
Technical Report

Department of Computer Science
and Engineering

University of Minnesota
4 -192 EECS Building
200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 97-032

Enhancing Multiple-Path
Speculative Execution with
Predicate Window Shifting

by: Jenn-Yuan Tsai and Pen
Chung Yew

Enhancing Multiple-Path Speculative Execution with Predicate

Window Shifting*

Jenn-Yuan Tsai

Department of Computer Science

University of Illinois

Urbana, IL 61801 USA

j-tsail@uiuc.edu

Pen-Chung Yew

Department of Computer Science

University of Minnesota

Minneapolis, MN 55455 USA

yew@cs. umn. edu

Abstract

Speculative execution has long been used as an approach to exploit instruction level par

allelism across basic block boundaries. Most existing speculative execution techniques only

support speculating along single control path, and heavily rely on branch prediction to choose

the right control path. In this paper, we propose an extended predicated execution mechanism,

called predicate shifting, to support speculating along multiple control paths. The predicate

shifting mechanism maintains a condition/predicate window for each basic block. With the

condition/predicate window, instructions ca.n be guarded by predicates related to current or

future branch conditions. The predicate shifting mechanism can reduce the number of required

tag bits by shifting conditions/predicates out of the condition/predicate window whenever they

are no longer in use. To incorporate the predicate shifting mechanism into a VLIW processor,

a new result-buffering structure, call future buffer, is used to buffer uncommitted results and

to evaluate predicates. The FIFO structure of the future buffer not only simplifies exception

handling but also allows multiple uncommitted writes to the same register. Experimental results

show that the predicate shifting mechanism can use predicate tag effectively and achieve 24%

performance improvement over the previous predicating mechanism [2] using a small predicate

tag.

Keywords: instruction level parallelism, speculative execution, predicated execution, VLIW pro

cessor architecture.

•This work is supported in part by the National Science Foundation under Grant No. MIP 93-07910, MIP 94-96320,

and CDA 9502979; by the U.S. Army Intelligence Center and Fort Huachuca under Contract DABT63-95-C-0127 and

ARPA order No. D 346; and by a gift from Intel Corporation.

1 Introduction

Superscalar and VLIW architectures have become dominant in high performance processor design.

They both provide multiple instruction decoders and functional units to exploit inst ruction level

parallelism (ILP). Previous studies (21, 8] have shown that the ILP within a basic block is very lim

ited. Thus, exploiting ILP across basic block boundaries is essential to achieve higher performance.

Speculative execution, which allows the execution of instructions before their dependent branch

conditions are resolved, is a widely used approach for eliminating control dependences and allowing

instructions to be moved across basic block boundaries. Instruction movement and scheduling for

speculative execution can be done at compile time via global scheduling, or at run time via branch

prediction and dynamic scheduling, or both.

Without any hardware support, a compiler can only perform limited speculative movement in

order to maintain safety and legality of the program execution. To support speculative execution,

some result-buffering mechanism for uncommitted results is usually needed. Reordering buffers

(7, 16] in superscalar processors and shadow register files (2, 19, 18] in VLIW processor provide

such result-buffering mechanism for speculative execution.

Besides result-buffering, most existing speculative execution techniques also adopt branch pre

diction [9] . In superscalar architectures, branch history table [7] is often used to predict branch

results dynamically. In VLIW architectures, compilers use profile information [5, 3] to identify the

most-frequently executed trace. With branch prediction, compilers or processors can speculatively

move or execute instructions along the most-frequently taken control path. Limiting speculative

execution to a single control path has the benefit of maximizing the execution efficiency from the

most-frequent executed path as well as simplifying the hardware for instruction fetching and result

buffering. For programs with low branch prediction accuracy, however, the performance may suffer

significantly because the compilers or processors cannot exploit much parallelism from the unpre

dicted paths which are actually taken at run time. To improve performance for processors with a

high issue rate on programs with a low prediction accuracy, one may consider using multiple-path

speculative execution to exploit ILP from all control paths.

Predicated execution (11, 12, 15] or guarded execution [6, 13] has been used as a way to eliminate

branches from instruction streams. In predicated execution, a conditional branch is converted into a

predicate defining instruction. Instructions which are control dependent on the conditional branch

are then guarded by the predicate. By eliminating branch instructions, predicated execution can

effectively increase basic block size and reduce branch delay cycles. However, using predicated

execution alone st ill does not allow instructions which are control dependent on a conditional branch

to be moved before their predicate defining instruction. In other words, the control dependences are

1

merely converted to data dependences rather than avoided as in the case of speculative execution.

Speculative execution and predicated execution can be used together to support multiple-path

speculative execution [2, 20]. Predicated execution provides a good mechanism to represent con

trol dependences in different control paths. With the support of result buffering mechanisms,

instructions can be speculatively moved and executed before their predicate defining instructions.

Recently, Ando et al. [2] proposed a predicated state buffering mechanism called predicating which

can support multiple-path speculative execution. They show that predicating can gain more speedup

than single-path speculative execution. The mechanism, however, requires a unique condit ion name

for each conditional branch in a region 1 . Each instruction also requires a predicate tag to specify

control dependences on all of the branch conditions in the region. The size of the predicate tag

thus limits the number of conditional branches allowed in a region. As a result, this constraint can

limit the size of a region and its exploitable ILP.

In this paper, we propose a more flexible mechanism, called predicate shifting, which can support

both multiple-path speculative execution and predicated execution without the limitations men

tioned above. The predicate shifting mechanism uses a predicate window to address the predicate

currently in use. It can keep the predicate tag size small by shifting predicates out of the predicate

window whenever they are no longer in use. In addition, we present a new result-buffering structure,

called future buffer, for VLIW architectures. The future buffer can evaluate the predicate states

of uncommitted results according to the run time conditions. Differing from the shadow register

files used in [2, 19, 18], the future buffer adopts a first-in, first-out (FIFO) structure to simplify the

handling of speculative exceptions and allow multiple uncommitted writes to the same register.

In the rest of this paper, we review some previous works in section 2. In section 3, we describe

our scheme and its required architectural and compiler support. Section 4 shows some performance

results. Finally, in Section 5, we present our conclusions.

2 Background

Without hardware support for speculative execution, the compil.er must take full responsibility

to ensure the correctness of speculative instruction movement. It must be very conservative and,

hence, can only perform limited speculative movements which are safe and legal. A speculative

instruction movement must be safe to avoid speculative exceptions that may alter the result of the

program execution. A speculative instruction movement must also be legal to avoid writing to a

register or a memory location whose value may be used by instructions on other control paths [18].

1 A region is a set of basic blocks that includes a entry basic block, which dominates all other basic blocks in the

region[!].

2

These restrictions can severely limit the exploitable ILP.

Hardware mechanisms to buffer uncommitted results and to handle speculative exceptions can

relax such restrictions. To allow speculative instruction movement along multiple control paths,

additional hardware is needed to handle future conditions and control dependences. In the following

subsections, we review existing architectural approaches for these mechanisms.

2.1 Buffering Uncommitted Results

Some speculative instruction movements may become illegal because the new values generated by

those speculative instructions may overwrite the values that are still live on other control paths.

This can be avoided by renaming the destination registers of those speculative instructions. This

method, however, requires additional instructions to copy the new values to the original registers

if the control paths containing the renamed registers are taken. The performance of such register

renaming is limited by the availability of free registers.

Smith et al. [19, 18] propose boosting which uses a shadow register file and a shadow store buffer

to store the results of the speculative instructions until the branch instructions they are control

dependent on become committed. If the branches are predicted correctly, the processor updates

the machine state with the results in the shadow structures, otherwise, the results in the shadow

structures are discarded. To support n levels of branch speculation, the processor must provide

n shadow register files. This mechanism allows unconstrained speculative execution in a single

control path.

The predicating mechanism [2] uses a similar shadow structure to buffer speculative results

from multiple control paths. Each entry of the register file contains a predicate field and two data

fileds, one for sequential (committed) value and the other one for speculative value. A flag Wis

used to indicate which field is storing the current sequential value. When the processor executes a

speculative instruction, the predicate tag of the instruction is copied to the predicate field of the

destination register, and the execution result is stored in the speculative data field. If the predicate

evaluates to be true in later execution, the W flag is flipped and the speculative value becomes the

current sequential value. This shadow register structure requires only one shadow register file for

any level of branch speculation. However, it allows at most one uncommitted speculative write to

any register, because there is only one shadow register for each register.

2.2 Handling Speculative Exceptions

Because of the speculative instruction movement, some exceptions which will not occur in the

original execut ion may occur during the speculative execution. The simplest hardware mechanism

3

to handle such speculative exceptions is to convert all speculative instructions which could cause

exceptions into non-excepting or silent version of those instructions. When an exception occurs to

a silent instruction, instead of signaling the exception, the instruction write a polluted result to its

destination register. The continuing execution of the program may lead some later non-speculative

instruction to read the polluted value. The non-speculative instruction will signal the exception

when it reads the polluted value. Colwell et al [4] use a NaN (i.e. Not-A-Number in the IEEE

floating point standard) to represent the polluted result of a speculative instruction which causes

exception. The use of a NaN by a non-speculative instruction will signal the exception. There are

several shortcomings with this method. First, it is not guaranteed to signal an exception if the

polluted result is conditionally used. Also, it is very difficult to locate and re-execute the original

instruction which causes the exception.

Mahlke et al. proposed a sentinel scheduling model [10] to accurately detect and report all

exceptions caused by speculative instructions. Sentinel scheduling model divides each speculative

instruction into two parts, the non-excepting part that performs the actual speculative operation,

and the sentinel part that signals an exception, if necessary. T he sentinel part always remains in

the original basic block of the speculative instruction. If the execution of the non-excepting part

causes an exception, the processor writes the excepting address into the destination register and

sets the exception tag of the register. Any later speculative instructions that use the register will

copy the excepting address and the exception tag to their destination register. The detection of

the exception will be postponed until the execution of a non-speculative inst ruction which uses the

register with the exception tag set, or until the execution of the non-speculative sentinel part of

the speculative instruction which causes the exception. · With the excepting address stored in the

source register, the processor can accurately locate the speculative instruction which causes the

exception.
Boosting [19, 18] and predicating [2] also postpone speculative exceptions until the commit

point. Instead of saving the excepting address in the destination register, they mark the except ion

flag in the corresponding shadow register when an exception occurs. Later, when the processor

is committing the shadow value to the sequential register, the exception is detected and signaled.

When the exception is signaled, the processor discards all speculative data in shadow registers, and

starts the exception handling process. After handling the exception, the processor must restart the

execution of the program. In boosting, the exception handler uses the address of the committing

branch to index a jump table and then jump to the recovery code associated with the committing

branch. The jump table and the recovery code (which contains the instructions to be re-executed at

each commit point) are both generated by the compiler. In predicating, the processor re-executes

all speculative instructions which are yet to be committed. It uses a special execution mode called

4

recovery mode to differentiate recovery execution from normal execution.

2.3 Representing Future Condition and Control Dependencies

To support multiple-path speculative execution, we must provide a way to represent future branch

conditions and the control dependences related to the future branch conditions that a speculative

instruction is dependent on. By encoding the control dependences in instructions, the compiler

can inform the hardware in what conditions to commit or to squash the results of the instructions.

The representation of future conditions and control dependences must be easy to manipulate and

to encode.

Boosting [19, 18] supports speculative execution along a single control path, that is, only in

structions in the most-frequently taken direction of each conditional branch can be speculatively

moved above the branch instruction. Since only one control path is possible at any time, the control

dependences of a speculative instruction can be encoded as a count of the number of the conditional

branches it has been moved above. The representation of control dependences in boosting is very

simple and efficient, but it also restricts the opportunities of exploiting ILP from other control

paths.

Predicating [2] supports speculative execution along multiple control paths. In this scheduling

model, instructions from both directions of a conditional branch can be moved above the branch

instruction. Predicating mechanism gives each conditional branch in a region a unique condition

name. The predicate tag of an instruction specifies its control dependences related to all the branch

conditions in the region. The execution result of an instruction can be committed if and only if its

predicate evaluates to be true with respect to all the branch conditions in the region. By predicating

an instruction with all branch conditions in the region, the hardware can easily decide whether the

instruction should be committed or squashed. The drawback of this mechanism is that the number

of conditional branches in a region is limited by the size of the predicate tag. Since the speculative

execution doesn't exploit ILP across region boundaries, limiting the size of a region will reduce the

exploitable ILP in the region.

3 The Predicate Shifting Mechanism

In this section, a multiple-path speculative execution mechanism, · called predicate shifting, is de

scribed. Like predicating, predicate shifting allows a compiler to perform unconstrained speculative

code motion along multiple control paths. This mechanism, however, uses a different scheme to

represent control dependencies and their corresponding predicates of a speculative instruction. The

basic idea is, instead of using the boundary of a region, we use a condition/predicate window to

5

specify branch conditions and their corresponding predicates currently in use. When a branch

condition and its corresponding predicate are no longer in use, they will be shifted out of the con

dition/predicate window, and the succeeding future branch condition and its predicate are shifted

in. In a sense, the condition/predicate window is being moved downward. The size of the predicate

tag that represents a window only limits the size of the window. It will not limit the number of

conditional branches in a region. Additionally, the proposed scheme provides a new mechanism

to buffer speculative results. This result-buffering mechanism can simplify the handling of spec

ulative exceptions, and allows multiple uncommitted results to be written into the same register.

In the following subsections, the execution model, the hardware support, the exception handling

mechanism, and the compiler support are described.

3.1 Execution Model

In our model, global instruction scheduling is performed within a region. A region is a set of basic

blocks that includes an entry basic block which dominates all other basic blocks in the region [l].

Similar to [2], tail duplication is performed to make every basic block in a region, except the entry

block, having only one predecessor in the control flow graph. To simplify global scheduling and

tail duplication, our region formation algorithm will not include loops or function calls inside a

region. After tail duplication, every conditional branch inside a region is converted into a condition

defining instruction (called SETC) followed by a predicated jump to the branch target. The value of

a condition can be (1) true {branch taken), (2) false {branch not taken}, or (3) undefined {unknown

yet). The control dependency related to a condition is represented by a predicate, which can be

(1) execute only if the condition is true {branch taken}, (2) execute only if the condition is false

{branch not taken), or (3) don't care. The execution or committing of an instruction which is control

dependent on the branch condition is guarded by its predicates. An instruction can be guarded

by several predicates as long as the predicate t.ag is wide enough to hold them. For an instruction

guarded by multiple predicates, the execution result of the instruction can be committed if and

only if all its predicates evaluate to true.

In our execution model, there is no unique name (address) or absolute storage location associated

with each branch condition and its corresponding predicate. Instead, we use a condition/predicate

window. The condition/predicate window represents the scope of cont iguous conditions and their

predicates with respect to each basic block. The number of entries in a condition/predicate window

is equal to the number of predicates in the predicate tag. For each basic block, the condition window

logically contains conditions2 defined in the basic block and in basic blocks on the succeeding control

2Since our model supports predicated execution, several basic blocks can be fully predicated into a larger basic

6

Id r6, r29(30)
aiu r3, rO, irnm
ld r2, r6(12)
aiu r5, r29, imm
aiu rl5, r2, imm
alu r24, r2, imm
beq rl5, rO, LC

aiu r25, r2, imm
bgt r24, rO, LA

alu rl, rO, imm
alu r8, r2, imm
beq r25, rl, LA

alu r9, r8, irnm
st r6(12), r9
jmp LC

LA: beq r3, rO, LB

alu r4, r6, rO
ret

LB: aiu r4, rO, im.m
ret

LC: Id r4, r29(52)
st r29(32), r3
st r29(48), r6
ret

Figure 1: A code segment from compress.

paths. The first entry in the condition window is the condition defined by the first SETC instruction

in the basic block3 • The second entry in the condition window is the conditions which immediatedly

follow the first condition in the control flow graph, and so on. Instructions in a basic block thus

can use the predicate window to specify their control dependencies in the window.

Figure 1 is a code segment from Spec92 benchmark compress. The corresponding code after tail

duplication and branch conversion is shown in Figure 2. In the restructured code, all conditional

branches have been converted into SETC/JMP pairs. The condition window for each basic block

is shown on the upper-left corner of each basic block. Condition Cn in a condition window denotes

the nth level branch condition counted from the first basic block LL For basic block 12, the first

entry of its condition window is the condition defined by ilO (denoted by C2). However, the second

entry is the condition defined by either i14 or i28 (denoted by C3). They can be denoted by the

same condition C3 because the execution of these two instructions are always exclusive. After the

execution of basic block L2, the condition C2 is shifted out of the window. Either i14 in L3 or i28

block, which may contains several conditions.
3 After instruction scheduling, the first SETC instruction may be moved up to the last instruction cycle of the

predecessor basic block.

7

Pn Predicate

O 1 Execute only if Cn = False

1 O Execute only if Cn = True

1 1 Don't care

C2C3 C4

L2 P2P3 P4

Condition window

Cl C2C3

L1 Pl P2 P3
il:(111111)1d r6,r29(30)
i2:(11 11 11)alu r3,r0,imm
i3:(I I 11 11)Id r2,r6(12)
i4:(11 ti 11)alu rS,r29,imm
iS:(11 11 11)alu r IS,r2,imm
i6:(l I II 11)alu r24,r2,imm
i7:(I I II ll)setc eq,r lS,rO
iS:(1011 ll)jmp Lll

C2C3C4

Lll P2P3P4

Cl

C1 =T

i9 :(11 11 1 t)alu r25,r2,imm
i!0:(1111 ll)setc gt,r24,r0 C2

i34(11 11 11)Id r4,r29(52)
i3S(l 1 11 I !)st r29(32),r3
i36(1 ! II II)st r29(48),r6
i37(11 11 1 l)ret

ill:(1011 ll)jmp L8

C2 = T

C3 C4CS

LJ P3 P4P5
LS P3P4PS i 12:(1 I 11 I l)alu rl ,rO,imm

i!3:(I I 11 1 l)alu r8,r2,imm
il4:(ll 11 l l)setc eq,r25,rl CJ

i28:(ll 11 ll)sctc eq.r3,r0
i29:(10 11 1 l)jmp LIO

CJ

i lS:(10 11 I l)jmp LS

C4CSC6

IA P4P5P6
il6:(ll 11 ll)alu r9,r8,imm
il7:(l l ll ll)st r6(12),r9

C3 = T

LS P4 P5 P6

C3=F

P4 PS P6
i30:(l 1 JI 11)alu r4,r6,r0
i31:(l I 11 l l)ret

i 18:(11 11 I !)Id r4,r29(52)
il9:(1111 ll)st r29(32),r3
i20:(l I 11 I !)st r29(48),r6
i2 1:(1 I II l l)ret

i22:(l I 11 l l)setc eq,r3,r0
i23:(I0 11 ll)jmp L7

C4

C4=F

CS C6C7

L6 PS P6 P7
i24:(1 l 11 1 l)alu r4,r6,r0
i25:(l 1 11 1 l)ret

C4 = T

C5 C6C7

L7 P5 P6 P7
i26:(1 l 11 l l)alu r4,r0,imm
i27:(11 11 ll)ret

P4 PS P6
i32:(l I 11 1 l)alu r4,r0,imm
i33:(l l 11 I !)rel

Figure 2: The code segment from compress after t ail duplication and branch conversion.

in LS will be executed and define C3, which becomes the first entry of the condit ion window.

Figure 2 also shows the predicate tag associated with each inst ruction. Here, we assume the

hardware can support 3 predicate levels. Each predicate requires two tag bits to represent the

following cont rol dependency relations.

• 0 1 : Execute only if t he corresponding condition is false.

• 1 0 : Execute only if the corresponding condition is true.

• 1 1 ; Don't care.

• 0 0 : Squashed (used by hardware only)

8

The code in Figure 2 is before global scheduling. There is no speculative instruction movement

yet. All instructions except the predicated jumps are independent of any current conditions and

future conditions, hence, all have a predicate tag of (11 11 11). A condition is said to be current

with respect to an instruction if its value is known and still in use when the instruction is issued.

A condition is said to be a future condition if its value is not yet defined when the instruction is

issued. To move an instruction above a SETC instruction, the compiler must update its predicate

tag to indicate its control dependencies on the condition defined by the SETC instruction. For

example, if i30 in basic block L9 is moved to Ll, its predicate tag will become (01 10 01), which

means the committing of i30 is dependent on Cl(false), C2(true), and C3(false).

At run time, the processor also maintains a dynamic condition window to hold current condi

tions and future conditions. The dynamic condition window is the same as the condition window

viewed at compile time. The condition window is updated when the processor crosses a basic block

boundary. The processor identifies a basic block boundary when it encounters a branch instruction4
.

When the processor decodes a branch instruction, the conditions defined in the current basic block

are retired and shifted out of the condition window, and new future conditions are shifted in (see

Figure 2). Note that a condition defined by a SETC instruction issued as the last instruction of

the current basic block is regarded as the condition defined in the next basic block, so it will not

be shifted out of the condition window when the current basic block is terminated.

Since the condition window can contain both current conditions and future conditions, the

compiler can encode the control dependencies of an instruction on future conditions (for speculative

execution) as well as on current conditions (for predicated execution). In this mechanism, unlike

predicating [2], the predicate tag only contains control dependencies on conditions in current use

instead of on all conditions in a region. The width of predicate tag only limits the levels of branch

predication and speculation instead of the size of a region. This allows instruction scheduler to

form regions of larger sizes for more ILP.

3.2 Architectural Support

To efficiently support the model described in the subsection 3.1, we need to provide mechanisms

for buffering execution results, and committing or squashing the results according to the run-time

conditions.

Figure 3 shows the block diagram of a generic four-issue processor. Like other VLIW processors,

this processor provides multiple decoders and functional units for multiple-instruction issue and

4In our execution model, all basic blocks are terminated by a branch instruction (including function call and

return) after full tail duplication

9

Instruction Cache

Dst & Predicate Tag

Decoder

Past Cond Cond Reg

Condition

l
LOAD/ ALU FPU BRANCH
STORE

• -
I

:
t • • •

I f ••
Pred

Store Buffer Tag Data ·- Data

!
Register File

Past Buffer Dst Reg No

t Predicate Tag

Data Cache Valid Flag
Exception Flag

Future Buffer

Figure 3: The processor block diagram

execution. The condition register above the branch units is a shifting register which stores the values

of conditions in the current condition window. The past-condition register beside the condition

register is also a shifting register. It stores the values of recently retired conditions from the

condition register. The retired condition values are needed for exception recovery.

This processor model provides a future buffer to buffer uncommitted results. The future buffer is

organized as a first-in, first-out (FIFO) queue to allow instructions to be completed and committed

in order . By committing instructions in the program order, the processor can greatly simplify the

exception handling and recovery. The mechanism for exception handling is described in the next

section. The future buffer contains a data field for storing execution results, a register-name field

for specifying the destination registers of the execution results, a predicate tag field for storing the

predicate state associated with each result. In addition, each entry in the future buffer includes

Condition

Cond Pred Action

0 X 0 Clear tag

0 X 1 Shift left by 2 bits

0 X Clear tag

X Shift left by 2 bits

Predicate tag Shift left by 2 bits and
Insert 11 to right

Clear

Figure 4: Actions taken on predicate fields of a future buffer entry when executing SETC instruction

a valid flag to indicate whether the result is ready or not, and an exception flag for signaling the

exception caused by the instruction associated with the entry. Like the past-condition register,

there is a past buffer for saving the recently committed data being shifted out of the future buffer.

The past buffer is also used for exception recovery. The number of entries in the past buffer must

be equal to the number of entries in the future buffer.

When the processor starts executing a program, all entries in the condition register are initialized

to undefined. At this point, all conditions in the condition window are future conditions. When

a decoder fetches and issues instructions, the decoder allocates an entry at the top of the future

buffer for each instruction and copies its destination register name and the predicate tag into the

corresponding fields in the entry. After the execution, the result of the instruction is written into

the data field of the allocated entry, and the valid flag is set to true. The predicate state of an

instruction is initially assigned by the compiler as described in the previous subsection. During

execution, the predicate state will be evaluated and updated by the processor according to the

condition values defined by the SETC instruction. Figure 4 shows the hardware mechanism in each

entry of the future buffer. When a SETC instruction is executed, the condition value defined by

the SETC instruction is saved in the corresponding entry of the condition register and passed on

to the future file. Every future buffer entry wiU use the condition to evaluate the first predicate in

the predicate field. If the predicate evaluates to true, the predicate tag is shifted left by two bits

and 11 is shifted into the rightmost two bits. A result can be committed if all its predicates are 11,

because it means this result is not dependent on any condition. If the predicate evaluates to false,

the predicate tag is set to zero, which means this result is squashed.

When the result of an instruction reaches the bottom of the future buffer, the result can be

either committed to the register file, discarded, or just held in the future buffer according to its

predicate state and valid flag. As shown in Figure 5, if all its predicates in the predicate field

11

Future Buffer

Data R No

l t-----+-~~l
Predicate Tag Action•

0
1

0 XI X X X Skip & Shift down

1 , 1 1 1 1 , 1 WB & Shift down

0 1 1 X X X X Hold

1 0 X X X
1
X Hold

• Assume valid bit is 1 and exception bit is O

To Past Buffer To Register File

Figure 5: The write back mechanism for future buffer.

are 11 and the valid flag is set, and there is no exception caused by the result, the result can be

committed and written back to the register file. If the first predicate in the predicate field is 00,

which means this result was squashed, the result is shifted out of the future buffer and discarded.

If the predicate field still contains predicates that are dependent on some future conditions, the

results are held in the future buffer until all the predicates evaluate to 11 or 00. The committing

of a result will also be stalled if its valid bit is false, which means the result is not available yet.

When a result is shifted out of the future buffer, regardless of being committed or discarded, the

result value is saved in the past buffer for exception recovery. If the result of an instruction is ready

to be committed but its exception flag is set, the processor will withhold the write back and signal

the exception.

Since our execution model also supports predicated execution, the predicate tag of an instruction

may contain predicates that depend on some current conditions. The current conditions are the

conditions defined by the previous SETC instructions which are still live in the condition register.

In this case, the decoder is responsible for evaluating and updating those predicates before writing

them to the predicate field of the corresponding entry in the future buffer. As mentioned in the

previous section, the current conditions will be retired when the processor completes the instruction

issue of the current basic block and moves to the next basic block. The processor identifies basic

12

block boundaries by a branch instruction, regardless of the branch being executed or not. When the

decoder detects a branch instruction, the conditions defined in the current basic block are shifted

out of the condition register and passed on to the past-condition register. Note that the condition

defined by a SETC instruction issued at the last instruction cycle of the current basic block is

regarded as a condition defined in the next basic block and will not be shifted out of the condition

register.

Moving an instruction too far above it control dependent SETC instruction may cause a deadlock

in the future buffer. A deadlock occurs when the result of an instruction reaches the bottom of

the future buffer but cannot be committed or discarded because its dependent condition is not

defined yet. In the meantime, the SETC instruction that defines the condition cannot be issued

and executed because the future buffer is full. To avoid such a deadlock, the distance between a

speculative instruction and its control dependent SETC instructions must be less than the number

of entries in the future buffer. In other words, the maximum distance of the speculative execution

is limited by the size of the future buffer.

The FIFO mechanism of the future buffer is very similar to the reorder buffer [7, 16] used in

superscalar processors. The main disadvantage of a reorder buffer is that it requires associative

hardware to provide later instructions with the uncommitted results produced by earlier instruc

tions. The hardware complexity and its associated latency often limit the size of a reorder buffer

in superscalar processors [7]. The design of the future buffer eliminates the need of the associa

tive hardware with the assistance of the compiler. Since instruction scheduling is done at compile

time, the compiler knows the register dependency and the distance between instructions. If an

instruction depends on the result of a previous instruction which may be still in the future buffer

when the instruct ion is issued, the compiler will replace the register name of the operand with an

offset which is the distance between the current instruction and the previous instruction. Only

operands which depend on the previous results with a distance less than the size of the future

buffer need to be renamed with an offset. iF the distances are greater than the size of the future

buffer, the instruction can read the results from the register file with the original register names,

because the results must have been committed when this instruction is issued. The compile time

renaming scheme can greatly simplify the implementation of the future buffer. In other words, the

complex associative hardware can be replaced by a simpler address calculation hardware for offset

references.

Another advantage of the future buffer is that it allows multiple uncommitted writes to the same

register. The multiple uncommitted writes are caused by output dependencies with an instruction

distance less than the size of the future buffer, or by the execution of speculative instructions along

different control paths which write to the same register. The allocate-on-demand nature of the

13

future buffer allows multiple entries allocated to the same register, and thus allows the compiler to

use the buffer more efficiently.

While the future buffer allows multiple uncommitted writes to the same register, there is still

a problem when an instruction i needs to read a register which is written by two instructions from

different control paths that are merged before the instruction. In this situation, the compiler cannot

know which results (offsets) should be used. To solve this problem, we introduce a new instruction,

called PHI5 , to select the result from the actual control path and write it to the same register at

run time. By inserting the PHI instruction before the instruction i, the compiler can use an offset

to reference the result of the PHI instruction and get the correct value for the instruction i. Figure

6 shows an example of how the PHI instruction is used. In our execution model, two control paths

will be merged when several basic blocks are fully predicated into a basic block as shown in figure

6. Not that a PHI instruction cannot be moved above the SETC instruction that separates the

control paths, because the PHI instruction needs to use its condition value to select the correct

result value.

Ll
il :(1111 ll)ld r4,r29(12)
i2:(ll 11 ll)ld r5,r29(16)
i3:(l 1 11 ll)setc eq, r4,r0
i4:(JO 11 ll)jmp L3

L2 L3

i5:(11 11 I !)add r6,r5,l i6:(l l 11 1 l)sub

L4 L4'

i7:(l I 11 l l)st r29(16),r6 i7' :(11 11 ll)st

(a) After tail duplication

r6,r5,l

r29(16),r6

L1

il :(11 11 1 l)ld
i2 :(11 11 I l)ld
i3 :(11 11 ll)sctc
i5 :(01 I I 1 l)add
i6 :(JO 11 l l)sub

:(l l llll)phi
i7 :(11 11 ll)st

r4,r29(12)
r5,r29(16)
eq, r[-2],rO
r6,r[-2],l
r6,r[-3],1
r6,[-l},[-2]
r29(16),r[-1]

(b) After full predication and scheduling

Figure 6: The use of the PHI instruction.

The architecture model also provides a store buffer to buffer uncommitted store data. Like the

future buffer, the store buffer is organized as a FIFO queue. Each store buffer entry consists of the

store address, the store data and its associated predicate tag. The predicate tags are evaluated and

updated at run time similar to those in the future buffer. The predicate tag, however, is used for

determining the data dependency between a store instruction and a later load instruction rather

than for determining if its store data can be committed. The store data can be committed and

5We name this instruction PHI because it performs a. similar function of the cp-function used in the Static Single

Assignment (SSA) form (14]

14

written back to the data cache only when the corresponding entry in the future buffer is committed.

Another difference between the store buffer and the future buffer is that the store buffer uses

associative hardware to check the data dependencies between load and store instructions. The

associative hardware for store buffer will not cost much since the store buffer only needs a small

number of entries. When a load instruction is executed, if its load address matches the address

field of a store buffer entry and its predicate tag is dominated by the predicate tag of the entry, the

store buffer will forward the uncommitted store data to the load instruction. A predicate tag P is

said to be dominated by another predicate tag Q if, for every predicate in the predicates tag Q, the

predicate is either 11 or is equal to the corresponding predicate in the predicate tag P.

3.3 Handling Exceptions

With the in-order completion provided by the future buffer, the exception handling and recovery

mechanism is very straightforward and simple. When an exception occurs to an instruction, the

processor sets the exception flag in the corresponding future buffer en.try. The detection. of the

exception is postponed until the instruction reaches the bottom of the future buffer and is ready to

be committed. The logic for detecting the exception is also shown in Figure 5. When the exception

is detected and signaled, the processor discards all the data in the future buffer and the store buffer

and evokes the exception handling process. The past state stored in the past-condition register and

the past buffer as well as the current state stored in the condition register and the register file need

to be saved in the memory before the exception handling process starts. The exception handling

process will restore these state and data when it returns.

After the exception is handled, if it is not fatal, the processor will restart from the instruction

which caused the exception. All the instructions after the excepting instruction must also be re

executed. Two things are needed to ensure the correctness of the re-execution. First, the condition

window stored in the condition register needs to be rolled back. During the program execution,

the instruction being committed is behind the instruction being decoded with a maximum distance

of the size of the future buffer. Because the scope of the condition window is with respect to

the instruction being decoded rather than to the instruction being committed, it is possible that

some conditions affecting the instructions after the excepting instruction may have been retired

and shifted to the past-condition. register. Note that the program is restarted from the excepting

instruction, hence, these operations must be undone. To roll back the condition register, the

recovery process needs to restore the conditions retired after the excepting instruction from the

past-condition register back to the condition register. In addition, all the condition values defined

by the SETC instructions after the excepting instruction are reset to undefined.

15

Second, the processor must provide the instructions to be re-executed with the register data

accessed by offset references. Remember that instructions use offsets to read uncommitted register

values from the future buffer. When an instruction is re-executed, the register value which it

accesses with an offset may have been committed to the register file or squashed and no longer

exists in the future buffer. This problem is solved by the use of the past buffer. The past buffer is

implemented as an extension of the future buffer, and can be accessed also by an offset reference.

During the program execution, the committed and squashed results being shifted out of the future

buffer are all shifted into the past buffer. The number of entries in the past buffer is equal to

that in the future buffer. The register values to be accessed by the offset references after exception

handling can always be found either in the past buffer or in the future buffer. With the support of

the past buffer, the compiler can replace an operand with an offset reference without worrying if

the result is committed or not.

3.4 Compiler Support

Our execution model relies on the compiler to exploit ILP across basic block boundaries and to

generate the correct code for speculative and predicated execution. In this subsection, we briefly

outline the compiler techniques for instruction scheduling and code generation.

Region Formation The region formation algorithm starts from a basic block in the global

control fl.ow graph and includes as many basic blocks as possible provided that the basic blocks are

dominated by the entry block. The algorithm stops growing a region along a control path when it

encounters a function call on the control path. In addition, the algorithm always starts a new region

whenever it encounters a loop head (or an entry block of a backward edge), so that there will be

no loop formed inside a region. To control possible code expansion caused by the tail duplication,

we may limit the levels of conditional branches allowable in a region.

Tail Duplication After the region formation we perform tail duplication. I t forces every basic

block in a region, except the entry block, to have only one predecessor in the control flow graph.

Although the code size may grow in this process, the later full predication pass will eliminate many

redundant duplications to reduce the code size.

Branch Conversion In this pass, all conditional branches in a region are converted into a SETC

instruction followed by a predicated jump to the branch target. In addition, every instruction is

assigned an absolute predicate tag which specifies the control dependencies related to all the SETC

instructions on the control path from the entry block to the basic block it is in.

16

Cl C2 C3 j

L1 ii :(ll ll ll)ld r6,r29(30) i2 :(11 11 1 l)alu r3,r0,irnm

i4 :(11 11 l l)alu r5,r29,imm i34:(10 l l ll)ld r4,r29(52)

i3 :(11 11 ll)ld r2,r[-4](12) i35:(10 ll ll)st r29(32),r[-4)

i36:(10 ll ll)st r29(48),r[--6) il2:(01 01 l l)alu rl,rO,imm

i5 :(11 11 l l)alu rlS,r[-4),imm i6 :(11 11 1 l)alu r24,r[-5],irnm

Cl ◄ i7 :(11 11 I l)setc eq,r[-2),rO i9 :(01 11 1 l)alu r25,r[-7],imm

C2 ◄ il0:(01 11 I l)setc gt,r[-3),rO i8 :(10 ll ll)ret

1c2 c3 C4l
~=F

L2 I i14:(01 11 11) setc eq,r[-3),r[-7]] ii 1:(10 I I I l)jmp L8 l C2=T

J3 --L8
C3 C4 cs I ----- .

C2= F i28:(I I 11 I l)setc eq,r3,r0 I i30:(01 11 I l)alu r4,r6,r0 I
i31:(01 11 1 l)ret I I i29:(10 I I l l)jmp LIO I

C3 C4C5 I C4C5C6 I J3 ~3=T

L3 i13:(1 l 11 l l)alu r8,r[-12),imm i15:(10 11 11 1 l)jrnp LS Ll~ i32:(11 ll ll)alu r4,r0,imm li33:(ll ll ll)ret I

C3= F ~3 = T

C4C5 C6 I C4C5C6 I ------L4 i16:(11 11 I l)alu r9,r[-2),imm NOP LS i22:(l 1 11 l l)setc eq,r3,r0 I i24:(01 11 l t)alu r4,r6,r0 I
il7:(ll l l !!)st r6(12),r[-2] i 18:(11 11 11)ld r4,r29(52) i25:(0I II ll)ret I li23:(10 II II)jmp L7 I
it9:(l I 11 I !)st r29(32),r3 i20:(11 ll ll)st r29(48),r6

c!4 ~=T C5 C6C7 I
i21:(11 11 I l)ret NOP

L7l i26:(1 I 11 l l)alu r4,r0,imm I i27:(l 1 11 11) ret I

Figure 7: The code segment from compress after code generation.

Full Predication In this pass, the compiler traverses the control flow graph of each region to

identify candidate blocks for full predicating. If two control paths are different in only a few

instructions, the compiler will fully predicate the different parts and eliminate one of the control

paths. With full predication, the compiler can reduce the code size as well as eliminate some

branch instructions. Full predication, however, may waste resources due to unnecessary execution

of instructions in the untaken control paths. In addition, merging two control paths may introduce

PHI instructions that may limit the speculative instruction movement. As mentioned earlier,

the PHI instructions and the instructions dependent on them cannot be moved above the SETO

instruction they are control dependent on. In order to control the overhead in full predication, the

compiler uses a threshold to determine whether a candidate basic block should be fully predicated

or not. A basic block can be fully predicated only if its size is less than the threshold value.

Instruction Scheduling The compiler performs global instruction scheduling in a region by

scheduling basic blocks in a top-down order. When scheduling instructions in a basic block, the

17

compiler only schedules the branch, the SETC instructions, and their dependent instructions. All

the other instructions are pushed down to the succeeding basic blocks in order to minimize the

required instruction cycles for the basic block. Although pushing those instructions to the suc

ceeding basic blocks may require duplicating the instructions and, thus, increase the code size, we

found most of the instructions can be scheduled back to an empty instruction slot in their prede

cessor blocks in the later scheduling phase, and eliminate their clone instructions. The remaining

instructions in the basic block are scheduled using list scheduling.

When scheduling an instruction, the compiler tries to find an empty instruction slot as early as

possible along the control path from the entry block. After scheduling a basic block, the compiler

selects the next schedulable basic block with or without profile information. A basic block is

schedulable if its predecessor has been scheduled. When scheduling with profile information, the

basic block with the highest execution count is chosen to be scheduled. If no profile information is

available, the schedulable basic block which is closest to the entry block is chosen.

Code Generation After all instructions are scheduled, the compiler generates the predicate tags

and the offset references as required. The predicate tag of an instruction is computed by comparing

the absolute predicate tag of the instruction with the absolute predicate tag associated with the

basic block the instruction is scheduled into. The operand of an instruction is replaced by an offset

reference if the operand depends on the result of a previous instruction whose distance is less than

the size of the future buffer.

Figure 7 shows the final version of the code shown in Figure 2 generated by the compiler. The

machine model for this code is a two-issue processor with 16-entry future buffer and a 6-bit predicate

tag. Some basic blocks in the original code have disappeared because all of their instructions have

been moved to the predecessor blocks. Also, note some SETC instructions have been moved to the

last instruction of their predecessor blocks.

4 Performance Evaluation

Ando et al. [2] have shown that multiple-path speculative execution through predicating outper

forms traditional global scheduling techniques and single-path speculative execution techniques

such as boosting [19, 18]. Hence, we only compare the performance of the predicate shifting model

with the predicating model. Some performance-related issues, which include the size of the future

buffer, instruction scheduling with or without profiling, and code expansion rate, are also studied

in this section.

18

4.1 Methodology

We implement the instruction scheduler and simulator based on pixie and xsim [17). Pixie is

used to partition an executable program into basic blocks and generate dynamic basic block trace

for simulation. Xsim is used to construct the global control fl.ow graph. Xsim also provides a

disassembler for decoding instructions with given addresses. With the global control fl.ow graph

and instructions associated with each basic block, we can perform instruction scheduling and code

generation for our machine models. Our simulator simulates the execution of the optimized code

cycle-by-cycle, using the dynamic basic block trace generated by pixie. The performance of the

optimized program run on a machine model is expressed in terms of the speedup over the MIPS

R4000 processor. The execution cycle count of the program run on a R4000 processor is reported

by prof, which also uses the profile information generated by pixie to derive the execution cycle

count .

Program Dynamic R4000 R4000

Instructions Cycles CPI

008.espresso 496M 713M 1.44

022.li 1128M 1722M 1.53

023.eqntott 866M 1406M 1.62

026.compress 87M 126M 1.45

072.sc 148M 223M 1.51

085.gcc 140M 210M 1.49

gawk 164M 230M 1.40

grep 690K 1045K 1.51

cmp 745K 813K 1.09

Table 1: Benchmark Programs and their simulation information.

Table 1 lists the benchmark programs used in our study. It consists of SPEC92 integer bench

mark programs 008.espresso, 022.li, 023.eqntott, 026.compress, 072.sc and 085.gcc, and three GNU

utilities gawk, grep, and cmp. These programs are compiled into executables using SGI C compiler

version 5.3 with -sopt (source-to-source optimization) and -03 options. The executables are then

processed by pixie, xsim, and our code scheduler. Table 1 also lists the dynamic instruction counts

and cycle counts reported by prof.

The base machine model used in our simulation is a full 4-issue VLIW processor. There is

19

C.
:::s 4.5
"C
Q)
Q) c. 4.0

(/)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
P PS P PS

espresso Ii
PPS PPS PPS

eqntott compress sc

Predicate tag= 10 bits
Predicate tag = 8 bits
Predicate tag = 6 bits
Predicate tag = 4 bits

3.553.56

P PS P PS PPS
grep

PPS
cmp gee gawk

Figure 8: Performance comparison of the predicating model (P) and the predicate shifting model

(PS) with predicate tags of different sizes.

no limitation on the combination of instructions that can be issued in each cycle. However, at

most one SETC instruction and one branch instruction can be executed in each cycle. If multiple

SETC's or branch instructions are scheduled in the same cycle, the scheduler must guarantee that

their predicate states are exclusive, i.e., at most one of their predicate tags will evaluate to be

true when they are issued. All instructions, except branch instructions, have the same latencies

as those of R4000. For branch instructions, we assume a branch target buffer [9] is used and all

branch targets except indirect jumps will hit the branch target buffer. Note that branch prediction

is not essentialin our model because a conditional branch instruction is always executed at least

one cycle after the SETC instruction that defines the branch condition. To simplify our model, we

also assume a perfect memory subsystem with a latency of two cycles.

20

Program Predicating with predicate tag of Predicate

4 bits 6 bits 8 bits 10 bits Shifting

espresso 8.56 9.75 10.57 11.33 28.16

li 7.44 8.58 9.45 10.13 22.10

eqntott 6.51 7.27 7.88 8.45 13.28

compress 8.45 9.67 10.85 11.69 21.98

SC 7.67 8.85 9.84 10.73 37.41

gee 7.46 8.70 9.75 10.63 65.03

gawk 9.28 10.99 12.47 13.86 90.07

grep 8.35 9.84 11.10 12.06 104.67

cmp 8.24 9.60 10.69 11.52 22.40

I Harmonic Mean I 7.96 I 9.20 I 10.22 I 11.071 35.66 1

Table 2: Average instruction count (static) per region in different predicating models

4.2 Results

Our scheduler and simulator can generate andl execute codes for both the predicating model and

the predicate shifting model with varying machine configurations. To make the comparison fair,

we use the same future buffer mechanism to buffer uncommitted results for both models. In the

following performance evaluation results, the default machine model is a 4-issue processor with a

32-entry future buffer and a 8-bit predicate tag. The default threshold value for full predication is

zero, and the instruction scheduling is done without using profile information.

Comparison of Predicate Shifting and Predicating Figure 8 shows the performance com

parison of the predicate shifting model and the predicating model with predicate tags of different

sizes. When a predicate tag size of 10 bits is used for both models, the harmonic mean of speedup is

2.80 for predicate shifting model, and 2.42 for the predicating model. The predicate shifting model

achieves 16% improvement over the predicating model. When the predicate tag size is reduceded

to 4 bits, the predicate shifting model can still maintain a speedup of 2.79, while the speedup of

predicating model drops to 2.25. In this case, The predicate shifting model performs 24% better

than the predicating model. The reason for the better performance is that its predicate encoding

mechanism does not limit the size of regions. Hence, more ILP can be exploited within larger

regions. Table 2 shows the average region sizes of the programs in both models with predicate tags

21

Program Number of entries in future buffer

16 32 48 64

espresso 2.14 (100%) 2.14 (100%) 2.14 (100%) 2.14

li 3.06 (99.7%) 3.07 (100%) 3.07 (100%) 3.07

eqntott 3.15 (99.7%) 3.16 (100%) 3.16 (100%) 3.16

compress 2.78 (98.6%) 2.82 (100%) 2.82 {100%) 2.82

SC 2.67 (99.6%) 2.68 (100%) 2.68 {100%) 2.68

gee 2.67 (100%) 2.67 (100%) 2.67 {100%) 2.67

gawk 2.67 (98.5%) 2.71 (100%) 2.71 (100%) 2.71

grep 2.58 (100%) 2.58 (100%) 2.58 (100%) 2.58

cmp 3.56 (100%) 3.56 (100%) 3.56 (100%) 3.56

I Harmonic Mean I 2.78 (99.3%) I 2.80 (100%) I 2.80 (100%) I 2.80 I

Table 3: Cycle-count speedup with future buffers of different sizes. (percentages are speedup

comparing with 64-entry future buffer)

of different sizes. In the predicating model, the average region size is merely 8 to 11 instructions

per region and glows slowly as the size of the predicate tag increases. On the contrary, the region

size in the predicate shifting model is independent of the predicate tag size and has 35 instructions

per region on average.

Effect of Future Buffer Size on Performance As mentioned in section 3.2, the maximum

distance of speculative execution is limited by the size of the future buffer. With a larger future

buffer, the compiler can move an instruction further above its dependent SETC instructions. How

ever, a large future buffer is costly because it requires the same number of entries in the past

buffer and, most importantly, it requires additional bits in every instruction word to specify offset

references for accessing results in the future buffer. Table 3 shows the cycle-count speedup of the

4-issue machine model with future buffers of 16, 32, 48, and 64 entries. The result shows that a

future buffer with 32 entries can perform as well as a future buffer of 64 entries. The result also

shows that the performance of a 16-entry future buffer can be within 99.3% of a 64-entry future

buffer. Hence, the size of the future buffer need not be very large.

Instruction Scheduling with Profile Information The performance of instruction scheduling

with and without profile information is compared in Table 4. It can be seen that profile information

22

Program Speedup

Without profiling With profiling

espresso 2.14 2.14 (100.00%)

li 3.07 3.11 (101.30%)

eqntott 3.16 3.17 (100.32%)

compress 2.82 2.82 (100.00%)

SC 2.68 2.69 (100.37%)

gee 2.67 2.70 (101.11%)

gawk 2.71 2.72 (100.36%)

grep 2.58 2.63 (101.93%)

cmp 3.56 3.56 (100.00%)

I Harmonic Mean J 2.80 1 2.81 (100.36%) 1

Table 4: Cycle-count speedup comparison of instruction scheduling with and without profileinfor

mation.

can only improve performance by an average of 0.36%. Profiling information is very important in

traditional global instruction scheduling techniques such as trace scheduling [5], and in single-path

speculative execution supported by boosting. They rely on the profile information to select the

most-frequently executed control path for performing speculative instruction movement. Optimiz

ing one control path, however, may affect the performance of the other control paths. In our

execution model, all control paths can be optimized through multiple-path speculative execution

provided that there are sufficient resources. As a result, our execution model can achieve good

performance without profile information.

Code Expansion Rate and Full Predication To support the predicate shifting execution

model, the scheduler needs to perform tail duplication. Full tail duplication may cause the code

size to grow exponentially. As mentioned in Section 3.4, we can reduce the code size by limiting the

level of conditional branches in a region and by performing full predication to merge control paths.

In our region formation pass, the maximum level of conditional branches in a region is 16. In the

full predication pass, the compiler uses a threshold to determine whether a basic block should be

fully predicated. With a larger threshold value, more basic blocks can be fully predicated and the

code size will be reduced. On the other hand, if the threshold value is too large, the performance

may suffer as discussed in Section 3.4. Table 5 shows the effects of the threshold value on the

23

Threshold for fully predicating

Program 0 4 8 16

Expansion Speedup Expansion Speedup Expansion Speedup Expansion Speedup

espresso 2.93 2.14 2.40 2.14 1.58 2.07 1.46 2.07

Ii 2.37 3.07 1.88 3.07 1.80 3.07 1.77 3.07

eqntott 1.76 3.16 1.45 3.23 1.39 3.23 1.36 3.29

compress 2.23 2.82 1.72 2.76 1.58 2.73 1.52 2.73

SC 3.66 2.68 2.11 2.66 1.93 2.64 1.79 2.64

gee 6.07 2.67 2.67 2.63 2.28 2.62 2.13 2.59

gawk 7.30 2.71 2.41 2.68 2.11 2.66 2.05 2.64

grep 9.17 2.58 1.98 2.59 1.79 2.58 1.72 2.58

cmp 2.26 3.56 1.74 3.56 1.59 3.56 1.54 3.56

Harmonic

Mean 3.56 2.80 2.01 2.79 1.76 2.77 1.69 2.77

Table 5: The effects of full predicating on code expansion rate and speedup

performance and the code expansion rate. The code expansion rate is the ratio of the code size

after full predication pass and the original code size. When the threshold value is 0, which means

no basic block is fully predicated, the harmonic mean of the code expansion rates is 3.56. When

the full predication is performed, the code expansion rate is reduced to 2.01 with the threshold

value of 4, and to 1.69 with the threshold value of 16. The performance doesn't vary much with

the threshold values used in Table 5. This result shows that we can reduce the code expansion rate

to a reasonable range without harming the performance.

5 Conclusions

This paper presents a control dependency encoding and manipulating mechanism, called predicate

shifting, to effectively support both predicated and speculative execution. The predicate shifting

mechanism provides the compiler and the processor a cost-effective way to specify and to store the

control dependencies of an instruction. The key idea is using a shifting condition/predicate window

to specify the scope of branch. With the support of predicate shifting mechanism, the compiler can

fully predicate basic blocks or speculatively move instructions from multiple control paths above

the conditional branches they are dependent on. Unlike the previous predicating mechanism [2],

this mechanism will not limit the number of conditions in a region and thus can achieve good

24

performance with a small predicate tag. The simulation results show that the predicate shifting

model can achieve 16% performance improvement over the predicating model when using a 10-bit

predicate tag, and achieve 24% performance improvement when using a 4-bit predicate tag. The

experimental results also shows that, with the support for multiple-path speculative execution,

the compiler can effectively exploit ILP across basic block boundaries without relying on profile

information. This is a significant improvement over other schemes [5, 3, 18], which can only

speculate along one selected control path.

This paper also presents a structure, called future buffer, to buffer uncommitted results and to

evaluate the predicate state associated with each result. The FIFO nature ofthe future buffer can

simplify exception handling and allow multiple uncommitted writes to the same register. To avoid

complex hardware for associative lookup, we introduce an offset reference mechanism to access

uncommitted results in the future buffer. The experimental results show that a future buffer of 16

entries is able to provide sufficient buffering space for a 4-issue processor.

One of the possible drawbacks of the predicate shifting mechanism is the code expansion caused

by tail duplication. We solve this problem by limiting the level of conditional branches in a region

and by using full predication to merge control paths. With these methods, we can reduce the code

expansion rate to a reasonable factor without harming the performance.

References

[l] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and Tools. Addison

Weslay Publishing Company, Massachusetts, 1986.

[2] H. Ando, C. Nakanishi, T. Hara, and M. Nakaya. Unconstrained Speculative Execution with

Predicated State Buffering. In Proceedings of the 22th International Symposium on Computer

Architecture, pages 126- 137, June 1995.

[3] P. 0. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu. IMPACT: An

Architectural Framework for Multiple-Instruction-Issue Processors. In Proceedings of the 18th

International Symposium on Computer Architecture, pages 266- 275, May 1991.

[4] R. P. Colwell, R. P. Nix, J. J. O'Donnell, D . B. Papworth, and P. K. Rodman. A VLIW Archi

tecture for a Trace Scheduling Compiler. In Proceedings of Second International Conference

on Architectural Support for Programming Languages and Operating Systems, pages 180- 192,

October 1987.

25

(5] J . A. Fisher. Trace Scheduling: A Technique for Global Microcode Compaction. IEEE Trans

actions on Computers, C-30(7):478- 490, July 1981.

(6] P. Y. T . Hsu and E. S. Davidson. Highly Concurrent Scalar Processing. In Proceedings of the

13th International Symposium on Computer Architecture, pages 386- 395, June 1986.

[7] Mike Johnson. Superscalar Microprocessor Design. Prentice Hall, Englewood Cliffs, New

Jersey, 1991.

[8] M. S. Lam and R. P. Wilson. Limits of Control Flow on Parallelism. In Proceedings of the

19th International Symposium on Computer Architecture, pages 46- 57, June 1992.

[9] J. K. F . Lee and A. J. Smith. Branch Prediction Strategies and Branch Target Buffer Design.

IEEE Computer, 17(1):6- 22, January 1984.

(10] S. A. Mahlke, W. Y. Chen, B. R. Rau W.W. Hwu, and M. S. Schlansker. Sentinel Schedul

ing for VLIW and Superscalar Processors. In Proceedings of Fifth International Conference

on Architectural Support for Programming Languages and Operating Systems, pages 238- 247,

October 1992.

[11] S. A. Mahlke, R. E. Hank D. C. Lin, W. Y. Chen, and R. A. Bringmann. Effective Compiler

Support for Predicated Execution Using the Hyperblock. In Proceedings of MICR0-25, pages

45- 54, December 1992.

[12] S. A. Mahlke, R. E . Hank, J.E. McCormick, D. I. August, and W.W. Hwu. A Comparison of

Full and Partial Predicated Execution Support for ILP Processors. In Proceedings of the 22th

International Symposium on Computer Architecture, pages 138- 149, J une 1995.

[13] D. N. Pnevmatikatos and G. S. Sohi. Guarded Execution and Branch Prediction in Dynamic

ILP Processors. In Proceedings of the 21th International Symposium on Computer Architecture,

pages 120- 129, April 1994.

[14] J. Ferrante R. Cytron and B. K. Rosen. Efficiently Computing Static Single assignment Form

and the Control Dependence Graph. A CM Transactions on Programming Languages and

Systems, 13(4):451- 490, Oct. 1991.

[15] B. Ramakrishna Rau, D. W . L. Yen, W. Yen, and R. A. Towle. The Cydra 5 departmental

Supercomputer. IEEE Computer, 22(1):12- 35, January 1989.

26

[16] J. E . Smith and A. R. Pleszkun. Implementation of Precise Interrupts in Pipelined Processors.

In Proceedings of the 12th International Symposium on Computer Architecture, pages 36- 44,

June 1985.

[17] M. D. Smith. Tracing with pixie. Technical report, Stanford University, Stanford, California

94305, November 1991. Technical Report CSL-TR-91-497.

[18] M. D. Smith, M. A. Horowitz, and M. S. Lam. Efficient Superscalar Performance Through

Boosting. In Proceedings of Fifth International Conference on Architectural Support for Pro

gramming Languages and Operating Systems, pages 248- 259, October 1992.

[19] M. D. Smith, M. S. Lam, and M. A. Horowitz. Boosting Beyond Static Scheduling in a

Superscalar Processor. In Proceedings of the 11th International Symposium ·on Computer

Architecture, pages 344- 455, May 1990.

[20] M. Srinivas, A. Nicolau, and V. H. Allan. An Approach to Combine Predicated/Speculative

Execution for Programs with Unpredictable Branches. In Proceedings of the IFIP WG10.3

Working Conference on Parallel Architectures and Compilation Techniques, pages 147- 156,

August 1994.

[21] D. W. Wall. Limits of Instruction-Level parallelism. In Proceedings of Fourth International

Conference on Architectural Support for Programming Languages and Operating Systems,

pages 176- 188, April 1991.

27

