHIMOYAMA, T, OKADA, T, SADATO, N, YONEKURA, Y,
	WADA, Y
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10098/1828

Neural Substrates Participating in Acquisition of Facial Familiarity: An fMRI Study

H. Kosaka,^{*,†} M. Omori,^{*} T. Iidaka,[‡] T. Murata,^{*} T. Shimoyama,^{*} T. Okada,[§] N. Sadato,[§] Y. Yonekura,[†] and Y. Wada^{*}

*Department of Neuropsychiatry, Fukui Medical University, Matsuoka, Fukui, 910-1193, Japan
*Department of Biological Imaging Research Center, Fukui Medical University, Matsuoka, Fukui 910-1193, Japan
*Department of Human Information Processing School of Informatics and Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
*Department of Cerebral Research, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8585, Japan

Address correspondence to: Hirotaka Kosaka, Department of Neuropsychiatry, Fukui Medical University, Matsuoka, Fukui, 910-1193, Japan Tel: +81-776-61-8363 FAX: +81-776-61-8136 E-mail: <u>hirotaka@fmsrsa.fukui-med.ac.jp</u>

ABSTRACT

The amygdala is related to recognition of faces and emotions, and functional magnetic resonance imaging (fMRI) studies have reported that the amygdala is habituated over time with repetition of facial stimuli. When subjects are presented repeatedly with unfamiliar faces, they come to gradually recognize the unfamiliar faces as familiar. To investigate the brain areas participating in the acquisition of familiarity to repeatedly-presented unfamiliar faces, we conducted an fMRI study in 16 healthy subjects. During the task periods, the subjects were instructed to see presented unfamiliar faces repeatedly and to judge whether or not the face was male or female, or whether the face had emotional valences. The experiment consisted of nine sessions. To clarify the brain areas that showed increasing or decreasing activation as the experimental session proceeded, we analyzed the fMRI data using specified linear covariates in the face recognition task from the first session to the ninth session. Imaging data were investigated on a voxel-byvoxel basis for single-group analysis according to the random effect model using Statistical Parametric Mapping. The bilateral posterior cingulate cortices showed significant increases in activity as the experimental sessions proceeded, while the activation in the right amygdala and the left medial fusiform gyrus decreased. Thus, the posterior cingulate cortex may play an important role in acquisition of facial familiarity.

Key Words

fMRI; familiarity; posterior cingulate cortex; amygdala; habituation; face

INTRODUCTION

Face perception is the most developed visual perceptual skill in humans and plays a critical role in social interactions (Haxby *et al.*, 2002). Novel, unknown faces, when seen for the first time, can potentially represent a threat or a danger, and lead a rapid shift of attention in the human brain. However, repeated presentation of those novel stimuli will wane such cognitive responses and gradually yield instead a feeling of already-seen, i.e., familiar faces (Dubois *et al.*, 1999; Wright *et al.*, 2001). Disturbance of the neural system related to such habituation and/or familiarity acquisition to repeatedly presented unknown faces may cause disordered social cognition sometimes seen in psychiatric disorders, in which the patients express exaggerated anxiety responses to other people, misjudge approachability and trustworthiness of those around one, or mistake even their familiar people for an assailant.

The amygdala plays a crucial role in the recognition of faces and emotions (LeDoux, 2000; Davis and Whalen, 2001). A functional magnetic resonance imaging (fMRI) study reported that the right amygdala exhibits a greater response to novel faces than to familiar faces all with an emotionally neutral expression (Schwartz *et al.*, 2003). It has also been revealed that the amygdala activation is habituated with repeated facial stimuli (Breiter *et al.*, 1996; Wright *et al.*, 2001, Thomas *et al.*, 2001).

On the other hand, a candidate area participating in acquisition of facial familiarity is the posterior cingulate cortex. It has been reported that the posterior cingulate cortex is activated commonly in familiar (previously learned) word recognition minus reading word condition and familiar face recognition minus gender classification condition in a $H_2^{15}O$ -positron emission tomography (PET) study (Kim et al., 1999). FMRI studies showed greater posterior cingulate activation during explicit recognition of famous faces (well-known entertainers, politicians, and sports figures) compared to during that of unfamiliar faces seen for the first time (Leveroni *et al.*, 2000) and activity also increases under experimental conditions with personally known faces and voices (friends and relatives of the subjects) relative to the conditions with unfamiliar ones (Shah *et al.*, 2001). These studies proposed that the posterior cingulate cortex is a key area involved in assessing the familiarity of a person.

To our knowledge, however, no prior study has investigated the timecourse of activation in particular brain areas, in which the familiarity was gradually acquired over time with repeated exposure to unknown faces. The purpose and the new aspects of the present study were to demonstrate using fMRI that the activation in the posterior cingulate cortex increases as unfamiliar facial stimuli are presented repeatedly. It was predicted that the amygdala would show greater initial response and then habituate to the unfamiliar faces, while the posterior cingulate activity would increase reciprocally as familiarity was acquired.

MATERIALS AND METHODS

Subjects

Sixteen healthy subjects, eight males and eight females, participated in the present study. Their ages ranged from 22 to 28 years with a mean age of 24.5 years (standard deviation, SD: 1.7 years). The subjects had no history of neurological, psychiatric disease, and drug or alcohol abuse. All subjects were strongly right-handed as assessed by the Edinburgh Handedness Inventory (Oldfield, 1971). The protocol was approved by the Ethical Committee of Fukui Medical University, and all subjects gave written informed consent for the study. None were taking any medication at the time of the study.

Materials and Procedure

If a small number of individual facial stimuli are simply repeated, the amygdala activity rapidly habituates (Bordi and LeDoux, 1992). To make subjects habituate with unfamiliar faces rather more slowly may allow for better detection of the brain areas that show increasing activity over time with repeated facial stimuli. We thus devised experimental tasks as follows. A relatively large number of individual faces were used as experimental stimuli with a relatively large number of repetitions. Then, two kinds of task with these facial stimuli depicting three different emotion types (i.e. positive, negative, and neutral) were used, and subjects were instructed to judge the gender or the emotional valences of the faces. Since it was difficult for the subjects to habituate the tasks per se and to notice the repeated presentation of the same facial stimuli, the acquisition of familiarity with the faces would be incidental for them, that is, it was not integral to the task.

Digitized grayscale pictures of 20 unfamiliar faces (10 males and 10 females) with positive (happy), negative (angry, disgusted or sad), or neutral emotion were used as materials. To establish the validity and reliability of the facial stimuli used, a sample of 10 healthy controls was asked to rate each face according to emotion type and intensity, as described previously (Kosaka *et al.*, 2002).

The experiment consisted of nine sessions (Fig. 1). Each session was composed of eight blocks; four control and four face recognition task blocks. Each block was 21 seconds long, alternating control and task. A list of 10

faces was assigned to each block, and the faces were presented at a rate of 1.8 sec with a 0.3 sec intertrial interval. As described previously, we used two kinds of task conditions, i.e. gender-discrimination (five sessions: three neutral face sessions, one positive face session, and one negative face session) and emotion-judgment (four sessions: two neutral face sessions, one positive face session, and one negative face session). Before each experimental session, the subjects were instructed to judge whether the face was male or female during the gender-discrimination task, or whether the face had emotional valences or not during the emotion-judgment task, and to respond by pressing one of two buttons of the response box with their right index and middle fingers. During the neutral face sessions, all ten faces per block had neutral emotion. During the emotional face sessions, eight faces had emotionally positive expression for the positive face sessions or negative expression for the negative face sessions, and two faces had neutral emotion per block. The order of the nine sessions was counterbalanced across subjects. Twenty actors' faces were used as the experimental stimuli; each actor's face was presented two times per session, and presented 18 times across all sessions. In the control condition, the subjects were instructed to discriminate whether the object was a circle or a square (figurediscrimination). These stimuli were presented at the same rate and in the same format as the stimuli in the task condition. Before the experiment, a shorter version of the experimental task was administered to confirm that the subjects could perform at an average level.

During scanning, the stimuli were projected onto a half transparent screen using a LCD projector connected to a personal computer by which the stimuli were generated. The subjects saw the stimuli through a tilted mirror attached to the head coil of the scanner.

Image Acquisition and Analysis

Functional images of the whole brain were acquired using T2*weighted, gradient echo, EPI sequences with a 3 Tesla MR imager (Signa Horizon; General Electric Medical Systems, Milwaukee, WI, USA) and a standard birdcage head coil. Each volume consisted of 34 axial slices, with a slice thickness of 2.7 mm, with a 0.3 mm gap. The time interval between two successive acquisitions of the same image was 3,000 ms, echo time was 30 ms, and flip angle was 90 degrees. The digital in-plane resolution was 64 x 64 pixels with a pixel dimension of 2.97 x 2.97 mm. The anatomical image was also acquired (2D-FSE: TR = 6 sec, TE = 66 ms, Flip Angle = 90°, 256 x 256 matrix and 112 axial slices of 1.5 mm thickness). Tight but comfortable foam padding was placed around the subject's head to minimize head motion. After discarding the first four images per session due to the unsteady longitudinal magnetization, 504 successive EPI images (seven images per block, 56 images per session) were subjected to analysis. Image processing and statistical analysis was performed using Statistical Parametric Mapping (SPM99: the Wellcome Department of Cognitive Neurology, London, UK; Friston *et al.*, 1995) implemented in Matlab 5.3 (The Mathworks, Inc. U.S.A.). Firstly, to correct for dislocations caused by head motion, all EPI images were realigned. These images were then normalized to the Montreal Neurological Institute (MNI) atlas (Evans *et al.*, 1994) using the parameter obtained from the normalization process of the anatomical image that was coregistered to the first EPI image beforehand. Finally, the images were smoothed using an 8-mm Gaussian kernel.

Data Analysis

First, analysis was performed on an individual basis. The mean signal intensity of the imaged brain areas was proportionally scaled to 100 arbitrary units for each functional image volume in order to remove the effect of global signal change. The expected signal changes caused by the tasks were modeled with a box-car function convolved with hemodynamic response function and regression analysis was performed for each and every voxel. Signal drifts below 1/84 Hz were also modeled and excluded from the analysis to avoid artifacts. The analysis made contrast images that held percent signal change values at each voxel for the face recognition tasks compared with the control condition. To make inferences at a single-group level (Friston *et al.*, 1999), these images were analyzed with one-sample t-tests on a voxel-by-voxel basis.

First, we clarified the main effect of overall face recognition tasks in the nine sessions. The resulting areas of activation were characterized in terms of their peak. The statistical threshold was set at p < 0.05 (corrected) for each voxel. Second, a subtraction between the images for face conditions during the gender-discrimination tasks and the images for face conditions during the emotion-judgment tasks was conducted. A subtraction among the images for neutral face conditions, the images for positive face conditions, and the images for negative face conditions was also conducted. The statistical threshold was set at p < 0.05 (corrected) for each voxel. Third, to clarify the brain areas that showed increasing or decreasing activation as the experimental session proceeded, we analyzed the fMRI data using specified linear covariates, [-4, -3, -2, -1, 0, 1, 2, 3, 4] in the face recognition task from the first session to the ninth session. Unless otherwise specified, the statistical threshold was set at p < 0.05 (corrected) for height in the analysis of increasing or decreasing activity over time for each voxel. Activated clusters were superimposed on the T1-weighted template images. These data were averaged across the subjects, and the magnitude of increase from the control condition was plotted as a function of time (9 sessions).

RESULTS

Behavioral Results

In the control conditions (figure-discrimination task), the mean $(\pm$ SD) percentage of correct responses was $99.3 \pm 1.1\%$, and the mean reaction time was 451.3 ± 76.6 msec. In the facial task conditions (i.e., genderdiscrimination and emotion-judgment), the mean percentages of correct responses were $93.9 \pm 4.7\%$ and $93.1 \pm 3.6\%$, and the mean reaction times were 671.8 ± 84.9 msec and 811.3 ± 107.0 msec, respectively. There were no significant differences in percent correct responses (t = 0.712, df = 15, p =0.4877) between gender-discrimination and emotion-judgment tasks, while significant differences were found in reaction time (t = -6.317, df = 15, p < -6.3170.0001). The mean percentages of correct responses were $93.6 \pm 4.4\%$ and $93.6 \pm 3.4\%$, and the mean reaction times were 740.0 ± 91.0 msec and 726.1 \pm 94.6 msec, in the first half of sessions (from 1st to 5th) and the latter half of sessions (from 6th to 9th), respectively. There were no significant differences in percent correct responses (t = 0.007, df = 15, p = 0.9947) and reaction time (t = 0.730, df = 15, p = 0.4766) between the first half of sessions and the latter half of sessions. After their experiments, most subjects stated that they became aware of the faces of the same actors presenting repeatedly in the latter sessions.

Imaging Results

In the group analysis, areas of significant activation during the overall face recognition tasks were the bilateral inferior frontal gyri (Brodmann area [BA] 45, 47), middle frontal gyri (BA 9), superior parietal lobuli (BA 7), inferior occipital gyri (BA 18, 19), lateral fusiform gyri (BA 37), supplementary motor area (BA 6), and right entorhinal cortex (BA 28) (p < 0.05, corrected; Table 1; Fig. 2). The neural activity during the emotion-judgment task was higher than that during the gender-discrimination task in the bilateral middle and inferior frontal gyri (BA 9, 45, 46, 47), supplementary motor area (BA 6), right parietal cortex (BA 40), and middle temporal gyrus (BA 22) (corrected, p < 0.05). However, there was no significant difference in activation among neutral, positive and negative face conditions (corrected, p < 0.05).

Table 2 presents the brain areas that showed increasing or decreasing activation as the experimental sessions proceeded, which were analyzed using specified linear covariates. The neural activities in the bilateral posterior cingulate cortices (BA 23, 31; [-2, -32, 22] and [6, -32, 22] at

Talairach coordinates [Talairach and Tournoux, 1988]) significantly increased over time (corrected, p < 0.05; Fig. 3). On the other hand, there were no significant voxels that showed the decreasing activity over time thresholded at p < 0.05 (corrected). Since the hypothesis existed for the habituation effects on the amygdaloid activity which have been reported previously (Breiter *et al.*, 1996; Wright *et al.*, 2001, Thomas *et al.*, 2001), the statistical threshold was reset for the analysis of decreasing activity at p <0.001 (uncorrected) for height and clusters larger than 10 contiguous voxels. The activity in the bilateral amygdalae ([-18, -14, -16] and [22, -10, -18]) and the left medial fusiform gyrus (BA19, 37; [-14, -60, -6]) was significantly decreased as the sessions proceeded at the lenient threshold, although the left amygdala never demonstrated a greater activation relative to the control conditions through all sessions (Fig. 4). In the individual analysis, the neural activities in these cortical regions had a tendency to show similar patterns of activation.

DISCUSSION

We observed that the response of the posterior cingulate cortex increased and that of the amygdala decreased as the experimental sessions proceeded in the present study.

The present time-course of decreased changes in the right amygdala activation is supported by other studies, which showed habituated amygdala responses to the emotionally valenced faces (Breiter et al., 1996; Wright et al., 2001) or familiar 'ingroup' faces (Hart et al., 2000). These studies reported less amygdala activation during the second (late) scan than during the first (early) scan. There was a possibility that the subjects habituated to unfamiliar facial stimuli or perceived unfamiliar faces as familiar ones gradually with repeated stimulus exposures, even if the familiarity acquisition was not integral but incidental to the task. In fact, most of our subjects stated after the experiments that they became aware of same actors' faces presenting repeatedly in the latter half of sessions. Since we incorporated two different tasks, i.e. gender-discrimination and emotion-judgment, together into the experiment and there were no significant differences in percent correct response and reaction time between the first half of sessions and the latter half of sessions, it is unlikely that the reduced amygdala signal in the present study was due to a habituation effect to the experimental task per se. Moreover, the order of emotional face sessions and neutral face sessions was counterbalanced across subjects, and neutral face conditions were more frequent than positive face or negative face conditions. There was no

significant difference in activation among the neutral, positive and negative face conditions. Taken together, it is also unlikely that the amygdala signal reduction was due to a habituation effect to emotion. Thus, it is suggested that the right amygdala response shown in the present study reflects habituation to repeated presentation of unfamiliar facial stimuli per se.

Our results showed that the bilateral lateral fusiform gyri were significant activation areas during all face recognition tasks compared with the control conditions. The signal change in the medial portion of the left fusiform gyrus was significantly decreased over time at the lenient threshold, although this activation was not significant during the face recognition relative to the control conditions. While face recognition activates more inferior and lateral aspects of the fusiform gyrus, object recognition such as the present control condition activates more medial aspects of the fusiform gyrus (Chao *et al.*, 1999; Ishai *et al.*, 2000; Joseph 2001). The decreased MR signal in the left medial fusiform gyrus may reflect that activation in this portion was relatively persistent during the figure discrimination in the control conditions instead of decreasing participation in face recognition as the task block proceeded.

As for the posterior cingulate cortex, greater activation was reported during explicit recognition of famous faces compared to during that of recently encoded faces or unfamiliar faces seen for the first time (Leveroni et al., 2000) or during implicit recognition of familiar (friends) faces and voices relative to during that of unfamiliar faces and voices (Shah et al., 2001) in fMRI studies. Kim et al. (1999) also reported that explicit recognition of familiar (previously learned) faces and words was associated with increased neural activity in the posterior cingulate cortex relative to that of novel faces and words using PET. These studies suggested that the posterior cingulate cortex participates in assessing the familiarity of a person. Further, Henson et al. (2002) demonstrated that implicit processing of two repeated presentations of familiar or unfamiliar facial stimuli, in which subjects judged whether a face was famous or nonfamous during fMRI, produced increased responses from first to second presentation ('repetition enhancement' effect) in several regions including the bilateral posterior cingulate cortices. However, they had not described differences in the repetition effects between familiar and unfamiliar facial stimuli in this region. In the present study, the MR signal in the bilateral posterior cingulate cortices elevated little by little over time with the repetition of facial stimuli. In consideration of the references described above, the increasing activity in the posterior cingulate cortex may reflect the neural process, in which the subjects perceive unfamiliar faces as familiar with repeated presentation. These findings suggest that the posterior cingulate cortex plays an important role in the acquisition of facial familiarity.

Other roles of the posterior cingulate cortex have been also reported. Severe metabolism reduction in the posterior cingulate cortex in patients with Alzheimer's disease and diffuse Lewy body disease was reported using PET, and it has been suggested that this hypofunction is related to learning and memory impairment in early stagesion ion ion ion ion ion ion ion ma *et al.*, 1994, 1997, 2001; Reiman, *et al.*, 1996). Activation of this region has been described during verbal memory (Grasby *et al.*, 1993) and during encoding of episodic memory (Fletcher *et al.*, 1995). It is suggested that the posterior cingulate cortex is involved in retrieval of autobiographical memories elicited by familiar name-cued recall (Maddock *et al.*, 2001). The increased activation of the posterior cingulate cortex in the present study may thus be related not only to the acquisition of facial familiarity, but also to implicit monitoring of retrieved facial memories.

While the response of the right amygdala decreased as the sessions proceeded, the bilateral posterior cingulate activation increased in the present study. There are few reports on a direct neural network between the posterior cingulate cortex and amygdala. However, the posterior cingulate cortex has anatomical connections with the hippocampal formation, and close functional Kobayashi and Amaral, 2000). The hippocampal formation also has strong reciprocal connections with the amygdala. Moreover, while the posterior cingulate cortex is reciprocally connected to regions involved in emotional processing, including the anterior cingulate cortex (Baleydier and Mauguiere, 1980; Vogt et al., 1992), the anterior cingulate also has reciprocal connections with the amygdala (Musil and Olson, 1988; Sesack et al., 1989; Zeng and Stuesse, 1991). Thus, the posterior cingulate cortex and amygdala may work reciprocally, via other brain regions such as the hippocampus or the anterior cingulate cortex, on habituation and acquisition of familiarity to unfamiliar facial stimuli presented repeatedly as in our experiment.

The left amygdala revealed no activation compared to the control conditions through the present nine sessions. We have previously reported that the right amygdala is generally involved in face processing per se, whereas the left amygdala is specifically associated with information with the negative valence (Iidaka *et al.*, 2001). Schwartz *et al.* (2003) showed that novel facial stimuli with neutral expressions activated only the right amygdala more than familiar faces. The reason for the lack of left amygdala activation in the present study may be that the facial stimuli with an emotionally neutral expression and with a positive emotion were used in five and two of the nine sessions respectively, while there were only two sessions using the faces with negative emotion. Further, the left amygdala appeared to show a significant increasing negative response to the facial stimuli relative to the control conditions over the nine sessions. If the amygdala and posterior

cingulate cortex work reciprocally to the repetitive presentation of the unfamiliar facial stimuli, it may be speculated that the former activity even including the left side was suppressed relatively as the latter activity increased.

The amygdala plays a central role in processing the social relevance of information gleaned from faces (Haxby et al., 2000, 2002). Its greater activation to unknown than known faces has suggested that unknown faces could be detected as a potential threat (Dubois et al., 1999; Schwartz et al., 2003). We have reported that patients with schizophrenia show greater amygdala activation during emotional face judgment tasks than the healthy controls, and speculated that the exaggerated amygdala activation may reflect impaired gating of sensory input containing emotion in schizophrenia (Kosaka et al., 2002). It is possible that patients with schizophrenia show no or less habituation of amygdala responses to unfamiliar facial stimuli used in our previous study than rapid habituation in the control subjects. Such an impairment of amygdala habituation may cause schizophrenics to mistake even familiar people as untrustworthy, dangerous, or potential assailants. In consideration of the present results, a less increasing posterior cingulate response to repetitive unfamiliar facial stimuli may also be a putative maker in patients with schizophrenia who exhibit such cognitive impairments in social interaction.

ACKNOWLEDGIMENTS

This study was supported by Grant-in-Aid for Scientific Research from JSPS (14207039).

REFERENCES

- Baleydier, C. and Mauguiere, F. 1980. The duality of the cingulate gyrus in monkey. Neuroanatomical study and functional hypothesis. *Brain* **103**: 525-554.
- Bordi, F. and LeDoux, J. 1992. Sensory tuning beyond the sensory system: an initial analysis of auditory response properties of neurons in the lateral amygdaloid nucleus and overlying areas of the striatum. *J. Neurosci.* **12**: 2493-2503.
- Breiter, H. C., Etcoff, N. L., Whalen, P. J., Kennedy, W. A., Rauch, S. L., Buckner, R. L., Strauss, M. M., Hyman, S. E., and Rosen, B.R. 1996. Response and habituation of the human amygdala during visual processing of facial expression. *Neuron* 17: 875-887.
- Chao, L. L., Martin, A., and Haxby, J.V. 1999. Are face-responsive regions selective only for faces? *Neuroreport* **10**: 2945-2950.
- Davis, M., and Whalen, P. J. 2001. The amygdala: vigilance and emotion. *Mol. Psychiatr.* **6:** 13-34.
- Dubois, S., Rossion, B., Schiltz, C., Bodart, J. M., Michel, C., Bruyer, R., and Crommelinck, M. 1999. Effect of familiarity on the processing of human faces. *NeuroImage* 9: 278-289, doi:10.1006/nimg.1998.0409.
- Evans, A. C., Kamber, M., Collins, D. L., and Macdonald, D. 1994. An MRI-based probablistic atlas of neuroanatomy. In Magnetic Resonance Scanning and Epilepsy, NATO ASI series A (Shorvon, S., Fish, D., Andermann, F., Bydder, G. M. and Stefan, H. Eds.), Vol. 264, pp. 263-274. Life Sciences, Plenum, New York.
- Fletcher, P. C., Frith, C. D., Grasby, P. M., Shallice, T., Frackowiak, R. S., and Dolan RJ. 1995. Brain systems for encoding and retrieval of auditory-verbal memory. An in vivo study in humans. *Brain* **118**: 401-416.
- Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. B., Frith, C. D., and Frackowiak, R. S. J. 1995. Statistical parameter maps in functional imaging: A general linear approach. *Hum. Brain Mapping* 2: 189-210.
- Friston, K. J., Holmes, A. P., and Worsley, K. J. 1999. How many subjects constitute a study? *NeuroImage* **10**: 1-5, doi:10.1006/nimg.1999.0439.
- Grasby, P. M., Frith, C. D., Friston, K. J., Bench, C., Frackowiak, R. S., and Dolan, R. J. 1993. Functional mapping of brain areas implicated in auditory--verbal memory function. *Brain* 116: 1-20.
- Hart, A. J., Whalen, P. J., Shin, L. M., McInerney, S. C., Fischer, H., and Rauch, S. L. 2000. Differential response in the human amygdala to racial outgroup vs ingroup face stimuli. *Neuroreport* 11: 2351-2355.
- Haxby, J. V., Hoffman, E. A., and Gobbini, M. I. 2000. The distributed human neural system for face perception. *Trends Cogn. Sci.* **4:** 223-233.

- Haxby, J. V., Hoffman, E. A., and Gobbini, M. I. 2002. Human neural systems for face recognition and social communication. *Biol. Psychiatry* **51**: 59-67.
- Henson, R. N., Shallice, T., Gorno-Tempini, M. L., and Dolan, R. J. 2002. Face repetition effects in implicit and explicit memory tests as measured by fMRI. *Cereb Cortex* 12: 178-186.
- Iidaka T, Omori M, Murata T, Kosaka H, Yonekura Y, Okada T, and Sadato N. 2001. Neural interaction of the amygdala with the prefrontal and temporal cortices in the processing of facial expressions as revealed by fMRI. *Cogn Neurosci* 15: 1035-1047.
- Ishai, A., Ungerleider, L. G., and Haxby, J. V. 2000. Distributed neural systems for the generation of visual images. *Neuron* **28**: 979-990.
- Joseph, J. E. 2001. Functional neuroimaging studies of category specificity in object recognition: a critical review and meta-analysis. *Cogn. Affect. Behav. Neurosci.* 2: 119-136.
- Kim J. J., Andreasen, N. C., O'Leary, D. S., Wiser, A. K., Ponto, L. L., Watkins, G. L., and Hichwa, R. D. 1999. Direct comparison of the neural substrates of recognition memory for words and faces. *Brain* 122: 1069-1083.
- Kobayashi, Y. and Amaral, D. G. 2000. Macaque monkey retrosplenial cortex: I. threedimensional and cytoarchitectonic organization. *J. Comp. Neurol.* **426**: 339-365.
- Kosaka, H., Omori, M., Murata, T., Iidaka, T., Yamada, H., Okada, T., Takahashi, T., Sadato, N., Itoh, H., Yonekura, Y., and Wada, Y. 2002. Differential amygdala response during facial recognition in patients with schizophrenia: an fMRI study. *Schizophr. Res.* 57: 87-95.
- LeDoux, J. E. 2000. Emotion circuits in the brain. Annu. Rev. Neurosci. 23: 155-184.
- Leveroni, C.L., Seidenberg, M., Mayer, A. R., Mead, L. A., Binder, J. R., and Rao, S. M. 2000. Neural systems underlying the recognition of familiar and newly learned faces. J. *Neurosci.* 20: 878-886.
- Maddock, R. J., Garrett, A. S., and Buonocore, M. H. 2001. Remembering familiar people: the posterior cingulate cortex and autobiographical memory retrieval. *Neuroscience* **104**: 667-676.
- Minoshima, S., Foster, N. L., and Kuhl, D. E. 1994. Posterior cingulate cortex in Alzheimer's disease. *Lancet* **344**: 895.
- Minoshima, S., Giordani, B., Berent, S., Frey, K. A., Foster, N. L., and Kuhl, D. E. 1997. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. *Ann. Neurol.* 42: 85-94.

Minoshima, S., Foster, N. L., Sima, A. A., Frey, K. A., Albin, R. L., and Kuhl, D. E. 2001.

Alzheimer's disease versus dementia with Lewy bodies: cerebral metabolic distinction with autopsy confirmation. *Ann. Neurol.* **50:** 358-365.

- Musil, S. Y. and Olson, C. R. 1988. Organization of cortical and subcortical projections to anterior cingulate cortex in the cat. J. Comp. Neurol. 272: 203-218.
- Oldfield, R. C. 1971. The assessment and analysis of handedness: the Edinburgh inventory. *Neuropsychologia* **9**: 97-113.
- Olson, C. R. and Musil, S. Y. 1992. Topographic organization of cortical and subcortical projections to posterior cingulate cortex in the cat: evidence for somatic, ocular, and complex subregions. *J. Comp. Neurol.* **324**: 237-260.
- Reiman, E. M., Caselli, R. J., Yun, L. S., Chen, K., Bandy, D., Minoshima, S., Thibodeau, S. N., and Osborne, D. 1996. Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon 4 allele for apolipoprotein *E. N. Engl. J. Med.* 334: 752-758.
- Schwartz, C. E., Wright, C. I., Shin, L. M., Kagan, J., Whalen, P. J., McMullin, K. G., and Rauch, S. L. 2003. Differential amygdalar response to novel versus newly familiar neutral faces: a functional MRI probe developed for studying inhibited temperament. *Biol. Psychiatry* 53: 854-862.
- Sesack, S. R., Deutch, A. Y., Roth, R. H., and Bunney, B. S. 1989. Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J. Comp. Neurol 290: 213-242.
- Shah, N. J., Marshall, J. C., Zafiris, O., Schwab, A., Zilles, K., Markowitsch, H. J., and Fink, G. R. 2001. The neural correlates of person familiarity. A functional magnetic resonance imaging study with clinical implications. *Brain* 124: 804-815.
- Thomas, K. M., Drevets, W. C., Whalen, P. J., Eccard, C. H., Dahl, R. E., Ryan, N. D., and Casey, B. J. 2001. Amygdala response to facial expressions in children and adults. *Biol. Psychiatry* **49:** 309-316.
- Vogt, B. A., Finch, D. M., and Olson, C. R. 1992. Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. *Cereb. Cortex* 2: 435-443.
- Wright, C. I., Fischer, H., Whalen, P.J., McInerney, S. C., Shin, L. M., and Rauch, S. L. 2001. Differential prefrontal cortex and amygdala habituation to repeatedly presented emotional stimuli. *Neuroreport* 12: 379-383.
- Zeng, D., and Stuesse, S. L. 1991. Morphological heterogeneity within the cingulate cortex in rat: a horseradish peroxidase transport study. *Brain Res.* **565**: 290-300.

FIGURE LEGENDS

FIG. 1. The experimental task design. The experiment consisted of nine sessions. Each session was composed of eight blocks; four control and four face recognition task (neutral, positive, or negative face condition for neutral face, positive face, or negative face session, respectively) blocks. Each block was 21 seconds long, alternating control and task. In the control condition, the subjects were instructed to discriminate whether the object was a circle or a square (figure-discrimination). In the task condition, the subjects were instructed to judge whether the face was male or female during the gender-discrimination task, or whether the face had emotional valences during the emotion-judgment task. The order of nine face recognition sessions was counterbalanced across subjects.

FIG. 2. Horizontal slices of the main effect of overall face recognition tasks in the nine sessions. The statistical threshold was p < 0.05, corrected for multiple comparisons at the cluster level. Z score is as indicated by the color bar; statistical significance increasing as red proceeds to white. Images are shown in the Talairach space (Talairach and Tournoux, 1988) with the z-coordinate label. The left side of the brain corresponds to the left side of the image and the frontal region to the top.

FIG. 3. The brain areas and signal change showing increasing activation as the nine experimental sessions proceeded. Upper row, the bilateral posterior cingulate cortices increasing activity superimposed on the MNI normalization T1-weighted template in sagittal and transverse images. The statistical threshold was p < 0.05, corrected for multiple comparisons at the cluster level. The left side of the brain corresponds to the left side of the image and the frontal region to the top. Z score is as indicated by the color bar; statistical significance increasing as red proceeds to white. Lower left, statistical parametric maps are shown in standard anatomical space. The 3-dimensional information was collapsed into 2-dimensional sagittal, coronal, and transverse images (i.e., maximum intensity projections viewed from the right, back, and top of the brain). Lower right, MR signal change in the bilateral posterior cingulate cortices over time. The light blue line represents the signal change of the right posterior cingulate cortex, and the deep blue line represents the left posterior cingulate cortex.

FIG. 4. The brain areas and signal change showing decreasing activation as the nine experimental sessions proceeded. Upper row, the bilateral amygdalae and the left medial fusiform gyrus decreasing activity superimposed on the MNI normalization T1-weighted template in transverse images. The

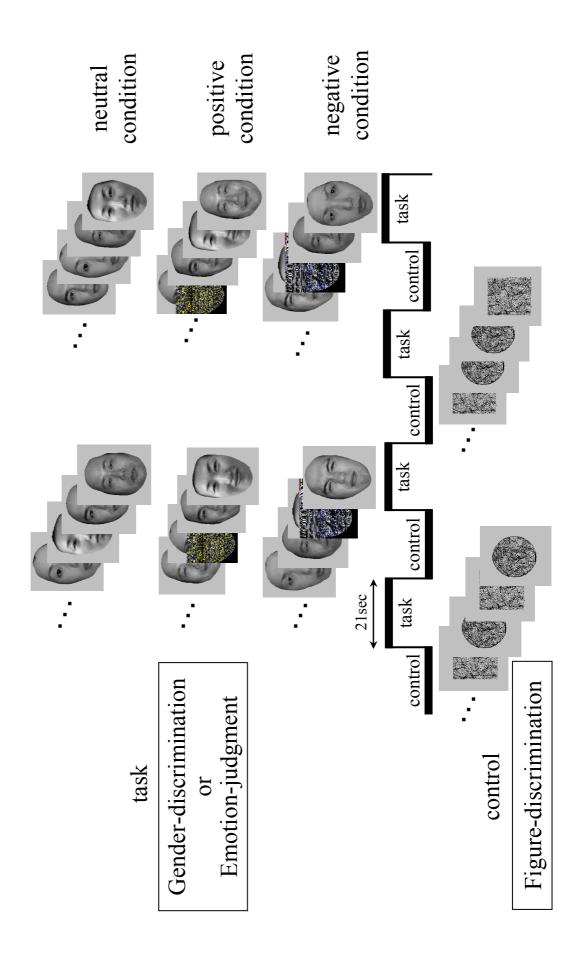
statistical threshold was p < 0.001, uncorrected for multiple comparisons at the voxel level and clusters larger than 10 contiguous voxels. Other details are the same as described in the legends of Fig. 3. Lower right, MR signal change in the bilateral amygdalae over time. The pink line represents the signal change of the right amygdala, and the red line represents the left amygdala.

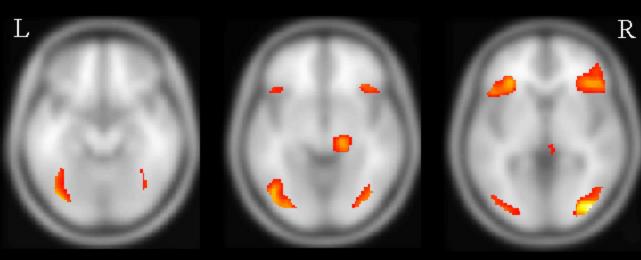
TABLE 1

Area	BA		x y	у	Z	Z-value
inferior frontal gyrus	45/47		- 30	32	- 2	5.02
c inferior frontal gyrus	45/47		40	28	- 2	4.93
middle frontal gyrus	9		- 48	22	36	5.59
R middle frontal gyrus	9		50	18	36	5.95
superior parietal lobe	7		- 30	- 66	44	4.29
superior parietal lobe	7		26	- 66	40	5.48
inferior occipital gyrus	18/19		- 34	- 80	- 14	5.89
c inferior occipital gyrus		18/19		40	- 84	0
.32						
lateral fusiform gyrus	37		- 36	- 52	- 20	4.77
alateral fusiform gyrus		37		38	- 62	- 18
.80						
upplementary motor area	6		2	16	60	4.94
entorhinal cortex	28		18	- 28	- 6	4.91

The Areas Activated During All Facial Recognition Tasks

Note. L, left; R, right; BA, Brodmann area; *x*, *y*, *z*, stereotaxic coordinates as given in the Talairach and Tournoux atlas. The statistical threshold was set to p < 0.05 (corrected).

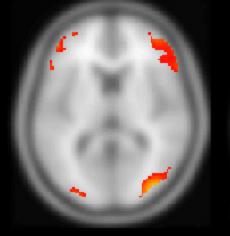

TABLE 2

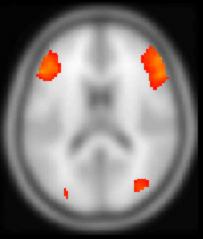

The Areas Showing Decreasing or Increasing Activation

		Coordinates				
Area	BA	X	у	Z	Z-value	
ncreasing activity						
L posterior cingulate cortex	23/31	- 2	- 32	22	4.60	
R posterior cingulate cortex	23/31	6	- 32	22	4.65	
decreasing activity						
L amygdala		- 18	- 14	- 16	3.50	
R amygdala		22	- 10	- 18	3.53	
L medial fusiform gyrus	19/37	- 14	- 60	- 6	3.71	

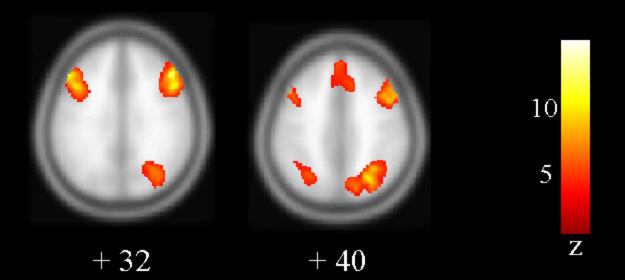
as The Experimental Sessions Proceeded

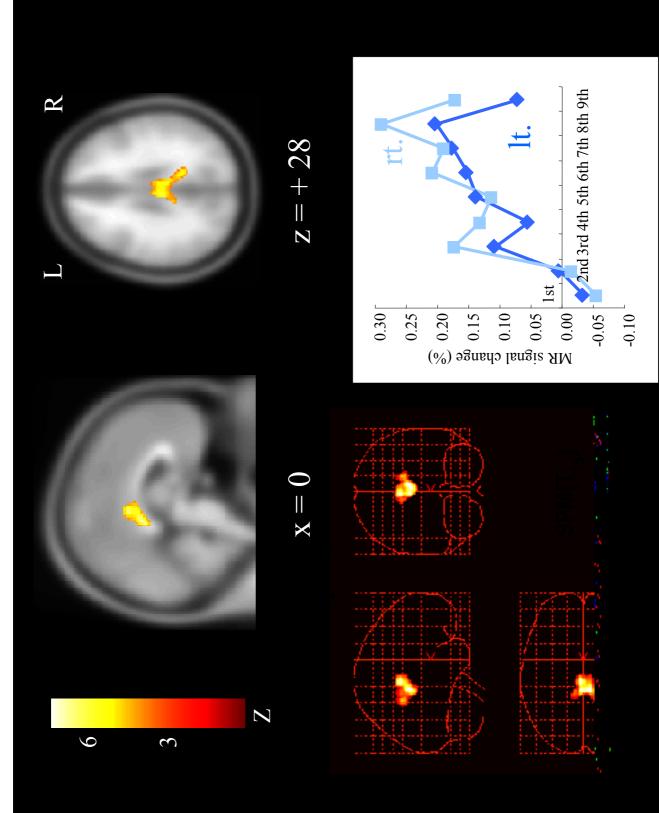
Note. L, left; R, right; BA, Brodmann area; *x*, *y*, *z*, stereotaxic coordinates as given in the Talairach and Tournoux atlas. The statistical threshold was set to p < 0.05 (corrected) for the analysis of increasing activity and to p < 0.001 (uncorrected) for decreasing activity.

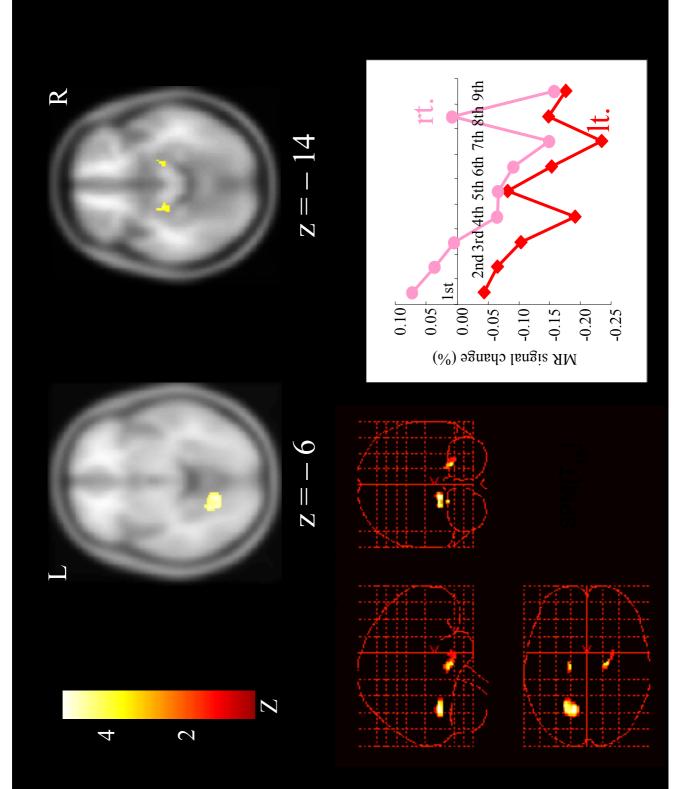




- 16






+8

+16

+24

