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Abstract. H 2 -optimization removes the stochastics from LQG optimization (Doyle, 
Glover, Khargonekar, and Francis, 1989.) It relies on the observation that the cus- 
tomary signal-based mean square criterion of LQG optimization may be re-inter- 
preted as a system norm (in particular, the 2-norm), without direct reference to the 
signals that are involved. A moment's thought, however, reveals that the H 2 -para- 
digm allows the consideration of design problems that the conventional LQG for- 
mulation and solution does not permit. These extended problems include quite natu- 
rally frequency dependent weighting functions and colored measurement noise 

Although LQG optimization has been generalized to include these "singular" prob- 
lems a long time ago these results are not widely used for control system design and 
no standard software appears to be available for their application. Nevertheless, the 
extra flexibility provided by the general H 2 -problem is quite attractive. Moreover, 
the H 2 -paradigm allows treating the stochastic problem parameters such as noise 
intensities as the design parameters that they really are. Frequency dependent 
weighting functions permit to design for integrating action in a fashion that is consi- 
derably less ad hoc than is usual in the LGQ context. They also provide other loop 
shaping tools for robust control design such as explicit control of high-frequency 
roll-off. 

After surveying the potential applications of H 2 -optimization some of the solution 
algorithms that are currently available are reviewed. The best-known solution of the 
standard H 2 problem is described by Doyle, Glover, Khargonekar, and Francis 
(1989) but applies to a limited class of problems only that does not extend much be- 
yond conventional LQG. Early polynomial matrix solutions (Hunt, ~ebek and Ku- 
6era, 1994) suffer from complexity. Recent versions of the polynomial matrix solu- 
tion (Meinsma, 2000; Kwakernaak, this paper) and the descriptor solution (Takaba 
and Katayama, 1998; Kwakernaak, this paper) offer implementations that are suit- 
able for a wide and flexible class of useful design applications. 

Implementations of both algorithms have been tested with the help of the Polyno- 
mial Toolbox for MATLAB (5~hyw.poJv,x~cgtn). The paper concludes with several 
sample applications and a design example. 
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1. INTRODUCTION 

H 2 -optimization removes the stochastics from LQG 
optimization (Doyle et al., 1989). The block diagram 
of Fig. 1 shows the LQG paradigm. The plant P is 
described by the state differential equations 

2(t) = Ax(t) + Bu(t) + Fv(t) 

where the white noise v models the disturbances. The 
controlled output z and the measured output y are 
given by 

z(t) = Dx(t) 

y(t) - Cx(t) + w(t) 

where the white noise w represents the sensor noise. 
Assuming that the controlled output z and the input u 
are suitably scaled, LQG optimization amounts to 
finding a feedback compensator K that stabilizes the 
system and minimizes 

l irn E(z  T (t)z(t) + u r (t)u(t)) 

This famous and seminal problem has been widely 
studied and its solution is of  course well known. 
Under suitable assumptions about the controllability 
and observability of the plant the optimal compensa- 
tor is the interconnection of a Kalman filter and a 
state feedback law. Finding the Kalman filter and the 
feedback law requires solving two algebraic Riccati 
equations. 

lq Y 

Fig. 1. Feedback system for LQG optimization 

The formulation of the LQG problem and its solution 
require familiarity with the theory of stochastic 
processes. We recall how, first of all, the LQG prob- 
lem may be generalized to the so-called "standard 
problem" and, next, the stochastic interpretation may 
be eliminated. 

It is easy to see that the configuration of Fig. 1 is a 
special case of the "standard" configuration of Fig. 2. 
G represents the generalized plant, v comprises the 
driving signals for the shaping filters for distur- 
bances, measurement noise and reference inputs, z is 
the control error signal, y is the measured output and 
u the control input. The system of Fig. 2 reduces to 
that of Fig. 1 by redefining 

U ~ , ,  (Gll(S) 
° t s )  = [G21 (s) 

Fig. 2. Standard configuration 

c12(s)] 

G22 (s)J 

with 

;l 
G21(s) = [C(sl-  A)-IF I1, G22(s) = C(sI A)-I B 

The LGQ problem now amounts to the minimization 
of the steady-state value of E(zr(t)z(t)) .  In the 
block diagram of Fig. 2 the output z may be ex- 
pressed in terms of  Laplace transforms as 

z = H(s)v 

where H is the closed-loop transfer matrix 

H(s) = G 11 (s) + G 12 (s)[l - K(s)G22 (s)]-I K(s)G21 (s) 

If v is white noise with intensity matrix I and the 
closed-loop system is stable then 

tlim E(z  T (t)z(t))= 2@tr S H T (-jco)H(jo))do) 
- o O  

The expression on the right-hand side is the square of 
the 2-norm 

of the stable transfer matrix H. Hence, LQG optimi- 
zation is tantamount to minimization of the 2-norm 
of the closed-loop system. This minimization prob- 
lem is the celebrated H 2 problem. 

2. SCOPE OF THE H 2 PROBLEM 

The H e formulation replaces the stochastic mini- 
mum least squares interpretation of  LQG optimiza- 
tion with the minimization of the 2-norm of the 
closed-loop system. One considerable advantage of 
this viewpoint is that there is no need to interpret 
parameters such as the intensity of  the various white 
noise processes that enter into the LQG problem as 
stochastic data, whose values need to be determined 
by modelling or identification experiments. They can 
simply be taken as tuning parameters for the design 
process. In LQG practice this is of course common 
procedure. A pedagogical advantage of  the H 2 for- 
mulation is that there is no need to go into the intri- 
cacies of white noise and the pitfalls of  the proof of 
the separation theorem may be detoured. 
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The insight that conventional LQG optimization 
merely is a special case of the far more general 
"standard" H 2 problem has important consequences. 
The conventional LQG problem, for instance, is im- 
mediately seen to be a special case of the generalized 
LQG problem of Fig. 3. This generalized problem 
allows for 

• colored disturbances and measurement noise, 
whose frequency contents are determined by the 
shaping filters V 1 and V2, and 

• frequency weighting of the controlled output and 
of the input determined by the weighting func- 
tions W 1 and W 2 

Colored disturbances and frequency dependent 
weighting of  the controlled output may of course eas- 
ily be handled by conventional LQG optimization. 
Colored measurement noise and frequency dependent 
weighting of  the input, on the other hand, lead to 
singular versions of  the LQG problem. Although 
LQG optimization has been generalized to include 
these singular problems a long time ago (some of 
them are already considered in Kwakemaak and Si- 
van, 1972) these results are not widely used for con- 
trol system design and no standard software appears 
to be available for their application. The generalized 
LQG problem actually is the H 2 version of  the 
mixed sensitivity problem (Kwakernaak, 1993) and is 
further discussed in Section 3. 

In later sections of this paper solutions of  the H 2 
problem are discussed that take singular problems in 
their stride. Standard software for solving general 
H 2 problems therefore constitutes a far more power- 
ful design tool than software for standard LQG solu- 
tions alone. 

3. H x CONTROL SYSTEM DESIGN 

In this section we discuss the application of  H 2 
optimization to linear control system design. Control 
system design aims at achieving 

1. closed-loop stability, 

2. closed-loop performance, and 

3. closed-loop robustness 

These goals are not as competitive or mutually 
exclusive as is sometimes believed. In fact, the three 
targets may simultaneously be accomplished by 

• making the loop gain large at low frequencies, 

• making the loop gain small at high frequencies, 
and 

• keeping the loop gain away from the critical point 
-1 at crossover frequencies 

-72 V I 

+ "71 

+ 

v2 

Fig. 3. Generalized LQG problem - the H 2 mixed 
sensitivity problem 

The loop gain is an open-loop quantity. It has a direct 
effect on important closed-loop transfer functions, 
which determine the 2-norm, such as the sensitivity 
S, and the complementary sensitivity T. For the sin- 
gle-loop (but possibly multivariable) configuration of 
Fig. 3 these closed-loop system functions are 

S(s) = (I + P(s)K(s))  -1 

T(s) = P(s)K(s) ( I  + P(s)K(s))  -I 

The sensitivity function S determines the effect of the 
disturbance on the output of the control system. The 
complementary sensitivity T satisfies the identity 
S + T = 1, and is important for the closed-loop res- 

ponse, the effect of  measurement noise and the a- 
mount of control effort. In terms of  these two func- 
tions the design targets may be rephrased as follows: 

* make the sensitivity S small at low frequencies, 

* make the complementary sensitivity T small at 
high frequencies, and 

• prevent both S and T from peaking at crossover 
frequencies 

We discuss how the configuration of Fig. 3 may be u- 
tilized to achieve these targets. If we choose V 2 = 0 
then we have 

[z,l_[<sv, l 
z=j-Lw2u ,jv, (1) 

U is the input sensitivity function 

U(s) = K(s)(1 + P(s)K(s))  -l 

It is directly related to the complementary sensitivity 
function T as T = P U .  Shaping U is equivalent to 
shaping T. Equation (1) shows that the closed-loop 
transfer function H is given by 

=F <sV' l 
H LW2UVI] 

Accordingly, in the SISO ease minimization of  the 2- 
norm amounts to minimization of 
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_~ (1< (j~o)s(j~)v, (j~o)l 2 + Iwz (j~ow(j~o)~ (jo~)l z) do~ 
(e) 

This is clearly the H 2 version of the well-known 
mixed sensitivity problem of H~ optimization 
(Kwakernaak, 1993) 

We expect to achieve the design goals by suitable 
choices of  the functions VI, W 1 and W2, and present 
a number of  considerations for the choice of these 
functions. The discussion is limited to the single-in- 
put single-output case but similar arguments apply to 
the MIMO case. 

Choice of  V l . For the choice of the shaping filter V I 
we let us guide by the LQG problem. For the stan- 
dard LQG problem (assuming non-inferential con- 
trol, that is, D = C) we have Vl(S)= C ( s l - A ) - I F .  
The precise form of  this function of course depends 
on the choice o fF .  Commonly, especially when loop 
transfer recovery (Saberi, Chert, and Sannuti, 1993) 
is pursued, F is set equal to B so that 

V~(s) = P(s) = C ( s I -  A)< B 

P is the open-loop plant transfer function. This 
choice of  V 1 therefore means that the frequency con- 
tent of  the disturbance is shaped according to the 
open-loop plant frequency response function. 

This choice is not always adequate, however, because 
often low-frequency disturbances prevail. This may 
be accounted for by including a supplementary factor 
( s + a ) / s  in V 1 , so that 

s + ~  
V 1 (s) = P ( s ) - -  (3) 

s 

The constant a is a design parameter. Effectively, 
the presence of  a pole at 0 in V l forces the sensitivity 
function S(s) to be 0 at s - - 0 .  Inspection of  (2) 
shows that if  S does not have a zero at 0 then the 2- 
norm cannot be finite. 

Since S(0) = 0 can only be achieved by integral ac- 
tion, this choice of  the weighting function implies 
that the resulting design necessarily involves inte- 
grating action. If  the plant has "natural" integrating 
action (that is, P has a pole at 0) then it is not neces- 
sary to include a pole at 0 in V 1 except if  it is desired 
to design a type k system with k > 1. 

If  the plant transfer function P is strictly proper then 
V 1 as given by (3) is also strictly proper. For sensible 
control systems the sensitivity function S has the 
property S(oo)= 1 and, therefore is proper but not 
strictly proper. For this reason, whichever way the 
weighting function V l is chosen the product W1V 1 
needs to be strictly proper to allow convergence of 
the integral in the expression for the 2-norm. 

Choice of  Vv]. Letting the weighting function W1 (s) 
have a pole at 0 may also enforce integrating action. 

This has the same effect as letting V l(s) have such a 
pole. If we choose V l(s) to have a pole at 0 then 
Wl(s ) may be used for fine tuning. A safe initial 
choice is W 1 (s) = 1. 

Choice of  W 2 . Selecting W 2 is slightly more intri- 
cate. Consider the situation that V 1 is chosen to have 
a pole at 0 to achieve integrating action. Inspection of 
(2) shows that to make the 2-norm of the closed-loop 
system finite necessarily W 2 needs to have a zero at 
0 that cancels the corresponding pole of V 1 (because 
U can never have a zero at 0 if S(0) = 0 .) The reason 
for this zero is that if the closed-loop system is to 
reject constant disturbances then we cannot penalize 
constant control inputs. 

The second function of  W 2 is to control the high- 
frequency roll-off of the compensator transfer func- 
tion K and, hence, that of the input sensitivity U and 
the complementary sensitivity T. In the SISO case we 
have 

U(s) = K(s) T(s) P(s)K(s) 
1+ P(s)K(s) '  1+ P(s)K(s) (4) 

Assume that the plant transfer function has pole 
excess e > 0. The pole excess is the difference be- 
tween the number of poles and the number of zeros, 
that is, the difference of the degree of the denomi- 
nator and that of the numerator. The pole excess of a 
transfer function equals its high-frequency roll-off if 
the latter is expressed in decades per decade. 

Inspection of (4) shows that if the compensator has 
nonnegative roll-off then the high-frequency roll-off 
of U equals that of the compensator K, while the 
high-frequency roll-off of T equals e plus the roll-off 
of  the compensator. 

Inspection of  (2) reveals that to ensure convergence 
of the integral the high-frequency roll-off of 
W2(s)U(s)Vl(S ) needs to be at least 1. If  V 1 has roll- 

off 1, say, then it is enough if  W2U has roll-off 0. 
We can make sure that U has roll-off 1 or more by 
letting W 2 have a zero-pole excess, that is, by choos- 
ing W 2 to be nonproper. Here are two options for the 
choice of W 2 , both under the assumption that as ar- 
gued previously it needs a zero at 0 when designing 
for integral control: 

• W2(s)_ ps 
s + ~  

In this case U is expected to have at least zero 
roll-off. The constants p and a are available for 
fine-tuning. 

• W2(s)= ps ( l + r s )  
s + t ~  

U now has a minimal roll-off of 1 dec/dec, 
which is expected to set in at the frequency 
1/r .  
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In the design example of Section 7 we demonstrate 
the procedure. 

4. SOLUTIONS OF THE H 2 PROBLEM 

Since Doyle et al. (1989) introduced the standard 
H 2 problem a number of solutions have become 
available. In this presentation we mention the origi- 
nal state space solution of Doyle et aL (1989), a poly- 
nomial matrix solution by Hunt, gebek, and Kucera 
(1994), a frequency domain solution by Meinsma 
(2000), another polynomial matrix solution described 
in Section 5, and a descriptor solution by Takaba and 
Katayama (1998), which is extended in Section 6. 

The starting point of the state space solution (Doyle, 
Glover, Khargonekar and Francis, 1989; Zhou, Doyle 
and Glover, 1995) is the state space representation 

k(t) = Ax(t) + BlV(t ) + B2u(t ) 

z(t) = ClX(t ) + D12u(t ) 

y(t)  = C2x(t ) + D21v(t) + D22u(t ) 

of the generalized plant of Fig. 2.The H 2 problem 
may be solved by reducing it to an LQG problem. 
The derivation necessitates the introduction of the 
following assumptions: 

• The system :~(t) = Ax(t)+B2u(t), z(t) = ClX(t ) 
• is stabilizable and detectable. 

• The system .~(t) = Ax(t)+BlV(t) ,  y ( t )=  C2x(t ) 
is stabilizable and detectable. 

• The matrix D1TDI2 is nonsingular. This is 
equivalent to the assumption that Dl2 is tall and 
has full column rank. It is basically the LQG as- 
sumption that the weighting matrix of the control 
input be nonsingular. 

• The matrix D21DT1 is nonsingular. This is equi- 
valent to the assumption that O21 is wide and has 
full row rank. It is basically the LQG assumption 
that the observation noise is white. 

Under these assumptions the optimal output feedback 
controller is 

~c(t) = Arc(t) + B2u(t ) + K [y(t) - C2.~(t ) - D22u(t)] 

u(t) = -FSc(t) 

The observer and state feedback gain matrices are 
given by 

F = (DITDI 2 )-1 ( B T X  + DTI2CI) 

The symmetric matrices X and Y are the unique posi- 
tive-definite solutions of the algebraic Riccati equa- 
tions 

Ar x + xA + cr ct - ( XB2 + cr z~2 )( z~r z~2 )-~ ( a r  x + c~ cL) = o 

AY + YA y + BIBTI - (YC~ + BID~I)(D21D~I)-I(c2Y + D21BI T) = 0 

These AREs are conveniently solved by application 
of the ordered Schur transformation to the appropri- 
ate Hamiltonian matrices (Laub, 1979). 

The solution is simple and elegant but the assump- 
tions effectively restrict H 2 optimization to the LQG 
framework. 

5. POLYNOMIAL SOLUTION 

Various polynomial solutions of the standard H 2 
problem are available. That by Hunt, ~ebek and Ku- 
~em (1994) builds on the well known polynomial sol- 
ution of the LQG problem of Kurera (1979), based 
on completion of squares and Diophantine equations 
(see also Kurera, 1996). Algorithmically the solution 
is rather involved. 

In a paper presented during this conference Meinsma 
(2000) describes an elegant solution of the standard 
H 2 problem based on factorizations over polynomial 
matrices and stable matrices. The details of the algo- 
rithm are not completely worked out, however, and 
the assumptions under which the problem is solved 
are not quite as general as desired. 

We consider another polynomial solution, which re- 
lies on representing the standard plant G in the left 
and right coprime polynomial matrix fraction forms 

D221 [.N2L N22J LN2t N2~_ILZhl 

We furthermore define D o as a greatest left divisor 
of D22 and N22 so that D22 =Do/322, N22 = 
DON22 with 1322 and ?~22 left coprime, and Do as 
a greatest right divisor of D22 and -~22 so that /322 
= [)22Do, N22 = N22/3o with D22 and ~/22 right 
coprime. As a result we have the left and right 
coprime fractions G22 =/3~1~'22 = N22/9~ 1 . 

Assumptions: For the solution of the H 2 problem 
we introduce the following modest assumptions: 

1. G12(s ) has full column rank for almost all s and 
has no zeros on the imaginary axis. 

2. G21(s ) has full row rank for almost all s and has 
no zeros on the imaginary axis. 

If Gl2(S ) does not have full column rank or G21(s ) 
does not have full row rank then the plant input and 
the measured output may normally be transformed to 
meet the assumptions. 

The roots of the polynomial matrices Dll and D O are 
"fixed" poles of the closed-loop system, that is, they 
stay in place no matter what the compensator is. If 
these two polynomial matrices have any right-half 
plane roots then the closed-loop system cannot be 
stabilized. Fixed poles frequently arise from shaping 
filters. Strictly anti-stable poles of shaping filters 
may often be reflected into the left-half complex 
plane by spectral factorization. Shaping filter poles 
on the imaginary axis are useful for designing for 
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integral control or vibration suppression and, hence, 
need to be allowed. Thus, our next assumption is 

3. The fixed poles, that is, the zeros of D 11 and D O , 
lie in the closed left-half complex plane (includ- 
ing the imaginary axis). 

Under these three assumptions the H 2 problem may 
have no solution because no compensator exists that 
makes the closed-loop transfer matrix strictly proper 
and cancels the fixed poles on the imaginary axis in 
the closed-loop transfer matrix. Both are needed for 
the 2-norm to be finite. Hence, we need the final as- 
sumption 

4. There exists a compensator so that the corre- 
sponding closed-loop transfer matrix is strictly 
stable and strictly proper. 

The algorithm that is proposed detects whether or not 
a solution exists. 

Youla-Ku(era parametrization. The compensators 
that we consider stabilize the controllable part of the 
closed-loop system. The Youla-Ku~,era parametriza- 
tion of all such compensators is of the form 
K = YX -1 , where the polynomial matrices X and Y 
are given by 

X = X o +/~/22Q 

Y = Yo +/)22Q 

Q = PD~ 1 is the strictly stable "parameter," where P 
and Dcl are arbitrary polynomial matrices of the cor- 
rect dimensions such that Dcl is strictly Hurwitz. 
X o and Yo form a solution of the Brzout equation 

l =/)22 Xo -/~/22 Yo 

With this parametrization, the closed-loop transfer 
matrix is given by 

H =  Ho + NI2DolQDolN21 (5) 

where H o is the stable but not necessarily proper 
transfer matrix 

Ho = D?ll Nl l  - D?l I (Dl2Xo - Nl2ro)Dol N21 

Optimality condition. Given this parametrization it 
may be proved that if  the closed-loop transfer matrix 
H is strictly stable and strictly proper then it is 
optimal if  and only if 

O-IN21H-NI2 W-I (6) 

is strictly proper and strictly stable. Here we write 
H - ( s ) = H T ( - s ) ,  while qb and h v are a strictly 
Hurwitz polynomial spectral co-factor and spectral 
factor, respectively, defined by 

N21N2-1 = ~ - ,  NI2NI2 = qJ-W 

Construction of  the compensator. The optimal 
compensator may now be constructed as follows. By 
substituting the parametrization (5) of the closed- 
loop transfer matrix H into (6) we see that if H is 
strictly proper and strictly stable then a sufficient and 
necessary condition for optimality is that 

(hu -1 )- NI2HoN21 (qb -1 )- + WbolQOolC~ 

be strictly anti-stable and strictly proper. To deter- 
mine Q so that this condition is satisfied we decom- 
pose 

(W-I)-  NI2HIIN21(¢~-I) - = R_ + R+ 

with R+ strictly proper strictly anti-stable and 
R_ stable but not necessarily strictly stable and typi- 
cally not proper. We may now solve the optimal pa- 
rameter Q as 

Q = -DoW-IR_dO-IDo (7) 

If the parameter Q obtained from (7) does not make 
the closed-loop transfer matrix H strictly proper and 
strictly stable then the corresponding compensator is 
not optimal. In this case no optimal solution exists. 

The solution may be implemented by standard poly- 
nomial matrix operations such as available in the 
Polynomial Toolbox for MATLAB. 

The details of the proof and algorithm and an imple- 
mentation of  the algorithm for the Polynomial Tool- 
box for MATLAB are available at the website www. 
polyx,c0m. 

Example. Consider the generalized plant 

L l l  o j  

The closed-loop transfer matrix is 

H(s) = G I 1 (s) + G 12 (s)[I - K(s)G22 (s)]-I K(s)G21 (s) 

=Elol+E:::i  s, 
Inspection shows that there exists no compensator K 
that cancels the polynomial part of  H, and, hence, 
there is no compensator that makes the 2-norm finite. 
Application of  the algorithm results in the compensa- 
tor 

0.5 
g(s)  = - 

s + l  

For this compensator we have 

di)_l (s)N21(s)H_ (s)~ll2 (S)ti.t_l (s) = 2x]2 
s + l  ' 

0,f +31 l 
H ( s ) =  . k _ s + l j s +  1 
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The first expression is strictly stable and strictly 
proper, but the closed-loop transfer matrix H is non- 
proper. Hence, the compensator is not optimal. 

6. DESCRIPTOR SOLUTION 

Takaba and Katayama (1998) present the descriptor 
solution of the standard H 2 problem. Ku~era (1986) 
solves a scalar version of  the H 2 problem for des- 
criptor systems by polynomial methods. We discuss a 
somewhat different and more general solution than 
that of  Takaba and Katayama, which mixes descrip- 
tor and polynomial methods. The starting point is the 
descriptor representation 

Ex = Ax + BlV+ B2u 

Z = C l x  + D~lV+ Ol2U (8) 
y = Czx  + D21v 

of the standard plant G. Like the polynomial formula- 
tion the descriptor representation supports nonproper 
transfer functions, which may arise from the applica- 
tion of  nonproper weighting functions. 

Assumptions. The assumptions are the same as for the 
polynomial version of the problem. We require 

GI2 (s) = C 1 (sE - A) -1 B 2 + D 12 

to have full column rank for almost all s and 

G21 (s) = C2(sE - A)-I B1 + D21 

to have full row rank for almost all s. Neither GI2 
nor G21 is allowed to have zeros on the imaginary 
axis. Any fixed poles of the system may lie on the 
imaginary axis but not in the open right-half plane, 
and we assume the existence of  a compensator that 
makes the closed-loop system strictly proper and 
strictly stable. 

Preparation. The descriptor representation (8) needs 
to be arranged so that it has the following properties: 

1. There is no term D22u in the output equation for 
y. This causes no loss of  generality because if 
such a term is present then defining an additional 
set of  state variables x' = D22u eliminates it. 

2. The matrix Q = DieD12 is nonsingular. Again 
this causes no loss of  generality because the con- 
dition may be arranged to hold by introducing ex- 
tra state variables i f  needed. Suppose for instance 
that the entire term D12u is missing in the equa- 
tion for z. In this case we may add the term 
D12u + x' to this equation, with D12 an arbitrary 
full rank matrix of the correct dimensions, while 
at the same time including the equation 
D12u + x' = 0 in the descriptor equations. 

3. The matrix R = D21DT1 is nonsingular. Again, 
this causes no loss of generality because the equa- 

tions may always be rearranged so that the condi- 
tion holds. 

Optimality condition. The starting point for the 
derivation of the optimal compensator is again the 
condition that the expression (6) be strictly proper 
and strictly stable. We rewrite (6) in the form 

G~H-G~2 (9) 

The inner function G~2 =/V12t~ u-I has the property 

( c { ~ ) - c ~  = I 

and the co-inner function G~ = ~-IN21 satisfies 

Both functions are strictly stable and proper but not 
strictly proper. 

The computation of the inner and co-inner functions 
and the solution of the H 2 problem rely on the 
solution of two generalized algebraic Riccati equa- 
tions. The first of these GAREs is 

Xr A+ Ar x +cr q -(xT B2 +cIT I~2)Q-I(BT x + I~T2cI)=O 

xTE = ETx 

(lO) 
Given the correct solution X of this equation (see lat- 
er) the inner function G~2 is given by 

G~2 (s)Q 1:2 = ( c  1 - DI2F)(sE - A + B2F)-I  B2 + DI2 

where F=O-1(B X+ rCl). The other CARE 
that needs to be considered is 

rAr + A t  r + ~8 ,  r - ( rC~ + B, Dr21)ICkC2r + D2~B1 r)  = o 

y~ T = EyT 

(11) 

Defining K = (YC f +BIDT1)R -1 the co-inner func- 
tion G~] follows from 

R1/2G~ (s) = C 2 ( s E -  A + KC2)-I  (BI - KD21)+ D21 

Construction o f  the compensator. Takaba and Kata- 
yama (1998) consider the compensator given in de- 
scriptor form by 

E£c = AYe + B2u + K ( y  - C2:~ ) (12) 

u = -Fie - L(y  - C2.~) 

with the gains F and K as given. The additional gain 
L is yet to be determined. In the paper by Takaba and 
Katayama L is a constant matrix but we allow it to be 
a polynomial matrix. 

It may be proved that the compensator (12) makes 
the expression (9) stable for any choice of  the gain L 
but not necessarily strictly stable or strictly proper. 
The gain L needs to be chosen so that the closed-loop 
transfer matrix H is strictly proper so that also (9) is 
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strictly proper. The closed-loop transfer matrix H is 
actually given by 

i t 1 • 
H (S) = H 0 (s)  - G 12 (s)Q½LR½G~] (s)  

where H 0 is the closed-loop transfer matrix obtained 
by setting L = 0. Since both G~2 and G]{ are proper 
it follows that i f H  is strictly proper then 

i T . T 

• T . T 
= ( 

is also strictly pro~er. Therefore, L needs to be 
chosen ½ ½ such that Q L(s)R = P(s), where P is the 
polynomial part of 

This determines L uniquely. Given L, the compensa- 
tor is optimal only if the corresponding closed-loop 
transfer matrix H is both strictly proper and strictly 
stable. 

Since both (71/2 and G~{ are strictly stable H is 
strictly stable iff H 0 is strictly stable, which may be 
checked before computing L. If H 0 is not strictly 
stable then no optimal compensator exists. If after 
computing L the closed-loop system transfer matrix 
H is not strictly proper then no solution exists. 

The gain matrix L often is constant but it is not 
difficult to find examples where it is polynomial. I fL 
is polynomial then it needs to be converted to de- 
scriptor form to obtain an augmented descriptor rep- 
resentation of  the optimal compensator. Alterna- 
tively, (12) may be converted to polynomial matrix 
fraction form by elimination of .~. 

Solution of the GAREs. The GARE (10) may be 
solved by transforming the Hamiltonian-type matrix 
pencil 

[ B2Q-1B T sE-A+B2Q-1D1TcI 1 
- s e  T - A  T + cT  ~ 2 Q - I  B T - c T  c1 + cT D12Q-'1~T2c l 

(13) 

to anti-triangular form. By Clements' algorithm (Cle- 
ments, 1993; see also Kwakemaak, 1998, and Kwa- 
kemaak, 2000) we may determine an orthogonal 
matrix 

W = I  WI. W12 1 

LW21 W22J 

so that pre-multiplication of (13) by W and post- 
T multiplication by W brings (13) in the form 

I 0 sEI-AI I ( 1 4 )  
g sE2 A2 

with sE l - A  t anti-Hurwitz. The desired solution of 
the GARE now is given by 

T T -1 
X = WII (W12) = -W211W22 

and s E - A + B 2 F  is Hurwitz. If the system 
E,f = Ax + Bzu , z = Clx + Di2u is not stabilizable 
then the matrices WI2 and W2~ are singular and there 
exists no finite solution X o f  the GARE as needed. To 
resolve this difficulty, write 

FWI T = Q-I (BTwITI + DITCI W1T ) (15) 

It may be shown by decomposing the system into 
Kalman canonical form (Banaszuk, Koeiecki, and 
Lewis, 1992) that even if WI2 is singular this equa- 
tion has a (non-unique) solution for F that stabilizes 
the controllable modes and results in the correct inner 
function. 

The solution of the second GARE (11) is similarly 
obtained by transforming the matrix pencil 

I -B1B1T + BIDTI R-I D21B T sE-  A + BIDT, R-'C21 
1 

-se T-  A T +cf  R-1D2,,  c f  R-'c2 J 

to the Clements form (14), where now sEt - A  I is 
Hurwitz. If this transformation is accomplished by 

v =IV" Vt2 1 
Lv21 V22J 

then the desired solution is 

Y = - v s l v21  = v~r2(v~) -l  

and sE -  A + C2K is Hurwitz. In the event of  lack of 
detectability of the underlying system the compu- 
tation may be modified as in the case of the GARE 
(10). 

The details of the proof and algorithm and an imple- 
mentation of the algorithm for version 2 of the Poly- 
nomial Toolbox for MATLAB are available at the 
website www.polyx.co_0!. 

Example. Consider the standard H 2 problem defined 
by the block diagram of Fig. 4. 

The plant has transfer function 1/(s + 1). The block 
1/s is included to obtain integral control; the factor s 
in the weighting function es is needed to allow this. 

Taking c = 1 the generalized plant has a (non-mini- 
mal) descriptor representation given by 

U Z 1 

Z2 P 

Fig. 4. Sample H 2 optimization problem 
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0 0 1 

0 0 0 

0 0 0 

00i] 0 0 0 0 0 

0 -+= 0 0 1 0 x+ 

0j lo00, 
0 0 0 0 0 

I Zll I2 0 0 0 il 
z ~ / - - / o  o -1 o x+ 

yjL2O o o 

01 ] 
0 -1 u 

This representation has the required features. Nu- 
merical computation shows that the GARE (10) has a 
finite solution X that results in the required inner 
factor with gain 

F = [ - 0 . 5 3 5 9  -1.4641 1 2.7321 0] 

The GARE (11), however, does not have a finite 
solution Y but by solving an equation similar to (15) 
it may be found that the gain 

K T - - [ 0  0.5 0 -1.1892 1] 

realizes the desired co-inner function. With these 
data we may compute the inner and co-inner func- 
tions G{2 and G~] and the closed-loop transfer ma- 
trix H 0 for L = 0. We have 

H(s) = Hois)-  ai2(s)Q'/'t(s)R'/'O~is) 
_ 1 .I 4.2+1.2s ] 

1+ 1.7s+s 2 L- l+2 .5s+4 .4s  2 +l.2s 3 

1 L(s )  
l + l . 7 s + s  2 s(s + 2) 

The polynomial part 

[° l  
P(s) = 2.4 + 1.2s 

of  H 0 may be cancelled by taking 

L(s) = -3.2 - 1.2s 

From this, the optimal compensator may be found to 
be given by 

1 + 0.73s 
X ( s )  = 

S 

The compensator has integrating action as expected. 
The polynomial algorithm yields the same compensa- 
tor. 

7. APPLICATIONS 

The polynomial and descriptor algorithms for the 
solution of  the H 2 problem may be applied to vari- 
ous types of problems. 

Wiener filtering problem. A class of  Wiener filtering 
problems may be defined as follows. A message sig- 
nal x is given by 

Wiener filter 

Fig. 5. Wiener filter configuration 

x = PI ( s )v  

where v is a standard white noise process. The ob- 
served signal y is related to the message process by 

Y = P2 (s)v 

P1 and P2 are stable rational transfer matrices. It is 
desired to estimate the message signal x by filtering 
the observed signal y. 

Fig. 5 shows the system configuration. Inspection 
shows that the generalized plant that defines the H 2 - 
problem is given by 

o/!E:l 
G 

By way of example, suppose that x and y are related 
as 

y = x + n  

where the observation noise n is independent of  the 
message signal x. The message signal is generated by 
the shaping filter 

1 
x = ( s  + 1) - - - - - - -5-  vl 

with v 1 white noise, and the noise is given by 

2 coo 

n = s2 + 2(coos + COZo °'vz 

where the white noise v 2 is independent of  v 1 . We 
let co o =1,  ( = 0 . 0 1  and cr=0.1so that the meas- 
urement noise is not very large but has a relatively 
sharp peak at the cut-off frequency of  the message 
signal. This defines 

P2(s)I(sll)  2 S2+2CCOo s 

SO that 

[ 0 : 1 (s + 1) 2 

a(s)-- ~ coo2~, 
( s+l )  2 s 2 +2(cooS+coo 2 
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Both the polynomial and the descriptor algorithm re- 
turn the transfer function o f  the Wiener filter as 

0.91 + 0.018s +0.91s 2 
g ( s )  

l + 0 . 2 s + s  2 

It is a notch filter that removes the colored measure- 
ment  noise as best  as it can. Fig. 6 shows the Bode 
magnitude plot o f  the filter. 

y 

'7;: ,0, 

Fig. 6. Bode plot o f  the Wiener filter 

z.,t v~ 

i t 

z~ v 2 

z u 

yl y~ 

Fig. 7. MIMO problem 

MIMO system. Fig. 7 defines a MIMO control pro- 
blem. It features colored measurement  noise on both 
output channels, a constant disturbance model on the 
second input channel to ensure integrating action in 
both channels, and nonproper weighting functions on 
both inputs. The parameters are chosen as q = 1, 
r = 5 , a n d c  2 = 1 .  

The polynomial and descriptor algorithms both pro- 
duce the same MIMO compensator  with strictly 
proper transfer matrix 

V 0.45+ 2.6s+ 2.8s2 + 1. ls......~3 + 0.08s......~ 4 

. . . .  | 4.4+13s+17s2 +14s3 +5.6s4 +s5 

t~(s) ]0.94+4.4s+8s2 +6.9s 3 +2.3s 4 +0.17s 5 

L s( 4.4+13s+17s2 +14s3 +5.6s4 +s5) 

-0.033 - 0.8 ls - 0.56s 2 - 0.14s 3 - 0.0058s 4- 

4.4+13s+ 17s 2 +14s 3 +5.6s 4 +s  5 

1.9 + 3.4s + 3s 2 + 1.7s 3 + 0.42s 4 + 0.017s 5 

s(4.4 + 13s + 17s 2 + 14s 3 + 5.6s 4 + s 5 ) 

The compensator  provides the second channel with 
integrating action as planned. 

Design example. In this subsection we illustrate the 
design procedure for SISO systems outlined in Sec- 
tion 3. Consider the plant with transfer function 

1 + 0.2s 
P(s) : 

( s+  0.1)(s+ 10) 

The design specifications for the closed-loop system 
consist  o f  a bandwidth o f  1 rad/s, integral control and 
less than 3 dB peaking o f  the sensitivity and comple- 
mentary sensitivity functions. To achieve integral 
control we let 

s + a _ (1 + 0.2s)(s + a )  
V l (s) = P(s) 

s (s+O. 1)(s+lO)s 

with the design parameter ct to be chosen. Since the 
target bandwidth is 1 rad/s we expect that ct should 
be about equal to 1 rad/s or somewhat  larger. As ar- 
gued in Section 3 we let Vz(s ) = 0 and Wl(s ) = 1 and 
consider choosing 

Wz(s)=  ps ( l + r s )  
S + ~  

Setting r = 0 is expected to produce a proper but not 
strictly proper compensator  while choosing r > 0 is 
anticipated to provide the compensator  with a roll-off 
o f  1 dec/dec. 

The generalized plant is 

I Wl(slVl(s) Wl(s)P(sl-  

G(s) = { 0 W 2 ( s  ) 
! 
L - V 1  ( s )  -P(s) 

Thc polynomial and dcscriptor algorithms work 
equally wcll for this problem. Not much cxperiment- 
ing is needed to find that ~z = 2, /9 = 0.2 and r = 0 
yield a quitc acceptable dcsign with thc proper com- 
pensator 

7.23 l(s + 0.7077)(s + 9.7697) 
K(s )  - 

s(s + 5) 

which has integrating action as intended. The closed- 
loop poles are -0.7751 _+ j0 .6528 ,  -10.04 and - 5 .  
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Fig. 8 shows the sensitivity function and complemen- 
tary sensitivity function. They exhibit no peaking and 
the plots confirm that the closed-loop bandwidth is 1 
rad/s as required. Fig. 9 displays the response of the 
closed-loop system to a step disturbance and a step 
reference input. The reference signal r is supplied to 
the system in the form 

X(d/dt)u( t )  = Y(d/dt)y(t)  + r(t) 

This eliminates the numerator dynamics of the plant 
and leaves the option of using a prefilter to improve 
the response further. 

By assigning a nonzero value to the design parameter 
x additional roll-off of the compensator may be intro- 
duced. We expect that setting r = 0.1 lets the roll-off 
set in at about 10 rad/s. Application of the polyno- 
mial or descriptor algorithm result in the compensa- 
tor 

75.62(s + 9.8902)(s + 0.6685) 
K(s)  = 

s(s + 5)(s + 11.41) 

The compensator is now strictly proper, and Fig. 10 
shows that the complementary sensitivity function T 
has extra high-frequency roll-off. The peak value of 
the sensitivity function now is 0.9 dB and that of the 
complementary sensitivity function is 1.8 dB. The 
step responses are not shown because they differ very 
little from those of Fig. 9. The closed-loop poles are 
-0.7540 + j0.6551, - 10.00_+ j0.4247 and -5 .  

I*' 4 

1o ~ Io' 1o o , ~  1 

1." Io' 1o ° I*' i d  

Fig. 8. Sensitivity function (top) and complementary 
sensitivity function (bottom) 

Fig. 9. Response to step disturbance (top) and step 
reference signal (bottom) 

s 

"r 

~ 10 4 ~6 ~1 ~J  

Fig. 10. Sensitivity function (top) and complemen- 
tary sensitivity function (bottom) with extra 
roll-off 

The design procedure is straightforward and works 
well. It is easy to predict the effect of the various de- 
sign parameters. 

8. CONCLUSIONS 

The history of H 2-optimization dates back to Wie- 
ner filtering (Wiener, 1949) and its early applications 
to control (Newton, Gould and Kaiser, 1957). The 
optimal control and state space era contributed the 
LQ and LGQ problems. The H 2 -problem itself is a 
spin-off of the robust control period although it is 
seldom recognized as a robust control tool. In this 
paper an attempt is made to show that H 2-optimi- 
zation may be a valuable instrument to design linear 
multivariable control systems that have generically 
good performance and robustness properties. H 2 -op- 
timization, on the other hand, is not a good tool to 
design for protection against specific, non-generic 
perturbations such as caused by large parameter vari- 
ations. Neither is H~o -optimization (Landau, 1995). 

A suitable paradigm for the design of generically 
good control systems is the H 2 mixed sensitivity 
problem discussed in Section 3. To take full advan- 
tage of the power of H 2 -optimization the LQG and 
state space versions of the problem that have made 
their way into textbooks (Saberi, Sannuti and Chen, 
1995; Burl, 1998) are not adequate. The polynomial 
and descriptor solutions reviewed in Sections 5 and 6 
of this paper allow the use of shaping and weighting 
filters with poles on the imaginary axis, including 
poles at infinity. Colored measurement noise and oth- 
er singular problems are handled as a matter of rou- 
tine. These features greatly enhance the flexibility 
and applicability of H 2 -optimization as a design 
tool. 

The polynomial and descriptor solutions described in 
this paper have both been implemented with the help 
of the Polynomial Toolbox for MATLAB. Beta ver- 
sions of the MATLAB-macros for use with version 2.0 
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of the Polynomial Toolbox may be collected at www. 
pol'¢x.cz or www.polvx.com. Detailed proofs and de- 
scriptions of the algorithms are available at this web- 
site as well. Standard versions of the macros will be 
included in future distributions of the Polynomial 
Toolbox. 
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