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Abstract
Assume that only partial knowledge about a non-rigid registration is given: certain points,
curves, or surfaces in one 3D image are known to map to certain points, curves, or surfaces
in another 3D image. In trying to identify the non-rigid registration field, we face a generalized
aperture problem since along the curves and surfaces,point correspondences are not given. We
will advocate the viewpoint that the aperture and the 3D interpolation problem may be solved
simultaneouslyby finding thesimplestdisplacement field. This is obtained by a geometry-
constrained diffusion, which in a precise sense yields the simplest displacement field. The
point registration obtained may be used for segmentation, growth modeling, shape analysis, or
kinematic interpolation. The algorithm applies to geometrical objects of any dimensionality. We
may thus keep any number of fiducial points, curves, and/or surfaces fixed while finding the
simplest registration. Examples of inferred point correspondences in a synthetic example and a
longitudinal growth study of the human mandible are given.

Keywords: Aperture-problem, automatic landmark detection, simplest displacement field,
homology.
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1. Introduction

In a registration, we wish to establish the spatial correspon-
dence of points in two (3D) images. When performing shape
statistics or analyzing (longitudinal) shape development, the
tools from shape statistics (e.g., (Bookstein, 1991; Bookstein,
1997b; Dryden and Mardia, 1998)) require point matches.
That is, to perform a statistical analysis of the variation of
shapes we must identify homologouspoints on the shape
samples. When having only a few landmarks, the registration
may be performed manually, but for thousands of points it
becomes tedious and practically impossible. In many cases
punctual landmarks are hard to establish in images, and the
process requires considerable prior anatomical knowledge.

A homologous point or a (semi-) landmark is a point
the correspond across all the cases of a data set under a
reasonable model of deformation from their common mean
(Bookstein, 1991).

In this paper, we assume that homologousobjectshave

�Corresponding author
(e-mail: pra@imm.dtu.dk)

been defineda priori. By a homologousobjectwe understand
the same anatomical object (e.g. the mandible). Therefore,
we seek an automatic method for establishingpoint corre-
spondences based onobjectcorrespondences. Pursuing this,
we presume that: 1) the optimal registration is a mapping
between homologous points, 2) the underlying biological
process is smooth and homologous points do not “change
place” i.e., the ordering of the anatomical structures are
preserved. Formally: the registration field must not fold or
be torn apart. It is then a homeomorphism.

We introduce the concept ofgeometry-constrained dif-
fusion for solving the registration problem given an initial
deformation field. Examples show that the method is capable
of giving the correct point-to-point correspondence when the
initial displacement field only comprises the relation between
the objects, i.e. given an intial (guess of the) displacement
field, the algorithm fully automatically establish the correct
point correspondence.

The result of geometry-constrained diffusion is a dense,
continuous, invertible displacement field (a homeomor-
phism). Many fields may fulfill the geometrical constraints
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Figure 1. The images show schematically how the geometry-
constrained diffusion algorithm works on the deformation field. The
Cartesian components of the initial deformation field (arrows in the
left image) are smoothed by Gaussian kernels. Some of the links
have now diverged from the surface (middle image) and must be
projected back on to the surface (right image). The fold (the two
crossing arrows) is removed by repeating the steps until the field
does not change.

given by the objects. The diffusion process gradually sim-
plifies an initial registration field. In general, diffusion is
a gradient ascent in entropy, i.e. the optimal way to move
matter so as to even out the distribution of matter. That is,
locally a diffusion will change the registration field so as to
remove its structure as fast as possible. An unconstrained
diffusion of a registration field leads, as we will show later,
to an affine registration. The geometry-constrained diffusion
also simplifies the registration field as fast as possible, but
is limited locally so as to preserve the object mappings
(Figure 1).

Often, it is very easy to establish the initial object cor-
respondence: for the cube an initial random generated cor-
respondence still gives the optimal result when using the
algorithm, similar results are also obtained for the mandibular
test-case (Section 5). This also means that the method
not only regularizes an a priori displacement field, it is a
registration method that is capable of giving the optimal
displacement field based on the (very weak) assumption: that
points on the source object must map to points on the target
object.

In this paper, the objects are (closed) surfaces in 3D
space, but the method can easily be generalized to objects
of any dimension where one wish to improve (simplify) the
displacement field.

The organization of the remainder of this text is as follows.
Section 2 reviews related work. In Section 3, the theory
of geometry-constrained diffusion is summarized. Section 4
describes the implementation. Examples of the simplification
of an initial crest line based non-rigid registration are shown
in Section 5.

2. Related Work

In the literature, many algorithms for non-rigid registration
exist (e.g. (Maintz and Viergever, 1998; Lester and Arridge,
1999) for surveys). The diffusion process introduced in this
paper may be viewed as a gradient descend of a correspond-
ing energy functional. In the geometry-constrained version,
the relation is most obvious in terms of biased diffusion
shown formally to correspond to a gradient descend of a
regularizing functional (Nordstr¨om, 1990). Such a regular-
izing functional has been introduced for registration either
by having only a finite number of semi-local low parameter
registrations, or a viscous fluid or elasticity constraint, or
a deformation energy of which the thin-plate spline energy
is the canonical example ((Lester and Arridge, 1999) for
a survey). Feldmar and Ayache’s approach (Feldmar and
Ayache, 1996) resembles ours the most.

Feldmar and Ayache (Feldmar and Ayache, 1996) perform
a surface registration based on a distance measure including
local geometrical properties of the surfaces. The surface
registration is a collection of local affine registrations. The
parameters of these registrations are spatially blurred so as to
construct a smoothly varying registration. A difference to our
approach is that we do not make a collection of local affine
frames, we make a global registration field. Second, and most
importantly, we do not exploit any metric properties of the
surfaces, but look for a globally simple registration field. This
also creates a tendency to match points of similar geometry
since the field otherwise must be more complex.

In principle, the geometry-constrained diffusion could also
have been formulated as a geometry-constrained gradient
descent in displacement energy (Bookstein, 1997a). Hence,
we here present a general technique for handling under-
determined geometrical constraints in conjunction with vari-
ational approaches for non-rigid registration.

Automated methods using geometrical features such as
crest lines (Thirion, 1996; Thirion and Gourdon, 1995;
Thirion and Gourdon, 1996; Subsol et al., 1998; Andresen
et al., 1998) are powerful, but do not provide adense field,
and may give problems in regions where shape features
change topology so that correct matching is not possible.
Other automated methods using geometrical features have
been evaluated in the literature (Hartkens et al., 1999), but
this is outside the scope of the present paper.

3. Geometry-constrained Diffusion

A registration field may be diffused simply by diffusing the
Cartesian components independently. An overview of linear
and non-linear scalar and vector valued diffusion schemes
may be found in (ter Haar Romeny, 1994). The geometry-
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constrained diffusion is constructed such that it preserves
certain fiducial mappings during the diffusion.

Given two imagesI1 : IR3 7! IR and I2 : IR3 7! IR, we
define the registration fieldR : IR3 7! IR3. Along the same
line we define the displacement fieldD : IR3 7! IR3 such that
R(x) = x+D(x). We may then define:
Definition 1 (Displacement diffusion) The diffusion of a
displacement field D: IR3 7! IR3 is an independent diffusion
in each of its Cartesian components:

∂tD =4D

where the Laplacian,4 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , is applied inde-
pendently on the x-, y-, and z-component of D.

The only difference between the registration and displace-
ment field is the addition of a linear term. This term does
not influence the diffusion so that registration diffusion is
identical to the displacement diffusion.

This vector-valued diffusion has some obvious and impor-
tant symmetries:
Proposition 1 The displacement diffusion is invariant with
respect to similarity transforms of any of the source or target
images.
Proof. The translational part of the similarity transform only
adds a constant to the displacement field, and the diffusion
is invariant to this. The displacementy = D(x)+ x is (up to
a translation) similarity transformed such thatx0 = s1R1x and
y0 = s2R2y whereR1 andR2 are 3�3 rotation matrices. Under
s1R1 the displacement is mapped toD1(x0) = D(s�1

1 R�1
1 x0)�

x0+s�1
1 R�1

1 x0. Applyings2R2 also we find

D0(x0) = s2R2[D(s�1
1 R�1

1 x0)+s�1
1 R�1

1 x0]�x0

The later terms (*MADS SKAL RETTE DETTE, DA DET
IKKE ER KORREKT *) leave the diffusion unaltered since
they only add terms of first order, and the diffusion depends
only on terms of second order. Since the diffusion is linear, it
is invariant tos2R2. By re-mappingt the diffusion is known to
be independent of similarity transforms of the base manifold.
�

Applying the displacement diffusion without further con-
straints, it reaches a steady state, which is an affine registra-
tion. This is easily seen since only linear functions exist in
the null-space of the diffusion equation.

In the case where the same geometrical structures have
been identified in both images, we wish to make certain
that the diffusion of the displacement field respects these
structures. Assume that a surfaceS1 : IR2 7! IR3 in the source
image is known to map on to the surfaceS2 : IR2 7! IR3 in the
target image. We thus define

Definition 2 (Surface-constrained diffusion) The surface
constrained diffusion of D: IR3 7! IR3 mapping S1 : IR2 7! IR3

onto S2 : IR2 7! IR3 is given by

∂tD =

(
4D�nS2

nS2
�4D

knS2
k2 if x 2 S1

4D if x 62 S1

where nS2 is the surface normal of S2(D(x)+x).
This corresponds to solving the heat flow equation with

certain boundary conditions. In this case, however, we do not
keep the solution fixed at the surface, but allow points to travel
along the surface. This is an approach dual to the geometry-
driven curve and surface diffusion by (Olver et al., 1997) and
others. We keep only the tangential part of the diffusion along
the surface whereas they diffuse the geometry of the surface
maintaining only the normal flow. This corresponds in spirit
to Bookstein’s concept ofdeficient coordinate(Bookstein,
1991). The surface normalnS2 may simply be obtained as
nS1 + JnS1 whereJ is the Jacobian ofD. In this way the
formulation is no longer explicitly dependent onS2. That is,
given an initial (guess of the) displacement field and a surface
in this source image to be preserved under diffusion, we may
still apply the above equation without explicitly referencing
S2. However, this is not the approach we have implemented
(Section 4).

Curve constraints and point constraints can be handled in
a similar manner. For the curve problem, we project onto
a curve by only taking the part of the diffusion, which is
along the curve tangent. Point constraints simply disregard
the diffusion at these points. The three types of geometry-
constrained diffusions may be combined in any fashion as
long as the boundary conditions (the matches) do not con-
tradict one another.

We make the following proposition:
Proposition 2 (Similarity Invariance (II)) The geometry-
constrained diffusion is invariant to similarity transforms of
the source or target image.
Proof. We have already shown that the unconstrained
diffusion is similarity invariant. Both the surface normal
and the curve tangent are also invariant under the similarity
transform. �

We will conjecture that the geometry-constrained diffusion
removes any fold in the initial displacement. This means
that, the steady state solution to the geometry-constrained
displacement diffusion creates an invertible mapping.
Conjecture 1 (Invertibility) A geometry-constrained dif-
fused displacement field induces a one-to-one mapping ofIR3.

The steady state displacement field will be a homeomor-
phism assuming the above invertibility-conjecture is valid
since the constrained diffused displacements are continuous.
It will also be smooth except on the constrained objects
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Figure 2. Flow diagram for the diffusion algorithm. Section 4
describes the details

where it will generally not be differentiable across object
boundaries, but will be differentiable along smooth objects.

It is evident that the scheme is not symmetric in the images.
This is due to the change in local metric by the non-linear
displacement field. This makes the ordering of the two
images important. It is, however, not obvious (to us) whatever
the steady states will differ or not.

The geometry-constrained diffusion can be implemented
by applying an numerical scheme for solving a space and time
discretized version of the diffusion. It is well known that the
diffusion equation can be solved by Gaussian convolution.
That is, an unconstrained diffusion can be updated an arbi-
trarily long time-step, by applying a Gaussian of appropriate
size. The geometry-constrained diffusion cannot be solved
directly in this manner due to the constraints. In general,
the finite time step diffusion (Gaussian convolution) makes
the displaced source surface diverge from the target surface,
so that it must be back-projected to the target surface. The
back-projection may be performed to the closest point on the
target surface (Figure 1). In this way, the algorithm resembles
the Iterative Closest Point (ICP) algorithm (Besl and McKay,
1992; Zhang, 1994) for rigid registrations.

4. Implementation

A time and space discretized solution of the geometry-
constrained diffusion may be obtained by iterative Gaussian
convolution and back-projecting the constrained surfaces.

The crux of the algorithm then becomes (Figure 2 shows
the flow chart):

1. Initial displacement. Construct an initial guess of the
displacement field.

2. Diffusion step. Convolve the displacement field with a
Gaussian kernel.

3. Deform source. Deform the source surface with respect
to the displacement field.

4. Matching (Projection onto the target surface). For all
points on the deformed surface: Find the closest point
on the target surface.

5. Update displacement field. For all points on the
deformed surface: Change the displacements according
to the match.

6. Convergence. Is the displacement field stable? If not,
go to 2.

Some of the steps are explained in greater detail below.

4.1. Diffusion step
We use the normalized Gaussian convolution (Nielsen and
Andresen, 1998). For each of the Cartesian components
of the displacement field, a Gaussian weighted average is
constructed and divided by the sum of the weights. The
standard deviation of the Gaussianσ is the only parameter
in the numerical scheme (Section 4.4).

4.2. Matching
As in (Zhang, 1994) we use a 3D-tree for finding the closest
point on the target surface. As reference points on the
triangulated target surface we use the center of mass (CM
point) for each triangle.

We construct the following algorithm for finding the clos-
est point: First, find the closest CM point using the Kd-
tree (Preparata and Shamos, 1988) (,hereK = 3). A list of
lengthk containing the triangle itself (called the CM triangle)
and the triangles neighbors are made. Neighbors are defined
as triangles sharing at least one corner point with the CM
triangle. The closest point for each triangle in the list is
calculated as the shortest distance,di ; i 2 [1; � � � ;k], between
the deformed point and the triangle. The closest point is then
found as the point having the shortest distance amongdi .

The proposed algorithm has the advantage that the de-
formed points can move continuously on the target surface.
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4.3. Convergence
The diffusion is stopped when

∑
pi

kDn(pi)�Dn�1(pi)k2
< ε; (1)

where pi are the points on the source surface,Dn is the
displacement in thenth-iteration, andε is a user-chosen
parameter. Alternatively, a fixed number of iterations could
be chosen. 5-10 iterations are normally enough.

4.4. Choice of Time Stepσ
The Gaussian kernel size,σ, is the only parameter in the
diffusion algorithm.σ determines the time discretization step.
As in any numerical scheme for solving partial differential
equations (where the analytical solution is unknown), we
should not take too long time steps. A too large value
of σ, may tear the surface apart since we diffuse too far
before back-projecting. This problem arises first in regions
of high surface curvature combined with a deformation field
having too low resolution. Decreasingσ and/or increasing
the resolution of the deformation field solves the problem.
The only drawback of a smallσ is that more iterations are
needed before convergence is reached (two convolutions with
a Gaussian of sizeσ equals one convolution with a Gaussian
of size

p
2σ). See Figures 9-11.

5. Results

This section shows examples on synthetic and real images.
For both types of examples, a non-rigid registration algo-

rithm based on crest-lines and Adaptive Gaussian Filtering
gives an initial “guess” of the registration (Figure 4 and 7).
Adaptive Gaussian Filtering(Nielsen and Andresen, 1998)
calculates a dense deformation field from a sparse one and
is defined as separate normalized Gaussian convolutions for
each Cartesian coordinate where the kernel size in each point
equals the square root of the Euclidean distance to the nearest
feature (here the crest lines).

The registration of crest lines is done as in (Subsol et al.,
1998) and (Andresen et al., 1998): 1) first calculating a rigid
registration by moments (affine transformation) (Bajcsy and
Kovacic, 1989); 2) then two first order polynomial defor-
mations; 3) and two second order polynomial deformations
(Brown, 1992); 4) lastly a totally non-rigid deformation (all
(deformed) points are moved freely to the nearest point in
the target set). The point to point correspondence in each of
the four steps is made by the ICP algorithm. See (Glasbey
and Mardia, 1998) for a more recent review of (2D) image
warping methods.

From the sparse deformation field given by the crest lines,
a dense deformation field is calculated by Adaptive Gaussian

Filtering.
Having the initial dense deformation field, we use the

geometry-constrained diffusion to gradually simplify the
field. In this process the diffusion is constrained by the
surface not the crest lines.

Notice that the initial registration could have been done
by any method: one does not have to use crest lines as
geometrical features for the initial registration (e.g. (Hartkens
et al., 1999)). Therefore, in order to test the capabilities of the
algorithm, random initial deformations fields was generated
and used as the initial “guesses”.

5.1. Cube Registration
This section shows how the algorithm behaves on a synthetic
data set. In a 643 volume a 323 cube is generated with 1mm
cubic resolution. The volume is Gauss smoothed (σ = 4mm)
in order to compute the crest lines. A small and a large
cube are extracted from the Gauss smoothed volume by the
marching cubes algorithm (Lorensen and Cline, 1987) with
iso-value 240 and 90, respectively (Figure 3). The two sets
of crest lines and the registration between them are shown in
Figure 4.

Figure 5 left image shows the initial deformation of the
large cube using only the registration given by the crest lines
and Adaptive Gaussian Filtering. The right image in Figure 5
shows how the deformed large cube looks when using the
converged displacement field. It is seen that we have achieved
the optimal registration, namely a scaling of the large cube to
the size of the small cube (the wireframe of the large cube
(Figure 3) is identical to the wireframe of the deformed large
cube using the converged deformation field (Figure 5-right)).

In order to test the stability of the geometry-constrained
diffusion we conducted three different experiments.

1. Deformation of endpoints. n random pairs of end-
points of the converged deformation field (field from
Figure 5-right) were swapped. The large cube consist
of 6774 points (vertices). We swapped up to 60000
pairs (this means that some points are swapped more
than one time) in order to make a graph showing the
errors between the final field and the optimal field
(the converged field). However, all the fields converge
to the field obtained with no points swapped, making
all the errors zero. A video shows how the itera-
tions proceed forn = 60000. The video is found at
http://www.imm.dtu.dk/ �pra/MedIA .

2. Random initialization. All the endpoints of the de-
formation field were uniformly distributed randomly all
over the volume ([0;63]3 - both cubes have center of
mass in (32,32,32)) and then projected to the closest
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Figure 3. The wireframe of the large (top left) and small (top right)
cube. Below, both cubes visualized in the same screen in order to
compare their relative size. See Section 5.1 for the generation of the
cubes.

points on the cube. The field converges again. A video
is found at the same web page.

3. Singular initialization. All the endpoints of the de-
formation field were given the value (0,0,0) and then
projected to the closest point on the cube. The field does
not converge to the initial field. This is also expected as
the deformed cube would have to “tear itself apart” in
order to encircle the target cube. A video is found at the
same web page.

These three experiments show that the method is very
stable. The valueσ = 2 was used for the diffusion in all
three experiments. In the second example (“Random initial-
ization”) the method converges after approximately 290, 20,
and 3 iterations forσ = 2, 5, and 10, respectively (Videos
are found on the web page). We are using Fast Fourier
Transform (FFT) when doing the Gaussian filtering (instead
of a convolution in the spatial domain), therefore this uses as
much as 47 CPU seconds on a SGI Octane single 300MHz
R12000 MIPS CPU. The matching (“Projection onto the
target surface”) uses 13 CPU seconds.

Figure 4. The red and green lines are the crest lines on the large and
small cube, respectively. Links between the two set of crest lines
are shown as black lines. For visual clarity only every third link is
shown.

Figure 5. The sparse deformation field defined by the links
(Figure 4) is extended to the whole surface by Adaptive Gaussian
Filtering. Using this initial dense deformation field the deformation
of the large cube to the small is seen as the left image. The right
image shows the deformed surface when the diffusion has con-
verged. Notice that the right wireframe (the converged deformation)
is identical to the wireframe of the large cube (Figure 3-top left):
only a scaling has been achieved.
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Figure 6. Iso-surface and crest lines for a 3 (left) and 56 (right)
month old mandible. The mandibles are Gaussian smoothed (σ =
3mm) in order to capture the higher scale features. The dimensions
of the left and right mandibles are (H�W�L) 18�57�53mm
and 31�79�79mm, respectively. Scannings have 0:5mm cubic
resolution. Surfaces are translucent.

Figure 7. Match (lines in black) between the two sets of crest lines
(before applying the diffusion algorithm). The crest lines in red and
green are from the mandibles shown in Figure 6. We see that the
matches very satisfactorily connect homologous points. Only every
11th link is shown for visual clarity.

Figure 8. Left and right images show the deformed (in green) and
the original (in red) crest lines before and after applying the diffusion
algorithm (σ = 2mm), respectively. In the initial registration crest
lines are registered with crest lines. Where the topology does not
change and away from umbilic points (for which the curvature is
the same in all directions e.g. at the condyles) we see (almost)
no movement of the green crest lines. Erupting teeth change the
topology on “top of the surface” (Figure 6) therefore the green crest
lines move.

Figure 9. Result of running the diffusion algorithm (σ = 2mm) on
the displacement field. Deformation of the 56 month old mandible
to the 3 month old mandible (Figure 6). The surface and wire-frame
of the deformed surface are shown to the left and right, respectively.
The initial displacement, one iteration with the diffusion algorithm,
and the last iteration are shown from top to bottom, respectively. The
foldings are a result of the imperfect initial registration (extremal-
mesh registration (Figure 7) extended to the whole surface by
Gaussian regularization as in (Andresen et al., 1998) - see also text
in Section 5). The final result is almost perfect, but some folds still
exist, owing to the discretization of the displacement field. A video
is found athttp://www.imm.dtu.dk/ �pra/MedIA.

Figure 10. Converged diffusion algorithm with a high value ofσ
(σ = 10mm). The surface and wire-frame of the deformed surface
are shown to the left and right, respectively. We have forced the
displacement field to be more smooth, by increasingσ. See also
caption in Figure 9.
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Figure 11. The deformation vectors are moved too far away from the
surface (The value ofσ is too high) resulting in a wrong projection
back onto the surface. The resulting field is torn apart in the high
curvature regions near the condyles and the teeth. See also text in
Section 5.2.

5.2. Mandible Registration
The method has been applied for registration of 31 mandibles
from 6 different patient in a longitudinal growth study of
the mandible (Andresen et al., 2000; Andresen, 1999). One
mandible is chosen as the reference mandible for the whole
data set. In order to propagate the landmarks, all 31� 1
mandibles are registered with the reference mandible using
the same registration technique as described in Section 5
and geometry-constrained diffusion is applied. The reference
mandible is shown in Figure 6-right. Figure 6-left displays
the target surface for all the figures involving mandibles
(Figures 7-10), except for Figure 11, which shows an example
where the diffusion algorithm, on purpose, is forced to give an
erroneous result. The prior estimate of the displacement field
is obtained by crest line matching as described in Section 5.
Figure 7 shows the match between two sets of crest lines.

As seen in Figure 9 (top images) the initial deformation
contains folds. Applying the diffusion algorithm removes
almost all the folds, but some persist. By increasingσ
(Section 4.4), these are removed (Figure 10). As seen in
Figure 11, too large a value ofσ will eventually tear apart
the surface.

Very convincingly, Figure 8 shows that the crest lines are
useful anatomical landmarks but only in areas where their
topology stays fixed. Erupting teeth change the crest line
topology of the mandible. We see two lines before tooth
eruption on top of the mandible (Figure 6 - left image) but
only one after tooth eruption (Figure 6 - right image). A pure
(crest-) line matching algorithm is not able to handle such
changes. Introducing the diffusion algorithm, the single crest
line (the green line on top of the mandible in Figure 8) is able
to perform correctly - i.e., be registered in between the two
other lines (the two red lines on top of the mandible in the
same figure) as seen in Figure 8-right.

The same phenomenon is seen on the bottom of the

mandible. A single line on the young mandible is split in
two on the older mandible.

One experiment was conducted for the mandible:

� Deformation of endpoints. The experiment “Defor-
mation of endpoints” (See Section 5.1 for details) was
also conducted for the mandible. 60000 pairs of end-
points were swapped (the reference mandible consists
of 9087 vertices) andσ = 8. The video found at the web
page (http://www.imm.dtu.dk/ �pra/MedIA )
shows how the field converges to the same optimal field
as in Figure 10.

It is noteworthy that geometric-constrained diffusion is capa-
ble of finding the optimal field for such a complex shape as
the mandible with random distributed matchesa.

6. Conclusion

In the present paper we have proposed an algorithm for
finding the simplest displacement field, which is conjectured
to be a homeomorphism (1-1 continuous mapping). The
method has been presented for surfaces in 3D, but is easily
generalized to any dimension.

The geometry-constrained diffusion in this paper serves
to simplify the non-rigid registration of surface models but
have also been demonstrated to work as a “pure” registration
method. The result is a much smoother displacement field.
Volume registration is achieved by having more than one
surface. It turns out that the algorithm itself is also very
simple.

In theory, the method is parameter free, but implementa-
tions include parameters of space- and time-discretization and
convergence threshold.

We are currently using the method for registering a lon-
gitudinal growth study of the mandible in order to extract
more than 14000 homologous points which again are used
for inference of the growth (Andresen et al., 2000; Andresen,
1999). In that study, applying the geometry-constrained
diffusion results in a very significant increase in the explained
variance by the growth model.
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