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Abstract

Data visualization has the potential to assist humans in analysing and comprehending large
volumes of data, and to detect patterns, clusters and outliers that are not obvious using non-
graphical forms of presentation. For this reason, data visualizations have an important role to play
in a diverse range of applied problems, including data exploration and mining, information
retrieval, and intelligence analysis. Unfortunately, while various different approaches are available
for data visualization, there have been few rigorous evaluations of their effectiveness. This paper
presents the results of three controlled experiments comparing the ability of four different
visualization approaches to help people answer meaningful questions for binary data sets. Two of
these visualizations, Chernoft faces and star glyphs, represent objects using simple icon-like
displays. The other two visualizations use a spatial arrangement of the objects, based on a model of
human mental representation, where more similar objects are placed nearer each other. One of
these spatial displays uses a common features model of similarity, while the other uses a distinctive
features model. The first experiment finds that both glyph visualizations lead to slow, inaccurate
answers being given with low confidence, while the faster and more confident answers for spatial
visualizations are only accurate when the common features similarity model is used. The second
experiment, which considers only the spatial visualizations, supports this finding, with the common
features approach again producing more accurate answers. The third experiment measures human
performance using the raw data in tabular form, and so allows the usefulness of visualizations in
facilitating human performance to be assessed. This experiment confirms that people are faster,
more confident and more accurate when an appropriate visualization of the data is made available.
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1. Introduction

Data visualization techniques aim to present data to people in ways that
accurately communicate information, and require minimal effort for comprehension.
Good data visualizations can facilitate the efficient examination of large volumes of
data, and provide the insight that allows inferences to be made from the observed
relationships within the data. Because of this potential, visualizations are commonly
applied to problems of data mining and exploration, information retrieval, and the
analysis of tactical and strategic intelligence.

It has often been argued that a principled psychological approach to data
visualization is warranted (e.g. Chernoff, 1973; Purchase, 1998; Shneiderman, 1998;
Ware, 2000). Usually the emphasis is on using perceptual principles to design data
displays. It is certainly true that, in order to achieve accuracy and efficiency in
comprehension, and avoid distortion of the information, visualizations must be
designed to be compatible with human perceptual systems. What is less often
acknowledged is the role of more abstract cognitive representational principles, not
directly related to perceptual processes, in developing data visualizations (although
see Kosslyn, 1994; Lokuge et al., 1996). To allow for effective analysis and
manipulation of data, the structure of the information conveyed also needs to be
compatible with the representational requirements and preferences of human
cognitive processes.

A psychological framework for data visualization that incorporates both
perceptual and cognitive components is shown in Fig. 1. As originally argued in
Lee and Vickers (1998), the motivation for this framework comes from viewing data
visualizations as a ‘channel’ that links information held in an artificial system with
human cognitive processes. To the extent that there is representational compatibility
between the artificial system and human cognition, and perceptual compatibility
between the visualization and human perception, an effective means of conveying
information between the two systems may be established. In particular, information
represented in the artificial system may be displayed using the data visualization,
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Fig. 1. A psychological framework for data visualization. Based on Lee and Vickers (1998, Fig. 1).
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perceived by the human, and represented mentally. The process of the human then
seeking useful patterns and structures in the visualization involves, in effect,
subjecting the information to the type of inferential cognitive processes that are
difficult to implement in artificial systems. Within the framework shown in Fig. 1
there is also the possibility for the human to interact with the information by taking
actions that manipulate the data visualization.

On the basis of this psychological framework, Lee and Vickers (1998) suggested
that data visualization techniques which perform little or no manipulation of the
data before attempting to represent it graphically, with the intention of ‘letting the
data speak for themselves, may be prone to error in comprehension and
manipulation. On the other hand, they argued, those visualizations that restructure
the information according to cognitive demands before representing it visually may
communicate the information in the raw data more effectively. The primary aim of
this paper is to provide a first empirical test of this idea.

2. Evaluating data visualizations

As Meyer (2000, p. 1840) points out, there are no generally accepted guidelines for
the optimal display of data. Part of the problem lies in the lack of empirical evidence
for or against the use of different approaches to visualization. Despite the important
role that visualizations play in information interfaces, Morse et al. (2000) note that
the evaluation of data visualizations is rarely undertaken. Even where evaluations
have been attempted, they often have adopted one of two approaches that does not
assess the data visualization in a direct and general way.

The first of these approaches, criticized by Purchase (1998), is to evaluate data
visualizations according to their aesthetic appeal or computational efficiency rather
than their ability to maximize human performance. Previous research suggests that
the relationship between the aesthetic qualities of an interface and performance is
complicated. While humans tend to associate aesthetic qualities of systems with
perceived usability, this perceived usability may be independent of actual usability
(Tractinsky et al., 2000). Indeed, Purchase (2000) found that the data visualization
judged as most symmetrical by participants was also associated with the highest rate
of errors. Certainly, assessing data visualizations through measures of their
aesthetics does not provide a direct measure of their ability to facilitate human
performance.

A second approach to evaluation has focused on the assessment of domain specific
visualizations (e.g. Graham et al., 2000; Trafton et al., 2000). This approach reflects
the influence of the principles of cognitive engineering, where the work system
(computer tools and user) is believed to be so tightly coupled to its domain that it
does not make sense to evaluate performance on a visualization independent of a
specific subject area (Dowell and Long, 1998). While this approach is appropriate for
answering specific applied problems, the degree to which the results can be
generalized to other applied areas is open to some question, in the sense that
assumptions have to be made about the relationship between two specific domains.
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A more direct and general approach to evaluation has been employed within
experimental cognitive psychology (e.g. Liu, 1989; Jones et al., 1990; Haskell and
Wickens, 1993), where different data visualizations are tested by asking people to
answer meaningful questions using the visualizations, and comparing performance
measures such as accuracy, confidence, and the time taken to provide answers. This
provides a direct and thorough test of how well the visualizations facilitate human
performance on the data set used to generate the visualization. By then considering a
range of data sets, it is also possible to assess the generality of the results obtained,
and provide an evaluation of the data visualization methods themselves.

We adopt this methodology to evaluate two competing data visualization
approaches best described as glyph visualizations and spatial visualizations. Glyph
visualizations require minimal pre-processing of data, and are archetypal examples
of those visualizations that claim to ‘let the data speak for themselves. Spatial
visualizations, in contrast, impose a cognitive structure on the data before it is
represented visually by using a model of human mental representation. In our
evaluations, we provide only basic instructions for using the visualizations, and do
not provide any training. As a first attempt at evaluating the visualizations in a
general way that is not domain specific, we think this is a reasonable approach. The
issue of how training might influence people’s ability to use the different
visualizations in specific domains is addressed in the General Discussion.

3. Four visualizations of binary data

The data used in this study are binary, with objects being defined in terms of the
presence or absence of a set of properties or features. While this is clearly a
restriction, binary data are an important special case for a number of reasons. There
are important properties or features that only exist in binary form, such as gender.
There are also many occasions when a variable of interest is a binary quantization of
an underlying continuous variable. For example, the distinction between ‘virgin’ and
‘non-virgin’ uses a cut-off point to define a binary variable over the countably
infinite variable ‘number of sexual encounters’.

There are applied data visualization systems that use only binary data. Sometimes,
this is a matter of necessity, because the underlying data are inherently binary. For
example, most applications of Netmap visualization software (NetMap, 2001), which
is designed to assist in strategic investigation of fraud, criminal activity, and the like,
involves the graphical display of binary information. The raw data give relational
information such as whether or not two people are known to each other, whether or
not a person is associated with a phone number, whether or not a car is involved in
an insurance claim, and so on. In the same way, the visualization of social networks
(e.g. Wasserman and Faust, 1994) usually deals with binary relational information
between individuals. On the other hand, there are applied systems where more
detailed information is available, but binary data are used as a matter of convenience
or scalability. For example, the ‘Galaxies’ software product developed under the
SPIRE project, which produces visualizations of text document corpora, represents
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documents in terms of the presence or absence of a set of 200,000 words (see Wise,
1999, p. 1226).

Despite these theoretical and practical reasons for studying binary data, however,
we acknowledge that there are many variables of interest in the context of data
visualization that are not amenable to a binary characterization, and so this study
constitutes only a first step towards evaluating the competing visualization
approaches that are considered.

3.1. Glyph visualizations

Glyphs provide a means of displaying items of multivariate data by representing
individual units of observation (objects or cases) as icon-like graphical objects, where
values of variables are assigned to specific features or dimensions of the objects. The
appearance of the objects changes as a function of the configuration of values, giving
the object a visual identity that can be identified by the observer. Chernoff (1973) has
argued that examining such glyphs may help to uncover specific clusters of both
simple relations and interactions between variables.

The visual possibilities of glyph formations are endless. One commonly used glyph
form is the ‘whisker plot’, where each variable is represented by a line segment
radiating from a central point. The length of the line segment indicates the value of
the corresponding variable. A variation of the whisker plot, used in this study, is the
‘star plot’. The star is the same as the whisker except that the ends of adjacent line
segments are joined.

A second interesting form of glyph visualization, known as ‘Chernoff faces’
(Chernoff, 1973; Chernoff and Rizvi, 1975), display data using cartoon faces by
relating different variables to different facial features. Chernoff faces were developed
using the idea that, since they use the perceptual characteristics of real faces, they
may be particularly easy for people to use given our heightened sensitivity to facial
structure and expression. It has also been argued that the faces allow people to
perceive many data values in parallel, in the same way they perceive real facial
features, and that this holistic perception facilitates the efficient recognition of
relationships or patterns among elements (Jacob et al., 1976; Ware, 2000). It has
even been suggested that, because Chernoff faces are more interesting representa-
tions than many other graphical techniques, they may be more effective because
observers are willing to spend more time analysing the representations (Everitt and
Dunn, 1991).

3.2. Spatial visualizations

Spatial visualizations represent objects as points in a multidimensional (usually
two-dimensional) space, so that objects that are more similar are located nearer each
other. This form of representation has some considerable status as a model of human
mental representation (Shepard, 1957, 1987, 1994), and is used to represent stimuli in
various formal psychological models of identification, categorization, selective
attention, and other cognitive processes (e.g. Getty et al., 1979; Nosofsky, 1986;
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Kruschke, 1992). The algorithms that generate spatial representations, generically
known as multidimensional scaling algorithms (e.g. Kruskal, 1964; see Shepard,
1980 for an overview), have also been applied to data visualization, exploration and
analysis (e.g. Mao and Jain, 1995; Lowe and Tipping, 1996).

Multidimensional scaling (MDS) algorithms require as input measures of the
similarity between each pair of objects in the domain of interest. Starting from
binary data, where objects are represented in terms of the presence or absence of a set
of properties or features, there are a number of ways in which similarity could
plausibly be measured. Cox and Cox (1994, p. 11) provide a list of a dozen straight-
forward approaches, and there are other more sophisticated measures (e.g. Cohen,
1997; Tenenbaum et al., 2000) that could be appended to this list.

This study is restricted to considering the two theoretical extremes for assessing
similarity from binary properties. Under the ‘common’ approach, the similarity of
two objects is calculated as the number of features or properties they have in
common. Under the ‘distinctive’ approach, similarity is calculated as the number of
features or properties the objects either both have, or both do not have. Cox and Cox
(1994) refer to these alternatives as the ‘Matching’ and ‘Jaccard’ coefficients,
respectively. Our terminology is taken from the seminal psychological theory of
feature-based stimulus similarity presented by Tversky (1977), where the terms
‘common’ and ‘distinctive’ are used to describe exactly the same measures.

We use MDS solutions that represented the data set in two dimensions. Primarily,
this choice was based on the fact that, in applied settings, analysts tend to work with
inherently two-dimensional media for displaying data representations (e.g. computer
screens, sheets of paper, white boards). Any attempt to display three-dimensional (or
higher-dimensional) spatial representations using two physical dimensions inevitably
involves distorting the MDS representation. Empirical support for avoiding this sort
of distortion is found in a recent study by Westerman and Cribben (2000), which
compared information search performance on two- and three-dimensional MDS-
based visualizations. While the amount of variance that can be accounted for by a
three-dimensional solution is greater than for a two-dimensional solution, they
found that it did not offset the poorer performance associated with three-
dimensional versions.

4. Experiment I
4.1. Data sets

Four different binary data sets were constructed to test the visualization types.
These related to co-starring movie actors, movie genres, countries and their produce,
and animals. In essence, each data set consisted of a set of stimuli and a set of
features, with each stimulus being defined in terms of the presence or absence of each
of the features. Table 1 shows the animals data set as a concrete example. Rows
represents animals, and columns represent animal features. Each cell contains a ‘1 if
the corresponding animal has the corresponding feature, and a ‘0’ otherwise.



The animals data set, showing the definition of 20 animals in terms of 14 binary features
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4.2. Questions

The areas chosen for the data sets were selected on the basis that they could be
expressed as binary data, and could be understood without needing any special
knowledge. This familiarity is important, because it allowed the development of
questions to which there were ‘clear’ answers, without relying on the data set
itself. For example, any reasonable definition of the animals ‘housefly’, ‘bear’ and
‘flea’ should have the housefly and flea being more similar to each other than either is
to the bear. This means that any effective visualization should allow people to
answer the question ‘Of a housefly and bear, which is most similar to flea?’. By
constructing questions in this general way, a potential circularity is circumvented,
because questions do not need to be developed from the visualizations they are used
to assess. We should acknowledge, however, that for a small number of question
relating to the definition of a cluster, there was some ambiguity regarding what
constituted a correct answer. In these cases, several different answers, corresponding
to clusters that both did and did not include the problematic object, were scored as
correct.

A set of eight questions was designed for each data set. Rather than attempting to
adhere to a detailed taxonomy of question types (e.g. Wehrend and Lewis, 1990),
two fundamental question classes were identified. These were named local and global
question classes. Local questions required the consideration of only a few specific
cases out of the set. These questions took the form of a forced choice comparison by
asking the participant to assess specific cases in terms of their relationship to other
specific cases. An example of a local question is: ‘Of 6 and 7, which case is most
similar to 37°. Global questions, in contrast, required the consideration of the entire
set of cases to ensure a correct answer. Global questions included those that asked
for an outlier to be identified, as in: “Which case is the least like all the others?’, and
questions that required clusters to be identified, as in: “Which countries produce
similar products to case 2?°. As it turned out, each of the question sets involved more
local than global questions, solely because it proved much easier to generate local
questions with clear answers.

Again using the animals data set as a concrete example, Table 2 lists the eight
questions asked, together with the correct answers. It is important to understand that
the ‘decoding’ of case numbers into animal names in square brackets was not
provided for participants, but is shown in Table 2 as an annotation to assist in
interpretation. Questions 4 and 8 were classed as global questions, since they require
the identification of a cluster. The other questions were classed as local questions,
since only the animals referred to in the question need to be considered to provide an
answer.

4.3. Visualizations and instructions
The glyph visualizations were generated using Statistica software (Release 5, 1997

edition), with default settings. All features were present on the Chernoff faces
whether or not the corresponding feature was present in the raw data. This means
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Table 2
Annotated versions of the questions for the animals data set, with answers shown in italics

QI. Of cases 3 [catfish] and 19 [toad], which is most similar to 18 [seal]? 19 [road].
Q2. Do 1 [clam] and 2 [crab] share any of the same physical features? Yes.
Q3. Of cases 7 [housefly] and 12 [bear], which is most similar to 8 [flea]? 7 [housefly].

Q4. Case 4 [carp] is an aquatic animal. Name the others. 1 [clam], 2 [crab], 3 [catfish],
S [haddock ], 18 [seal], 19 [toad], 20 [tuna].

Q5. Do cases 9 [lark] and 10 [parakeet] have features in common that set them
apart from the others? Yes.

Q6. Do cases 16 [lion] and 17 [goat] share features in common? Yes.

Q7. Of cases 3 [catfish] and 13 [elephant], which is most similar to 15 [leopard]?
13 [elephant].

Q8. Case 14 [giraffe] is a land animal. Name the others. 11 [bear], 12 [boar],
13 [elephant], 15 [leopard], 16 [lion], 17 [goat].

ol
‘: 1

e D
O 9

Case 6

()

Case 11

()

Case 16 Case 17 Case 18 Case 19 Case 20

Fig. 2. The faces visualization of the animals data set.

that the presence or absence of a feature in the data was represented not by the
presence or absence of, say, a mouth, but by extremes in its length or curvature
corresponding the software’s default values. Fig. 2 shows the face visualization of the
animals data set. The instructions given to participants using this visualization were:
‘The following visualization represents a set of 20 animals that each possess one or
more of a selection of physical features. Each face (or case) represents a separate
animal and each facial feature represents a different physical feature. Two cases that
share a particular feature will share the same corresponding facial feature’.
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Fig. 3. The stars visualization of the animals data set.

For the star glyphs, the presence or absence of each branch was determined by the
corresponding data feature, but the length of every branch was the same. Fig. 3
shows the star glyph visualization of the animals data set. The instructions given to
participants using this visualization were: ‘The following glyph visualization
represents a set of 20 animals that each has one or more of a set of physical
features. Each star (or case) represents a separate animal and each branch on the star
represents a different physical feature. Two cases that share a particular feature will
share the same corresponding branch of the star’.

The spatial visualizations were generated by applying the metric multi-
dimensional scaling algorithm described in Lee (2001, p. 156). The Euclidean
distance metric was used, and similarity measures were derived using both the
common and distinctive approaches. For each visualization, ten independent two-
dimensional multidimensional scaling solutions were found, and the best-fitting
configuration was used. A Procrustes transformation (Sibson, 1978) was also
applied, ensuring the best possible alignment between the common and distinctive
spatial visualizations that was achievable using distance-preserving translations and
rotations.

Fig. 4 shows the distinctive spatial visualization of the animals data set. The
instructions given to participants using this visualization were: ‘The following spatial
visualization represents a group of 20 animals that each has one or more of a set of
physical features. Each number represents a different animal. The numbers are
arranged according to their degree of similarity, with those animals that are more
similar being placed closer together. Similarity between two animals is calculated as
the number of physical features they have in common, added to the number of
physical features the two animals do not have, out of the total number of physical
features being considered. That is, two animals are considered similar if they share
many physical features and if there are many physical features that both animals do
not have’.
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Fig. 4. The distinctive spatial visualization of the animals data set.

Finally, Fig. 5 shows the common spatial visualization of the animals data set. The
instructions given to participants using this visualization were: ‘The following spatial
visualization represents a group of 20 animals that each has one or more of a set of
physical features. Each number represents a different animal. The numbers are
arranged according to their degree of similarity, with those animals that are more
similar being placed closer together. Similarity between two animals is calculated as
the number of physical features they have in common out of the total set of features
being considered’.

4.4. Participants

The participants were 32 adults (24 males, eight females) ranging in age from 21 to
59 years (mean = 34.41, s.0. = 10.98) with varied experience using data visualiza-
tions.

4.5. Procedure

Each participant answered the same set of eight questions for each data set,
and used each type of visualization exactly once. The pairing of data sets with
visualizations was balanced, so that, across all participants, the questions associated
with each data set were answered using each visualization an equal number of times.
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Fig. 5. The common spatial visualization of the animals data set.

The order in which participants used the different visualizations was also balanced
by presenting glyph and spatial visualizations using every possible combination of
alternate presentation. Finally, the order of presentation of the data sets was
reversed for half of the sample. This means that the first participant was presented
with the data sets in the order: co-starring actors, movie genres, country produce,
animals; and used the visualizations in the order: faces, common, stars, distinctive.
The second participant then received the data sets in the reverse order and used the
visualizations in the order: faces, distinctive, stars, common.

Participants took part in the experiment individually with an experimenter present
to record the time taken to answer each question. They were instructed that,
although they were being timed, they should take as long as they wished answering
each question, and that the questions could be completed in any order. The questions
were presented in ‘pen and paper’ format and the visualizations were presented on a
separate page together with the instruction paragraph. The time measure was taken
between the act of writing answers to successive questions on the paper, and did not
include the time taken to read the initial instructions.! Participants were asked to

'"The decision to use manual timing was made to accommodate the ‘pen and paper’ testing format, and
avoid a computer administered test. Many of the global questions required ‘free form’ answers, involving
un-ordered lists of stimuli. We believed that, for our participant pool, any computer interface able to
accept these sorts of answers would lead to individual differences in response times that related to
computing skills rather than decision making processes. For this reason, the small increase in measurement
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indicate their level of confidence in every response by circling the appropriate
number on a confidence scale that appeared with each question. The scale ranged
from 1 to 5, with 1 indicating a guess and 5 indicating certainty.

4.6. Results

In making statistical inferences from our data, we use the standard psychological
approach of Null Hypothesis Significance Testing (NHST). We are sensitive,
however, to criticisms of NHST as a method of scientific inference (e.g. Edwards
et al., 1963; Lindley, 1972; Howson and Urbach, 1993; Cohen, 1994; Hunter, 1997).
In particular, we acknowledge that NHST violates the likelihood principle, and so
does not satisfy a basic requirement for rational, consistent and coherent statistical
decision making (Lindley, 1972). For this reason, we also present a Bayesian analysis
of the data (see, for example, Gelman et al., 1995; Kass and Raftery, 1995; Sivia,
1996; Leonard and Hsu, 1999; Carlin and Louis, 2000).

Under the Bayesian approach, we treat the human performance data as evidence
for or against competing models of the relationship between visualization types,
questions types, and decision accuracy, confidence and time. In particular, we are
interested in what evidence the data provide for accuracy, confidence or time
depending upon the visualization used for different types of questions. This requires,
for example, being able to assess the probability that the distribution of response
times for local questions depends upon the visualization method that is employed.
We are also interested in assessing to what extent the data provide evidence for the
distribution of accuracy, confidence or time being the same in particular cases. This
requires, for example, being able to assess the probability that decisions for local
questions using a face visualization are distributed in the same way as decisions for
local questions using a star visualization. There are established Bayesian methods for
calculating or estimating these probabilities (Margaritis and Thrun, 2001), which are
applicable to our data.? A formal summary of these statistical techniques is provided
in the appendix.

Fig. 6 shows the mean accuracy, confidence and time, together with one standard
error in each direction, for each visualization type, broken down by the two
questions types. It is important to understand that, while Fig. 6 provides a
convenient and useful graphical summary of the results, it does not capture the
complexity of the underlying distributions from which the means and standard
errors are derived. For this reason, we base our substantive conclusions relating to

(footnote continued)
error arising from relying on manual timing seemed worthwhile to avoid the larger measurement error
expected to be caused by differences in computing skills.

21t is important to understand that a Bayesian probability is not the same thing as a p value reported
under NHST. The Bayesian probability is the probability of a model being true given the data, whereas the
p value is best interpreted as the probability of the data, or data more extreme, given the null hypothesis
(see Robert, 1994, p. 197). Because of their fundamental differences, it is not sensible to think of the
Bayesian probabilities in terms of the ‘critical values” of NHST.
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the data primarily upon the Bayesian analysis, which does consider the entire
distribution.

NHST analysis: Two-way ANOVAs were conducted with respect to visualization
type and question type for the accuracy, confidence and time measures. Mean
accuracy varied significantly across the different visualizations (F(3,93) = 11.721,
p<0.01). Planned contrasts between each visualization pair revealed significantly
greater accuracy for the common approach when compared to the distinctive
(F(1,31) =22.677, p<0.01), faces (F(1,31)=39.135, p<0.01) and stars
(F(1,31) = 12.447, p<0.01). None of the remaining contrasts were significant.

Mean accuracy for local questions was significantly greater than for global
questions (F(1,31) = 60.963, p<0.01). There was also a significant interaction
between visualization type and question type (F(3,31) =10.839, p<0.01). This
indicates that the influence of visualization type on the accuracy of responses was
dependent on the type of question asked, which seems to be largely attributable to
the increased accuracy for global questions when using the common spatial
visualization approach.

There was a moderately significant difference in mean confidence across the
different visualizations (F(2.037,63.150) = 4.001, p<0.05). This value was adjusted
using the Greenhouse-Geisser correction because Mauchly’s test of sphericity of
variance was significant for this comparison (W(5) = 0.445, p<0.01). Planned
contrasts between each visualization pair revealed significantly greater confidence for
the common approach when compared to the faces (F(1,31) = 10.377, p<0.01) and
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stars (F(1,31) = 15.491, p<0.01), but not the distinctive visualization. As with the
accuracy measures, none of the remaining contrasts were significant.

Mean confidence for local questions was significantly greater than for global
questions (F(1,31) = 65.645, p<0.01). There was also a significant interaction
between visualization type and question type (F(2.310,71.599) = 9.258, p<0.01).
This value was adjusted using the Greenhouse-Geisser correction because
Mauchly’s test of sphericity of variance was significant for this comparison
(W(5) =0.627, p<0.05). The presence of an interaction indicates that the influence
of visualization type on the confidence of responses was dependent on the type of
question asked, which seems to be attributable to the increased confidence for global
questions when using spatial visualizations.

Mean time varied significantly across the different visualizations
(F(3,93) = 11.148, p<0.01). Planned contrasts between both spatial visualizations
lead to quicker response times than both glyph visualizations; common visualiza-
tions were quicker than face visualizations (F(1,31) = 16.174, p<0.01) and star
visualizations (F(1,31) = 6.434, p<0.05), and distinctive visualizations were quick-
er than face visualization (F(1,31)=24.561, p<0.01) and star visualizations
(F(1,31) = 10.985, p<0.01). The remaining two contrasts, between the common
and distinctive visualizations, and the face and star visualizations were not
significant.

Mean response time for local questions was significantly faster than for global
questions (F(1,31) =29.964, p<0.01). There was also a significant interaction
between visualization type and question type (F(2.270,70.373) = 10.965, p<0.01).
This value was adjusted using the Greenhouse-Geisser correction because Mauchly’s
test of sphericity of variance was significant for this comparison (W(5) =
0.519, p<0.01). This interaction indicates that the influence of visualization type
on the response time was dependent on the type of question asked, which seems to be
attributable to the faster response times for global questions when using spatial
visualizations.

Bayesian analysis: In terms of the relationship between visualization type and
accuracy, the Bayesian posterior probability of independence, based on human
performance across all four data sets is 0.95 for the local questions, and 0.02 for the
global questions. This means that it is very likely that the visualization type does not
have an impact upon people’s accuracy in answering local questions, but very likely
that it does have an impact on the global questions. Similar results are obtained
when the relationship between visualization type and time is considered. The
probability of independence is 0.97 (to two decimal places) for local questions, and
0.00 for global questions,® strongly suggesting that there is a dependency for global
questions, but not for local ones. The probability that confidence is independent of
visualization type is 0.99 for the local questions, and 0.36 for the global questions.
This means that, once again, the visualization type does not impact upon people’s

3Note that we are not claiming a zero probability, but are rounding to two decimal places. This means a
reported probability of 0.00 can be interpreted as meaning less than 0.005.



Table 3
Pairwise probability that the distribution of accuracy, confidence (in italics), and time (in bold) is the same for each combination of visualization and question
types
Faces-Local Stars-Local Distinctive-Local Common-Local Faces-Global Stars-Global Distinctive-Global Common-Global
0.97 0.85 0.96 0.88 0.00 0.40 0.00 0.85
Faces—Local 0.95 0.93 0.92 0.94 0.00 0.01 0.37 0.91
0.90 0.75 0.07 0.61 0.00 0.00 0.67 0.53
0.85 0.96 0.93 0.96 0.00 0.01 0.00 0.95
Stars—Local 0.93 0.95 0.86 0.90 0.00 0.00 0.08 0.92
0.75 0.93 0.06 0.73 0.00 0.03 0.83 0.82
0.96 0.93 0.97 0.94 0.00 0.16 0.00 0.91
Distinctive-Local ~ 0.92 0.86 0.96 0.95 0.00 0.11 0.01 0.84
0.07 0.06 0.91 0.87 0.00 0.00 0.69 0.23
0.88 0.96 0.94 0.97 0.00 0.01 0.00 0.95
Common-Local 0.94 0.90 0.95 0.96 0.00 0.02 0.01 0.87
0.61 0.73 0.87 0.89 0.00 0.00 0.74 0.75
0.00 0.00 0.00 0.00 0.95 0.65 0.93 0.00
Faces—Global 0.00 0.00 0.00 0.00 0.95 0.93 0.13 0.01
0.00 0.00 0.00 0.00 0.92 0.01 0.00 0.00
0.40 0.01 0.16 0.01 0.65 0.95 0.89 0.03
Stars-Global 0.01 0.00 0.11 0.02 0.93 0.95 0.55 0.02
0.00 0.03 0.00 0.00 0.01 0.88 0.00 0.11
0.00 0.00 0.00 0.00 0.93 0.89 0.95 0.00
Distinctive-Global 0.37 0.08 0.01 0.01 0.13 0.55 0.92 0.69
0.67 0.83 0.69 0.74 0.00 0.00 0.92 0.77
0.85 0.95 0.91 0.95 0.00 0.03 0.00 0.94
Common-Global  0.91 0.92 0.84 0.87 0.01 0.02 0.69 0.91
0.53 0.82 0.23 0.75 0.00 0.11 0.77 0.92
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confidence in answering local questions, but that the data only provide limited
evidence in favor of an impact for the global questions.

Table 3 presents the results of analysing the evidence provided by the data for
differences between individual accuracy, confidence and time distributions. Each
possible combination of visualization type and question type is considered in relation
to each of the other combinations. These results are presented in terms of an 8 x 8
matrix, with rows and columns corresponding to the eight combinations. Within
each cell, probabilities for accuracy, confidence and time are presented in normal
type, italics, and bold respectively. To assist in interpreting Table 3, it is worth giving
a concrete example. The probability that the time distribution is the same for local
questions using the stars visualization (Stars—Local) as it is for global questions using
the common spatial visualization (Common—Global) is given in the bottom (bold)
entry in second row and eighth column, which is 0.82. The same value is observed in
the eighth row and second column, since the pairwise comparison matrix is
symmetric. It is interesting to note that the diagonals of this matrix, where a
distribution is compared to itself, do not have probabilities of one. This is sensible,
since finite data are not capable of proving the distributions are identical. It would
not, for example, be reasonable to conclude that two confidence distributions were
identical if they both consisted of only two (identical) values. The Bayesian analysis
is sensitive to these considerations of sample size and, in a sense, the diagonal values
provide measure of the ability of the data collected to establish that two distributions
are the same.

Table 3 indicates that the data provide strong evidence for accuracy being the
same for the Faces—Local, Stars—Local, Distinctive-Local, Common-Local and
Common—Global combinations. It is also likely that the Faces—Global, Stars—
Global, and Distinctive-Global combinations have the same accuracy distribution,
although the evidence is least compelling in the Stars—Global case. There is strong
evidence that these two groups have different accuracy distributions from each other.
The probability that they are the same is very low for every relevant pairwise
comparison, with the sole exception of the Stars—Global and Faces—Local
combinations.

A similar pattern of results is observed in terms of confidence. As with accuracy,
the Faces—Local, Stars—Local, Distinctive—Local, Common-Local and Common—
Global combinations have distributions that are likely to be the same. Once again, it
is likely that the Faces—Global and Stars—Global combinations are different from
this group, but are the same as each other. The relationship of confidence on the
Distinctive—Global combination, however, is less clear. The posterior probability of
0.55 means that the data provide little evidence as to whether or not it is different
from the Stars—Global combination.

In terms of response times, the posterior probabilities in Table 3 do not suggest
simple groupings. The most important pairwise comparisons show that the Faces—
Local combination is different from the Faces—Global combination, and that the
Stars—Local combination is different from the Stars—Global combination, but that it
is likely, with posterior probability 0.69, that the Distinctive—Local combination is
the same as the Distinctive—Global combination, and, with posterior probability
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0.75, that the Common-Local combination is the same as the Common—Global
combination.

It is almost certainly the case that these probabilities vary across the different data
sets. Our reason for using many data sets, however, is not to model these sorts of
dependencies, but rather to assess the effectiveness of the different visualizations
across many domains and many questions. In essence, we do not treat data set as an
independent variable. In this sense, our methodology is closely aligned with the
applied problem: Over all binary data sets, which visualization best facilitates human
performance? Of course, because the experiment only considers a limited number of
data sets, our answers may not be completely generalizable. One of the attractions of the
Bayesian analysis in this regard is that its evidence-based framework deals naturally with
any contradictions apparent across data sets, by being able to conclude, for example,
that the data do not provide substantial evidence for either of two alternatives.

4.7. Conclusion

The results from Experiment I showed that the common spatial visualization was
the best performed, largely due to performance on the global questions. Both glyph
visualizations lead to slow, inaccurate responses to global questions, and
participants reported low confidence when using these visualizations. Meanwhile,
participants reported high confidence and took less time to answer global questions
when using the two spatial visualizations. The accuracy of responses to global
questions was high when using the common spatial visualization but low for the
distinctive visualization, suggesting that the distinctive visualization seemed effective
even though it led to inaccurate responses.

5. Experiment IT

The inferiority of the glyph visualizations found in Experiment I was not entirely
unexpected. The finding is consistent with Lee and Vicker’s (1998) speculation that
raw data should undergo a representational analysis before it is presented. However,
the accuracy difference between the common and distinctive spatial visualizations
caused by the global questions was not anticipated. Both visualizations are based on
a MDS representation of the similarities in the data, and both the common and
distinctive methods of assessing similarity have previously been used successfully in
cognitive modeling (e.g. Gati and Tversky, 1984; Sattath and Tversky, 1987; Ritov
et al., 1990; Lee and Navarro, 2002). To study this difference in greater detail, a
second experiment was undertaken, using new data sets, and considering only the
spatial visualizations.

5.1. Data sets

Four additional binary data sets were constructed for the follow-up experiment,
involving sports, sounds, foods and cars.
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5.2. Questions

A set of four questions was created for each of the four new data sets. These sets
contained two local questions and two global questions. For the global questions,
one was always an ‘outlier’ question and the other was always a ‘cluster’ question.

5.3. Visualizations

Common and distinctive spatial visualizations were generated for each of the four
data sets, using the same methodology as Experiment I.

5.4. Participants

The participants were 24 adults (12 males, 12 females) ranging in age from 17 to
55 years (mean = 32.83, s.0. = 11.22), none of whom participated in the first
experiment, and who again had varied experience using data visualizations.

5.5. Procedure

Each participant completed the questions for every data set, and used each data
visualization twice. The combinations of visualization type and data set, and the
order in which they were presented, were balanced across participants using the same
approach as Experiment I. The presentation procedure was also identical to
Experiment I.

5.6. Results

Fig. 7 shows mean accuracy, confidence and time, together with one standard
error in each direction, for both visualization types, broken down by the two
question types.

NHST analysis: One-way ANOVAs for the accuracy, confidence and time
measures showed a significant difference between the sets with respect to time
(F(2.344,66.577) = 3.146, p<0.05). This value was adjusted using the Greenhouse-
Geisser correction because Mauchly’s test of sphericity of variance was significant
for this comparison (W(5) = 0.509, p<0.05). This difference seemed to be caused by
relatively faster response times for the food data set. There were, however, no
differences in accuracy or confidence between the four data sets.

Two-way ANOVAs were conducted for visualization type and question type for
the accuracy, confidence and time measures. Mean accuracy for the common spatial
visualizations was significantly greater than for distinctive spatial visualizations
(F(1,23) =29.282, p<0.01). In addition, mean accuracy for local questions was
significantly greater than for global questions (F(1,23) = 306.785, p<0.01). There
was, however, no significant interaction between visualization type and question type
for accuracy.
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Fig. 7. Mean accuracy (left panel), confidence (middle panel), and time (right panel) across the two
visualization types (Di="distinctive spatial’, Co="common spatial’). White markers correspond to local
questions, black markers correspond to global questions, and one standard error is shown about each
mean.

Mean confidence for the common spatial visualizations was significantly greater
than for distinctive spatial visualizations (F(1,23) = 10.931, p<0.01). In addition,
mean confidence for local questions was significantly greater than for global
questions (F(1,23) = 81.401, p<0.01). There was also a moderately significant
interaction between visualization type and question type (F(1,23) = 7.251, p<0.05),
with the increase in confidence using common spatial visualization being greater for
global questions.

In terms of time, participants took significantly longer to answer global questions
when compared to local questions (F(1,23) = 11.231, p<0.01). Neither the main
effect of visualization, nor the interaction between visualization type and question
type were significant for the time measure.

Bayesian analysis: Because only two visualization types were considered in this
experiment, the posterior probability of independence between a performance
measure and visualization type is measured by the pairwise probability that the
relevant distributions are the same. For example, the probability that accuracy is
independent of visualization type for local questions is the probability that the
accuracy distributions for the Distinctive—Local and Common—Local combinations
are the same. Accordingly, conclusions can be drawn from Table 4, which presents
the results of analysing the evidence provided by the data for differences between
accuracy, confidence and time distributions across the four possible visualization
type and question type combinations.
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Table 4
Pairwise probability that the distribution of accuracy, confidence (in italics), and time (in bold) is the same
for each combination of visualization and question types

Distinctive—Local Common-Local Distinctive-Global Common—Global

0.95 0.02 0.00 0.00
Distinctive—Local 0.90 0.77 0.00 0.00
0.90 0.47 0.00 0.67
0.02 0.89 0.00 0.00
Common-Local 0.77 0.89 0.00 0.00
0.47 0.87 0.00 0.34
0.00 0.00 0.96 0.27
Distinctive—Global 0.00 0.00 0.95 0.69
0.00 0.00 0.90 0.37
0.00 0.00 0.27 0.96
Common-Global 0.00 0.00 0.69 0.93
0.67 0.34 0.37 0.92

The posterior probability that accuracy is independent of visualization type
is 0.02 for the local questions, and 0.27 for the global questions. This means
that it is very likely that the visualization type does have an impact upon
people’s accuracy in answering local questions, and there is some evidence that it
also has an impact on the global questions. For confidence, the posterior
probabilities of independence are 0.77 for local questions, and 0.69 for global
questions, suggesting that the visualization type does not impact upon confidence
for either question type. For time, the data provide little evidence either way for
local questions, with a posterior probability of 0.47, but there is some limited
evidence of a dependency in relation to the global questions, with a posterior
probability of 0.37.

5.7. Further global question analysis

Fig. 8 shows mean accuracy, confidence and time, together with one standard
error in each direction, for global questions both visualization types, broken down
by in terms of cluster and outlier questions.

NHST analysis: Mean accuracy was significantly greater for outlier questions than
for cluster questions (F(1,23)=43.793, p<0.01). There was also a significant
interaction between visualization and the outlier and cluster question types
(F(1,23) = 49.000, p<0.01). This seems to be largely the result of greater accuracy
for outlier questions when using the common spatial visualization approach. It was
also found that mean accuracy for the global questions was significantly greater for
the common spatial visualization (F(1,23) = 12.374, p<0.01). There was no
significant difference in the mean confidence between the outlier and cluster
questions. There was, however, a significant interaction between visualization and
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Fig. 8. Mean accuracy (left panel), confidence (middle panel), and time (right panel) for the global
questions across the two visualization types (Di=‘distinctive spatial’, Co=‘common spatial’). Upward
pointing markers correspond to outlier questions, downward pointing markers correspond to cluster
questions, and one standard error is shown about each mean.

the outlier and cluster question types (F(1,23) = 11.275, p<0.01). This seems to be
largely the result of lower confidence for outlier questions when using the distinctive
spatial visualization approach. It was also found that mean global question
confidence was significantly greater for the common spatial visualization
(F(1,23) = 14.839, p<0.01). No significant differences were found with respect to
the response time performance measure.

Bayesian analysis: Table 5 provides the posterior probability that the distributions
of each performance measure are the same, for each pairwise comparison of the
visualization type and global question type combinations. The posterior probability
that accuracy is independent of visualization type is 0.49 for the cluster questions,
and 0.00 for the outlier questions. This means that the data provide almost no
evidence either for or against the idea that visualization type affects performance on
cluster questions, but does show there is an impact for outlier questions. It is likely
that confidence for cluster questions does not depend on visualization type, with a
posterior probability of independence of 0.79, while there is little evidence either way
for outlier questions, with a posterior probability of 0.44. The data also suggest that
the time taken to answer cluster questions is independent of visualization type, with
posterior probability 0.83, but that there is a dependency for outlier questions,
where the posterior probability of independence is 0.03. The mean of the
correlations across individual data sets is 0.68 for accuracy, 0.24 for confidence
and 0.73 for time.
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Table 5
Pairwise probability that the distribution of accuracy, confidence (in italics), and time (in bold) is the same
for each combination of visualization and question types

Distinctive-Cluster ~Common—Cluster  Distinctive-Outlier =~ Common—QOutlier

0.94 0.49 0.94 0.00
Distinctive—Cluster 0.9/ 0.79 0.39 0.83
0.88 0.83 0.80 0.31
0.49 0.90 0.37 0.00
Common—Cluster 0.79 0.92 0.20 0.60
0.83 0.88 0.81 0.06
0.94 0.37 0.94 0.00
Distinctive—Outlier  0.39 0.20 0.93 0.44
0.80 0.81 0.90 0.03
0.00 0.00 0.00 0.93
Common—Outlier 0.83 0.60 0.44 0.92
0.31 0.06 0.03 0.91

5.8. Conclusion

The results relating to cluster and outlier global questions suggest that the decrease
in accuracy when using the distinctive spatial visualization is largely due to outlier
questions. Participants were clearly less accurate when answering these questions,
and took longer to make decisions. The evidence provided by Experiment II is far
less conclusive in relation to cluster questions, since it is not clear whether or not
their is a dependency on visualization type for either accuracy or time.

At a general level, however, the results of Experiment II are consistent with the
main findings from Experiment I. Participants remained less accurate when using the
distinctive spatial visualization, although there is now evidence that this decline
relates to both local and global questions. Future research seems to be needed to
determine whether this improvement in local questions for the common visualization
can be replicated. Experiment II also suggests that confidence does not depend upon
which of the two visualizations is used, although the evidence is less strong than it
was in Experiment I. Finally, Experiment II provides little evidence either way in
terms of whether or not time depends upon visualization type. A reasonable
summary of these results is that, as in Experiment I, participants were less accurate
when using the distinctive spatial visualization, but these inaccuracies were not
clearly reflected in the confidence they had in their decisions, or in the time they took
to generate their answers.

6. Experiment I1I

From the practical standpoint of recommending a data visualization in applied
settings, Experiments I and II both point towards the common spatial visualization
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as being the best of the four considered. What neither of the experiments evaluate,
however, is whether any visualization is worth using at all. It is possible that even the
common spatial visualization does not usefully improve human analysis, in the sense
that the raw data themselves may allow equally or more accurate, confident and
timely answers. To address this question, we conducted a third experiment,
comparing human performance using a tabular display of the raw data against
performance using the common spatial visualization.

6.1. Participants

The participants were 10 adults (eight males, two females) ranging in age from 22
to 52 years (mean = 32.9, s.0. = 11.3), none of whom participated in the first two
experiments, and again with varied experience using data visualizations.

6.2. Procedure

Each participant completed the questions for every data set using the raw data
matrix (i.e. of the type presented in Table 1). The order in which the data sets were
presented was balanced across participants.

6.3. Results

Fig. 9 shows mean accuracy, confidence and time, together with one standard
error in each direction, for both the raw data and the common spatial visualization,
broken down by the two question types.

NHST analysis: One-way ANOVAs for the accuracy, confidence and time
measures showed a significant difference between the sets with respect to accuracy
(F(3,27) = 3.569, p<0.05) and time (F(3,27) =4.046, p<0.05). The differences
seemed to be caused by relatively faster and more accurate responses for the food
data set. There were, however, no differences in confidence between the four
data sets.

Two-way ANOVAs were conducted for the combination of raw data and common
visualization with question type for the accuracy, confidence and time measures.
Mean accuracy for the common spatial visualizations was significantly greater than
for the raw data (F(1,32)=14.542, p<0.01). In addition, mean accuracy for
local questions was significantly greater than for global questions (F(1,32) =
205.167, p<0.001).

Mean confidence for the common spatial visualizations was significantly greater
than for the raw data (F(1,32) =22.213, p<0.001). In addition, mean confidence
for local questions was significantly greater than for global questions
(F(1,32) = 148.818, p<0.001). There was also a highly significant interaction
between the raw data or common visualization and question type
(F(1,32) = 14.278, p<0.01), with the increase in confidence using common spatial
visualization being greater for global questions.
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Fig. 9. Mean accuracy (left panel), confidence (middle panel), and time (right panel) for the raw data and
common features spatial visualization (Ra=‘raw data’, Co=‘common spatial’). White markers correspond
to local questions, black markers correspond to global questions, and one standard error is shown about
each mean.

In terms of time, participants took significantly longer to use the raw data than
when using the common visualization (F(1,32) = 48.908, p<0.001). They also took
significantly longer to answer global questions compared to local questions
(F(1,23) =7.190, p<0.05).

Bayesian analysis: Table 6 presents the results of analysing the evidence provided
by the data for differences between accuracy, confidence and time distributions
across the four possible raw data or common visualization and question type
combinations. The posterior probability that accuracy is independent of raw data or
common visualization is 0.03 for both the local and global questions. This means
that it is very likely that using the common spatial visualization does have an impact
upon people’s accuracy in answering all of the questions. For confidence, the
posterior probabilities of independence are 0.01 for local questions, and 0.00 for
global questions, again suggesting that the use of raw data or the common spatial
visualization also impacts upon confidence for all of the questions. The same result is
true for time, where the posterior probabilities of independence are 0.00 for both
local and global questions.

6.4. Conclusion

Both the NHST and Bayesian analyses confirm the pattern of results suggested by
Fig. 9. The common spatial visualization clearly facilitated human performance in
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Table 6
Pairwise probability that the distribution of accuracy, confidence (in italics), and time (in bold) is the same
for each combination of raw data or common features visualization with local or global question types

Raw-Local Common-Local Raw-Global Common-Global
0.95 0.03 0.00 0.00
Raw-Local 0.90 0.01 0.00 0.79
0.90 0.00 0.32 0.00
0.03 0.89 0.00 0.00
Common-Local 0.01 0.89 0.00 0.00
0.00 0.87 0.00 0.34
0.00 0.00 0.95 0.03
Raw-Global 0.00 0.00 0.95 0.00
0.32 0.00 0.88 0.00
0.00 0.00 0.03 0.96
Common-Global 0.79 0.00 0.00 0.93
0.00 0.34 0.00 0.92

answering the questions, allowing for more accurate, more confident and faster
answers than when people were made to rely on the raw data in a tabular form.

7. General discussion

The results of the three experiments are consistent with Lee and Vickers (1998)
proposition that visualizations presenting the unprocessed raw data do not convey
information as effectively as those that restructure data according to cognitive
demands. The difference between the two spatial visualizations demonstrates,
however, that choosing the appropriate representation is important. In fact, the
distinctive spatial visualization may be considered the worst of all the visualizations
evaluated, since it is quickly and confidently used, but leads to inaccurate responses
for global questions. Although responses to the glyph visualizations also tended to
be less accurate, the low confidence reported by participants suggests that they were
at least aware of the level of accuracy being achieved.

The long response times associated with the glyph displays are consistent with the
idea that participants were processing information serially, as previously found by
Morris et al. (2000) for Chernoff faces. If this was the case, the glyph displays were
functioning as little more than graphical versions of the raw data. Given that one of
the potential advantages of data visualization is to facilitate the effortless
comprehension of large data sets, this would be a worrying finding.

The extent to which this difficulty manifests itself in applied settings, however, is
not entirely clear. No attempt was made in our studies to assign data features to
glyph perceptual characteristics in a way that would encourage the generation of
emergent features (Sanderson et al., 1989). For example, if the types of features that



M.D. Lee et al. | Int. J. Human-Computer Studies 59 (2003) 569-602 595

correspond to aquatic animals were assigned to adjacent branches of star glyphs, an
emergent ‘aquatic’ structure may well become perceptually obvious. Similarly, these
features may be able to be assigned to facial characteristics in a way that made
Chernoff faces look happy when representing aquatic animals, and this emergent
structure is also likely to be perceived readily. The important question in this regard
is how easily the appropriate assignments can be found. In some well-understood
domains, it may be straightforward to identify how data features should be
configured in a glyph display. In more exploratory situations, finding the appropriate
assignment may be as hard a problem as making the inferences for which the
visualizations are being designed in the first place. Nevertheless, it should be
acknowledged that where useful emergent perceptual effects can be achieved, it is
likely that glyph performance will improve beyond the levels suggested by our
results. Performance is also likely to improve in an applied setting, like stock markets
and military environments, where analysts have significant training and practice
interpreting the standardized glyph visualizations used in the domain.

A particularly promising feature of the common spatial representation is the
scalability offered by its visual and conceptual simplicity. A meta-analysis of six
studies investigating human performance on information visualizations by Chen and
Yu (2000) demonstrated that simpler visual-spatial interfaces offer a performance
advantage. In particular, they found that, for users with the same cognitive ability,
responses were faster for simpler visual-spatial interfaces. Both spatial visualizations
may be considered simpler than the glyph visualizations because each item is
represented simply by a point, and the only information required for determining
similarity relations is the Euclidean distance between these points. This means that
spatial visualizations are less limited than glyph visualizations in terms of the
number of objects they can display. The common spatial representation has the
additional advantage of considering only the (generally small) subset of shared
features when assessing similarity. In addition to its superior performance in
facilitating accurate, confident and quick answers to a variety of questions, this
scalability makes a compelling argument in favor of using the common spatial
visualization approach in applied settings.

An important question raised, but not answered, by our research relates to the
relative contribution of perceptual and cognitive factors in determining the
effectiveness of a visualization. For example, the relatively better performance of
the stars than the faces could be attributed to both perceptual and cognitive factors.
On the perceptual front, Chernoff (1973, p. 366) has acknowledged that some display
features are difficult to detect in some face visualizations, and it is also not possible
to omit facial features to indicate the absence of a property. On the cognitive front, it
seems likely that the problem of assigning underlying variables to perceptual features
(Everitt, 1978; Toit et al., 1986; Manly, 1994) is more severe in the case of faces,
because of their inherent meaning and different saliencies. There is also a possibility
of individual differences having an impact in the semantic perception of facial
features (Chatfield and Collins, 1980). The extent to which these competing
explanations are responsible for the poor performance of Chernoff faces is not
addressed by our findings.
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More generally, our results do not allow for the effects of representational analysis
to be separated from those of perceptual presentation. We would claim that the
spatial visualizations used in this study are the canonical means of displaying MDS
representations. It is possible, however, to argue that glyphs remain an effective
visualization technique when displaying data that have undergone an appropriate
representational transformation. For example, a star glyph with two continuously
varying branches could display the coordinate locations of each object within a MDS
representation. In either case, of course, the need for representational analysis is
consistent with the ideas put forward by Lee and Vickers (1998) that motivated this
study. Nevertheless, an empirical evaluation of the relative performance of glyphs
and spatial presentations that use the same underlying representation is an important
area for future research. This is particularly true since, to the extent that glyph
visualizations facilitate a similar level of performance, they have the attraction of
generalizing more readily to display three- and higher-dimensional representations.
In a sense, there is a tradeoff between the perceptual simplicity of the spatial display
and the generalizability of glyph displays to large numbers of dimensions. Future
evaluations may well show that spatial visualizations are very effective for inherently
low-dimensional data, but that some form of glyph representation is needed for
inherently high-dimensional data.

A second empirical approach to determining the relative contribution of cognitive
representations involves examining a wide array of alternative visualization
approaches based on cognitive models. These include techniques such as additive
trees (Carroll, 1976; Sattath and Tversky, 1977; Corter, 1996), additive clustering
(Shepard and Arabie, 1979; Arabie and Carroll, 1980; Lee, 2002), trajectory
mapping (Richards and Koenderink, 1995), and others (e.g. Tenenbaum et al., 2000;
see also Shepard, 1980). All of these representations would use different displays
from the spatial configurations of MDS representations, thus breaking the confound
between representational modeling and visual presentation. This means, to the
extent that these techniques prove to be effective, further evidence is accrued for the
role of cognitive representations in generating useful data visualizations. In the end,
we suspect that the best choice of representational technique and similarity model
will almost certainly depend on the nature of the domain. Some data will be better
suited to spatial representation in terms of underlying continuous domains, while
others will be amenable to characterization in terms of the presence or absence of
discrete features, or a hierarchical tree structure. There has been some research in
cognitive psychology attempting to develop indices that determine the appropriate
representational strategy for any given data set (e.g. Tversky and Hutchinson, 1986),
and this line of research should be pursued to enable visualizations to be tailored to
data in an automated way. Determining which approaches yield the most robustly
useful visualizations across all domain types is a topic that could be addressed by
future empirical evaluations.

A final, but equally important challenge, is a need to broaden the type of raw data
considered from binary to continuous data. The glyph approach to data
visualization extends naturally to continuous data, and it is also possible to generate
continuous analogues of the common and distinctive spatial displays. Evaluating the
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performance of spatial visualizations of continuous data generated using these
similarity approaches with glyph visualizations, and with other alternative
approaches, is yet another worthwhile topic for future research.
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Appendix A. Bayesian measures of independence

Our analysis relies on the following basic result from Bayesian statistics (e.g.
Margaritis and Thrun, 2001). Let a data set D = (d,, d>, ..., dg) contain the number
of times each of K events was observed to occur out of N trials. Let a model M with
K parameters 0,0, ...,0x attempt to describe these data by estimating the
underlying probability of each of the events with one of the 0; parameters. The
probability density that the data set will be observed, given particular values for
the parameters under this model, follows the multinomial distribution:

N
D|0,,0, ...,0%) = 0% Al
p(D]0,,0,, ...,0k) (0192“@)1;[ p (A1)

Assume that the prior probabilities for each of the parameter values are given by the
Dirichlet distribution, taking the form

}kl

I'(y

(01,04, ...,08) = () H (A.2)
where each v, relates to a parameter, y = Y ; y;, and I'(-) is the gamma function. This
choice constitutes the conjugate prior distribution and enables the probability of the
data given the model p(D| M), which must be integrated across all possible
parameter values (see, for example, Kass and Raftery, 1995; Myung and Pitt, 1997),
to be found exactly as

p(D| M) = / 2D | MYp(0,, 05, ..., 05) 40, dOs ... dOx

_ I Ly + di)
_F(N+“/)H )

This result can be applied directly to the problem of measuring the independence
of two nominal variables. If the first variables has I possible values, and the second
variable has J possible value, then the data take the form of an I x J matrix of
counts C = [¢;]. The value of ¢; in this data matrix corresponds to the number of

(A3)
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times the first variable has been observed to take its ith value in combination with the
second variable taking its jth value.

If the two variables are independent, there is a suitable model M, containing only
I +J parameters, one for each marginal total of the data matrix. Denote the
Dirichlet priors for the I marginal totals corresponding to the first variable by
oy, 0, ...,0r, and the J marginal totals for the second variable by f,f,, ..., ;.
Eq. (A.3) allows the probability of the observed counts under the independence
model to be calculated as

_ Q) I'(o; + 2‘0’7)
P(C | Mf) - (F(N + Zi (xl-) ; F(OC[)/

y ' B) (B + > cip)
LN +358) % ') '

(A4)

The alternative to a model that assumes marginal independence is one that allows
for any sort of dependency, and uses a separate parameter for each cell in the data
matrix. If the Dirichlet priors for each of these I x J parameters are given by 7y;;, then
the probability of the data under this dependence model, My, is given by

F(EU i) L(y; + cy)

p(C|Mg) = (N + Elj Vij) 7 F(yij)

(A.5)

The independence model M, and the full dependence model My are competing
explanations for the observed data, whose relative merits may be quantified using
Bayes’ Theorem. In particular, the posterior probability of the independence model,
given the observed data, may be calculated as

P(C| My)p(My)
p(CIM)p(My) + p(C| Mz)p(Mz)

_ P(Mg) p(C| Mg)
- 1/ {1 +P(M.ﬂ)p(C | M,)| (A.6)

where p(M ») and p(M4) are the prior probabilities of independence and dependence,
respectively. These priors are reasonably both set to the value 0.5, to express prior
ignorance regarding the relationship between the variables, and allow the
conclusions drawn to be maximally influenced by the observed data. It is also
reasonable to set all of the hyper-parameters, «;, f; and y; to the value 1, since this
makes the Dirichlet prior a uniform distribution, and again allows the data to be
maximally informative.

With these assumptions about the priors in place, Eq. (A.6) allows the posterior
probability of independence to be assessed for any two nominally scaled variables.
For example, the independence of the binary accuracy variable can be assessed in
relation to the four-valued nominal visualization variable. When one or both of the
variables exists at an ordinal, interval, or ratio level of scaling, however, a more
sophisticated approach is required. This is because, when a variable has a natural

Pr(M, | C) =
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ordering, it is necessary to consider the many count matrices that can reasonably be
derived from the observed data by combining adjacent values of that variable.

As a concrete example, consider the relationship between visualization type and
the time performance measure. It is not appropriate to treat the time data solely as
having been generated by a multinomial distribution, because time values of, say, 10
and 11 s reflect a great underlying level of similarity than, say, time values of 10 and
90 s. The approach adopted by Margaritis and Thrun (2001) is to consider the
possible adjacent groupings of these ‘continuous’ variables, searching for those that
reveal dependencies. The number of groupings is combinatorially large, and so an
efficient optimization approach is used to estimate the true posterior probability of
independence. Because the approach is embedded within a Bayesian framework, and
makes use of uniform priors, it is able to control for the complexity effects that arise
from considering many groupings simultaneously. It is also sensitive to the prior
probabilities of the different groupings considered so that, for example, a grouping
that splits the 10 and 11 s data into separate counts is far less likely that one that
splits the 10 and 90 s data.

Finally, note that the ability to assess the posterior probability of independence,
which is exact in the purely nominal variable case, and approximate when a
continuous variable is involved, allows the posterior probability that two
distributions are the same to be assessed. This is simply a matter of associating
the data from the two distributions with binary class labels, and measuring the
probability that the data are independent of their labels.
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