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Abstract: Physicians often perform diagnoses based on the evolution of lesions, tumors or anatomical struc-
tures through time. The objective of this report is to automatically detect regions with apparent local volume
variation with a vector field operator applied to the local displacement field obtained after a non-rigid registra-
tion between successive temporal images.

In studying the information of apparent shrinking areas in the direct and reverse displacement fields between
images, we are able to segment evolving lesions. Then we propose a method to segment lesions in a whole
temporal series of images.

In this report we apply this approach to the automatic detection and segmentation of multiple sclerosis
lesions in time series of MRI images of the brain.

Key-words: 3D medical imaging, automatic detection and segmentation, evolving processes, vector field
analysis, vector field operator, multiple sclerosis.
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Détection et segmentation automatiques de processus évolutifs dans
des images médicales tridimensionnelles : application a la sclérose en
plaques

Résumé : Les docteurs réalisent souvent des diagnostics en se fondant sur ’évolution de lésions, de tumeurs,
ou de structures anatomiques au cours du temps. L’objectif de ce rapport est de proposer une méthode de
détection automatique des régions ol il y a une variation locale de volume apparente, griace & un opérateur
appliqué au champ de déplacements obtenu aprés une transformation non-rigide entre deux images temporelles
successives.

En étudiant les informations fournies par les régions de décroissance apparentes dans les champs directs
et réciproques entre deux images, nous sommes capables de segmenter les lésions évolutives. Nous proposons
ensuite une méthode pour segmenter les 1ésions dans une série temporelle compléte d’images.

Dans ce rapport nous appliquons cette approche pour la détection et la segmentation automatique des lésions
de sclérose en plaques dans des séries temporelles d’images IRM du cerveau.

Mots-clés : imagerie médicale 3D, détection et segmentation automatique, processus évolutifs, analyse de
champ de vecteurs, opérateur sur champ de vecteurs, sclérose en plaques.
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1 Presentation of the problem

1.1 Multiple sclerosis data

Multiple sclerosis is a progressive disease that requires an evolution study through time. The evolution of the
disease can be followed on a patient with a temporal series of examinations. A time series of 3D images of
a patient is acquired from the same modality and with a definite protocol to have similar properties: similar
histogram, field of view, voxel size, image size, etc. In this report we use two sets of multiple sclerosis time series
composed of T2 weighted MRI images. These two time series come from the Brigham and Women’s Hospital !
and from the BIOMORPH 2 European project. The data from the Brigham and Women’s Hospital consist in
256 x 256 x 54 images, with a voxel size of 0.9 x 0.9 x 3.0 mm. The temporal interval between two images of
the series is about one week. The data from the BIOMORPH project consist in 256 x 256 x 24 images with a
voxel size of 0.9 x 0.9 x 5.0 mm. The temporal interval between two images of the series is about four weeks.

1.2 Quantitative measurements

A quantitative analysis is required to give accurate and reproducible results, and because the data are large.
Between two examinations, a patient does not have the same position in the acquisition device. Therefore
images at different times are not directly comparable. (cf Figure 1). We have to apply a transformation to

Figure 1: Two images of a patient at different times. The voxels are not directly comparable.

each image to compensate for the difference in position (translation) and orientation (rotation). Then we can
compare the two images, and apply automatic computerized tools to detect and quantify evolving processes (cf
Figure 2). There are several existing automatic methods to study the lesions of multiple sclerosis in time series:

e With a single image, it is possible to threshold or to study the image intensity to segment lesions [ZFE9S].
Unfortunately, thresholding does not always make it possible to distinguish the lesions from the white
matter.

e It is possible to subtract two successive images to find areas where the lesions have changed. But this
method has two major problems. First, the subtraction is extremely dependent on the rigid registration
[HSOT95], [Lem97|. For instance, we show in Figure 3 an evolving lesion that appears in the image of
the subtraction as a dark hole. But when the registration is inaccurate, it is hard to distinguish evolving
lesions: the edges of the anatomical structures appear (cortex, ventricles, etc.) and give the same apparent
information as the lesions. Secondly, the subtraction only characterizes the difference of intensity between

!D" Guttman and D" Kikinis
2http:/ /www.vision.ee.ethz.ch /mastyner /biomorph /biomorph.html
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Figure 2: Two images of a patient at different times have been registered. The vozels are now comparable.

1 F i i
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Figure 3: Comparison between two subtractions with respect to the rigid registration. Left: correct rigid registra-
tion: it is easy to detect lesions that evolve (e.g. black hole for a shrinking lesion). Right: approximative rigid
registration: all the anatomical structures appear (e.g. the ventricles, the edges of the brain) and it becomes very
hard to distinguish lesions.
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two images. The image of the subtraction does not give a contrasted image with respect to the evolution
ratio, but only with respect to the difference between the intensity of the lesion and the intensity of the
background. For example we show in Figure 4 that if we threshold the image of the subtraction, only
some parts of the evolving structures are detected. Moreover the threshold value is not related to the
amplitude of the evolutions as can be seen in Figure 4 where a series of threshold values is applied to a
synthesis example.

image 1 image 2 image2 - image 1

image2 - imagel <-0.7 image2 - imagel < -0.5 image2 - imagel <-0.25 image2 -imagel <-0.1

O,

4 J _
« ) .
image2 - imagel > 0.1 image2 - imagel >0.3
cC C
o v J

Figure 4: Different threshold values applied to an image of subtraction. For each value, only some parts of the
evolving structures are detected. Moreover, the threshold value is not related to the amplitude of the evolutions.

e With n images, it is possible to follow the intensity of each voxel in time [GWG*98]. Although very nice
results are obtained with perfectly rigidly aligned, the approach remains sensitive to the rigid registration,
and there is no direct relation between the amplitude of evolution and the variation of voxels intensity.
Moreover, this method does not take into account the spatial correlation between neighbouring voxels.

1.3 A new method based on the displacement field

Our idea is thus to avoid a voxel by voxel comparison and to use the “apparent” motion between two images.
Figure 5 shows the different stages of the automatic processing and gives an overview of this report. First,
images are aligned by a rigid registration. Then we compute the displacement field to recover the “apparent”
motion between images with a non-rigid registration algorithm. We focus on the detection of the regions of
interest of the field thanks to vector field operators, and use them to segment evolving lesions. This work is a
natural continuation of the previous research work of Thirion and Calmon [TC97b].

2 Computation of the displacement field

2.1 Rigid registration

First we compute a rigid registration with an algorithm which matches “extremal” points defined as the maxima
of the crest lines of the images [Thi96]. Feature points called “extremal” points are automatically extracted
from the 3D image. They are defined as the loci of curvature extrema along the “crest lines” of the isosurface
corresponding to the zero-crossing of the Laplacian of the image. Based on those stable points, a two-step
registration algorithm computes a rigid transformation. The first step called “prediction” looks for triplets of
points from the two sets which can be put into correspondence with respect to their invariant attributes. The
second step called “verification” checks whether the 3D rigid transformation computed from the two correspond-
ing triplets is valid for all the other points. A study of the accuracy of this algorithm, especially for aligning
MS data, can be found in [PT97].

INRIA
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Segmenation

Rigid Non-rigid Vector field
registration registration operators

Time 1
Region of D
interest 1
in 3D
3v¢
3D displacement o
field
IS O
Time 2 o .
Time 2 registered Region of @)
interest 2
) 4 in 3D
L "

iy X

Figure 5: Method of detection and segmentation of evolving processes using the displacement field.

2.2 Non-rigid registration

We compute the 3D displacement field with a non-rigid algorithm based on local diffusion [Thi98]. This
algorithm diffuses the first image into the second one. Each point of the second image “attracts” or “repels” the
point that has the same coordinates with the first image according to their difference of intensity. All these forces
are regularized and deform the second image. The process is iterated based on a multi-scale scheme. At the end,
each point P(x,y, z) of the reference image has a vector u(u1,u2,us) that gives its apparent displacement (cf
Figure 7). As we can see in Figure 6, We can also defined the deformation which is a function ¢(¢1, @2, @3)
that transforms the point P(x,y,2) in the point P'(2’,9’, z'). We can see in Figure 6 the deformation function
and the displacement field between two images.

Image 1 Image 2

Plryzls (xy.2)

-]
bl

TR
A5 Y%

Figure 6: Definition of the displacement u and the deformation ¢ of a point P.

We have thus:

¥ = 93""“1(377%2) :(,251(33,’!},2)
?// = y+u2(xayvz):¢2(xayaz)
z = Z+U3($ay7z):¢3($ayaz)

This apparent displacement field u gives an idea of the time evolution between two images. We can compute the
two fields: from image 1 to image 2, and from image 2 to image 1, which contain complementary information
as we will see in section 4.1. Figure 7 shows the vector field from 1 to 2 around a lesion, emphasizing a radial
shrinking. Figure 8 shows the effect of the vector field from 2 to 1 on a regular grid on the global image, and
on a region around two evolving lesions. We can see the effect of a shrinking and of an expansion on the grid.

RR n° 3559
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image 2 displacement field (zoom)
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Figure 7: An example of the computation of the “apparent” displacement field thanks to a non-rigid registration
algorithm. Notice how it emphases the shrinking lesion.

deformed grid with field
from2to 1l

Figure 8: Application of the displacement field on a 3D grid.
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Figure 9: The point x at time 1 is coupled with a 8D wvector of apparent displacement u(x) that gives the point
z’ at time 2. Let us compute the length variation through time of the couple of points (z,é6x) that are very close.

3 Vector field operators

3.1 Principle

The vector field operators should transform a 3D vector field in a simpler representation that is a 3D scalar
image. This scalar image should be contrasted with respect to the time evolutions. Moreover we need to
introduce operators that have a physical meaning for a better interpretation.

3.2 The Jacobian operator
3.2.1 Mathematical expression and physical meaning

We introduce as an operator the Jacobian of the deformation function, ¢(¢1, @2, ¢3), as inspired from [DVR*96].
This operator is widely used in continuum mechanics [BN97] [WMG97]. The Jacobian of ¢ at point P is defined
as:

9¢1  O9¢1 94
. 55, 8% &%
Jacobian = det(Vp¢) =det | F2 S 3

] oz
0ds  0ds  Ods
Oz dy

It can also be written with the vector displacement field u(uy,us,us) at P:

Qui 4 q duy uy
oz oy oz
det(V,¢) = det(Id + V,u) = e L S
Ousg Oug Oug +1
oz Jy 0z

It is useful to recall a physical interpretation of the Jacobian operator in terms of local variation of volume.
With the notation of the Figure 9, each point x at time 1 is coupled with a 3D vector of apparent displacement
u(x) that gives the point 2’ at time 2. Let us compute the length variation through time of the couple of points
(2,2 + éx) which are very close.

62" = éx+u(z+6r) —u(z) =6z + Vu-8x + o(||6z]|*) (As we assume éx small)
' ~ (Id+Vu)-éx = (V@) -bx (In a first order approzimation)

This result allows to compute the local volume variation around the point x by:

V' = det[dz’, 86y, 62"] = det[V¢ - 6x,V¢ -6y, V- 6z] = det[V¢] - det[éx, by, 62]

‘6V’ ~ Jac, (¢) ~5v\

Thus, the evolution %—“//’ of a small volume in time is given by the Jacobian of the deformation function ¢. When
Jac, (¢) > 1 there is a local expansion at point P, and when Jac, (¢) < 1 there is a local shrinking at point P.

RR n° 3559
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image 1 image 2

\: (0] (X)

X +

(R,t) -> misregistration
+
\ W / ~_ |

Y’ = U(x) ¥ Ro D(X) +t

Figure 10: ¢ is the deformation function for a perfect rigid registration, and i is the deformation function when
there is a misregistration (R,t). We have ¢y = Ro ¢ + t.

3.2.2 Robustness of the Jacobian with respect to misalignment

Figure 10 shows what happens when two images are not perfectly aligned: the deformation function %, which
is measured, is different from the theoretical one ¢. The misregistration is given by a residual rotation R and
translation t. We have ¢ = Ro ¢ + t.

Then we have:

Jac (¢¥) = det(Vy) =det(V(Ro ¢ +t)) =det(R Vo) = Jac(¢)

Therefore the Jacobian of the theoretical deformation function (for a perfect rigid registration) is equal to
the Jacobian of a measured deformation function (whatever the misregistration). Of course this requires that,
even in the case of an approximate alignment of images, the non-rigid registration still computes a correct
displacement field. In our case the rigid registration is performed because the non-rigid registration algorithm
we use needs a good initial alignment to give a good result. Nevertheless, the rigid registration does not have
to be as accurate as for the subtraction method where a better or equal to one voxel precision is required.

3.2.3 Computation and application of the Jacobian

We have seen that the computation of the Jacobian of the deformation ¢ can be performed directly with the dis-
placement field u. We need to compute the first 9 derivatives of the displacement field u: %“;z , aa“” , 86“; e 86“? .
For a faster computation we use recursive filtering that gives an image for each derivative. TIylen, we need to
store in memory the 9 derivatives to compute the Jacobian and for an image of 256 x 256 x 180 this requires
about 425M-bytes of memory. So to avoid overfilling the memory space we compute the Jacobian on sub-images
and then we fuse the different sub-results which include an overlapping border to avoid side effects.

The Jacobian gives a contrasted image with respect to the evolution amplitude. The more contrasted areas
tend to correspond to shrinking or growing lesions. In Figure 11 we see that an important shrinking of a lesion
between two images gives a dark region in the Jacobian image. On other areas, the value is almost constant
and very close to 1, which indicates no apparent variation of volume. A zoom around a lesion shows that darker
areas correspond to shrinking lesions.

3.3 Other operators

Calmon and Thirion have developed another vector field operator based on the divergence and the norm of the
displacement field u [T'C97a] [TPS97]:

. . 6u1 3uz aU3
norm - div(P) = [u(P)div u(P) = [u(P)|(Got + 52 + F)
This operator has no simple physical meaning even if the sign of the operator gives an information about
shrinking (negative values) or expansion (positive values). As we have no physical interpretation of the value,
it is difficult to automatically threshold the image to extract the regions of interest.

INRIA
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image 1 Jac ($1-2)

Figure 11: Application of the Jacobian: we can see a lesion that shrinks.

Prima et al. proposed another operator which gives the local variation of volume [PTSR98]. A cell of voxels
of volume is V7 is deformed to a complex polyhedron which volume V3 is computed. Then % is calculated.
Note that another algorithm to compute V, is given in [CRET98]. This operator is directly related to the
Jacobian:

Vo=V Va
= ——-1~Jac-1
T T ac

Figure 12 shows the application of these three operators on the same displacement field. In particular we
can notice how the Jacobian and the discrete computation of the relative variation of volume are similar. The
advantage of our approach is that it provides a continuous framework for a computation (at any scale) of the
Jacobian.

|[u]|div u discrete computation of Jacobian
Y~ (Jac (¢) = 1)

Figure 12: Comparison between different existing operators

RR n° 3559
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4 Thresholding and segmentation

4.1 Method and results

We can extract the areas that correspond to a significant time evolution. It is possible to find a uniform threshold
over the whole Jacobian image relying on its physical interpretation in terms of local variation of volume. We
chose an empiric threshold of 0.3 for significant shrinking. An example in Figure 13 shows that it gives a good
segmentation of a shrinking lesion.

Figure 13: The threshold det(V¢) < 0.3 makes it possible to segment shrinking lesions.

In fact, we are going to focus only on the shrinking areas. We can see in Figure 14 that a better description
is provided with the shrinking field. If there is an important expansion locally between images 1 and 2, we
would need a one to many mapping due to limited resolution of the image. To avoid this, we consider only
shrinking regions from 1 to 2, and then shrinking regions from 2 to 1. By thresholding shrinking areas we obtain
the segmentations s;_.5 in the first image, and s5_,; in the second image. Then we have to recombine those
two information: the whole segmentations in image 1 and 2 are given by S12(t1) = [s1_2] U [u2—1(s2-1)], and
S12(t2) = [s2-1] U [u12(s1-2)]

Figure 15 shows a shrinking lesion and a growing lesion with the corresponding displacement field and
Figures 16 and 17 show automatic segmentation results obtained at two times.

4.2 Time series segmentation

In Figure 18, we show that with the fields between images 1 and 2 and between images 2 and 3, we can compute
segmentations Sp» in the images 1 and 2 and Sa3 in the images 2 and 3. Then we propagate the segmentations
S12 and Sa3 respectively to times ¢3 and 1, thanks to the vector fields uz; and usz. Then by addition, we
obtain a segmentation of the lesions in all the images of a series. In Figure 19, we can see the segmentations of
lesions at three times.

INRIA
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N\

field from 1 to 2 (expansion) field from 2 to 1 (shrinking)

» ‘ N /
Y AN

evolving lesion or anatomical structure

Figure 14: The information is richer when we look at the shrinking field. Left: If there is a large expansion, the
direct displacement field cannot express that one vozxel should deform to several vozels. We would need a one to
many mapping due to limited resolution of the image. Right: Thanks to the reverse field, a better description
of the phenomenon is possible.

Figure 15: Local results of evolving lesion segmentations with the vector field. Left: a shrinking lesion. Right:
a growing lesion.

5 Robustness with respect to rigid alignment

To study the robustness with respect to the rigid alignment, we have considered two registered images and
we have shifted the second one, with a 1 degree rotation centered on the middle of the image and then with
a translation of (1,1,0). We can compare the results obtained by subtraction (Figure 20 top) and with our
method (Figure 20 bottom) that remains stable.

6 Conclusion

In this report we proposed a new method to study multiple sclerosis lesions evolution through time based on
the apparent displacement field between images. Thanks to the Jacobian operator we can find the significant
evolving areas of images and we are able to segment the evolving lesions. This method is robust with respect
to the rigid alignment. We are currently applying our approach to whole time series and we should be able to

RR n° 3559
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Figure 16: Segmentation of evolving lesions (Brigham €& Women’s Hospital data,).

image 1

Figure 17: Segmentation of evolving lesions (BIOMORPH data,).
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t1

: t2 t3
Jac (Id +uy, ) Jac (Id +u,;)
U :

J
Segmentatlon S, Segmentatlon S,

/S5, )Y \ /

523 (t3)

S53 (11) = Uy, [8,(t2)] 51,03 =[5, (2)]

s(t) I S3) ‘

Figure 18: Method to have time series segmentations

Figure 19: Thanks to the segmentation of the evolutions between times 1 and 2, and between times 2 and 3, it
s possible to visualize the lesions evolution between the 3 successive acquisitions

RR n° 3559



16 Rey € Subsol €9 Delingette €9 Ayache

Figure 20: Left: results with a good rigid registration (top: the subtraction; bottom: the automatic segmentation,).
Right: results with a misalignment (top: the subtraction; bottom: the automatic segmentation). We can see that
the subtraction is very hard to study when there is o misalignment, and that the study of the vector field with
the Jacobian operator is robust with respect to the rigid alignment.

INRIA
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show such results very soon. Then we will compare our results with manual and other automatic segmentations
[BC98]. This will be done within the BIOMORPH project. We also plan to apply our approach to study the
“mass effect” by quantifying the evolution of anatomical structures such as the cerebral ventricles or the interface
between grey matter and white matter.
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