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Abstract

The general linear model provides the most widely applied statistical framework for analyzing functional MRI (fMRI) data. With the
increasing temporal resolution of recent scanning protocols, and more elaborate data preprocessing schemes, data independency is no
longer a valid assumption. In this paper, we revise the statistical background of the general linear model in the presence of temporal
autocorrelations. First, when detecting the activation signal, we explicitly account for the temporal autocorrelation structure, which yields
a generalized F-test and the associated corrected (or effective) degrees of freedom (DOF). The proposed approach is data driven and thus
independent of any specific preprocessing method. Then, for event-related protocols, we propose a new model for the temporal
autocorrelations (‘‘damped oscillator’’ model) and compare this model to another, previously used in the field (first-order autoregressive
model, or AR(1) model). In the case of long fMRI time series, an efficient approximation for the number of effective DOF is provided for
both models. Finally, the validity of our approach is assessed using simulated and real fMRI data and is compared with more conventional
methods.  2002 Elsevier Science B.V. All rights reserved.
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1. Introduction response, and introduced in order to obtain a better signal-
to-noise ratio.

In their seminal papers on analyzing fMRI time series In the formulation given by Worsley and Friston (1995),
data using multiple regression, Friston et al. (1995a) and the autocorrelations of the filtered fMRI data are approxi-
Worsley and Friston (1995) elucidated the importance of mated by the properties of the matched Gaussian filter, i.e.
taking autocorrelations in the statistical tests into account. properties of the unfiltered data are ignored. This approxi-
They suggested modifying the number of degrees of mation is valid if the autocorrelations in the unfiltered data
freedom (DOF) associated with the statistical tests per- are low, and filter properties are matched to the signal of
formed to detect significantly activated voxels. This cor- interest. Since the temporal filter is uniformly applied in
rection was found to be necessary, because regressors were the spatial domain to all voxels in the fMRI data set, it
convolved with a Gaussian smoothing kernel in the follows that a spatially uniform assumption about auto-
temporal domain, thus correlating the data. The Gaussian correlations is implied. With increasing knowledge of the
kernel was matched to the shape of the hemodynamic signal properties of fMRI data, assumptions about spatially

homogeneous hemodynamic responses and spatially
homogeneous noise properties no longer hold. More
efficient methods for separating the fMRI signal from*Corresponding author. Tel.: 149-341-9940-223; fax: 149-341-9940-
physiological and system noise were proposed as a pre-221.

E-mail address: kruggel@cns.mpg.de (F. Kruggel). processing step (Biswal et al., 1996; Buonocore and
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Maddock, 1997; Hu et al., 1995; Kruggel et al., 1999), preprocessed data) and by x an (N,P) matrix assumed to
which renders a second smoothing step unnecessary. have full rank. Each of the P columns of x is called a
However, this raises the issue of how to correct for the ‘‘regressor’’, which is either determined by the experimen-
enhanced autocorrelations introduced by these filters in the tal design (‘‘regressors of interest’’) or represents con-
subsequent signal detection step. It appears more attractive founds (‘‘dummy regressors’’). The general linear model
to take the properties of the (filtered) data into account relates observations with the model via a P-vector of
directly in the statistical evaluation. Consequently, the regression coefficients b,
number of DOF used for statistical inference must be

y 5 xb 1 e, (1)computed voxelwise and adapted to the properties of the
preprocessing filter.

where e corresponds to an N-vector of error terms. Let usIn addition, there are computational issues to discuss.
assume that the errors are restricted to the observations y,Today’s MR scanner hardware make volume acquisition in
i.e. there are no errors in the regressors x. The processsubsecond intervals possible, and experimental designs of
generating e is assumed to be stationary in time. Errors aremore than 2000 time steps are common. It is therefore
assumed to be normally distributed and correlated, follow-desirable to design methods of statistical analysis for 2 2ing 1(0,s V ), where s is a constant and V correspondswhich the computation time is not a limiting factor to their
to the autocorrelation matrix. In the following discussion,routine use.
the actual structure of x is not relevant: the stimulusIn this paper, we start by presenting a rather scholastic
function may have been convolved with a hemodynamicreview of the statistical background of handling auto-
modulation function using pre-defined (Friston et al.,correlations in the general linear model. While comprehen-
1995b) or data-driven parameters (Rajapakse et al., 1998).sive treaties of this problem appeared early in the statistical

Solving the general linear model consists of decidingliterature (Cochrane and Orcutt, 1949; Durbin and Watson,
whether or not y represents a brain activation signal by1950, 1951), formulations targeted to analyze fMRI data ˆestimating the regression coefficients b and determining,appear only scattered throughout specialized textbooks
using a statistical test, whether or not they contribute(Graybill, 1983; Johnson and Wichern, 1988; Rencher,
significantly to predicting the signal y.1995; Lange and Zeger, 1997; Moonen and Bandettini,

1999), and deserve a compact review. We derive a
generalized F-test for detecting significantly activated 2.2. Solving the general linear model using ordinary
areas and explicitly compute the number of effective DOF least squares
associated with this F-test. The test is independent from a
smoothing matrix introduced in the design and thus allows The most widely used approach for solving the general
the application of any suitable filter or signal restoration linear model consists of estimating the regression co-

ˆalgorithm in a preprocessing step. However, it depends on efficients b using ordinary least squares (OLS),
the temporal autocorrelation structure of the data. There-

T 21 Tb̂ 5 (x x) x y, (2)fore, we propose a new autocorrelation model (‘‘damped
oscillator’’ model) suitable for event-related studies and

ˆ ˆˆwhere xb represents the estimated signal and e 5 y 2 xbcompare it with the more conventional AR(1) model.
is the residual, i.e. the error between the actual and theOptimizations and approximations are discussed which

1estimated time series. The estimated regression coeffi-make a statistically valid handling of autocorrelations
ˆcients b are unbiased, but do not have minimum variancecomputationally tractable. We then validate the proposed

because the OLS approach assumes that errors are in-autocorrelation model by studying semi-synthetic fMRI
dependently distributed.data filtered by different preprocessing algorithms. Finally,

A number Q of regressors may be tested for having aa realistic example demonstrates the consequences of this
significant influence on predicting the time series y underapproach in the signal detection step of fMRI data analysis.

ˆ ˆthe null hypothesis H : b 5 0, . . . ,b 5 0. For doing so,0 1 Q

a reduced model y 5 x b 1 e has to be solved, where xr r r r

2. Theoretical background represents x in which the Q studied factors have been
ˆremoved. The b are estimated using OLS and ther

2.1. General linear model following sums of squares are computed:
Tˆ ˆ• The sum of squares due to the residuals SSR 5 e e 5

TT TˆUnivariate multiple regression represents one application y y 2 b x y, with an associated number of effective
of the general linear model (Rencher, 1995), which is a DOF n .SSR

Tˆ ˆpowerful tool for assessing relationships between the fMRI • The sum of squares due to the model SSH 5 e e 2r r

signal and experimental factors (Friston et al., 1995b; see
1 T 2 T 2Moonen and Bandettini, 1999, for a thorough discussion). ˆIf x does not have full rank, then b 5 (x x) x y, where ‘‘ ’’ denotes

Denote by y an N-vector of fMRI time series data (usually the generalized inverse.
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T TT T Tˆ ˆˆ ˆe e 5 b x y 2 b x y, with an associated number of andr r

effective DOF n .SSH trace(R V )s
]]]]]]r 5 .SSH 22 s trace(R VR V )s s2.3. F-test in the case of uncorrelated errors

2.4.3. Test for the null hypothesis
If the errors are not correlated (V5 I ), SSH and SSRN Since R and R are orthogonal, SSH and SSR ares2follow a x distribution with n 5 Q and n 5 N 2 PSSH SSR orthogonal. Since they both follow a Gamma distribution,

degrees of freedom, respectively, and the null hypothesis the null distribution of the ratio
can be tested using the following Fisher’s F-value:

d r SSHSSR SSR
]]]]](N 2 P) SSH d r SSRSSH SSH]]]]]F 5 . (3)Q SSR
is well approximated (Worsley and Friston, 1997) by

F then follows F , where a is the type I error, witha,Q,N2P F (Johnson et al., 1995, p. 348) (the so-calleda,2d ,2dSSH SSRQ and N 2 P degrees of freedom. generalized F-distribution). The quantity d r /SSR SSR

d r is the weighting factor of the generalized F-SSH SSH2.4. Generalized F-test in the case of correlated errors distribution. Using the results from Sections 2.4.1 and
2.4.2, the test quantity

If the errors are correlated, the problem consists of
2assessing the distribution of the sums of squares SSR n trace(R V ) SSHSSR s

]]]]]]]F 5 (4)2(Section 2.4.1) and SSH (Section 2.4.2), estimating the SSRtrace(RV )n SSH
number of effective DOF n and n and deriving anSSR SSH

follows an F distribution with the followingappropriate way of testing the null hypothesis (Section a,n ,nSSH SSR 2number of effective DOF:2.4.3).
2 2[trace(R V )] [trace(RV )]s2.4.1. Distribution of SSR ]]]] ]]]]n 5 and n 5 . (5)SSH SSRT 21 T trace(R VR V ) trace(RVRV )s sLet R 5 I 2 x(x x) x be the projector on the planeN

perpendicular to the plane spanned by the P columns of x. The expression for n corresponds to the number ofSSR
It can be shown that effective DOF given by Worsley and Friston (1995).

T T T Tˆ ˆSSR 5 e e 5 e Re 5 e RRe 5 trace(Ree R)
2.4.4. Computational issuesN

T Since fMRI time series typically consist of several5O(Ree R) ,i
i51 hundred time steps, the F-test according to Eq. (4)

T T involves voxelwise products of large matrices. For generalwhere (Ree R) is the ith diagonal element of Ree R.i
2 T autocorrelation matrices V, this is very costly computation-Since e is an (N,1) matrix from 1 (0,s V ), then (Ree R)N i

2 ally. Therefore, it is worthwhile deriving efficient compu-follows a x distribution (Mardia et al., 1979, p. 67).1
2 tation schemes for n and n .SSR SSHTherefore, SSR follows a linear combination of x dis-1 When N becomes large, it can be shown thattributions, which can in turn be approximated by a Gamma

distribution G(d ,r ) (the so-called ‘‘Satterthwaite– N(N 2 P)SSR SSR
]]]n tends to n 5 . (6)Welsh’’ approximation (Satterthwaite, 1946; Wood, 1989)) SSR app trace(VV )

with parameters
The reader is referred to Appendix A for a complete proof.2[trace(RV )] trace(RV ) Unfortunately, since R is a projector on a subspace withs]]]]] ]]]]]d 5 and r 5 .SSR SSR 22 trace(RVRV ) 2 s trace(RVRV ) finite dimension Q, there is no similar approximation of
n for large N. The idea, therefore, is to compute nSSH SSH2.4.2. Distribution of SSH
efficiently by avoiding the computation of the productsLet R be the projector on the plane perpendicular to ther trace(R V ) and trace(R VR V ). It is easy to show thats s splane spanned by the P 2 Q columns of x . It can ber

Q 2shown that R 5 R 2 R is also a projector (on the plane iT is r F GO u Vui51spanned by the Q columns of x one wishes to test). It can ]]]]]n 5 , (7)SSH QT T iT i 2also be shown that SSH 5 y R y is equal to e R e under O [u Vu ]s s i51
the null hypothesis. Hence, in analogy to the previous

iwhere u corresponds to the Q eigenvectors of R , whichsection, SSH follows a Gamma distribution G(d ,r ) sSSH SSH

with parameters
22 It is straightforward to check that, in the case of uncorrelated errors[trace(R V )]s (V5 I ), n reduces to trace(R ) 5 Q and n reduces to trace(R) 5]]]]]d 5 N SSH s SSRSSH 2 trace(R VR V )s s N 2 P. Thus, Eq. (4) corresponds to the simple test from Eq. (3).
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can easily be obtained using the singular value decomposi- lator’’ model, obtained for a 5 0, corresponds to the2

tion of x (the matrix consisting of the Q regressors of x conventional AR(1) process, which has already been usedQ

one wishes to include in the F-test). This implementation to model temporal autocorrelations in fMRI time series.
is efficient in that it involves only Q vector-by-matrix and For instance, an AR(1) autocorrelation in the (spatially
vector-by-vector products. averaged) residuals of fMRI data from blocked experi-

In summary, Eq. (4) can be approximated for large N as ments was first demonstrated by Bullmore et al. (1996).
To sum up, V is estimated as follows. First, temporal2

n trace(R V ) SSHapp s autocorrelations present in the data are estimated by the]]]]]]]F 5 , (8)app 2 N 2 P SSRn sample autocorrelation function (ACF),SSH

N2kwhere n is computed by Eq. (6), and n using Eq. (7).app SSH ˆ ¯ ˆ ¯O (e 2 e )(e 2 e )i51 i i1kˆ ]]]]]]]r(k) 5 , (11)N21 2ˆ ¯O (e 2 e )i51 i2.5. Estimation of the autocorrelation matrix V

¯where e is the sample mean of the residuals. Then, the
2.5.1. Models for the autocorrelation structure model function (given by Eq. (10)) is fitted to the sample

To compute the F-test according to Eqs. (4) and (5), the ACF using any nonlinear minimization algorithm. Powell’s
autocorrelation matrix V has to be known or estimated. It algorithm is a suitable choice here (Press et al., 1992, p.
is impossible to determine this (N,N) matrix from a single 309). Finally, using fitted parameters of the model func-
time series of N steps without introducing a model ˆtion, the autocorrelation matrix V is computed from Eq.
structure. Most typically, such a model is introduced by (9).
adapting an autocorrelation function r( ? ) to the data,
which must be non-negative definite (Priestley, 1996, p.

2.5.2. Computational issues110). This is most easily achieved by choosing a function ˆOnce V is known, the F-test has to be computed. Infrom a parametric family whose members are known to be ˆsome cases, for example if V is a symmetric Toeplitzat least non-negative definite.
matrix, F may be calculated directly using Eqs. (4) andBecause stationarity in the temporal domain is assumed, ˆ(5). Indeed, V can be represented by a vector andthe autocorrelation function depends only on the ‘‘lag’’ k ˆconvolution can be used to compute RV (Press et al., 1992,ˆbetween two time points. The entries v of the estimatedij p. 92). Note that the model proposed in Eq. (9) yields suchˆautocorrelation matrix V are then defined by
a symmetric Toeplitz matrix.

ˆ ˆv 5 r(0) 5 1, However, V may not be a Toeplitz matrix, for exampleii
(9)H ˆˆ if the process is temporally non-stationary (v does notv 5 r(ui 2 ju) 5 r(uku), otherwise. ijij

depend only on the lag k). Computing n using Eq. (5)SSR
In event-related fMRI experiments, some (quasi-)period- then becomes computationally costly on a voxelwise basis.

icity is expected to show up in the residuals (e.g., due to In this case, Eq. (6) can be used, but it may also be
breathing or heart beat if these physiological phenomena possible to derive a closed form for n using theapp
are not pre-filtered (Petersen et al., 1998)). This quasi- ˆanalytical expression for v and series expansion. Thisij
periodicity in the residuals is also present in the auto- further simplifies the computation of Eq. (6) by avoiding
correlation function (see, for instance, Fig. 2). In this case, ˆ ˆthe calculation of trace(VV ).
we propose a new model for r(k), which we term the To give an example of how such an analytical expres-
‘‘damped oscillator’’ model, sion can be obtained, we derived an approximation of

ˆ ˆ ˆtrace(VV ) using the expression for v given by Eq. (9).r(k) 5 exp(a k) cos(a k), (10) ij1 2
When V is modeled using the ‘‘damped oscillator’’ model,

where a , 0. This model is fitted in practice as follows:1 the approximation is given by

r(0) 5 1, 1 2 exp(2a )1
2 2H ]]]]*n 5 (N 2 P)F Gappr(k) 5 a 2 exp(a k) cos(a k), where a , 1, a , 0. 1 1 exp(2a )0 1 2 0 1 1

2 1 1 exp(4a ) 2 2 exp(2a ) cos(2a )The parameter a reflects the so-called ‘‘nugget effect’’ 1 1 20 ]]]]]]]]]]]3 .F G1 1 exp(4a ) 2 exp(2a )(1 1 cos(2a ))(Cressie, 1993, p. 59), i.e. it accounts for the fact that, due 1 1 2

to measurement errors, r( ? ) may not be continuous at the (12)
origin in practice. Using (Christakos, 1984), we have
shown that r is non-negative definite. This condition is The reader is referred to Appendix C for a detailed
necessary and sufficient to guarantee that this autocorrela- derivation of Eq. (12).
tion function yields a valid autocorrelation matrix V. We The approximation corresponding to the particular case
refer the reader to the proof given in Appendix B. of the AR(1) model is derived straightforwardly from Eq.

One interesting particular case of the ‘‘damped oscil- (12) with a 5 0,2
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3. to test the approximations for n given by the closedSSR1 2 exp(2a )1
]]]]*n 5 (N 2 P) , (13) forms of Eqs. (12) and (13).F Gapp 1 1 exp(2a )1

3.1.1. Test bed2where exp(2a ) 5 r(1) is the squared first-order auto-1 For simulation experiments, we resorted to the methods
correlation. described in detail in conjunction with our fMRI filter test

In either case, the approximation for the F-test is given bed (Kruggel et al., 1999). We created simulated fMRI
by Eq. (8). data based on an event-related experiment in language

comprehension (TR 2 s, 12 time steps per trial). This
experiment was run using an EPI protocol on a Bruker 3 T2.6. Algorithm
Medspec 100 system (128 3 64 voxels, resolution 1.9 3

3.8 mm, 5 mm slice thickness, 2 mm gap). Three data setsTo sum up, the simplest method to handle autocorrela-
were selected. A prototypical hemodynamic response (HR)tions in multiple regression is as follows:
was obtained by averaging the responses of a highlyˆ1. Estimate the regression coefficients b using Eq. (2).
activated sample region in space and time (see exampleˆˆ2. Compute the residuals e 5 y 2 xb.
waveform in Fig. 1). From each data set, three different3. Estimate the sample autocorrelation function in each
patches were chosen from a brain region where novoxel using Eq. (11).
activation was determined using a standard statistical4. Estimate the parameters of the ‘‘damped oscillator’’
procedure (linear regression using the prototypical HR as amodel.
regressor, transformation of F-values into z-scores, de-*5. Determine the number of effective DOF n using Eq.app
termination of the significance of an activated cluster by its(12).
spatial extent for z . 3 (Friston et al., 1994)). Each of the 96. Compute n using Eq. (7).SSH
patches consisted of 10 3 10 voxels and 500 time steps and*7. Compute the F-value using Eq. (8), with n and napp SSH
contained random proportions of voxels representing greydegrees of freedom.
matter, white matter and cerebrospinal fluid. The prototypi-If a different model is selected for V, either derive a closed
cal HR was modulated onto the test patches as a singleform for it, or replace Step 5 by
4-voxel activation (Fig. 1) at a signal-to-noise ratio of59. Determine the number of effective DOF n using Eq.app
0.20.(6).

In all test patches, the baseline was estimated by low-If N /P is not large enough (typically, N /P . 50), it is
pass filtering in the temporal domain and subsequentlybetter to compute R and to resort to the general form for
corrected by subtraction of the estimated baseline from then as given in Eq. (5). A scheme similar to thatSSR
data. As examples of typical preprocessing procedures,described for n (Section 2.4.4) can be applied in thisSSH
patches were either (1) unprocessed (UP) or filtered by (2)case for an efficient determination of n . Alternatively,SSR
low-pass filtering in the temporal domain (LP, cut-offfast computation using results based on the Hadamard
frequency 0.38 times a trial length in time steps), (3)product or Frobenius norm (Golub and Van Loan, 1984, p.
Gaussian filtering in the temporal domain (GT, s 5 2.8 s),14) may be implemented.
or (4) spatio-temporal signal restoration by a Markov
Random Field (Descombes et al., 1998) (MRF, b 5 1.0,
d 5 1600). Filter parameters were optimized for a given

3. Experiments experiment as determined by the test bed (Kruggel et al.,
1999). A total of 36 preprocessed test patches were studied

3.1. Simulations by the proposed algorithm. The design matrix used for the
multiple regression analysis was comprised of three re-

We are now interested in the performance of the gressors: one corresponded to the prototypical HR, the
proposed method in relation to the preprocessing methods others were used to correct for trends and means.
typically applied for fMRI data. For reasons of simplicity,
we restrict ourselves to the case of Q 5 1, thus n 5 1. 3.1.2. ResultsSSH

The aims of these simulations were: The autocorrelation structure was studied thoroughly for
1. to study the fit of the ACF to the ‘‘damped oscillator’’ a large set of voxels by inspecting the sample auto-

model proposed by Eq. (10) for fMRI data preprocessed correlation functions computed according to Eq. (11).
with different techniques, and to compare this fit with Examples from the same sample voxel are compiled in Fig.
that obtained using the simpler AR(1) model; 2. From these plots it is clear that the autocorrelation

2. to compare the weighting factors of the generalized structure depends on the preprocessing operation applied.
2F-test (Eq. (4)), defined as wf 5 n [trace(R V ) / Autocorrelations in the residuals of both LP- and GT-SSR s

trace(RV )], obtained using both models (using the filtered data (Fig. 2(a,b)) follow a periodic model function
general form of Eq. (5) for n ); according to Eq. (10), where the period length is close toSSR
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sample ACF, and much better in comparison with the
AR(1) model.

The normalized ratio wf/(N 2 P) (computed according
to Eq. (5) for Q 5 1 and n 5 1) was compared betweenSSH

the ‘‘damped oscillator’’model and the AR(1) model. As
can be seen in Fig. 3, all points lie above the main
diagonal, therefore wf was severely overestimated when
using an AR(1) model. It is evident that the weighting
factor depends on the preprocessing technique and is
spatially not uniform. In the background voxels, the ratio
wf/(N 2 P) varied for unfiltered data between 0.9 and 1.0,
for GT-filtered data between 0.1 and 0.6, for LP-filtered
data between 0.05 and 0.4, and for MRF-filtered data
between 0.2 and 0.7. In the foreground voxels, this ratio
was typically higher by 0.1–0.2. These variations under-
line the importance of a voxelwise computation of the
DOF. Note that, for the MRF model, autocorrelations were
not captured by the AR(1) model.

Finally, we compared n as computed for theSSR

‘‘damped oscillator’’ model by the general form (Eq. (5))
with the closed form (Eq. (12)), and for the AR(1) model
(Eq. (5) versus Eq. (13)). Results for all test patches are
compiled in Fig. 4, and demonstrate the validity of the
approximations for large N for both autocorrelation
models.

3.2. A real example

As a final example, we re-evaluate an event-related
fMRI experiment in language comprehension, from which
we select a single data set. Using a single shot EPI
protocol, we acquired on a Bruker 3 T Medspec 100

*system, every 2 s, 4 T slices of 128 3 64 voxels with a2

spatial resolution of 1.9 3 3.8 3 5 mm and 2 mm gap. The
auditory presentation of a sentence needed approximately 6
s (3 time steps), followed by a pause of 18 s (9 time steps).
76 trials (912 time steps) were recorded during an experi-
ment lasting approximately 30 min. Right-handed test
persons were asked to classify a sentence for syntactical
correctness and to respond by pressing a button with the
right hand.

Standard procedures for the detection of functionalFig. 1. Scheme of the spatial pattern and the prototypical hemodynamic
activity in this dataset were applied as follows: signalresponse used in the simulation experiments. Black pixels correspond to a
preprocessing using motion correction, estimation of themodulation with the test signal at a signal-to-noise ratio of 0.2, white

pixels are untouched. baseline by voxelwise low-pass filtering in the temporal
domain using a cut-off frequency of 1.5 times the stimula-

the trial length of the experiment (a 5 12.4, for 12 time tion frequency and baseline correction by subtracting the2

steps per trial in this experiment). In unfiltered data (Fig. estimated baseline from the motion-corrected data, reduc-
2(c)), (quasi-)periodic signals unmodeled by the ex- tion of physiological and system noise by voxelwise
perimental design show up. In the example displayed here, Gaussian filtering in the temporal domain (s 5 2.8 s),
the periodicity was most likely attributable to breathing signal detection by computing a linear regression with a
(a 5 2.87, corresponding to 10/min). In the case of the box-car waveform corresponding to the auditory stimula-2

MRF filter (Fig. 2(d)), more complex autocorrelation tion, which was convolved with a Gaussian function
structures dominate in the residuals. (temporal shift 6 s, s 5 2.8 s), applying one of the

In all cases studied, the ‘‘damped oscillator’’ auto- autocorrelation models (see below) to derive the number of
correlation function (Eq. (10)) fitted reasonably well to the effective DOF, conversion of the F-values into z-scores,
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Fig. 2. (a,b) Estimated autocorrelation coefficients (1, Eq. (11)), fitted autocorrelation functions (AR(1) model: - - -, ‘‘damped oscillator’’ model: ———)
]Œfor a sample background voxel of an LP- (top) and a GT-filtered (bottom) data set. Bartlett’s significance interval (62/ N) is shown as a dotted line. (c,d)

Estimated autocorrelation coefficients (1, Eq. (11)), fitted autocorrelation functions (AR(1) model: - - -, ‘‘damped oscillator’’ model: ———) for a sample
]Œbackground voxel of an unprocessed (top) and MRF-filtered (bottom) data set. Bartlett’s significance interval (62/ N) is shown as a dotted line.

and thresholding of the corresponding z-maps by a score of middle row, a spatially stationary correction approach, as
3, and, finally, assessment of the activated regions for their implemented in SPM99 (FIL Methods Group, 2000), was

ˆsignificance on the basis of their spatial extent (Friston et used: the autocorrelation matrix V was computed using the
al., 1994). The resulting z-score maps were overlaid onto characteristics of the prototypical HR and the F-test value
their corresponding anatomical slices and color coded was computed based on the assumption that both SSR and

2using a hot-iron scale ranging from z 5 8 (red) to z 5 16 SSH follow a x distribution and are divided by their
(white). In the top row of Fig. 5, no correction for temporal expectation (trace(RV ) and trace(R V ), respectively). Thiss

autocorrelations was applied (n 5 N 2 P 5 909). In the yielded the following approximation for the F-value:
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Fig. 3. Comparison of weighting factors wf, as computed for the
‘‘damped oscillator’’ model and the AR(1) model, for voxels from
patches treated by different filtering methods (LP (s), GT (1), MRF
(n)).

trace(RV ) SSH
]]]]]F 5 . (14)a,n ,nSSH SSR SSRtrace(R V )s

In the bottom row, a voxelwise correction was used, based
on the ‘‘damped oscillator’’ model proposed here.

Correcting for the number of effective DOF led to a
general reduction of z-scores by 5–8 units (see rows A and
B), and rendered some of the spurious activations in-
significant. Introducing the ‘‘damped oscillator’’ model
(row C) and using a spatially non-stationary correction led
to a much better delineated detection of functional activa-
tion with somewhat higher z-scores in areas expected to be
related to the experiment (i.e., the superior temporal gyrus
on both sides, the thalami), and less spurious activations
(e.g., in overprojection to the putamen, the inter-hemis-
pheric cleft, and the anterior tips of the temporal lobe).
This correlates nicely with the finding in the simulation
experiments, where the weighting factor was higher in
focal activation.

Fig. 4. (Top) Comparison of the number of effective DOF, computed on
the basis of the ‘‘damped oscillator’’ model by the general form (n , Eq.SSR

2*(5)) and its approximation (n , Eq. (12)) ( y 5 1.00x 2 1.10, r 5app

0.9999). (Bottom) Same, but for the AR(1) model ( y 5 1.02x 2 10.1,4. Discussion
2r 5 0.9999).

We review how the statistical inference may be cor-
rected for temporal autocorrelations present in fMRI time enough (say, .50), then approximate distributions can be

2series. Our approach is similar to the method described by used (e.g., normal or x ) and n set to infinity. However,SSR

Worsley and Friston (1995) and that implemented in it is impossible to predict the number of effective DOF
SPM99, in that we modify the DOF associated with the from N (the number of time steps): large N does not imply
statistical test used for detecting significantly activated large n . Indeed, if N is very large, but the data areSSR

areas. Obviously, if the number of effective DOF is large highly correlated, the number of effective DOF may be
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Fig. 5. Two z-score maps, overlaid onto the corresponding anatomical slices, from an event-related fMRI experiment in language comprehension. In the
top row (A), z-scores are uncorrected; in the middle row (B) they are corrected by a spatially stationary correction based on averaged properties of the
hemodynamic response (as implemented in SPM99); and in the bottom row (C) they are corrected by the autocorrelation-based approach, using the
‘‘damped oscillator’’ function. The same color range was used to visualize z-scores.

very low and the approximations may not be valid. Our method differs from previous methods in three
Estimating the number of effective DOF is therefore an areas:
important issue even for long fMRI time series. • In both previous approaches, the implicit assumption
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2 *was made that the distribution of SSR and SSH using OLS. Since e | 1(0,s V ) it follows that e |
2 1(0,I ) and the statistical tests would be conducted usingfollowed a x distribution and the resulting F-value N

N 2 P and Q degrees of freedom. While pre-whitening is(Eq. (14)) was an approximation. A more formal
21 / 2the most efficient method if V is known or can betreatment of this subject reveals that the more general

estimated in a robust manner, we do not favor thisGamma distribution is required to describe the dis-
21 / 2approach. Estimating V is usually an ill-conditionedtribution of SSR and SSH properly. This leads to a

problem (i.e., in some cases, small variations in V maygeneralized F-test (see Eq. (4)) which differs from the
21 / 2induce large variations in V ). Moreover, this approachtest given by Eq. (14) by the weighting factor associ-

is computationally more costly. Indeed, if an analyticalated with the ratio SSH/SSR, but involves the same
21 / 2expression for V is not known, a preliminary OLSnumber of DOF (Eq. (5)). If the errors are weakly

analysis has to be conducted anyway to estimate V fromcorrelated (i.e., V| I ), the weighting factor used in ourN

the residuals.approach tends to the same value (close to (N 2 P) /Q)
The number of effective DOF is determined on aas the factor implemented in SPM99.

voxelwise basis. Care is taken to ensure an efficient• While previous methods applied a spatially stationary
computation even for the long time series now commonlycorrection for the number of effective DOF, we perform
found in fMRI experiments. Fast computation of Eq. (5) isa voxelwise analysis of the residuals. The number of
tractable using results based on the Hadamard product oreffective DOF is found to differ substantially between
Frobenius norm. Moreover, we propose approximations fordifferent brain regions and activated versus non-acti-
the typical case of N /P . 50, which further reduces thevated sites. Results from simulation studies and an
computation time. The approximation of n as defined byexample real experiment suggest that our approach SSR

Eq. (6) only requires computation of trace(VV ), which isleads to higher F-values in activated areas and lower
2an N operation. For both autocorrelation functions studiedvalues in the background, thus improving the detection

here, analytical expressions (see Eqs. (12) and (13))of experiment-related activation.
simplify the computation of n even further.• We use the autocorrelation matrix V of the residuals to SSR

The proposed approach can be extended in space, i.e. forderive the number of effective DOF. The advantage of
the multivariate (spatio-temporal) case. Here, V would bethis interpretation is given by the fact that V is
interpreted as a spatio-temporal autocorrelation matrix.determined from the data, and not linked to the prop-
Modeling V as a matrix separable in time and space haserties of a pre-defined smoothing matrix. Thus, if data
already been proposed in fMRI (Benali et al., 1997;fulfill stationarity assumptions, as required for the
Kruggel and von Cramon, 1999). Non-separable spatio-general linear model, then Eq. (4) (respectively (5)) is
temporal autocorrelation models were first proposed inexpected to yield an exact result for the F-test (respec-
other fields such as meteorology (Cressie and Huang,tively, for the number of effective DOF), independent
1999). We have recently introduced a non-separable modelof any preprocessing that preceded the statistical analy-
for fMRI data (Benali et al., 2001), which generalizes thesis.
‘‘damped oscillator’’ model proposed in this paper. TheIt is impossible to determine the contents of V from a
relevance of non-separable models in fMRI remains to besingle fMRI time series without introducing an autocorre-
evaluated. The statistical tests to be used for detectinglation model. For data from event-related experiments
activation remain to be adapted to the multivariate casepreprocessed by filters commonly applied for fMRI time
and the specificity and the sensitivity of the approach needseries (LP, GT), we propose a new model, the ‘‘damped
to be studied, for example using simulated data and ROCoscillator’’ model, to account for the autocorrelation
analyses as proposed by Burock and Dale (2000).structure. We demonstrate that this model yields a valid

(i.e., non-negative definite) autocorrelation matrix V and
adequately fits the temporal autocorrelations in the re-
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Appendix A. Matrix approximation of n for largewhitening’’) the data ssr

N
1 1 121 / 2 21 / 2 21 / 2] ] ]* * *y 5 V y, x 5 V x, e 5 V e,
s s s It is easy to show that trace(RV ) can be rewritten as

T 21 T* * * *and solving the transformed linear model y 5 x b 1 e trace(V ) 2 trace(HV ), with H 5 x(x x) x . Similarly,
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trace(RVRV ) 5 trace(VV ) 2 2 trace(HVV ) thus
22 21 trace(HVHV ). P ? [max (m )]iHi iV itrace(HVHV ) j jE 2

]]]] ]]] ]]]]]< 5 . (A.2)
trace(VV ) trace(VV ) trace(VV )Using these expressions and trace(V ) 5 N (by construction,

since trace(V ) is an autocorrelation matrix), Eq. (5) On the other hand, using the Cauchy–Schwartz inequali-
becomes ty on the norm defined by the ‘‘trace’’ operator on non-

2 2 negative definite matrices, we haveN trace(HV )
]]] ]]]F Gn 5 1 2SSR Ntrace(VV ) 2 2 2[trace(V )] < trace(I )trace(V ) 5 N trace(VV ).N

21trace(HVV ) trace(HVHV )
]]]] ]]]]3 1 2 2 1 .F G Since trace(V ) 5 N, it follows that trace(VV ) > N. Comingtrace(VV ) trace(VV )

back to Eqs. (A.1) and (A.2), we then see that, for all N,
We wish to prove that trace(HV ) /N, trace(HVV ) /

trace(HVV ) 1
2trace(VV ) and trace(HVHV ) / trace(VV ) all tend to 0 when ]]]] ]< P ? max(m )js f g dN jtrace(VV )N becomes large. To do this, let us cite the following

theorem (Graybill, 1983, p. 94). and

trace(HVHV ) 1
2Theorem. Consider any (N,N) matrix A. Then ]]]] ]< P ? max(m ) .js f g d2 T N jtrace(VV )1. iAi 5 trace(A A), where i ? i is the Euclidian normE E

2 1 / 2 2defined by iAi 5 [o o (ua u) ] .E i j ij As before, the quantity P ? [max (m )] is bounded when Nj j
2. If A is non-negative, then the spectral norm iAi is2 becomes large, hence trace(HVV ) / trace(VV ) and

defined by iAi 5 max (l ), where the l are the2 j j j trace(HVHV ) / trace(VV ) tend to 0 when N becomes large.
eigenvalues of A. Hence

3. For any (N,N) matrix B, it follows that iABi <E 2 2[trace(RV )] NiAi iBi .E 2 ]]]] ]]]→
trace(RVRV ) trace(VV )

Using these propositions, we obtain when N becomes large. To refine this approximation, note
1 / 2 2 2 1 / 2 2 that when there are no autocorrelations in the data, i.e.trace(HV ) 5 iHV i < iHi iV i .E E 2 V5 I , the number of DOF should be N 2 P (independentN

data). We can therefore correct post hoc the previous2It is easy to see that iHi 5 P, so it follows thatE expression and finally obtain
2 1 / 2 2iHi iV i 2trace(HV ) 1E 2 2 [trace(RV )] N(N 2 P)]]] ]]]] ]< 5 P ? max(l ) ,js f g d ]]]] ]]]→ n 5N N N j apptrace(RVRV ) trace(VV )

1 / 2where the l are the eigenvalues of V . It has beenj when N becomes large, which is equal to N 2 P for V5 I .Nshown by Fine and Romain (1984) that the eigenvalues of
Eq. (8) is finally obtained by noticing that

a correlation matrix converge to a finite value when N
2becomes large. Therefore, the quantity P ? [max (l )] is trace(HV )j j

]]]S Dtrace(RV ) 5 N 1 2bounded when N becomes large, and the quantity N
trace(HV ) /N tends to 0.

tends to N when N becomes large. Since trace(RV ) should2We can also show that trace(HVV ) 5 iHV i and thusE be equal to N 2 P when V5 I , we correct the limit valueN
22 2 to N 2 P. It is straightforward to check that Eq. (8) reducesP ? [max (m )]iHi iV itrace(HVV ) j jE 2

]]]] ]]] ]]]]] to Eq. (3) when V5 I .< 5 , (A.1) Ntrace(VV ) trace(VV ) trace(VV )

where the m are the eigenvalues of V. We can also showj

that Appendix B. Validity of the ‘‘damped oscillator’’
correlation modelT 2trace(HVHV ) 5 trace((HVH ) (HVH )) 5 iHVHiE

According to Christakos (1984, p. 255), a continuousand
1function r(r) (r 5 uku, where k is the lag), defined in R , is

2 2 2iHVHi < iHV i iHi .E E 2 a permissible autocorrelation model, i.e. it is non-negative
definite, if and only if its associated spectral functionSince H is a projector, the maximum value of its eigen-
5 (v) satisfies1values is 1 (Golub and Van Loan, 1984, p. 20), thus

2iHi 5 1. This yields2 5 (v) > 0,1

2 2 2 2iHVHi < iHV i < iHi iV i , where the spectral function 5 (v) is defined asE E E 2 1
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1` trace(VV )1
]5 (v) 5 E cos(vr)r(r) dr. N N1 2p 1 ui2j u ui2j u 2

2` ]5 O O[A 1 B ]4 i51 j51
For the ‘‘damped oscillator’’ model, we have r(r) 5

N N N N N N1 1 1exp(a r) cos(a r), a , 0, hence 2ui2j u 2ui2j u ui2j u1 2 1 ] ] ]5 O O A 1 O O B 1 O O AB .4 4 2i51 j51 i51 j51 i51 j51
1`

21 Since we impose a , 0, it follows that uA u 5 exp(2a ) ,] 1 15 (v) 5 E exp(a r) cos(a r) cos(vr) dr1 1 2 22p 1, uB u 5 exp(2a ) , 1 and uABu 5 exp(2a ) , 1.1 12`

On the other hand, we have the following general result1`

1 for a , 1:
]5 E exp(a r) cos(a r) cos(vr) dr, since r > 01 2p N N

0 ui2j uO O a
1`

i51 j511
N i21]5 E exp(a r) cos((a 1 v)r) dr1 22p1 i 2j

5 N 1 2O a O a0
i51 j51

1`

N11N 2a 2a21E exp(a r) cos((a 2 v)r) dr . F G1 2 ]]] ] ]]5 (1 2 a ) 2 1 ,2 2 N N(1 2 a)0

n21 n1 2 rUsing the integral i ]]using O r 5 .1 2 ri501`

a N11 N N ui2j uSince a /N and a tend to 0, o o a is equiva-]]]E exp(2ax) cos(bx) dx 5 , i51 j512 2
a 1 b lent, for large N, to N[(1 1 a) /(1 2 a)].0

Applying this result to the terms of trace(VV ), we have
and taking a 5 2 a and b 5 a 6v, we have1 2

trace(VV )
2 a 2 a1 1 1 2 2] ]]]] ]]]]5 (v) 5 1 N 1 1 A N 1 1 B N 1 1 AB1 2 2 2 2S D2p a 1 (a 1 v) a 1 (a 2 v) ] ]] ] ]] ] ]]F G¯ 1 1F G F G1 2 1 2 2 24 4 2 1 2 AB1 2 A 1 2 B2 2 2a a 1 a 1 v1 1 2 2

]]]]]]]]]] N 1 2 (AB) N 1 1 AB5 2 .2 2 2 2p ] ]]]]]]] ] ]]F G5 1 .(a 1 (a 1 v) )(a 1 (a 2 v) ) F G2 2 21 2 1 2 2 2 1 2 AB1 2 (A 1 B ) 1 (AB)
It is straightforward to see that r(r) is a permissible Since
autocorrelation model if and only if a < 0.1

2 2A 1 B 5 exp(2a )(exp(i2a ) 1 exp(2i2a ))1 2 2

5 2 exp(2a ) cos(2a ),1 2

Appendix C
this yields

Closed form for n trace(VV )app

1 2 exp(4a )N 1To find the closed form for n , we need to calculate ] ]]]]]]]]]]¯ F Gapp 2 1 2 2 exp(2a ) cos(2a ) 1 exp(4a )1 2 1trace(VV ) for the ‘‘damped oscillator’’ autocorrelation
1 1 exp(2a )Nstructure. From Eq. (9), we have 1

] ]]]]1 F G2 1 2 exp(2a )1N N N N
2 2 1 1 exp(2a )ˆtrace(VV ) 5O O v 5O O r(ui 2 ju) . 1ij ]]]]5 Ni51 j51 i51 j51 F G1 2 exp(2a )1

For the ‘‘damped oscillator’’ autocorrelation model 1 1 exp(4a ) 2 exp(2a )(1 1 cos(2a ))1 1 2
]]]]]]]]]]] ,F Ggiven by Eq. (10), 1 1 exp(4a ) 2 2 exp(2a ) cos(2a )1 1 2

exp(ia ui 2 ju) 1 exp(2ia ui 2 ju)2 2 and from Eq. (6),]]]]]]]]]r(ui 2 ju) 5 exp(a ui 2 ju)1 2
1 2 exp(2a )11 ui2j u ui2j u ]]]]n ¯ (N 2 P)F G] app5 (A 1 B ), 1 1 exp(2a )12

2 1 1 exp(4a ) 2 2 exp(2a ) cos(2a )1 1 2where i 5 2 1, A 5 exp(a 1 ia ) and B 5 exp(a 2 ia ).1 2 1 2 ]]]]]]]]]]]3 .F G1 1 exp(4a ) 2 exp(2a )(1 1 cos(2a ))trace(VV ) then becomes 1 1 2
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