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Abstract

Multi-layer networks of threshold logic units o�er an attractive framework for the
design of pattern classi�cation systems. A new constructive neural network learning
algorithm (DistAl) based on inter-pattern distance is introduced. DistAl uses spherical
threshold neurons in a hidden layer to �nd a cluster of patterns to be covered (or
classi�ed) by each hidden neuron. It does not depend on an iterative, expensive and
time-consuming perceptron training algorithm to �nd the weight settings for the neu-
rons in the network, and thus extremely fast even for large data sets. The experimental
results (in terms of generalization capability and network size) of DistAl on a number
of benchmark classi�cation problems show reasonable performance compared to other
learning algorithms despite its simplicity and fast learning time. Therefore, DistAl is
a good candidate to various tasks that involve very large data sets (such as largescale
datamining and knowledge acquisition) or that require reasonably accurate classi�ers
to be learned in almost real time or that use neural network learning as the inner loop
of a more complex optimization process in hybrid learning systems.

1 Introduction

Multi-layer networks of threshold logic units (TLU) or multi-layer perceptrons (MLP) [Chen
et al., 1995; Gallant, 1993; Parekh et al., 1996; Parekh et al., 1995] o�er an attractive
framework for the design of trainable pattern classi�cation systems for a number of reasons
including: potential for parallelism and fault and noise tolerance; signi�cant representational
and computational e�ciency over disjunctive normal form (DNF) expressions and decision

�This research was partially supported by the National Science Foundation (through grants IRI-9409580
and IRI-9643299) and the John Deere Foundation.

1



trees [Gallant, 1993]; and simpler digital hardware implementations than their continuous
counterparts such as sigmoid neurons used in back-propagation networks [Rumelhart et al.,
1986].

A TLU implements an (N � 1)-dimensional hyperplane which partitions N -dimensional
Euclidean pattern space into two regions. A single TLU neural network is su�cient to classify
patterns in two classes if they are linearly separable. A number of learning algorithms that
are guaranteed to �nd a TLU weight setting that correctly classi�es a linearly separable
pattern set have been proposed in the literature [Gallant, 1993; Frean, 1990a; Poulard, 1995;
Ra�n & Gordon, 1995; Anlauf & Biehl, 1990; Krauth & M�ezard, 1987]. However, when
the given set of patterns is not linearly separable, a multi-layer network of TLUs is needed
to learn a complex decision boundary that is necessary to correctly classify the training
examples.

Broadly speaking, there are two approaches to the design of multi-layer neural networks
for pattern classi�cation:

� A-priori �xed topology networks: the number of layers, the number of hidden neurons
in each hidden layer, and the connections between each neuron are de�ned a-priori for
each classi�cation task. This is done on the basis of problem-speci�c knowledge (if
available), or in ad hoc fashion (requiring a process of trial and error). Learning in
such networks usually amounts to (typically error gradient guided) search for a suitable
setting of numerical parameters, weights in a weight space de�ned by the choice of the
network topology.

� Adaptive topology networks: the topology of the target network is determined dynami-
cally by introducing new neurons, layers, and connections in a controlled fashion using
generative or constructive learning algorithms. In some cases, pruning mechanisms
that discard useless neurons and connections are used in conjunction with the network
construction mechanisms.

Some of the motivations for study of constructive learning algorithms are [Honavar, 1990;
Honavar & Uhr, 1993; Parekh et al., 1995; Parekh et al., 1996]:

� Limitations of learning by weight modi�cation alone within an otherwise a-priori �xed

network topology: Weight modi�cation algorithms typically search for a solution weight
vector that satis�es some desired performance criterion (e.g., classi�cation error). In
order for this approach to be successful, such a solution must lie within the weight-space
being searched, and the search procedure employed must in fact, be able to locate it.
This means that unless the user has adequate problem-speci�c knowledge that could be
brought to bear upon the task of choosing an adequate network topology, the process
is reduced to one of trial and error. Constructive algorithms can potentially o�er a way
around this problem by extending the search for a solution, in a controlled fashion, to
the space of network topologies.

� Complexity of the network should match the intrinsic complexity of the classi�cation

task: It is desirable that a learning algorithm construct networks whose complexity (as
measured in terms of relevant criteria such as number of nodes, number of links, con-
nectivity, etc.) is commensurate with the intrinsic complexity of the classi�cation task
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(implicitly speci�ed by the training data). Smaller networks yield e�cient hardware
implementations. And everything else being equal, the more compact the network,
the more likely it is that it exhibits better generalization properties. Constructive al-
gorithms can potentially discover near-minimal networks for correct classi�cation of a
given data set.

� Estimation of expected case complexity of pattern classi�cation tasks: Many pattern
classi�cation tasks are known to be computationally hard. However, little is known
about the expected case complexity of classi�cation tasks that are encountered, and suc-
cessfully solved, by living systems - primarily because it is di�cult to mathematically
characterize the statistical distribution of such problem instances. Constructive algo-
rithms, if successful, can provide useful empirical estimates of expected case complexity
of real-world pattern classi�cation tasks.

� Trade-o�s among performance measures: Di�erent constructive learning algorithms of-
fer natural means of trading o� certain subsets of performance measures (e.g., learning
time) against others (network size, generalization accuracy).

� Incorporation of prior knowledge: Constructive algorithms provide a natural framework
for exploiting problem-speci�c knowledge (e.g., in the form of production rules) into the
initial network con�guration or heuristic knowledge (e.g., about the general topological
constraints on the network) into the network construction algorithm.

A number of constructive algorithms that incrementally construct networks of threshold
neurons for 2-category pattern classi�cation tasks have been proposed in the literature.
These include the tower, pyramid [Gallant, 1990], tiling [M�ezard & Nadal, 1989], upstart
[Frean, 1990b], perceptron cascade [Burgess, 1994], and sequential [Marchand et al., 1990].
More recently, [Parekh et al., 1995; Parekh et al., 1996] have proposed provably convergent
multi-category versions of constructive algorithms for both discrete as well as real-valued
pattern classi�cation. With the exception of the sequential learning algorithm, most of these
constructive learning algorithms are based on the idea of transforming the hard task of
determining the necessary network topology and weights to two subtasks:

� Incremental addition of one or more threshold neurons to the network when the existing
network topology fails to achieve the desired classi�cation accuracy on the training set.

� Training the added threshold neuron(s) using some variant of the perceptron training
algorithm (e.g., the pocket algorithm [Gallant, 1993]) to improve the classi�cation
accuracy of the network.

In the case of the sequential learning algorithm, hidden neurons are added and trained by
an appropriate weight training rule to exclude patterns belonging to the same class from the
rest of the pattern set. Because of the iterative nature of the perceptron training algorithm,
this is a time consuming process. This often makes the use of such algorithms impractical
for very large data sets (e.g., in largescale datamining and knowledge acquisition tasks),
especially in applications where reasonably accurate classi�ers have to learned in almost
real time. Similarly, hybrid learning systems that use neural network learning as the inner
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loop of a more complex optimization process (e.g., feature subset selection using a genetic
algorithm where evaluation of �tness of a solution requires training a neural network based
on a subset of input features represented by the solution and evaluating its classi�cation
accuracy [Yang & Honavar, 1997]) call for a fast neural network training algorithm. This
paper presents a new constructive learning algorithm (DistAl) which is designed with such
applications in mind.

The rest of the paper is organized as follows: Section 2 describes DistAl. Section 3
presents the results of experiments designed to evaluate the performance of neural networks
trained using DistAl on some benchmark classi�cation problems. Section 4 concludes with a
summary and discussion of some directions for future research.

2 DistAl: A New Constructive Learning Algorithm

DistAl di�ers from most other constructive learning algorithms mentioned above in two
respects:

� It uses a variant of TLUs (spherical threshold units) as hidden neurons. (For mo-
tivations and explanations about spherical threshold units, see [Langley, 1995]). A
spherical threshold neuron i has associated with it a weight vector Wi, two thresh-
olds | �i;low and �i;high, and a suitably de�ned distance metric d. It computes the
distance d(Wi;X

p) between a given input pattern Xp and Wi. The corresponding
output opi = 1 if �i;low � d(Wi;X

p) � �i;high and 0 otherwise.

� DistAl does not use an iterative algorithm for �nding the weights to set the weights
and the thresholds. Instead, it computes the inter-pattern distances once between each
pair of patterns in the training set and determines the weight values for hidden neurons
by greedy strategy (that attempts to correctly classify as many patterns as possible
with the introduction of each new hidden neuron). The weights and thresholds are
then set without the computationally expensive iterative process (see section 2.4 for
details).

The use of one-time inter-pattern distance calculation instead of (usually) iterative, ex-
pensive and time-consuming perceptron training procedure make the proposed algorithm
signi�cantly faster than most other constructive learning algorithms. In fact, the time and
space complexities of DistAl can be shown to be polynomial in the size of the training set (see
section 2.6 for details). This makes DistAl particularly well-suited for largescale datamining
tasks.

2.1 Distance Metrics

Each hidden neuron introduced by DistAl essentially represents clusters of patterns that
fall in the region bounded by two concentric hyperspherical regions in the pattern space.
The weight vector of the neuron de�nes the center of the hyperspherical regions and the
thresholds determine the boundaries of the regions (relative to the choice of the distance
metric used). Di�erent distance metrics represent di�erent notions of distance in the pattern
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space. The number and distribution of the clusters that result is a function of the distribution
of the patterns as well as the clustering strategy used. Since it is di�cult to identify the
best distance metric in the absence of knowledge about the distribution of patterns in the
pattern space, we chose to explore a number of di�erent distance metrics proposed in the
literature [Duda & Hart, 1973; Salton & McGill, 1983].

Let Xp = [Xp
1
; � � � ;Xp

n] and Xq = [Xp
1
; � � � ;Xq

n] be two pattern vectors. Let maxi and
mini be the maximum and the minimum values of the ith attribute of patterns in a data set,
respectively. Then the distance between Xp and Xq is de�ned as follows in each distance
metric:

1. Euclidean:

d(Xp;Xq) =

vuut nX
i=1

(Xp
i �X

q
i )

2

2. Manhattan:

d(Xp;Xq) =
nX

i=1

jXp
i �X

q
i j

3. Maximum Value:
d(Xp;Xq) = argmaxijX

p
i �X

q
i j

4. Normalized Euclidean:

d(Xp;Xq) =

vuut1

n

nX
i=1

(
X

p
i �X

q
i

maxi �mini

)2

5. Normalized Manhattan:

d(Xp;Xq) =
1

n

nX
i=1

jXp
i �X

q
i j

maxi �mini

6. Normalized Maximum Value:

d(Xp;Xq) = argmaxi
jXp

i �X
q
i j

maxi �mini

7. Dice coe�cient:

d(Xp;Xq) = 1�
2
Pn

i=1X
p
i X

q
iPn

i=1(X
p
i )

2 +
Pn

i=1(X
q
i )

2

8. Cosine coe�cient:

d(Xp;Xq) = 1 �

Pn
i=1X

p
i X

q
iqPn

i=1(X
p
i )

2 �
Pn

i=1(X
q
i )

2

9. Jaccard coe�cient:

d(Xp;Xq) = 1 �

Pn
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p
i X

q
iPn
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p
i )

2 +
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q
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2.2 Hidden Neurons

As mentioned above, DistAl introduces a hidden neuron to represent a cluster of training
patterns that belong to the same class. The boundaries of a cluster are determined based on
the inter-pattern distances and implemented by thresholds. DistAl uses a variant of TLUs
(spherical threshold units) for this job: A hidden neuron is a concentric spherical threshold
neuron representing a cluster of patterns by its upper and lower thresholds. It outputs 1 for
the patterns whose distances from the center of the cluster are between the upper and the
lower thresholds and 0 for all the other patterns. A hidden neuron �nds a cluster using each
distance metric in section 2.1 by greedy strategy (i.e., it �nds one that corresponds to the
maximal subset of patterns from the set of the patterns that are not included in any other
clusters represented by hidden neurons generated so far).

In addition that various distance metrics were introduced in section 2.1 to explore the
pattern space and to generate clusters for hidden neurons without any a-priori knowledge
on the distribution of patterns, there might be some properties in training patterns that
can be exploited. For example, the values of a particular attribute of all (or a subset of)
patterns belonging to a class can be in an interval exclusively (i.e., the values of the attribute
of patterns belonging to other classes are always less than the lower bound or greater than
the upper bound of the interval), and thus the patterns of a class can be classi�ed by
considering that attribute only instead of computing the inter-pattern distances. Therefore,
this attribute-based approach is also considered with the greedy strategy as in the distance-
based approach (i.e., the maximal subset of patters belonging to a class is determined by
sorting and scanning the values of each attribute of the training patterns). In attribute-based
approach, a hidden neuron outputs 1 if the value of an attribute (it remembers) is within its
thresholds, and 0 otherwise.

2.3 Output Neurons

DistAl uses general TLUs as output neurons. It computes the weighted sum of the outputs of
hidden neurons. The value of output neurons are determined by the winner-take-all strategy:
only an output neuron that has the largest net input outputs 1, and all the other output
neurons output 0's; if there is a tie, all output neurons output 0's.

2.4 Network Construction

First of all, the distance between each pair of input patterns is calculated, sorted and stored
in the distance matrix Dk; k 2 f1; � � � ; 9g using the corresponding distance metrics. For
attribute-based approach, the values of each attribute of the input patterns are sorted and
stored in a matrix (say, D10 for notational simplicity).

DistAl maintains a single hidden layer throughout the learning phase. Starting with the
entire training patterns and no hidden neurons, it keeps choosing a subset of patterns in
the same class from the training set (using Dk; k 2 f1; � � � ; 10g) by introducing a hidden
neuron until every pattern is chosen. In distance-based approach, it checks the maximum
number of consecutive patterns of a class from each pattern in Dk; k 2 f1; � � � ; 9g (i.e., the
number of patterns of the same class in a cluster centered at each pattern). In attribute-
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based approach, it checks the maximum number of consecutive patterns of the same class
sorted by the values of each attribute in D10 (i.e., the number of patterns in intervals of
patterns of the same class for each attribute).

In distance-based approach, the weights between the new hidden neuron and inputs are
set by the pattern which is the center of the cluster. In this case, �low is the distance to
the nearest pattern and �high is the distance to the farthest pattern in the cluster from the
center. In attribute-based approach, the attribute used for determining the maximal subset
is remembered. The weights between the new hidden neuron and inputs are ignored (because
they are not used when the output is computed). In this case, �low is the smallest attribute
value and �high is the largest attribute value of the patterns in the maximal subset.

The patterns belonging to the maximal subset is now eliminated from the training set
and the process is repeated until all the patterns are eliminated. After all patterns are
eliminated, the representation (of hidden neurons) becomes linearly separable [Marchand
et al., 1990]. As the weights between hidden and input neurons are determined from the
distance matrices (not by the perceptron algorithm), following weight setting can be used
between output and hidden neurons without applying the perceptron algorithm as well: The
weights between output and hidden neurons are properly chosen for each hidden neuron to
overwhelm the e�ect of other hidden neurons generated later. One simple strategy is to give
2s�1; 2s�2; � � � ; 20 as the weights between the right output neurons (i.e., correct classi�cation)
and hidden neurons 1; 2; � � � ; s, respectively [Marchand et al., 1990], and 0's to all the other
connections.

In terms of the speed of DistAl, because patterns that are classi�ed by a new hidden neuron
once are eliminated from the training set and not considered further and no perceptron
training algorithm is applied, DistAl is signi�cantly fast.

2.5 Pseudo-code

Let S be a set of training patterns and i denote the number of hidden neurons generated.
LetWh

i be the weights between the ith hidden neuron and inputs, and letW o
ji be the weight

between jth output neuron and ith hidden neuron.

1. Compute a distance matrix Dk(Xi;Xj) 8Xi;Xj 2 S; k 2 f1; � � � ; 9g or the attribute-
based matrix D10, and sort it by an ascending order;

2. i = 0;

3. while (S 6= �) do begin

4. Double all existing weights between output and hidden neurons
(initially, there is no hidden neuron);

5. Introduce a new hidden neuron i (i = i+ 1);

6. Select a maximal subset S 0 of patterns (belonging to a class, say, j) from S
using Dk; k 2 f1; � � � ; 10g

7. if (S 0 is chosen by distance-based approach
[Xp: center, Xf : �rst, Xl: last patterns of the cluster in Dk, respectively]) then
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8. Wh
i  Xp; �low = Dk(Xp;Xf ); �high = Dk(Xp;Xl);

else [S 0 is chosen using D10 with attribute r, smallest value: s, largest value: l]

9. �low = s; �high = l; Store attribute index r;

10. W o
ji  1; W o

mi  0;8m 6= j;

11. S = S � S 0;
end

2.6 Complexity

It is clear that there exists at least one pattern that can be eliminated by a hidden neuron at
any time with the distance-based approach unless the training set is contradictory (i.e., there
exist identical patterns with di�erent classi�cations). Note that this is not generally true for
attribute-based approach because there can be many patterns belonging to di�erent classes
that have the same attribute values. Thus, following complexity analysis and convergence
proof apply to distance-based approach only.

Let Npat be the number of training patterns and Natt be the number of attributes in a
data set, respectively. Let Nout and Nhidden be the number of output and hidden neurons,
respectively. Assume Npat > Natt and Npat� max[Nout; Nhidden].

2.6.1 Time Complexity

Step 1 takes O(max[N2

pat � Natt; N
2

pat � logNpat]). Steps 2,5,7 and 9 take O(1). Step 4 takes
O(Nout � Nhidden). Step 6 takes O(N2

pat). Step 8 takes O(Natt). Step 10 takes O(Nout).
Step 11 takes O(Npat). Thus, step 3 (worst-case) takes O(N3

pat). Therefore, worst-case
time complexity is O(N3

pat). (Note that DistAl runs much faster than the worst-case time
complexity because it keeps eliminating a subset of elements from the original training set).

2.6.2 Space Complexity

The space requirement for the input patterns and their targets is O(Npat � [Natt + Nout]).
The weights require O(Nout �Nhidden +Nhidden �Nin). The distance matrix requires O(N2

pat).
Thus, the total space complexity is O(N2

pat).

2.7 Example

Consider the XOR problem assuming Manhattan distance metric is used (S = f1; 2; 3; 4g):

input class

pattern 1: 0 0 A
pattern 2: 0 1 B
pattern 3: 1 0 B
pattern 4: 1 1 A
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Then, the distance matrix will be like the following after sorted:

0
BBB@

0 1 1 2
0 1 1 2
0 1 1 2
0 1 1 2

1
CCCA
! from pattern 1 to patterns (1; 2; 3; 4)
! from pattern 2 to patterns (2; 1; 4; 3)
! from pattern 3 to patterns (3; 1; 4; 2)
! from pattern 4 to patterns (4; 2; 3; 1)

Thus, the maximum consecutive patterns of a class is from pattern 1 to patterns 2 and
3 (i.e., S 0 = f2; 3g), and a hidden neuron is introduced for this cluster with �low = �high = 1.
Then, patterns 2 and 3 are eliminated from further consideration, which leaves pattern 1
and 4 (i.e., S = f1; 4g) and that can be excluded from any pattern (say, pattern 1 again,
S 0 = f1; 4g) with another hidden neuron with �low = 0; �high = 2. So, S = �, and the
algorithm stops. Figure 1 shows this process of network construction.

input

2
hidden

output A

0

A

0

1

(a) after the first neuron is introduced (b) after the second neuron is introduced
(final network)

1
0

1

1

1

1

B B

0

2

0
0

000
0

Figure 1: Process of Network Construction for the Example in DistAl

2.8 Convergence Proof

From the algorithmic description, we clearly have the following theorem similar to the one
in [Marchand et al., 1990].

Theorem:
DistAl guarantees to converge to 100% training accuracy with a �nite number of hidden
neurons for a data set with a �nite number of non-contradictory patterns.
(Proof)
Because hidden neurons are generated by the sequence of eliminating a subset of patterns
from the training set (i.e., clustering them by greedy strategy), the internal representation
of the hidden layer for a pattern Xp (member of the k-th cluster) has the form

Hp = (0; 0; � � � ; 0; 1; �; � � � ; �)
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(it has 0's in the �rst k� 1 hidden neurons, 1 in the k-th hidden neuron and either 0 or 1 in
the remaining hidden neurons) after a network is constructed consuming h hidden neurons.

Consider the following weight settings:

W o
ji =

 
2h�i if j is the right class of hidden neuron i

0 otherwise

Then Xp is correctly classi�ed in the output layer by the winner-take-all strategy because
the cluster (represented by a hidden neuron) to which Xp belongs gives the largest net input
which wins over other net inputs (computed by hidden neurons generated later) to output
neurons.

Because there will be a �nite number of clusters for a �nite number of patterns in a
data set, a �nite number of hidden neurons will be generated and 100% training accuracy is
obtained. 2

3 Experiments

3.1 Data sets

A wide range of real-world as well as arti�cial data sets were used to see the performance
of DistAl. The parity, random function and two spirals problems were chosen as arti�cial
data sets. The real-world data sets were obtained from the machine learning data repository
at the University of California at Irvine [Murphy & Aha, 1994]. Table 1 summarizes the
characteristics of the data sets selected for our experiments.

3.2 Experimental Results

DistAl is deterministic in the sense that its behavior is always identical for a given training
set while most other constructive learning algorithms are non-deterministic because their
behavior is not always identical in di�erent runs with the same training set and even with
the same learning parameters. DistAl was run once for each distance metric to compare the
performance in terms of the generalization accuracy and the network size (i.e., number of
hidden neurons generated). The generalization accuracy is computed as follows: If there is
no tie in output neurons for a test pattern, DistAl checks the correctness by comparing the
desired outputs with computed outputs by winner-take-all strategy; if there is a tie (i.e.,
every hidden neuron outputs 0), it considers the distance from the test pattern to the sphere
(or thresholds) of each cluster and picks a hidden neuron which has the minimum distance
and outputs 1 for that hidden neuron. Then it computes the outputs (in output layer) and
compares them with the desired classi�cation.

All the arti�cial data sets have only training sets and thus generalization accuracy is
not considered. Parity and random function data sets contain bipolar patterns, which make
DistAl behave similarly for di�erent distance metrics in section 2.1 and thus only Manhattan
distance metric is used for those data sets.

The results are shown in table 2. A `*' indicates failure to achieve 100% training accuracy
with the limit of 100 hidden neurons and/or convergence with 0% generalization accuracy.
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Dataset train test att type class

balance scale weight & distance (balance) 416 209 4 int 3
glass identi�cation (glass) 142 72 9 real 6
ionosphere structure (ionosphere) 234 117 34 real, int 2
BUPA liver disorders (liver) 230 115 6 real, int 2
7-bit parity (p7) 128 0 7 bipolar 2
8-bit parity (p8) 256 0 8 bipolar 2
9-bit parity (p9) 512 0 9 bipolar 2
pima indians diabetes (pima) 512 256 8 real, int 2
5-bit random function (r5) 32 0 5 bipolar 3
image segmentation (segmentation) 210 2100 19 real, int 7
two spirals (spirals) 192 0 2 real 2
tic-tac-toe endgame (tic-tac-toe) 638 320 9 int 2
vowel recognition (vowel) 528 462 10 real 11
wisconsin diagnostic breast cancer (wdbc) 380 189 30 real 2
wine recognition (wine) 120 58 13 real, int 3

Table 1: Datasets used in experiments. train is the number of training patterns, test is the
number of test patterns, att is the number of input attributes, type is the attribute type and
class is the number of classes.

As pointed earlier, the distance-based approach is guaranteed to converge to 100% training
accuracy but the attribute-based approach is not. For example, the attribute values in tic-
tac-toe are the same in patterns of di�erent classi�cations in majority of the data set, and
the algorithm did not converge by attribute-based approach. It is also possible DistAl does
not converge to 100% training accuracy given a limited number of hidden neurons. If a data
set has a number of training patterns and its distribution is not so appropriate to cluster
by the distance or attributed-based methods, it may not converge after consuming all the
hidden neurons.

Because of the fast speed of DistAl, the results were obtained instantly even with all
the distance metrics. As we can see from table 2, there is no well-de�ned rule of choosing
the best distance metric for each data set. That is because the performance (or clustering)
depends on the distribution of a data set. In other words, a speci�c distance metric might
be appropriate for a data set while it might not for other data sets.

It is generally impossible to do a perfect, thorough and fair comparison between various
learning algorithms because each algorithm has its own optimal parameter settings which
is usually unknown and not feasible to obtain within a reasonable amount of time. We
compare the results of DistAl on several data sets with the results obtained by a few learning
algorithms that are reported in the literature.

3.2.1 Arti�cial Data Sets

� Parity
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The number of hidden neurons generated in DistAl is comparable to that of perceptron
cascade [Burgess, 1994] (3,4,4 for 7,8,9-bit parity problems) which they claim to be as
e�cient as any of existing constructive algorithms, and, of course, DistAl converged
very fast.

� spirals

It is reported in [Burgess, 1994] that perceptron cascade generated 35 or 18 (depending
on the implementation), cascade correlation [Fahlman & Lebiere, 1990] generated 15,
and upstart [Frean, 1990b] generated 91 hidden neurons. DistAl needed only 10 hidden
neurons with Euclidean distance metric.

3.2.2 Real-world Data Sets

The generalizations of DistAl on real-world data sets are either comparable to or slightly worse
than the best results reported so far in [Murphy & Aha, 1994]. (Note that comparing the
results of other learning algorithms in the literature with those of DistAl (obtained without
any optimization) is not fair because there is no way of knowing exactly how the results are
obtained such as the algorithms used, various parameter settings, whether the algorithm was
optimized or �netuned for a given problem, how the training and test sets are divided, etc.).

� ionosphere
Networks with hidden neurons in the range of [0,15] using the backpropagation learning
algorithm gave 96% accuracy after training with 200 patterns [Sigillito et al., 1989], and
IB3 gave 96.7% accuracy [Aha & Kibler, 1989]. DistAl gave a comparable performance
of 94% with Jaccard distance metric.

� pima
The ADAP algorithm makes a real-valued prediction between 0 and 1, and this was
transformed into a binary decision using a cuto� of 0.448. It used 576 training patterns
and gave 76% accuracy for the remaining 192 patterns [Smith et al., 1988]. DistAl gave
68% accuracy with attribute-based method.

� tic-tac-toe
Results of 6 algorithms were reported |NewID: 84.0%, CN2: 98.1%, MBRtalk: 88.4%,
IB1: 98.1%, IB3: 82.0%, IB3-CI: 99.1% [Aha, 1991]. The best result of DistAl was
82.5% using Cosine distance metric. Originally, all the attribute values were nominal
in tic-tac-toe and those were converted into integer values by an arbitrary way. This
arbitrary and ad hoc data conversion can skew the data set and cause it to lose its
original characteristics, and make the performance of DistAl (which considers the inter-
pattern distance or the relative magnitude of attribute values) very poor with some
distance metrics.

� vowel
The results of a number of algorithms are given in [Robinson, 1989]. The accuracies
range between 33% and 56%. DistAl gave 37% using maximum value distance metric.
The performance might be improved using larger training set including more training
patterns from more speakers.
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� wdbc
The best performance is 97.5% using repeated 10-fold cross-validations [Mangasarian
et al., 1995] that is much more computationally intensive than DistAl. DistAl gave a
comparable performance of 92.1% with maximum value distance metric.

� wine
The results of algorithms are in [Aeberhard et al., 1992] | RDA:100%, QDA:99.4%,
LDA: 98.9%, 1NN: 96.1%. DistAl gave a comparable performance of 94.8% with nor-
malized Manhattan distance metric.

4 Summary and Discussion

A signi�cantly fast, inter-pattern distance-based constructive learning algorithm, DistAl, is
introduced and its performance on a number of arti�cial and real-world data sets is shown.
Despite its simplicity,DistAl yielded a reasonable performance on almost all data sets consid-
ered (and excellent performance on di�cult tasks such as the parity and two spirals problems)
compared with other learning algorithms. Due to its signi�cantly fast speed, it is well-suited
to many real-world applications involving huge amount of data and/or requesting real-time
response such as largescale datamining and knowledge acquisition tasks and hybrid learning
systems that use neural network learning as the inner loop of a more complex optimization
process like feature subset selection using a genetic algorithm [Yang & Honavar, 1997].

Theoretical analysis of DistAl on generalization capability is currently being explored and
will strengthen the algorithm in addition to its fast speed. Also, performance comparison of
DistAl with other various constructive learning algorithms (based on extensive experiments
with a number of data sets) is in progress.
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