
Constructing fuzzy graphs from examples

Michael R. Berthold a,*, Klaus-Peter Huber b,1

a Berkeley Initiative in Soft Computing, Computer Science Division, Department of EECS, 329 Soda Hall, University of California,

Berkeley, CA 94720, USA
b University of Karlsruhe, Am Zirkel 2, 76128 Karlsruhe, Germany

Abstract

Methods to build function approximators from example data have gained considerable interest in the past. Espe-

cially methodologies that build models that allow an interpretation have attracted attention. Most existing algorithms,

however, are either complicated to use or infeasible for high-dimensional problems. This article presents an e�cient and

easy to use algorithm to construct fuzzy graphs from example data. The resulting fuzzy graphs are based on locally

independent fuzzy rules that operate solely on selected, important attributes. This enables the application of these fuzzy

graphs also to problems in high dimensional spaces. Using illustrative examples and a real world data set it is dem-

onstrated how the resulting fuzzy graphs o�er quick insights into the structure of the example data, that is, the un-

derlying model. The underlying algorithm is demonstrated using several Java applets, which can be found under

ÔElectronic annexesÕ on www.elsevier.com/locate/ida.

Keywords: Fuzzy Graphs; Learning; Rule Extraction; Function Approximation; Interpretation

1. Introduction

Building function approximators from training examples that allow an additional ``look inside''
has gained importance with the growing interest in real world applications. One important area of
interest is the generation of models from observations of complex systems, where no experts are
available to describe the underlying behaviour. Problems that arise in these and other scenarios
are large amounts of data and noisy measurements, as well as the need for an interpretation of the
resulting model. Several methods to attack this problem have been proposed in the ®eld of in-
telligent data analysis, [11] shows an interesting snapshot.

Neural network based methods have proven to show good performance but most methods lack
a way to interpret the resulting model. Methods to extract rules from neural networks are usually
time-consuming and hard to apply (see for example Ref. [12,21,22] or for a method that extracts
fuzzy rules [23]). Extracting rules directly from the data is usually complicated, especially in the

* Corresponding author. Tel.: +1 510 642 9827; fax: +1 510 643 7684; e-mail: berthold@cs.berkeley.edu; website: WWW:http://

cs.berkeley.edu/�berthold.
1 E-mail: KlausPeter.Huber@Informatik.Uni-Karlsruhe.DE

http://www.sciencedirect.com/science/journal/1088467X
http://www.ub.uni-konstanz.de/kops/volltexte/2008/6462/
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-64626


case of noisy data examples, due to the crisp nature of the underlying rules [17,25]. Decision trees
o�er an alternative, but are usually harder to understand [5,15,16].

Directly learning fuzzy rule bases o�ers an interesting alternative. Algorithms that adjust an a-
priori de®ned rule set have been proposed before, but the structure of the rule base has to be
de®ned by an expert (one example can be found in Ref. [20]). Automatically ®nding fuzzy rules is
therefore of interest, but most known systems produce a large rule base, because they construct a
global grid that partitions the entire input space. The method proposed in Ref. [24] for example
requires an a-priori known number of membership functions for the input variables. The feature
space is divided into equally spaced tiles, according to the user de®ned range and number of
partitions for each attribute and the output variable. This results in a prede®ned grid of rules and
the training algorithm simply assigns the output value of the closest pattern in the training data to
each rule. This leads to problems as soon as the approximated function shows extrema that do not
®t onto that grid. In contrast the method proposed in Ref. [8] intends to solve this problem by
inserting new membership functions on the input or output variables at the point of maximum
error. This process has to be stopped either using a maximum number of membership functions or
a minimum error boundary. Focusing on points of maximum error results, however, in a pref-
erence to model outliers.

Several other systems were proposed that ®ne tune a prede®ned set of rules (for example see
Ref. [13]). Also tree based approaches for fuzzy rules have been proposed [6]. In most cases,
however, it is desired to place rules only in regions of interest. In Ref. [7] several of these methods
were compared against each other, where the main result was the inability of these approaches to
deal with high-dimensional feature spaces.

Zadeh [26] points out that using a non grid oriented set of rules leads to a relatively small
number of fuzzy rules to characterise a complex relationship between two or more variables. An
approach that tries to ®nd individual fuzzy hyper-boxes via a growth process was proposed in
Refs. [18,19] but the generation of the rule set depends heavily on the order of training examples
which has to be controlled carefully to achieve satisfactory performance. An additional advantage
of using models based on fuzzy logic is there ability to handle missing values, see Ref. [3] for
details.

In this paper a constructive approach is presented that addresses the problem of deriving a
fuzzy rule base directly from observations. The resulting rule set consists of locally independent,
rectangular areas in the input space supporting trapezoidal membership functions. The combined
set of soft rules or fuzzy points allows a representation in the form of a fuzzy graph. The algo-
rithm [2] is derived from a constructive neural network training method [1] and builds this rule set
from scratch requiring only a few presentations of the training patterns. In addition to crisp
targets also soft numbers can be used to specify the desired output behaviour.

2. Fuzzy graphs

Zadeh illustrates fuzzy graphs in Ref. [27] as follows: ``The primary function of a fuzzy graph is
to serve as a representation of an imprecisely de®ned dependency''. Through the concept of fuzzy
graphs approximate representations of functions, contours, and sets can be derived (Fig. 1, see
Ref. [27] for more details).

38



In the following we will concentrate on fuzzy graphs for the approximate representation of
functions, to approximate one output variable y depending on n input variables xi�16 l6 n�. The
typical fuzzy graphs build upon fuzzy points of the type

If x1 is A1 and . . . xn is An then y is B;

where some of the input membership functions Ai can be constant, that is, lAi�1. Thus di�erent
fuzzy points may only depend on an individual set of input variables. Simplifying this equation,
using A�A1�. . .�An (Ô�' denotes the Cartesian product), leads to

If x is A then y is B

which can also be expressed as a fuzzy constraint on a joint variable (x,y), that is,

�x; y� is A� B:

The membership function of A ´ B is given using ^ as a conjunction operator which is usually
de®ned as the minimum

lA�B�x; y� � lA�x� ^ lB�y� � minflA�x�; lB�y�g
or, more precisely

lA�B�x; y� � lA1�x1� ^ . . . ^ lAn�xn� ^ lB�y� � minflA1�x1�; . . . ; lAn�xn�;lB�y�g:
Zadeh [26] uses the term fuzzy point to denote A ´ B. A collection of such rules can now be re-
garded as forming a superposition of m fuzzy points

�x; y� is A1 � B1 � � � � � Am � Bm;

where Ô+Õ denotes the disjunction operator (usually de®ned as maximum). Such a collection of
rules forms a fuzzy graph, o�ering a coarse representation of a functional dependency f � of y on x.
This fuzzy graph f � can thus be de®ned as

f � �
Xm

j�1

Aj � Bj:

Note that individual rules do not depend on a common set of membership functions on the
input variables. Instead each fuzzy point is described through an individual set of membership
functions Aj. This makes fuzzy graphs a very compact description, especially compared to the
approaches that use a ``global grid'', de®ned through only one set of membership functions for
each input variable (see for example Refs. [8,24]).

Fig. 1. Approximate representations of functions, contours, and relations (after Zadeh [27]).

39



The task of interpolation, that is, deriving a linguistic value B for y given an arbitrary linguistic
value A for x and a fuzzy graph f �:

x is A

f � is
X

Aj � Bj

y is B

results in an intersection of the fuzzy graph f � with a cylindrical extension of the input fuzzy set A.
Fig. 2 shows an example.

This functional dependency can be computed through

lB�f ��A��y� � sup
x
flf ��x; y� ^ lA�x�g � sup xflA1�B1�x; y� ^ . . . ^ lAn�Bm�x; y� ^ lA�x�g:

In the following a new algorithm that automatically constructs this kind of fuzzy graph from
example data is explained.

3. Automatic construction of fuzzy graphs

The algorithm presented here constructs a fuzzy graph based on example data points (x,y). In
addition the user speci®es the granularization of the dependent variable; that is, the number and
shape of the membership functions for the output variable have to be determined manually. In
most applications this is no disadvantage, because it enables the user to de®ne foci of attention or
areas of interest where a ®ner granularization is desired. Thus c fuzzy sets are de®ned through
membership functions lo

k (ÔoÕ for ``output'') for each output region k, with 16 k6 c.

3.1. Trapezoidal fuzzy graphs

The resulting fuzzy graph consists of a set of fuzzy points or fuzzy rules Rk
j , 16 j6mk, where mk

indicates the number of rules for region k. If the input space is of dimensionality n, each input

Fig. 2. Interpolation as the intersection of a fuzzy graph with a cylindrical extension of A.

40



vector x consists of n attributes: x � �x1; . . . ; xn�, xi 2 R (R denotes the domain of the attributes,
usually the real numbers). A rule's activity lk

j �x� indicates the degree of membership of the pattern
x to the corresponding rule Rk

j. Using the normal notation of fuzzy rules, each rule can be de-
composed into n individual, one-dimensional membership functions:

lk
j �x� � min

i�1;...;n
flk

j;i�xi�g;

where lk
j;i indicates the projection of lk

j onto the ith attribute. The degree of membership for
region k is then computed through

lk�x� � max
j�1;...;m

flk
j �x�g:

In addition, we assume trapezoidal one-dimensional membership functions:

lk
j;i�xi� �

xiÿa
bÿa ; a < xi < b;
1; b6 xi6 c;
dÿxi
dÿc ; c < xi < d;
0; xi6 a _ xi6 d:

8>><>>:
that is, each one-dimensional membership function is described through four parameters a,b,c,d
and the corresponding fuzzy point can be written as follows

if xi ishai; bi; ci; dii then y is k:

The open interval �a; d� thus describes the support area, whereas �b; c� indicates its core.
In n dimensions a fuzzy point R belonging to region k is now expressed as:

if x1 is ha1; b1; c1; d1i
and . . .

and xn is han; bn; cn; dni
then y is k

The algorithm presented in this section automatically constructs a fuzzy graph based on a set of
examples. The partitioning of the input variables is determined automatically from the examples.
The used algorithm is derived from a constructive neural network training algorithm [1]. In this
paper a modi®ed version of that algorithm, based on [9], is used to automatically ®nd a set of soft
rules that describe the training data.

Fig. 3 shows an example of a fuzzy graph constructed by the proposed algorithm.
The output variable Y is already partitioned into 6 regions (or classes) with user de®ned

membership functions. The fuzzy graph consists of fuzzy points with individual membership
functions for the input variable X which are determined during training.

3.2. Using soft targets

Construction of the fuzzy graph requires input patterns with a corresponding output. The
output value (or target) can be de®ned as a soft value, using an individual membership function
lT. For practical applications these soft targets can originate from measurements, for example
sensor values with a certain accuracy. (Training patterns with sharp targets can be provided using
a singleton as the corresponding output membership function.) From this soft target membership

41



lT values lk for each output region k are computed, using the pre-de®ned membership functions
lo

k . Fig. 4 shows an example for the used fuzzi®cation. The membership values for all regions of
the underlying fuzzy graph are computed using a fuzzy and-operator (min) between the target and
the set of output membership functions. Training is then performed using these target member-
ship values. This leads to training patterns consisting of an input vector x � �x1; . . . ; xn� with the
corresponding target l � �l1; . . . ;lc� �06 li6 1�, where c denotes the number of output regions.

The algorithm presented in this paper makes sure that each training pattern is covered by a
fuzzy point of the region with the highest membership value and that fuzzy points of regions with
membership values� 0 do not cover the pattern. This enables the fuzzy graph to tolerate mod-
erately noisy patterns or small oscillations along boundaries, as will be demonstrated later. For
the example target lT shown in Fig. 4 a fuzzy point of region C will cover the observed training

Fig. 4. Fuzzy inference is used to compute membership values to construct the fuzzy graph. A soft value represented through an

individual membership function lT acts as target. Training is performed using the resulting membership values l that are shown on the

bottom.

Fig. 3. An example for the type of fuzzy graphs considered in this paper. The output granularization is known a-priori, in this case six

regions with individual membership functions are used. The presented algorithm then places fuzzy points in the input space to ap-

proximate the training examples (´).

42



pattern. Existing points belonging to B, D, and E are allowed to cover and points of A will be
shrunk to avoid coverage, because lC > lB; lD; lE > 0 and lA � 0.

3.3. The algorithm

The training algorithm is based on three steps that introduce new fuzzy points when necessary
and adjust the core-and support-regions of existing ones 2:
· covered: if a new training pattern lies inside the support-region of an already existing fuzzy point

belonging to the output region with the maximum lk, the core-region of this fuzzy point is ex-
tended to cover the new pattern, which is-even in high-dimensional space-an easy task. Applet 1
(which can be found under ÔElectronic annexesÕ on www.elsevier.com/locate/ida) demonstrates
this.
This procedure can be implemented through:
if 8i : 16 l6 n: xi 2 �ai; di� then

for i � 1 to n do
b0i :� minfbi; xig
c0i :� maxfci; xig

endfor
· Commit: if a new pattern is not covered, a new fuzzy point corresponding to the region with

maximum lk will be introduced. Its core-region is initialized using the new training instance
with a non-existing support-region; that is, this fuzzy point covers the entire input space.
Applet 1 illustrates this as well.

· Shrink: if a new pattern is incorrectly covered by an already existing fuzzy point of an incorrect
region (ll� 0), this fuzzy point's support-area will be reduced (e.g. shrunk) so that the con¯ict is
solved. Applet 2 (which can be found under ÔElectronic annexesÕ on www.elsevier.com/locate/
ida) demonstrates this procedure.
Here the implementation is not as easy because reducing a rectangle (i.e. the support-region of

the fuzzy point) in an n-dimensional space in a way to avoid overlap with a previously covered
point has n possible alternatives (it is obvious that reducing the rectangles size along solely one
dimension is enough to move the con¯icting point outside of the resulting area). Using two
heuristics is su�cient to reach satisfactory results in most cases:
· large fuzzy points: to avoid an unnecessary big shrink of a fuzzy point, its volume has to stay as

large as possible. The volume of a fuzzy point is computed from its support:
Vrule � Pi�1...n�di ÿ ai�. Finding the dimension, along which to shrink results in the fuzzy point
with the maximum remaining volume (or the minimum loss in volume), can be computed through

imax � argmaxi�1...nfmaxf�xi ÿ ai�; �di ÿ xi�g �Pj�1...n;j6�i�dj ÿ aj�g
� argmini�1...nf�xi ÿ ai�; �di ÿ xi�g;

· balanced fuzzy points: to avoid long, thin fuzzy points, a dimension can only be shrunk below a
certain threshold e when all other possible shrinks would result in a dimension below e as well.
This procedure can be implemented through:

2 In the following the indices indicating the fuzzy point's index j and region k are omitted for sake of readability. The context will

make clear which index and region is meant.

43



if 8i : 16 i6 n : xi 2 �ai; di� then

// compute all possible shrinks

for i � 1 to n do

if �di ÿ xi� > �xi ÿ ai� then

a0i :� xi

d 0i :� di

else

a0i :� ai

d 0i :� xi

endfor

// choose best shrink (maximise remaining volume)

if 9i : �d 0i ÿ a0i� > e then

// if possible without violating e-condition

j � argminj�1...n;�d 0jÿa0j�>ef�dj ÿ aj� ÿ �d 0j ÿ a0j�g
else

// otherwise just minimize loss in volume

j � argminj�1...nf�dj ÿ aj� ÿ �d 0j ÿ a0j�g
// shrink selected dimension

aj � a0j
dj � d 0j

endif

The entire procedure for training of one complete epoch looks as follows:

// reset weights and cores:

(1) FORALL fuzzy points Rk
i DO

Ak
i � 0:0

ha; b; c; diki � ha;ÿ; -; diki
ENDFOR

// train one complete epoch

(2) FORALL training pattern (x, l) DO

// determine maximum lk(x)

k � argmax16 k6 cflk�x�g
(3) IF 9Rk

i : x 2 �ak
i ; d

k
i � THEN

(4) Ak
i � Ak

i � 1

CALL covered

ELSE

(5) // ``commit'': introduce new fuzzy point

mk�mk + 1

(6) ha; b; c; dikmk � hÿ;x;x-i
Ak

mk � 1

ENDIF

// ``shrink'': adjust con¯icting fuzzy points

(7) FORALL fuzzy points R1
j and regions l with l1�x� � 0 DO

IF x 2 �a1
j ; d

1
j � THEN

CALL shrink

ENDFOR

ENDFOR

44



First, all weights Ak
i are set to zero to avoid accumulation of erroneous information about the

training patterns (1). In addition the core region is erased, because the cores might shrink in
subsequent epochs. Next all training patterns are presented (2). If the new pattern is already
covered by a fuzzy point of the region with the highest lk (3), the weight of the largest covering
fuzzy point is increased (4) and the core is set to cover this point. Otherwise a new fuzzy point is
introduced (5), having the new pattern as its reference (6). Its initial size is set in®nite. The last step
must include shrinking all fuzzy points of con¯icting regions l (e.g. ll� 0) if their support-region
covers this speci®c pattern (7). Due to the iterative nature of the algorithm, fuzzy points may be
introduced that are too small and will be covered by larger fuzzy points later during training.

Fig. 5. A fuzzy graph approximates an arti®cial function. All core-regions but only the support-areas for the fuzzy points of region

lo
5 � á4,5,6,7ñ are shown (top). The picture on the bottom shows the corresponding approximation.

45



These fuzzy points can be deleted afterwards, because their weight will remain zero during sub-
sequent epochs. This last step is not shown in Fig. 5.

After termination of training, which usually takes only 4±6 epochs, the ®nal set of fuzzy points
forms a fuzzy graph. Each fuzzy point is associated with one output region and computes a
membership value for a certain input pattern. The maximum degree of membership of all fuzzy
points for one region determines the overall degree of membership. Fuzzy inference then produces
a soft value for the output and using the well-known center-of-gravity method a ®nal crisp output
value can be obtained, if so desired.

The two applets 3 and 4 (which can be found under ÔElectronic annexesÕ on www.elsevier.com/
locate/ida) demonstrate the algorithm. Applet 3 shows how rules of two di�erent regions are
placed in a two-dimensional space, whereas applet 4 allows to construct a fuzzy graph from user-
de®ned example points in the x-y-space.

4. Approximation results

To demonstrate the presented approach an arti®cial function was used. Fig. 5 shows the un-
derlying, one-dimensional function and the constructed fuzzy graph after presenting 2000 ran-
domly generated training patterns using an equidistant 10 region output-granularization. Note
how fuzzy points cover regions of di�erent widths and are only introduced where necessary. On
the right the resulting function approximated by the fuzzy graph is shown.

For comparison we include results of two other algorithms [24] and [8]. The grid based ap-
proach with a ®xed grid spacing [24] has problems ®nding a reasonable approximation as soon as
the approximated function shows extrema that do not ®t onto that grid, as can be seen in Fig. 6.

Fig. 6. An approximation of a fuzzy rule set generated by the algorithm of Wang &Mendel [24]. 10 classes were used for the input and

output fuzzi®cation.

46



Here some peaks of the function lie far from existing rule centers and as a result do not in¯uence
the resulting rule set.

The other algorithm [8] uses a ¯exible partitioning, by introducing new membership functions
at points of maximum error. Allowing a maximum of 10 membership functions for each variable
results in an approximation as shown in Fig. 7. This methodology, however, is extremely sensitive
towards outliers in the training data, because new rules are placed at points of maximum error
which are often caused by outliers. Especially in the case of noisy datasets this may cause
problems.

For many tasks it is of key interest, how well a certain amount of noise can be handled. A series
of experiments were conducted with a speci®c amount of noise added to the training data. This
was done to demonstrate the e�ect of noisy training patterns on the generation of fuzzy graphs by
the proposed algorithm. Fig. 8 shows two examples. On the top equally distributed noise (�0.5)
was added to the output value, which is handled very well by the fuzzy graph. On the right the
same training data with noise four times bigger (�2.0) was used. This time the fuzzy graph fails to
tolerate the noise and tries to model the training points with large error resulting in an increasing
number of required fuzzy points. The error on the underlying noise-free function stays within a
certain range, until the noise reaches a speci®c level. After this point the fuzzy graph starts to
model the noisy data points, resulting in an increasing error rate on the test data. An additional
indicator for this e�ect is the exploding number of fuzzy points required to ®t the fuzzy graph to
the training points.

This example shows that the resulting fuzzy graph approximates the original function well, with
a certain degree of accuracy. The amount of smoothing can be controlled by the output fuzzi®-
cation. Using more and ®ner membership functions results in higher precision. In regions con-
taining ``noise'' up to a certain amount, the fuzzy graph ignores the oscillations and tends to
produce plateaus.

Fig. 7. An approximation of a fuzzy rule set generated by the algorithm of Higgins & Goodman [8]. The algorithm was run until a

maximum of 10 classes was used for the input and output fuzzi®cation.

47



5. Fuzzy graphs as metamodels

One application where the use of fuzzy graphs can be extremely bene®cial is the automatic
construction of models from real systems. In the Section 5.1 we will demonstrate how the pro-
posed methodology can be used to build an auxiliary model (or metamodel, other approaches are
discussed in Refs. [4,10,14]) from data generated by simulation experiments with a real-world
token bus model.

Fig. 8. In¯uence of noisy training patterns on the construction of the fuzzy graph. Training data on the top included � 0.5 equally

distributed noise, which the fuzzy graph was able to tolerate. The picture on the right shows how the fuzzy graph tries to model the

noise if it becomes too large (� 2.0).

48



The used token bus system belongs to the class of ®eld bus systems, that is, a special type of
communications systems, designed to connect machines and computers in a manufacturing en-
vironment. In this section the analysis will mainly focus on the real time facility of the model, that
is, its capability to respond to each request within a limited time. To guarantee this property for
the given simulation model a fuzzy graph was built using the presented method and its behaviour
depending on di�erent parameter settings was explored.

The modelled token bus system corresponds to the seven level architecture of the ISO/OSI
communication standard. Fig. 9 shows the structure of the system.

Many details like di�erent message priorities and the token handling had to be taken into
account when modelling the system with a queuing network model. The model was then imple-
mented with a commercially available simulation environment. To illustrate the complexity of the
underlying queuing network the internal structure of one module with its interfaces is depicted on
the right-hand side of Fig. 10. Since each station is modelled by four di�erent modules the whole
model consists of more than two hundred di�erent queues and several hundreds connections. The
complexity of the internal structure causes a conventional analysis of this model to be extremely
time-consuming and complicated.

Fig. 10. Two used types of membership functions.

Fig. 9. The model.

49



5.1. Data generation and analysis

Due to the large number of parameters (20 input and 10 output parameters) of the complete
model the example analysis presented in this section will focus on one output parameter and a
subset of the available inputs. The output of interest is the response time between two master
stations. It is desirable that this response time always stays below an upper bound to guarantee
that the reaction of the system is always in time. The four following input parameters were chosen
while the remaining parameters remained ®xed:
· average time for execution (cpu1): describes the performance of the CPU module of station 1,

i.e., the average time required to execute one command. This value is varied within 0.1 (fast) and
3.4 (slow).

· workload rate (workload): describes the average idle time between two requests, this value is
varied within 0.02 (low idle time, high workload) and 1.0 (low workload).

· target-rotation-time (trt): maximum allowed time to process the token. This parameter controls
the time each station has to send messages, values were set within [0.01, 0.4].

· number of additional stations (stations): represents the background workload on the network.
Many additional stations communicating over the network will increase the tra�c on the net-
work. The number of stations was varied in Refs. [1,15].

Since the construction of the metamodel only depends on the example data these examples have to
be representative. For this the planning of simulation experiments must be done carefully. In our
application a full factorial design is not possible, therefore we used randomised settings for the
input parameters. 350 simulation experiments were performed where the input parameter values
were varied randomly within the given intervals. The averaged response time (rt) was measured
within (0.088, 9.75). Each simulation experiment was repeated ®ve times with a di�erent random
number stream of the simulation tool. From these ®ve values the minimum, the maximum, and
the average were taken and a triangular target membership function was generated.

With the fuzzy graph approach these four-dimensional data-vectors with their corresponding
target membership functions were used for training. Since the main focus of attention were fast
responses (i.e. low values of rt) the membership functions for low values are de®ned ®ner than
those for bigger values (Fig. 10). Three series of experiments were performed with two, ®ve and
ten membership functions.

Construction of the fuzzy graph required about 10 seconds on a SUN Sparc10 workstation. No
training parameters besides the a priori de®nition of the output membership functions had to be
considered or tuned. While a simulation run takes about 200 seconds the propagation of a new
parameter set through the fuzzy graph is completed within fractions of a second, resulting in an
increase in speed of two orders of magnitude. As expected the metamodel can be used for much
faster simulation.

To judge the reliability of the complete fuzzy graph metamodel the quality can be analysed by
computing the mean relative error of the approximation of the metamodel. For this analysis an
independent data set that was not used for building the fuzzy graph, the so-called cross-validation
set, was used. The data set of 350 vectors was split into one tenth for testing and nine tenths for
building the graph and using each tenth once for testing ten cross-validation runs were performed.
The average error on the corresponding test data was 4.4% � 1.0% (avg. 32 fuzzy points) with two,
4.1% � 1.2% (avg. 59 fuzzy points) with ®ve, and 3.3% � 0.9% (avg. 68 fuzzy points) with ten

50



membership functions for the output. This approximation quality is su�cient because the primary
goal of the presented approach is the extraction of few understandable rules instead of achieving
minimal approximation errors.

One of the resulting rule bases from an experiment with two output regions was used for further
analysis. In this case the output regions are labelled low (L) and high (H). Since the main focus of
analysis were parameter settings, which result in a low response time, rules of region low were
investigated. From 29 rules 16 belong to this region and according to the rule weight the most
important rule was

if cpu1 is hÿ; 0:11; 1:69; 1:70i
and workload is hÿ; 0:03; 0:99;ÿi
and trt is hÿ; 0:01; 0:39;ÿi
and stations is h4; 5; 15;ÿi

then rt is low � hÿ; 0:0; 0:5; 1:0i
�weight : 116�

This rule demonstrates how the core always covers a con®dent subset of the support-region.
Here, for two parameters, namely workload and trt (target-rotation-time), the core covers the
whole range of these parameters. Additionally it is only limited into one direction on the other two
parameters, indicated by a support region having ®nite boundaries. The performing time of cpu1
has to be below 1.70 and the number of additional stations above 4. This indicates that a certain
amount of computation power together with some background stations guarantees fast responses
no matter what settings are chosen for workload and performing time trt. In addition the weight of
this rule can be used to judge its reliability. The weight indicates the number of examples that are
covered by this rule. In the rule shown above 116 examples fall inside its core region. This means
that about 36% of all examples are covered by this rule, indicating a high reliability. Rules with
low weight on the other hand might be indicators for outliers, irregularities in the data set or
regions of high sensitivity, i.e. regions where small changes of the attributes result in large vari-
ations of the output.

Another question of interest is the in¯uence of some parameters considering the output. In this
example the above rule indicates that the target-rotation-time trt has no in¯uence on the response
time if the CPU is fast (below 1.7) and at least 5 background stations exist because the support of
trt is not restricted and the core covers nearly the whole domain of this parameter.

It can also be of interest to ®nd ``bad'' examples, i.e. regions where the response time is very
high. These indicate parameter settings that should be avoided. For example, the rule with the
highest weight for response time rt� high was:

if cpu1 is h2:70; 2:71; 3:39;ÿi
and workload is hÿ; 0:09; 0:98;ÿi
and trt is h0:13; 0:14; 0:39;ÿi
and stations is hÿ; 1; 15;ÿi

then rt is high � h0:5; 1:0; 1:0;ÿi
�weight : 38�

This rule indicates that if the CPU is very slow and the target-rotation-time trt is above a
certain value the response time is high no matter what workload is considered (represented by

51



background stations and the time between requests). Therefore if the system includes a slow CPU
module the target-rotation-time should be set carefully. Since only 85 examples are of region high
the weight of 38 is an indication for a high reliability of this rule.

These results illustrate the applicability of the presented approach for metamodelling tasks. The
approximation error indicates the reliability of the metamodel and the fuzzy graph can be used for
new simulation experiments. In addition the example rules deliver helpful information about
dependencies between factors and the output of interest.

6. Conclusion

In this paper an approach to function approximation using an algorithm that automatically
builds a fuzzy graph has been proposed. Construction of the fuzzy graph is done in a fast and
e�cient way without any need for user interaction, besides de®nition of the output granular-
ization, which enables the user to de®ne foci of attention. Evaluation of new data points is
straightforward and the resulting representation is easy to understand. In addition it is possible to
use soft targets for training, that is, fuzzy numbers or noisy values. The usage of fuzzy graphs to
analyze complex simulation models was demonstrated on a real world token bus example. The
presented approach was well suited to quickly and automatically extract an understandable
metamodel simply from observations of the model. Therefore the presented approach o�ers an
e�cient way to build approximators from training data. In addition the fuzzy graph can be seen as
a collection of fuzzy rules, thus o�ering an understandable representation of the acquired
knowledge.

Acknowledgements

The authors would like to thank Prof. D. Schmid for his support and the opportunity to work
on this interesting project. Thanks also to the reviewers for their positive and very helpful feed-
back. M. Berthold was supported by a stipend of the ``Gemeinsame Hochschulsonderprogramm
III von Bund und Laendern'' through the DAAD.

References

[1] M.R. Berthold, J. Diamond, Constructive training of probabilistic neural networks, Neurocomputing 19 (1998) 167±183.

[2] M.R. Berthold, K.-P. Huber, Building fuzzy graphs from examples, IEEE International Conference on Fuzzy Systems 1 (1996)

608±613.

[3] M.R. Berthold, K.-P. Huber, Missing values and learning of fuzzy rules, International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems 6 (2) (1998) 171±178.

[4] R.W. Blanning, The construction and implementation of metamodels, Simulation 24 (1975) 177±184.

[5] P. Clark, T. Niblett, The CN2 induction algorithm, Machine Learning 3 (1989) 261±283.

[6] M. Delgado, A. Gonzalez, An inductive learning procedure to identify fuzzy systems, Fuzzy Sets and Systems 55 (1993) 121±132.

[7] S.K. Halamuge, M. Glesner, FuNe Deluxe: A group of fuzzy-neural methods for complex data analysis problems, in: Proceedings

of the EUFIT'95, 1995.

[8] C.M. Higgins, R.M. Goodman, Learning fuzzy rule-based neural networks for control, in: Advances in Neural Information

Processing Systems, vol. 5, pp. 350±357, Morgan Kaufmann, Los Altos, 1993.

[9] K.-P. Huber, M,R. Berthold, Building precise classi®ers with automatic rule extraction, IEEE International Conference on Neural

Networks 3 (1995) 1263±1268.

52



[10] J.P.C. Kleijnen, Model behaviour: Regression metamodel summarization, Encyclopedia of Systems and Control 5 (1987) 3024±

3030.

[11] X. Liu, P. Cohen, M.R. Berthold, Advances in Intelligent Data Analysis-Reasoning about Data LNCS1280, Springer, Berlin,

1997.

[12] C. McMillan, M.C. Mozer, P. Smolensky, Rule induction through integrated symbolic and subsymbolic processing, in: Advances

in Neural Information Processing Systems, vol. 4, pp. 969±976, Morgan Kaufmann, 1992.

[13] D. Nauck, R. Kruse, Nefclass-a neuro-fuzzy approach for the classi®cation of data, in: Proceedings of the Symposium on Applied

Computing, 1995.

[14] H. Pierreval, Rule-based simulation metamodels, European Journal of Operational Research 61 (1992) 6±17.

[15] J.R. Quinlan, Induction of decision trees, Machine Learning 1 (1986) 81±106.

[16] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, Los Altos, 1993.

[17] S. Salzberg, A nearest hyperrectangle learning method, Machine Learning 6 (1991) 251±276.

[18] P.K. Simpson, Fuzzy min±max neural networks-part 1: classi®cation, IEEE Transactions on Neural Networks 3 (5) (1992) 776±

786.

[19] P.K. Simpson, Fuzzy min±max neural networks- part 2: clustering, IEEE Transactions on Fuzzy Systems 1 (1) (1993) 32±45.

[20] T. Takagi, M. Sugeno, Fuzzy identi®cation of systems and its appications to modeling and control, IEEE Transactions on

Systems, Man, and Cybernetics 15 (1) (1985) 116±132.

[21] S. Thrun, Extracting rules from arti®cial neural networks with distributed representations, in: Advances in Neural Information

Processing Systems, vol. 7, pp. 505±512, MIT Press, Cambridge, 1995.

[22] G. Towell, J.W. Shavlik, Interpretation of arti®cial neural networks: mapping knowledge-based neural networks into rules, in:

Advances in Neural Information Processing Systems, 4, pp. 977-984, Morgan Kaufmann, Los Altos, 1992.

[23] V. Uebele, S. Abe, M.-S. Lan, A neural-network-based fuzzy classi®er, IEEE Transactions on Systems Man and Cybernetics 25 (2)

1995.

[24] L.-X. Wang, J.M. Mendel, International Symposium on Intelligent Control, IEEE Press, New York, 1991, pp. 263±268.

[25] D. Wettschereck, A hybrid nearest-neighbour and nearest-hyperrectangle learning algorithm, Proceedings of the European

Conference on Machine Learning (1994) 323±335.

[26] L.A. Zadeh, Soft computing and fuzzy logic, IEEE Software (1994) 48±56.

[27] L.A. Zadeh, Fuzzy logic and the calculi of fuzzy rules and fuzzy graphs: A precis, Multi. Val. Logic 1 (1996) 1±38.

53


	Text6: First publ. in: Intelligent Data Analysis 3 (1999), 1, pp. 37-53
	Text5: Konstanzer Online-Publikations-System (KOPS)URL: http://www.ub.uni-konstanz.de/kops/volltexte/2008/6462/URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-64626


