An Efficient Motion Estimator with Application to Medical
Image Registration *

B. C. Vemuri!, S. Huang!, S. Sahni!,
C. M. Leonard?, C. Mohr?
R. Gilmore* and J. Fitzsimmons®
'Department of Computer & Information Sciences
2Department of Neuroscience
3 Department of Neuclear Engineering
“Department of Neurology
*Department of Radiology
University of Florida, Gainesville, F1 32611

Keywords: Image Registration, Optical Flow, SSD, B-splines, Newton Iteration, Leven-
burg Marquardt, Brain Images, MRI.

*This work was supported in part by the grant NTH-R01-LM05944. Submitted to the journal of Medical
Image Analysis.



Abstract

Image registration is a very important problem in computer vision and medical image
processing. Numerous algorithms for registering single and multi-modal image data have
been reported in these areas. Robustness as well as computational efficiency are prime
factors of importance in image data registration. In this paper, a robust/reliable and
efficient algorithm for estimating the transformation between two image data sets taken
from the same modality over time is presented. Estimating the registration between two
image data sets is formulated as a motion estimation problem. We use an optical flow
motion model which allows for both global as well as local motion between the data sets.
In this hierarchical motion model, we represent the flow field with a B-spline basis which
implicitly incorporates smoothness constraints on the field. In computing the motion,
we minimize the expectation of the squared differences energy function numerically via
a modified Newton iteration scheme. The main idea in the modified Newton method is
that we precompute the Hessian of the energy function at the optimum without explicitly
knowing the optimum. This idea is used for both global and local motion estimation in
the hierarchical motion model. We present examples of motion estimation on synthetic
and real data and compare the performance of our algorithm with that of competing ones.

1 Introduction

Image registration is a very common and important problem in diverse fields such as medical
imaging, computer vision, video compression, art, entertainment etc. The problem of regis-
tering two images, be they 2D or 3D, is equivalent to estimating the motion between them.
There are numerous motion estimation algorithms in the computer vision literature (Aggarwal
and Nandhakumar, 1989; Horn and Schunk, 1981; Barron et al., 1994; Black and Anandan,
1993; Duncan and Chou, 1992; Nagel and Enkelmann, 1986; Szeliski and Coughlan, 1994;
Lai and Vemuri, 1995) that could potentially be applied to the problem of registration of
volume images, specifically, MR brain scans, which is the topic of focus in this paper. We
draw upon this large body of literature of motion estimation techniques for problem formula-
tion but develop a new numerical algorithm for robustly and efficiently computing the motion
parameters. Qur usage of the word robust throughout this paper does not have any statistical
connotation.

A large body of literature exists on registration, especially for medical image data reg-
istration. Generally, they can be cast into two categories. One is feature-based approach.
Pellizari et al. (Pelizarri et al., 1989) have developed a method for the registration of two
brains identified from two different data sets by minimizing the distance between the sur-

faces measured from a single central point. The minimization is carried out numerically



using Powell’s method. Their measure of distance between surfaces is appropriate only for
spherical shapes. Evans et al. (Evans etl al., 1991) developed a registration scheme based on
approximating the 3D warp between the model and target image by a 3D thin plate spline
fitted to landmarks. Szeliski et al. (Szeliski and Coughlan, 1994) developed a fast matching
algorithm for registration of 3D anatomical surfaces found in 3D medical image data. They
use a distance metric minimization to find the optimal transformation between the surfaces.
The key difference in their scheme from earlier methods is the use of tensor product splines
to represent different registration transformations, namely rigid, affine, trilinear, quadratic
etc. In addition, they also introduced the novel concept of octree splines for very fast com-
putation of distance between surfaces. Davatzikos et al. (Davatzikos and Prince, 1994)
introduced a two stage brain image registration algorithm. The first stage involved using ac-
tive contours to establish a one-to-one mapping between cortical and ventricular boundaries
in the brain and in the second stage, an elastic deformation transformation that determines
the best correspondence between the identified contours in the two data sets is determined.
Feldmar et al., (Feldmar and Ayache, 1994) developed a novel surface to surface nonrigid
registration scheme, using locally affine transformation. Maintz et al., (Maintz et al.,) com-
pared edge (Borgefors, 1989) and ridge-based (Gueziec and Ayache, 1992; Monga et al.,;
van den Elsen, 1993) registration of CT and MR brain images. They describe a novel method
that makes use of fuzzy edgeness and ridgeness images in achieving the registration between
MR and CT data sets. All of these approaches have one commonality, i.e., they need to detect
features/surface/contours in the images and hence the accuracy of registration is dictated by
the accuracy of the feature detector. Also, additional computational time is required for
detecting these features prior to application of the actual registration scheme. In this paper,
we propose a registration method that is robust and fast and is applicable directly to the raw
data.

The alternative class of registration algorithms involves using the direct approach, i.e.,
determining the registration transformation directly from the image data. One such straight-
forward approach is locally adaptive correlation window scheme (Okuomi and Kanade, 1992),
which can achieve high accuracy. But it is computationally demanding (Szeliski and Cough-

lan, 1994). A more general scheme than window-based correlation approach is the optical



flow formulation, in which the problem of registering two images is treated as equivalent
to computing the flow between the data sets. There are numerous techniques for comput-
ing the optical flow from a pair of images ( Horn and Schunk, 1981; Barron et al., 1994;
Duncan and Chou, 1992; Lai and Vemuri, 1995; Szeliski and Coughlan, 1994; Black and
Anandan, 1993; Gupta and Prince, 1995). Zhao et al., (Zhao, 1993) present an optical flow
based registration scheme for aligning/registering coronal sections to form a 3D stack of reg-
istered auto-radiographic images. In their algorithm, they assume the flow is parameterized
by a general affine parameters and use linear regularization constraints. The registration is
performed in 2D yielding a stack of registered 2D coronal slices.

Another direct approach is based on the concept of maximizing mutual information re-
ported in Viola and Wells (Viola and Wells, 1995) and Wells et al., (Wells III et al., 1996),
Collignon et al., (Collignon et al., 1995) and Studholme et al., (Studholme et al.,). Mutual
information between the model and the image that are to be registered is maximized using
a stochastic analog of the gradient descent method in (Wells III et al., 1996) and other opti-
mization methods such as the Powells method in (Collignon et al., 1995) and a multiresolution
scheme in (Studholme et al.,). The primary computational task in the mutual information
based techniques is the estimation of probability density functions and their derivatives from
the given data sets. The density function estimation has typically been performed using the
Parzen window approach (Duda and Hart, 1973). Derivatives of the entropy whose definition
involves densities are required when maximizing mutual information between the data sets.
Once the densities are estimated, derivatives of the empirical entropy are easily estimated.
Reported registration experiments in these works are quite impressive for the case of rigid
motion. Most mutual information based algorithms for image registration in literature have
been formulated for global parameterized motion with the exception of the recent work re-
ported in Meyer et al., (Meyer97, 1997) wherein affine transformations as well as thin-plate
spline warps are handled. The reported registration results are quite impressive but the CPU
execution times are quite high — in the order of several hours for estimating thin-plate warps.

Bajscy and Kovacic (Bajscy and Kovacic, 1989) studied registration under nonrigid de-
formations using volumetric deformations based on elasticity theory of solids. Other direct

approaches have used the so called “fluid registration” approach introduced by Christensen



et al. (Christensen el al., 1996). In this approach the registration transformation is modeled
by a viscous fluid flow model expressed as a partial differential equation (PDE). The model
primarily describes the registration as a local fluid deformation expressed by a nonlinear PDE
and more recently by a linear version (Bro-Nielsen and Gramkow, 1996). Thirion (Thirion,
1994) introduced an interesting demon-based registration that can be viewed as being similar
to the fluid-based algorithm when the elastic filter in the latter is replaced by a Gaussian. In
all these approaches, the transformation is not expressible in a parametric form and hence
it is not possible to explicitly determine the individual components of the transformation no
matter how simple that transformation may be. Moreover, the reported computational times
for registration of 2D and 3D data sets are very large for implementation on uniprocessor
workstations. The fastest implementation of the viscous fluid flow model by Schormann et
al. (Schormann et al., 1996) using a multi-grid scheme takes 200 mins. of CPU time on a
Sparc-10 for registering two (64, 128,128) images.

In summary, the existing registration algorithms either can’t be applied to raw im-
age/volume data directly, or can’t handle local deformation and global transformation at
the same time, or require extensive computation. In this paper, a robust and fast algorithm
is proposed, which incorporates a Modified Newton iterative method into a spline-based op-
tical flow framework and achieves accurate registration results in registration applications
involving medical data.

In our approach, we use the hierarchical motion model, a hybrid of local and global flow,
to compute the registration, taking advantage of the best features of both approaches. This
model consists of globally parameterized motion flow models at one end of the “spectrum” and
a local motion flow model at the other end. The global motion model is defined by associating
a single global motion transformation within each patch of a recursively subdivided input
image, whereas, in the local flow model, the flow field is not parameterized. The flow field
corresponds to the displacement at each pixel/voxel which is represented in a B-spline basis.
Using this spline-based representation of the flow field (u;, v;) in the expectation of the squared
differences error term, i.e., Egq(u;, v;) = E[Iz(z; + u;,y; + v;) — I1(zi, v;)]?, the unknown flow
field may be estimated at each pixel/voxel via numerical iterative minimization of Es4. I

and I; denote the target and initial reference images, respectively. We use a combination of a



quasi-Newton and a modified Newton scheme. The quasi-Newton algorithms is well known in
numerical analysis literature (Gill et al., 1981) and the modified Newton technique developed
by Diehl (Diehl and Burkhardt, 1989) will be described in a subsequent section. Briefly, this
modification involves precomputing the Hessian matrix at the optimum — prior to starting
the iteration — and using it at each iteration point rather than computing the Hessian or its
approximation at each iteration point as is done in the standard and most modified Newton
schemes. This precomputation of the Hessian leads to tremendous computational advantages
and in addition, the convergence range of this modified Newton scheme is much larger than
the standard Newton scheme (see (Diehl and Burkhardt, 1989) for details). When combined
with the spline-based representation of the (u,v) field, the motion computation is very stable
as is evident in the examples presented in this paper.

The main contributions of this paper are as follows: (a) a new formulation of the hi-
erarchical flow field computation model based on the idea of precomputing the Hessian at
the optimum prior to knowing the optimum, (b) development of a novel, fast and robust
numerical solution technique using a Modified Newton iteration, wherein the computation of
the Hessian matrix and gradients use a spline-based representation of the (u,v) field, (c) a
novel application, namely, a volumetric flow-based registration of MRI brain scans.

The rest of the paper is organized as follows. In section 2, we describe the global/local
flow field motion model briefly. Section 3 contains the new formulation of the flow field model
describing the use of precomputed Hessian and the numerical algorithm used for computing
the motion/registration. In Section 4, we present several experimental results on synthesized
motion applied to real brain MRI data as well as results of registering MR brain scans of the

same individual. Section 5 contains the conclusions.

2 Local/Global motion model

Optical flow computation has been a very active research area in the field of computer vision
for the last two decades. This model of motion computation is very general especially when set
in a hierarchical framework. In this framework, at one extreme, each pixel/voxel is assumed

to undergo an independent displacement, thus producing a vector field of displacements over



the image. This is labeled as a local motion model. At the other extreme, we have global
motion wherein the flow field is expressed parametrically by a small set of parameters, e.g.,
rigid motion, affine motion, and so on.

A general formulation of image registration (same modality data) can be posed as follows.
Given a pair of images (possibly from a sequence) I; and I, we assume that I> was formed

by locally displacing the reference image I; as given by
L(zi + ui,yi +vi) = Ii(zi, yi)- (1)

The problem of registering I; and I is to recover the displacement field (u,v) for which the
maximum likelihood solution is obtained by minimizing the error given by (see (Szeliski and

Coughlan, 1994))
Egsa{(ui,v)} =Y (Ia(i 4 us, yi + vi) — L (i, 1:))° (2)

This formula is popularly known as the sum of squared differences (SSD) formula. In this
motion model, the key underlying assumption is that intensity at corresponding pixels in I;
and I is unchanged and that I; and I differ by local displacements. Other error criteria that
take into account global variations in brightness and contrast between the two images and
that are nonquadratic can be designed as (Szeliski and Coughlan, 1994; Black and Anandan,
1993),

Ergsq{(us, vi)} = Z [To (i + wi, yi +vi) — el (z4, yi) + b)° (3)

where b and c¢ are the intensity and uniform contrast correction terms per-frame, which need
to be recovered concurrently with the flow field. Expanding Is in a Taylor series in (u;, v;)
to the first order yields the famous image brightness constraint of Horn and Schunk ( Horn
and Schunk, 1981). The above described objective function has been minimized in the past
by several techniques, some of them using regularization on (u,v) ( Horn and Schunk, 1981;
Lai and Vemuri, 1995). In this paper, we tile a single image into several patches each of
which can be described by either a local motion or a global parametric motion model. The
tiling process is made recursive. The decision to tile a region further is made based on the

error in computed motion/registration.



Figure 1: Bilinear basis function.

2.1 2D Local Flow

We represent the displacement fields u(z,y) and v(x,y) by B-splines with a small number of
control points 4; and ¥; as in Szeliski (Szeliski and Coughlan, 1994). Then the displacement

at a pixel location 7 is given by
u(mia yi) = Z UjWij = z U] 55'1’ yz
'U(-Tia yz) = z Vjwi; = Z U] xu yz (4)

where the w;; = Bj(z;,y;) are the basis functions with finite support. In our implementation,
we have used bilinear basis, B(z,y) = (1—|z|)(1— |y|) for (z,y) in [-1,1]? as shown in figure
1, and we also assumed that the spline control grid is a subsampled version of the image pixel
grid (Z; = max;, J; = my;), as in figure 2.

This spline-based representation of the motion field possesses several advantages. Firstly,
it imposes a built-in smoothness on the motion field and thus removing the need for further
regularization. Secondly, it eliminates the need for correlation windows centered at each pixel
which are computationally expensive. In this scheme, the flow field (a;,7;) is estimated by a
weighted sum from all the pixels beneath the support of its basis functions. In the correlation
window-based scheme, each pixel contributes to m? overlapping windows, where m is the size

of the window. However, in the spline-based scheme, each pixel contributes its error only to
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Figure 2: Spline-based flow field representation: the spline control points {(;,;)} are indi-
cated as circles and the pixel grid {(u;,v;)} are shown as crosses.

its four neighboring control vertices which influence its displacement. Therefore, the latter
achieves computation savings of O(m?) over the correlation window-based approaches.

In this paper, we use a slightly different error measurement from the one described above.
Given two gray level images I1(z,y) and Iy(z,y), where I is the model, I5 is the target, to
compute an estimate T = (101, V1, ..., Uy, Up)T of the true flow field T' = (uy, vy, ..., Un, vs) " at
n control points, first an intermediate image I,,, is introduced and the motion is modeled in
terms of the B-Spline control points as

Ln(Xs, T) = Ii(@i + Y tjwi, gi + S Djwi)- (5)
J J
where X; = (z;,y;) and w;; are the basis functions as before. The expectation E of the

Squared Difference, E,q, is chosen to be the error criterion J{E,4(T)}
T{Es(T)} = B{(In(X;, T) — I(X3))*}. (6)

Note that if we consider I; and I5 as random fields, the above spline-based error crite-
rion actually is the difference of the autocorrelation function of I and the cross-correlation

function of Iy and I,

HEa(T)} = E{In(X;,T) - 1(X3)*}



= E{I} -2I,I,+ I}
= 2(B{L,(X:)*} - B{L(Xi)I(X;, T)}). (7)

In the following, we describe the 2D /3D global flow motion models in the above described
spline-based estimation framework. We will then discuss the numerical optimization of the

error term to determine the motion parameters in each of the motion models discussed.

2.2 2D Rigid Flow

In many applications, the whole image undergoes the same type of motion, in which case, it
is possible to parameterize the flow field by a small set of parameters describing the global
motion, e.g., rigid, affine, quadratic and other types of transformations. The planar rigid

flow model is defined as

u(z,y) | _ [ cos¢p —sing |[z] [di] [=
lv(w,y)]_[sin(ﬁ cos¢ ]ly] ld2] ly] (8)

where, the global parameters T = (¢,dy,d2)? are called global motion parameters, denot-
ing the rotation angle and the translations along z and y direction respectively. Let T/ =
(cosp, —sing, —dy, sing, cosp, —d)T. To compute an estimate of the global motion, we first
define the displacements, &; = (4,%;)7, at the spline control vertices (indexed by the sub-

script j) in terms of the global motion parameters:

. |# g1t 0 0 0] |4
R I R e
= T;T - X (9)

where Xj = (&5, ;z)j)T is the coordinate of the control point j. We then define the flow at each
pixel by interpolation using our spline representation. The error criterion J{E,4(T)} for the

rigid motion case becomes,

J{Esq(T)} = B{(L(X; + sz’j(TjTI —X;)) — (X))} (10)
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2.3 2D Affine Flow

A more general 2D motion is the affine transformation, which includes rotation, translation

and scaling. The planar affine low model is defined in the following manner

’u’(xa) _ to 11 Z to x
kIRt ME RN o

where, T = (tg,...,t5)T forms the global parameters. Once again, to compute an estimate
of the global motion, we first define the displacement at the spline control vertex j, G =

47,9;)T, in terms of the global motion parameters
3 Vi) g

% g 10 00|, |4
uJ_[OOijy}'lT Jj
= T;T - X; (12)

where Xj = (%4,9;)7 is the coordinate of the control point j. Substituting into equation (6),
the error criterion J{Esq(T)} for the affine motion case becomes

J{E;q(T)} = B{(L(Xi + Z’Ufz'j(TjT - Xj)) - I(X3))*} (13)

2.4 3D Affine Flow

Extending from 2D affine flow to 3D affine flow is quite straightforward. There are twelve

motion parameters collected into a vector T = (t,...,%11)7, and the control points in terms

of the motion parameters are defined as

Z; y; 2 1.0 0 0 0 O O 0 O Z;
g=]10 0 0 0% y; Z2 1 0 0 0 O0(T—-]|49 |, (14)
0 0 000 0 0 0z yj 2z 1 Zj
which can be written as
i = TyT — X;. (15)
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3 Numerical Solution

We now describe a novel adaptation of an elegant numerical method by Burkardt and Diehl
(Burkhardt and Diehl, 1986) which is a modification of the standard Newton method for
solving a system of nonlinear equations. The modification involves precomputation of the
Hessian matrix at the optimum without starting the iterative minimization process. Qur
adaptation of this idea to the framework of optical flow computation with spline-based flow
field representations is new and involves nontrivial derivations of the gradient vectors and

Hessian matrices.

3.1 Modified Newton Method

In this section, we present the modified Newton method to minimize the error term J{E,4}
given earlier. In the following, we will essentially adopt the notation from (Burkhardt and
Diehl, 1986) to derive the modified Newton iteration and develop new notation as necessary.

The primary structure of the algorithm is given by the following iteration formula

Tkl = 7k — H_l(’i‘ =T = T)g(’i‘k), (16)
where H is the Hessian matrix and g is the gradient vector. Unlike in a typical Newton
iteration, in the above equation, observe that the Hessian is always computed at the optimum
T = T* = T instead of the iteration point T*. So, one of the key problems is how to compute
the Hessian at the optimum prior to beginning the iteration, i.e., without actually knowing

the optimum.

3.1.1 Computing the Hessian Matrix at the Optimum

Let the vector X denote the coordinates in any image and h : X — X' a transformation
from X to another set of coordinates X', characterized by a set of parameters collected into
a vector T, i.e., X' = h(X,T). The parameter vector T can represent any of rigid, affine,

shearing, projective etc. transformations.

12



Normally, the Hessian at any iteration point T* is
H(Tk) — 32J{ESD(T)}

aTaT ..
T=T%
-~ -~ T ~
0L, (X,T) (0L,(X, T . 0%, (X, T
=2F (A ) (A ) + (I,(X,T) —IQ(X))# (17)

Note that at the optimum I,,(X,T) = I, (X, T*) = I»(X), thus zeroing out the second

term in the above equation yields the Hessian matrix at the optimum

(18)

H(T*) — ?J{Esp(T*)} _ o { Om(X, T7) (aIm(X, T*))T}
- ateT ot ot '

For the pure translation case, T = (dy,ds)7, BIm(X,T*)/a'i‘ = 0I3(X)/0X, then the

Hessian at the optimum is independent of the optimum motion vector (d, d5)”

m(r) = PIEDT} _ o { OL(X) (312(X)>T} . (19)

oToT oX 0X

But for other complicated types of motion, the Hessian at the optimum will explicitly
depend on the optimum motion vector and hence cannot be precomputed directly. For

example, for 2D rigid motion, T = (¢,d1,d2)?, and we have

(X, T") _ OL(X) . 9L(X)

¢ N or y oy o

OIn(X,T*) _ 0L(X) . 0L(X) .

od, = g cos¢p™ + By sing

oI, (X, T*) _ 0L(X) . ., 0LL(X) .
9, =5 sing™ — Tycosqﬁ . (20)

Thus the Hessian at the optimum will depend on the optimum rotation angle ¢*, for example,
H5(T*) = 8%I,,(X, T*)/0$0d,. However, for a slightly different formulation, the Hessian
for general motion can be precomputed. In the following, we will describe such a formulation.

A clever technique was introduced in (Diehl and Burkhardt, 1989), involving the use of
innovations (incremental transformations) with a moving coordinate system {XX} and an

intermediate motion vector T to develop the formulas for precomputing the Hessian. This
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N k+1

&

Figure 3: The relationship between T, Tk+1 and Tk+1

intermediate motion vector gives the motion from {XX*} of iteration step k to {X%*1} of

iteration step k + 1, as shown in figure 3.

Xk = p(X°,T*) (21)
XFF = p(XE, TF) = h(h(XO0, T), TFH) = h(XO, TF) (22)
Im(XO, TIH—I) _ Im(XO,ri'\k ° Tk+1) (23)

Instead of differentiating the error criterion with respect to ’i‘, the error criterion now has

to be differentiated with respect to T. The innovation T**! is defined as

-~

TH = ("), (24)

where, H is the Hessian matrix at the optimum, g is the gradient vector at the iteration

point Tk. The estimate at step k+1 is then updated by
Tkt = Tkl o Tk — p(Tk T, (25)

Where f is a function that depends on the type of motion model used.
In the following, we will show how to compute the Hessian matrix at the optimum with

respect to T. Assuming that the optimum is reached at step N, i.e., I, (X, TV) = I,(X).

14



Then the estimate TNT! of iteration step N + 1 will be zero, TV+! = 0. This leads to the

following equations (see appendix):

O (X, TN o TN+) on(XN) N on(XN)
= — x

3(/§N+1 P OxN Y oyN
~ N+1
OLn (X, TN o TN+ T _ oY) (26)
6ci1 TN+1—q a.’L'N '

Where, differentiation with respect to X* involves first applying the motion T¥ to the initial
image I (X0), to get the new image I;(X"). Then, we apply a small motion TN*! to this
image and then differentiate with respect to XV .

Using these equations to compute the Hessian at the optimum, the entry I:IU(T*) is given

by

(1) = LB 2E{BII<XN> (BMXN) N_MQ;N)}

adN Hagn+i 9N oz Y Ay
_ o6 (X) (05L(X) B oI (X) ) }
= 2E { g < o Y By A (27)

This equation was arrived by assuming that expectation value is independent of the coordi-

nate system and therefore all the derivatives are given in terms of the original image I;. This
shows that the Hessian matrix at the optimum is only related to I; and can be computed
prior to starting the iterations.

Extending from 2D rigid motion to general motion is quite straightforward. Starting from
the term 8I,,(X, T*)/OT in equation (18), let X* = T*(X) be the coordinate system at the
optimum then, I,,,(X, T*) = I;(X*). Then, make use of the same idea as in the rigid motion
example, i.e., apply a small motion T to I (X*), differentiate with respect to T and take the
value at T = 0 to get the equation (28) (see appendix for details).

(Mf _ (8[1(X*)>T6X* (28)

oT o X oT
Substituting into equation (18), yields (see appendix for details

H = 2E{611(X*)(8I1(X*))T}

”I‘:ol
)

oT oT -

T=0

15



s\ T * x\\ I *
_ op (6)5 ) oL (X )(811()( )) 3X~ ' (29)
oT oX* 0X* T | |5
Finally, the Hessian at the optimum is given by (see appendix for details)
T T
H—o9F (Bh(X, T)) OL(X) (%(X)) Oh(X,T) (30)
oT 0X 0X 0T T—o

3.1.2 Gradient Vector Computation

After the calculation of the Hessian matrix at the optimum, we still need to provide the
gradient vector g(’i"c) Since the Hessian matriz can be precomputed, the numerical cost
per iteration step of the Modified Newton scheme is determined by the calculation of the
gradient vector. A significant reduction of the calculation can be reached if at each step of the
iteration, instead of expressing the gradient vector, the partial derivative of the transformed
model image I, (X, T*, T*+1) with respect to the motion vector T#*1, we now express it in
terms of the corresponding derivatives of the image I5(X) with respect to coordinates {X}.
Therefore, the partial derivatives can be determined in advance and within each iteration
they only need to be multiplied with the difference of the image I, (X, T*) and I5(X).

The gradient vector in terms of first derivatives of the error function with respect to the

motion vector T is

. R T Tk+1
g(Tk):2E{(Im(X,Tk)—IQ(X))aIm(X’?kOT )} (31)
aTk+1 Tk+1—0
where,
Ol (X, T 0o TH)\ T (01,,(X, Ty 0 THHY)\ T [0XF\ 7' [ 0Xk+1 7  oxh+L %
9Tk+1 - oX oX OXk OTk+1" (32)

At the optimum, TE+1 = 0, I,,,(X, T}) = L(X), X*t1 = Xk | thus 9X¥*+1/9Xk = I. Hence

<8Im(X,'i‘k oi‘k+1)>T B (6[2(X)>T<8Xk>_1<8xk+1)
Fh1—g oX 0X OTk+1

OTk+1
Finally, substituting into equation (31), the gradient vector with respect to T is given by

T
o OL,(X)\ T [oxX*\ ' [oxkt!
g(Tk) =2F< e (( oxX ) <6X > (arj’_\k—kl) ’i‘k+1_0> ’ (34)

16
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where, e = I,,,(X, T%) — I,(X).

3.1.3 Summary of the Modified Newton Method

Thus the Modified Newton algorithm consists of the following steps:
1. Precompute the Hessian at the optimum H using equation (30).
2. At iteration k, compute the gradient vector using equation (34).
3. Compute the innovation T+ using equation (24).
4. Update the motion parameter T*+! using equation (25).

The Modified Newton method has several advantages over the standard Newton iteration
scheme for solving nonlinear equations. The major advantage is a computational one, which
stems from the fact that the Hessian is precomputed . In addition, the Modified Newton
method has a broader range of convergence than the standard Newton scheme, as was shown
in (Burkhardt and Diehl, 1986). This allows the algorithm to cope with large motions even
when the initial guess is far from the optimum. An example depicting the convergence range
for the conventional Newton and Modified Newton scheme is shown in figure 4. Finally, the

Modified Newton schemes is at least quadratically convergent (Burkhardt and Diehl, 1986).

3.2 Application of the Modified Newton Method to the Local/Global Mo-
tion Model

In this section, we describe a robust way of pre-computing the Hessian matrix at the optimum
and the gradient vector at each iteration step for motion models including local and global

ones.

3.2.1 H & g for 2D Local Flow

Let 5(]-, (j = 1,2,...,n) be a vector of control points. Then the flow vector is given by T

= (G, 01, ...,ﬁn,ﬁn)T. Actually, local flow is equivalent to pure translation at each pixel
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Figure 4: Convergence range comparison between standard Newton algorithm and Modified
Newton algorithm. (a) Standard Newton algorithm (b) Modified Newton algorithm
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and hence, the Hessian at the optimum is only related to the derivatives with respect to
the original coordinates and does not depend on the motion vector. Therefore, it can be

calculated without introducing T as shown below

0 0 0 0
Let 0 = Wy e Wy ——y Wiy — ). 35
The Hessian at the optimum is then given by
H; = f1;; = 2B{0,1,(X)9, 1, (X) ). (36)
Whereas the gradient vector is,
- 0L (X
§(1) = 28 { (I - Iz)NTMTﬁ} , (37)
0X
where, the matrices M and N are given by
Kk 15k 1ok
M — 0X _ 1+3; (w]?fkuj > (wj)y u%k (38)
0X > (wj)z 0 1435 (wy)y 97
and
oXk+1
N= (T e O (39)
oTk+1 FhH1—g 0 w .. 0 wy

respectively. We can now substitute equations (36) and (37) into equation (24) yielding T#+!
which upon substitution into equation (25) results in T*+1. Hence, the numerical iterative

formula (25) used in computing the local motion becomes

T = Tk — Hlg(TH). (40)

The size of H is determined by how many control points are used in representing the flow
field (u,v). For 3D problems, H is (3n x 3n) where n is the number of control points. For
large n, numerical iterative solvers are quite attractive and we use a preconditioned conjugate
gradient (PCG) algorithm (Lai and Vemuri, 1995; Szeliski and Coughlan, 1994) to solve the
linear system ﬁ—lg(Tk). The specific preconditioning we use in our implementation of the
local flow is a simple diagonal Hessian preconditioning. More sophisticated preconditioners
can be used in place of this simple preconditioner and we refer the reader to (Lai and Vemuri,

1995) for more preconditioning.
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3.2.2 H & g for 2D Rigid Flow

We now derive the Hessian matrix and the gradient vector for the case when the flow field is
expressed using a global parametric form specifically, rigid motion parameterization.

Let X]-, (j = 1,2,...,n) be the control points and let

ohX, T\T | ~Zgwilli 2jwiti
A= (ST | TR B )
The Hessian at the optimum can then be written as
. oL (X) oL (XN\T  ,
H=2FE<{A A" L. 42
(52 (%) (@
The gradient vector g(T*) at the optimum is given by
BT = 2 { (1 — M 22 (43)
0X
where the matrices M and N are
Xk w0k wa ). Gk
M = 8 — 1 + E] ('w]?ivkuj Z] (wJ)ZU ugAk (44)
0X > (W) 7 L+ 3, (wy)y 07
and "
oxk+1\ 7 = wily Xy wik;
N=|——— = — 2w 0 , (45)
OTk+1 . J
Tk+1=0 0 — Z] 'U)]

respectively. The basic steps in our algorithm for computing the global rigid flow are,

1. Precompute the Hessian at the optimum H using equation (42).

2. At iteration k, compute the gradient vector using equation (43).

3. Compute the innovation T#*! using equation (24).

4. Update the motion parameter Tkl using the following equation

b 1 0 0 b o
‘Zl = |0 cosp —sing azl + | d
do ft1 0 sing cos¢ w1 L 42 |, 2 | i1
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3.2.3 H & g for 2D Affine Flow

We now derive the Hessian matrix and the gradient vector for the case when the flow field is
expressed using a global parametric form specifically, an affine parameterization.

Let X]-, ( =1,2,...,n) be the control points and let

E w; T 0
. Z w7, 0
_ (OR(X,T)\" Z wj 0
A_( oT ) N 0 Zw:f: (47)
0 E wj
|0 > ]
The Hessian at the optimum can then be written as
~ oI (X) (6[1(X)>T T
H=2E{A At . 4
{ 0X 0X (48)
The gradient vector §(T*) at the optimum is given by
. 1o (X
g(T%) =2E {(Im - IQ)NM*Ta 2(X) } , (49)
0X
where the matrices M and N are:
Kk N N ok
M — X _ |1+ (w]?fkuj > (wj)y u%k (50)
and _ -
2w 0
2 w;Y; 0
_ [oxKtl T X w 0 (51)
oTk+1 ki1 0 > wj:f:’i ;
| 0 2wy ]

respectively. The basic steps in our algorithm for computing the global 2D affine flow are,
1. Precompute the Hessian at the optimum H using equation (48).
2. At iteration k, compute the gradient vector using equation (49).
3. Compute the innovation T#*! using equation (24).
4. Update the motion parameter TF+1 using the following equations,
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3.2.4 H & g for 3D Affine Flow

In this section, we derive the Hessian matrix and the gradient vector for the case when the
flow field is in 3D and is expressed using a global parametric form specifically, a 3D affine

parameterization. Let Xj, ( = 1,2,...,n) be the control points and let

225 Wil 0 0
> W 0 0
T .
oT 0 > WiZ; 0
0 0 Ej wj:fcj
0 0 > wilj
0 0 Z]- wjéj
L 0 O E] 'LU] 1
The Hessian at the optimum is then given by
- oI (X) ron (XN T -,
H=2E<SA At .
(aonto o) ®
and the gradient vector at the optimum is
- oI (X
81 =28 { (1, - w7221 (56)
where, the matrices M and N are as follows
oXk 1+ Ej (wjk;ﬂ? Zj (wj)y,ﬂ;ik Zj (wj)zjiz
M= X 2 (wj)mff 1+3; (wjl)gk i > (wj)z 'UJI' " (57)
> (w))a'd; > (wi)y g 1+ 305 (w))z g
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and

[ wj;f:'i 0 0 ]
2 wj?)?C 0 0
. 0 ¥, wj:z’i 0
oTk+1 Th+1—q 0 Zj wj’éj 0
0 2 Wj 0
0 R
0 0 Z] 'LU] |

Our algorithm for computing the global_ 3D affine flow consists of the following steps,
1. Precompute the Hessian at the optimum H using equation (55).

2. At iteration k, compute the gradient vector using equation (56).

3. Compute the transformation T*t! using equation (24).

4. Update the motion parameter T**! using the following update equations,

to t1 o to+1 4 iy to t1 b
f4 7§5 7§6 = 7?4 7?5 +1 7?6 7§4 1§5 7?5 (59)
ts 1y tio k1 tg ty  tio+1 k1 ts to to P

t3 to+1 4 to t3 t3

7?7 = 7?4 55 +1 56 7?7 + 7?7 . (60)
ti1 k1 ts tg  tio+1 k1 t11 f ti1 k1

Computing the gradient vector using equation 56 requires the multiplication of matrices
N(12,3), M~7(3,3) and a vector m;_g(x) of size 3. This matrix multiplication if carried out
left to right will require 144 arithmetic operations whereas only 45 arithmetic operations
are needed when the multiplication is carried out right to left, a factor of three savings
in computational time. In our implementation of the above algorithm, we carried out code
optimization by eliminating all redundant computations in the gradient computation routine.
Note that the gradient vector is computed at every iteration of the algorithm. Using such

code optimization, we achieved an additional ten-fold improvement in the computational
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performance of our code. Timing (execution time) results for various image registration

examples are reported in the next section.

3.3 The combination of Modified Newton and Quasi-Newton methods

When there is significant noise, the second order derivatives term in equation (17) cannot be
ignored. Therefore, equation (18) cannot exactly give the Hessian at the optimum. In addi-
tion, the Modified Newton method requires that the motion transformations be invertible and
closed. These conditions cannot be met when the noise is significant or some parts of the two
data sets are inherently quite different. Fortunately, these problems can be successfully solved
when the Modified Newton scheme is used in conjunction with the Quasi-Newton method.
The Quasi-Newton method computes the approximate Hessian matrix at each iteration point
T* by using the first order derivative g(T%). The Quasi-Newton matrix Qy will converge to
the Hessian matrix at the optimum if the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update
(Gill et al., 1981) is used:

ViV, (61)

where yi = g(TF1) — g(TF), s, = TF — Tk,

Combining the Modified Newton and Quasi-Newton schemes gives the governing iteration
as

ri1k—|—1 — Tk o Ck—lg(riwk) (62)

where, matrix Cy is the mean of Hessian matrix at the optimum H and the Quasi-Newton
matrix CBFGS

fi + Cpros
T2

with CkBFGS being the BFGS-Quasi Newton update of Cy_1.

Cx (63)

The intuitive interpretation of this algorithm is, when the estimate is far away from the

optimum, the approximation in equation (61) is poor. Therefore, in order to stabilize this

algorithm, we let C PF% = 0 whenever y{s’c < 0 (implying that C’,fF G5 is not positive
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definite), yielding the Modified Newton algorithm but with double the step size. This may
accelerate the algorithm convergence when far away from the optimum. Whereas, when the
estimate is close to the optimum, the approximation in equation (61) is reasonably good and
aids the convergence behavior. When the estimate is very close to the optimum, Cy 2F%% will
converge to the Hessian at the optimum, thus the combined algorithm in fact automatically
switches back to the Modified Newton method. Note that there is no additional overhead in
computation of the BFGS-Quasi Newton update as § has already been computed.

The limitations of this algorithm are that even though the convergence range of the
algorithm is quite large to a local optimum, there is always a possibility that the algorithm
may diverge as in any local search techniques especially, if the initial guess is too far from
the solution. On the other hand, due to the increased convergence range of the modified

Newton-+quasi-Newton scheme, we have demonstrated (in the next section) the practicality

of this algorithm via examples involving large scaling and rotation transformations.

4 Implementation Results

We tested our algorithm with the various types of motions discussed in earlier sections. Our
test data are a slice of an MR brain scan for the 2D case and the entire scan for the 3D case.
To measure the accuracy of the registration, we used the relative error between the optimum
motion vector and computed motion vector defined by using the vector 2-norm. Note that
the optimum motion vector is only known for the synthesized data. In the real data case, our
test for accuracy currently involves a measure of discrepancy between the AC-PC (anterior
and posterior commosure) lines of the registered data sets. Let the optimum motion vector
be denoted by Topt, and the computed motion vector by ’i‘, then the error is defined as
||T - T0pt||2

error = —————=. (64)
I Toptll,

This measure is used in all our parametric motion experiments to quantify the accuracy
of the registration. The measure is more meaningful than the average angle error between
computed and true flow vectors used by Barron et al. (Barron et al., 1994). In addition, it

can be used for (piecewise) global as well as local flow models of motion.
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In all the experiments, we always use zero motion as the initial guess to start the mini-

mization iterations.

4.1 Testing with 2D Rigid Motion

To test our algorithm with 2D rigid motion, we applied a known rigid motion to a slice of size
(256, 256) from the MR brain scan and generated a transformed data set. We then used these
two data sets as input to the motion estimation algorithm. Table 1 summarizes the results
wherein the true and computed motions are depicted in adjacent columns. As evident, the
computed motion is extremely accurate. Note that the algorithm can handle large rotations
(70°) and translations (30 pixels). In all the rigid motion examples the number of control
points used is 25 control points and the number of patches used is 16. One of the advantages
of the Modified Newton method is an increase in the size of the region of convergence. Note
that normally, the Newton method requires that the initial guess for starting the iteration
be reasonably close to the optimum. However, in the modified Newton scheme described
earlier, we always used the zero vector as the initial guess for the motion vector to start the
iterations. For more details on the convergence behavior of this method, we refer the reader
to (Diehl and Burkhardt, 1989).

For visualization purpose, we apply the inverse of the computed transformation to the
second image Is and then superimpose it on Iy. For clarity of presentation, we choose to
depict this process via super-imposition of the head extracted from each of the image data
sets. This procedure is used in all the experiments presented in this paper.

Figure 5 depicts images of a pair of heads extracted only for visualization purposes.
Our registration algorithm was applied to the corresponding intensity image data sets. The
subfigure (a) shows a rigid motion consisting of 40° rotation and a translation of (30,30)
pixels. The subfigure (b) shows a super-imposition of the head extracted from the original
image and the transformed head using the inverse of the computed transformation. As

evident, the registration is perfect.

26



Table 1: Global 2D rigid motion tests: true and computed motion

True Motion Computed Motion
(20°,4,2) (20.0077, 4.0062, 2.0082)
(60°,4,2) (60.0112, 3.9897, 2.0088)
(70°,4,2) (69.9816,4.012, 2.0031)

(40°,10,10) | (40.0092,10.0012,10.0114)

(40°,20,20) | (40.0119,19.9995,20.0184)

(40°,30,30) | (40.0246,30.00219,30.024)

(a) (b)

Figure 5: Experimental result for 2D rigid motion. (a) Before registration, where the green
head is the model, we applied a 40 degree rotation and (30,30) translation to the model to
generate the red head. (b) After the registration, T~!(red head) is superimposed on the
original green model, where T is the computed motion vector.
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4.2 Testing with 2D Affine Motion

In the next experiment, we tested the (piecewise) global 2D affine motion model by using
a similar data generation scheme as used in the rigid motion case. Table 2 summarizes the
relative errors for different affine motions. The computed motion results are shown for three
different methods namely, the Levenberg-Marquardt method used in Szeliski et al., (Szeliski
and Coughlan, 1994) for minimization of the spline-based representation SSD error and the
modified Newton method of Burkhardt (Burkhardt and Diehl, 1986) for minimizing the ex-
pectation of the squared differences error and our method. This experimental study involved
comparing the performance of our algorithm with the performance of our implementation
of the published algorithms in Szeliski et al., (Szeliski and Coughlan, 1994) and Burkhardt
(Burkhardt and Diehl, 1986). Our implementation of the algorithm in (Szeliski and Cough-
lan, 1994) was able to reproduce their published results of estimated motion for public domain
image data thereby lending credence to our implementation.

Our method is a combination of these two methods and inherits their best features. Note
that the 2D affine motion has six global motion parameters and the first column of table 2
depicts the values used for these parameters in our 2D affine motion tests. The values used for
the motion parameters in the true motion column included large expansive and contractive
scaling as well as rotation and translations. Although Burkhardt’s algorithm depicts better
accuracy in some of the tests, we observe that it lacks consistent performance in accuracy.
Note that our method is quite robust compared to the other two methods and is able to
handle large scaling fairly accurately. The double horizontal line in the table has been used
to separate the results of testing with different types of affine motion. The first three rows
depict a motion which includes an expansive scaling and translation. The next two rows
depicts a contractive scaling and a translation while the last two rows depict the full affine
motion. When an algorithm yielded over 100% relative error between the optimal motion
vector and the computed motion vector after reaching a maximum iteration count, it was
deemed to have diverged. Our algorithm takes 13.0 seconds of CPU time on an Ultrasparc-1
to achieve the registration for the affine motion shown in the last row of the table 2. The

number of control points and the number of patches used in our algorithm for this experiment
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Table 2: Comparison of computed motion using the Szeliski’s, Burkhardt’s and our method
for the affine motion model.

True Motion Error Error from Error
from Szeliski’s | Burkhardt’s | from ours

(1.1,0.0,0.0,0.0,1.1,0.0) 1.018% 0.60% 0.68%
(1.5,0.0,0.0,0.0,1.5,0.0) 3.114% 19.54% 1.16%
(2.5,0.0,0.0,0.0,2.5,0.0) diverge 1.45% 1.34%
(0.8,0.0,0.0,0.0,0.8,0.0) 26.32 % 0.75% 0.88%
(0.6,0.0,0.0,0.0,0.6,0.0) diverge diverge 4.25%
(1.128,-0.410,2,0.410,1.128,4) 0.69% 0.25% 0.27%
(1.449,-0.388,2,0.388,1.449.4) 1.109% 16.58% 0.54%

are 25 and 16 respectively. Figure 6 is a depiction of the result in the last row of the table 2.

4.3 Testing with 3D Affine Motion

Table 3 summarizes the accuracy comparisons of Szeliski’s method, Burkhard’s method and
our method for the 3D affine motion applied to a volume data set namely, an MR brain
scan of size (128,128,35). The true motion column contains angle of rotation about a pre-
specified arbitrary axis, with uniform scaling in (x,y,z) axis and translation. In our current
implementation, the rotation axis is chosen to be the line inclined approximately 10° from
the z-axis within the z = y plane. Once again, our method is the most robust of the three.
The Szeliski’s method here refers to a 3D version of the scheme described in (Szeliski and
Coughlan, 1994). In this experiment, we used a single patch with 8 control points leading
to a fairly accurate estimate of the synthesized motion. Figure 7 visualizes the result in the

first row of the table 3.
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(a)

Figure 6: Experimental result for 2D affine motion. (a) Before registration, where the green
head is the model. The red head is generated by applying a 15 degree rotation, (2,4) trans-
lation and a contraction by a factor of 1.5. (b) After registration, T~!(red head) is superim-

(b)

posed on the green head, where T is the computed motion vector.

Table 3: 3D affine motion test: accuracy comparisons of three methods

True Motion Error Error from Error
from Szeliski’s | Burkhardt’s | from ours

(20°,1.2,2,2,2) 1.12% 12.3% 0.56%

(30°,1.2,2,2,2) 2.87% 13.3% 0.51%

(40°,1.2,2,2,2) 91.5% 21.5% 2.47%

30




(a) (b)

Figure 7: Experimental result for 3D synthesized affine motion. (a) Before registration,
where the blue head is an MR scan considered as the model. The red head is generated by
applying 20° rotation about an axis inclined approximately 10° from Z-axis within the z = y
plane, an expansion factor of 1.2 in (x,y,z) directions and a translation of (2,2,2,). (b) After

registration. ’i‘_l(red head) is superimposed on the blue head, where T is the computed
motion vector
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4.4 Testing with 3D Real Data Sets

Finally, we applied our algorithm in 3D to register three pairs of MR brain scans, each pair
belonging to the same individual before and after surgery. The three pairs of data sets are
of size (256,256, 122) x (256, 256,124), (256,256,119) x (256,256,119), and (256, 256,105) x
(256, 256,105) respectively. We applied our algorithm to the raw 3D data, computed the
motion using 8 control points and a single patch in the (u,v,w) representation, and then
applied the inverse of the computed transformation to the second data set. For visualization
purposes, we extracted the heads from the first and transformed second data sets and super-
imposed them as shown in figure 8. The registration appears to be visually quite accurate
and the accuracy was verified by observing that the AC-PC lines of the two data sets were
fully aligned. The evident mis-registration could be attributed to the error in the head shape
extraction process performed for the visualization purposes.

We can use the global registration results as input to the local flow estimation process
to refine the registration if and when needed. In our examples however, we did not get any
significant improvement in the registration after applying the local flow estimator and hence
we do not depict the local flow results. Our global flow estimation algorithm takes 9.2 mins.,
1.8 mins and 1.35 mins. CPU time — on an Ultra-Sparc-1 to register the above mentioned
pairs of MR brain scans respectively.

Figure 8 only gives a rough idea of how good the registration is. A more meaningful
registration validation is presented in figure 9, showing the 3D registration at an arbitrary
cross-section. We used a slice from the pre-operative MR scan as the underlay and superim-
posed the corresponding slice from the 3D edge map of the transformed post-operative MR
scan on it to show the registration effect. The registration is visually perfect and the missing
part( the surgically removed tissue in the middle of the head ) is well localized. Figures 10
and 11 depict the 3D registration at an arbitrary slice for two additional pairs of MR brain

scans.
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(a) (b)

Figure 8: Experimental result for 3D real data. (a) Before registration, where the red head
is a pre-operative scan considered as the model. The blue head is the post-operative scan.
(b) After registration. T~ !(blue head) is superimposed on the red head, where T is the
computed motion vector

5 Conclusion

In this paper, we presented a novel image registration algorithm that incorporates the modi-
fied Newton method into the hierarchical spline-based optical flow framework. The modified
Newton method described here has a larger region of convergence and is computationally
more efficient - since the Hessian matrix is precomputed - in comparison to the traditional
Newton scheme. In addition, the spline-based representation of the flow field possesses the
property of built-in smoothness. All of these features lead to our algorithm having the follow-
ing strengths, namely, it can be applied directly to raw image data, it is very robust /reliable,
it can cope with large motion including scaling and is computationally efficient — it takes
1.8mins. register two MRI scans each of size (256,256,119) on an Ultra Sparc-1. Our algo-
rithm has the capability to handle global as well as local motions and proceeds to first globally
register the data sets and then refines the registration locally if necessary. The effectiveness of
the registration was measured quantitatively and the percentage error in registration achieved

by using our algorithm was compared with competing methods (Szeliski and Coughlan, 1994;
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Figure 9: 3D registration depicted along an arbitrary slice z = 30. (a) A slice from pre-
operative MR scan before registration. (b) A slice from post-operative MR scan before
registration. (c) A slice from the 3D edge map of post-operative MR scan superimposed on
(a) prior to registration. (d) A slice from T~!(post-operative MR scan) after registration.
(e)A slice of the 3D edge map of the transformed post-operative MR scan superimposed on
(a) after registration. (f) A slice representing the difference between (a) and (d).
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(e) (f)

Figure 10: 3D registration depicted along an arbitrary slice z = 34. (a) A slice from pre-
operative MR scan before registration. (b) A slice from post-operative MR scan before
registration. (c) A slice from the 3D edge map of post-operative MR scan superimposed on
(a) prior to registration. (d) A slice from T~'(post-operative MR scan) after registration.
(e)A slice of the 3D edge map of the transformed post-operative MR scan superimposed on
(a) after registration. (f) A slice representing the difference between (a) and (d).
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(e) (f)

Figure 11: 3D registration depicted along an arbitrary slice z = 27. (a) A slice from pre-
operative MR scan before registration. (b) A slice from post-operative MR scan before
registration. (c) A slice from the 3D edge map of post-operative MR scan superimposed on
(a) prior to registration. (d) A slice from T~'(post-operative MR scan) after registration.
(e)A slice of the 3D edge map of the transformed post-operative MR scan superimposed on
(a) after registration. (f) A slice representing the difference between (a) and (d).
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Burkhardt and Diehl, 1986). For the various motion models described in this paper, it was
shown that our algorithm outperforms the competing methods in robustness. Our future
efforts will be focused on making it more practical by involving more testing with clinical

data and implementing a user friendly interface.

6 Appendix

In this appendix, we first present the details of the derivations for equation (27) and then
the derivation for equations (30) and (31).
Let I7(X, T) result from reference image S(X) under the rigid moion T = (¢, dy,d2)

Ip(X, T) = S(z1 cosp — y1 sing — dy, x1 sing + y1 cosdp — dy) (65)
Let
To = 1 cos¢—yi singd —d; (66)
Yo = T1 SN+ y1 cosp — do

= I7(X,T) = S(z2,%2)

. Qs _ 0s Om 4 9s Om
chain gule dxs —  Ozi Oxo dy1 Oxz2 (67)

Qs _ 0s Oz 4 Os Oun

dy2  — Oz Oy2 ' Oy1 Oy

inverting (66) we can get:

1 = (xo+d1) cosp+ (y2 + da) sing (68)

y1 = —(z2+d1) sing + (y2 + d2) cosp

Oz _ g
— { BTt o { g = e (69)

oy By = cos¢

Substituting (69) into (67), we get,
82752 = cos¢p % — sing % (70)
5y = Sing g+ cos g
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Making use of eqn (70), gives

OIr _  9s Oxza + 9s Oyz
ody 663;2 ady Byg Bdl
= 2. (-1)+2.0
_ o (71)
- Ox2
—cosq’) —I—smqb 3y1
oIt _  9s Oz + 9s Oy2
dds 86.582 dds 8y2 (de)
= 2 .04+ 2 1
dzxo dy2
B 58265 Zl/2 (72)
= %
—3m¢ — cos¢p 2 8y1
oI _ 0s Oz ds Oya
and F5& = 2z 26 T oy; 96
= a5 (— xl sznqS Y1 cosp) + ayz £ (z1 cosp — y1 sing) (73)

- 8:01 + 7 8y1
The above is the general derivation of derivatives with respect to the rigid motion T for
any given reference image and rigid motion. Now, let us derive the conditions at the optimum.

. . . . ~ N
Suppose optimum is reached at iteration step N, then TN+ = (¢N+1 d1 1, do +1) =0

Bl (X, TN o TN+

3d~1N+1 ri‘N+1:0
_an(xy, ’i‘N+1)
8d~1N+ TN+1—
(74)
7 oI (XN .7 ar (XN
= —cospNTt! 7(19;1\, ) 4 singN+t1 7(13(1\, ) i
1 Y1 TN+1_0
__an(xnM
az{V
Oy (X, TN oTN+1)
AN +1 -
TN+1=0
AL (XN, TN+
- 9N +1 -
TN+1-0
(75)

N 8L(XN) N OL(XY)
= — -\ /7 + x oI )
v az{V 1 ‘93/{\7 TN+1—

_ N oIL(XN) N OIL(XN)
=1 oz + oyl

This is the eqn (27) on Page 14, where XV = (zV,y), X = (z1,1).
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We now present the derivations of equations (30) and (31).

we can change equ. (29) to

o6 (X*) ((’)X*)T oI (X*)
aT —ler oxX*
(8X)T 0X- OL(X")
T X oxX* -
Substituting into eqn. (19), yields
I O (X*) oL (X*
H = 2B{*55 (55" ey
* AL(X*) (OL(X* .
= 2B{(G)" B T (i)' (5%

which is in the form of eqn. (30).

= 2B{(3)" B (DT %) lao

_ 2E{(3h(x T))T 3[1(X 6[1(

1

)T X

For a better understanding,

ot [T=0

))T th T)} | T—o

X

which is eqn. (31).
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