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Abstract 

Speculative execution has long been used as an approach to exploit instruction level par

allelism across basic block boundaries. Most existing speculative execution techniques only 

support speculating along single control path, and heavily rely on branch prediction to choose 

the right control path. In this paper, we propose an extended predicated execution mechanism, 

called predicate shifting, to support speculating along multiple control paths. The predicate 

shifting mechanism maintains a condition/predicate window for each basic block. With the 

condition/predicate window, instructions ca.n be guarded by predicates related to current or 

future branch conditions. The predicate shifting mechanism can reduce the number of required 

tag bits by shifting conditions/predicates out of the condition/predicate window whenever they 

are no longer in use. To incorporate the predicate shifting mechanism into a VLIW processor, 

a new result-buffering structure, call future buffer, is used to buffer uncommitted results and 

to evaluate predicates. The FIFO structure of the future buffer not only simplifies exception 

handling but also allows multiple uncommitted writes to the same register. Experimental results 

show that the predicate shifting mechanism can use predicate tag effectively and achieve 24% 

performance improvement over the previous predicating mechanism [2] using a small predicate 

tag. 
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cessor architecture. 
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1 Introduction 

Superscalar and VLIW architectures have become dominant in high performance processor design. 

They both provide multiple instruction decoders and functional units to exploit inst ruction level 

parallelism (ILP). Previous studies (21, 8] have shown that the ILP within a basic block is very lim

ited. Thus, exploiting ILP across basic block boundaries is essential to achieve higher performance. 

Speculative execution, which allows the execution of instructions before their dependent branch 

conditions are resolved, is a widely used approach for eliminating control dependences and allowing 

instructions to be moved across basic block boundaries. Instruction movement and scheduling for 

speculative execution can be done at compile time via global scheduling, or at run time via branch 

prediction and dynamic scheduling, or both. 

Without any hardware support, a compiler can only perform limited speculative movement in 

order to maintain safety and legality of the program execution. To support speculative execution, 

some result-buffering mechanism for uncommitted results is usually needed. Reordering buffers 

(7, 16] in superscalar processors and shadow register files (2, 19, 18] in VLIW processor provide 

such result-buffering mechanism for speculative execution. 

Besides result-buffering, most existing speculative execution techniques also adopt branch pre

diction [9] . In superscalar architectures, branch history table [7] is often used to predict branch 

results dynamically. In VLIW architectures, compilers use profile information [5, 3] to identify the 

most-frequently executed trace. With branch prediction, compilers or processors can speculatively 

move or execute instructions along the most-frequently taken control path. Limiting speculative 

execution to a single control path has the benefit of maximizing the execution efficiency from the 

most-frequent executed path as well as simplifying the hardware for instruction fetching and result 

buffering. For programs with low branch prediction accuracy, however, the performance may suffer 

significantly because the compilers or processors cannot exploit much parallelism from the unpre

dicted paths which are actually taken at run time. To improve performance for processors with a 

high issue rate on programs with a low prediction accuracy, one may consider using multiple-path 

speculative execution to exploit ILP from all control paths. 

Predicated execution (11, 12, 15] or guarded execution [6, 13] has been used as a way to eliminate 

branches from instruction streams. In predicated execution, a conditional branch is converted into a 

predicate defining instruction. Instructions which are control dependent on the conditional branch 

are then guarded by the predicate. By eliminating branch instructions, predicated execution can 

effectively increase basic block size and reduce branch delay cycles. However, using predicated 

execution alone st ill does not allow instructions which are control dependent on a conditional branch 

to be moved before their predicate defining instruction. In other words, the control dependences are 
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merely converted to data dependences rather than avoided as in the case of speculative execution. 

Speculative execution and predicated execution can be used together to support multiple-path 

speculative execution [2, 20]. Predicated execution provides a good mechanism to represent con

trol dependences in different control paths. With the support of result buffering mechanisms, 

instructions can be speculatively moved and executed before their predicate defining instructions. 

Recently, Ando et al. [2] proposed a predicated state buffering mechanism called predicating which 

can support multiple-path speculative execution. They show that predicating can gain more speedup 

than single-path speculative execution. The mechanism, however, requires a unique condit ion name 

for each conditional branch in a region 1 . Each instruction also requires a predicate tag to specify 

control dependences on all of the branch conditions in the region. The size of the predicate tag 

thus limits the number of conditional branches allowed in a region. As a result, this constraint can 

limit the size of a region and its exploitable ILP. 

In this paper, we propose a more flexible mechanism, called predicate shifting, which can support 

both multiple-path speculative execution and predicated execution without the limitations men

tioned above. The predicate shifting mechanism uses a predicate window to address the predicate 

currently in use. It can keep the predicate tag size small by shifting predicates out of the predicate 

window whenever they are no longer in use. In addition, we present a new result-buffering structure, 

called future buffer, for VLIW architectures. The future buffer can evaluate the predicate states 

of uncommitted results according to the run time conditions. Differing from the shadow register 

files used in [2, 19, 18], the future buffer adopts a first-in, first-out (FIFO) structure to simplify the 

handling of speculative exceptions and allow multiple uncommitted writes to the same register. 

In the rest of this paper, we review some previous works in section 2. In section 3, we describe 

our scheme and its required architectural and compiler support. Section 4 shows some performance 

results. Finally, in Section 5, we present our conclusions. 

2 Background 

Without hardware support for speculative execution, the compil.er must take full responsibility 

to ensure the correctness of speculative instruction movement. It must be very conservative and, 

hence, can only perform limited speculative movements which are safe and legal. A speculative 

instruction movement must be safe to avoid speculative exceptions that may alter the result of the 

program execution. A speculative instruction movement must also be legal to avoid writing to a 

register or a memory location whose value may be used by instructions on other control paths [18]. 

1 A region is a set of basic blocks that includes a entry basic block, which dominates all other basic blocks in the 

region[!]. 
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These restrictions can severely limit the exploitable ILP. 

Hardware mechanisms to buffer uncommitted results and to handle speculative exceptions can 

relax such restrictions. To allow speculative instruction movement along multiple control paths, 

additional hardware is needed to handle future conditions and control dependences. In the following 

subsections, we review existing architectural approaches for these mechanisms. 

2.1 Buffering Uncommitted Results 

Some speculative instruction movements may become illegal because the new values generated by 

those speculative instructions may overwrite the values that are still live on other control paths. 

This can be avoided by renaming the destination registers of those speculative instructions. This 

method, however, requires additional instructions to copy the new values to the original registers 

if the control paths containing the renamed registers are taken. The performance of such register 

renaming is limited by the availability of free registers. 

Smith et al. [19, 18] propose boosting which uses a shadow register file and a shadow store buffer 

to store the results of the speculative instructions until the branch instructions they are control 

dependent on become committed. If the branches are predicted correctly, the processor updates 

the machine state with the results in the shadow structures, otherwise, the results in the shadow 

structures are discarded. To support n levels of branch speculation, the processor must provide 

n shadow register files. This mechanism allows unconstrained speculative execution in a single 

control path. 

The predicating mechanism [2] uses a similar shadow structure to buffer speculative results 

from multiple control paths. Each entry of the register file contains a predicate field and two data 

fileds, one for sequential (committed) value and the other one for speculative value. A flag Wis 

used to indicate which field is storing the current sequential value. When the processor executes a 

speculative instruction, the predicate tag of the instruction is copied to the predicate field of the 

destination register, and the execution result is stored in the speculative data field. If the predicate 

evaluates to be true in later execution, the W flag is flipped and the speculative value becomes the 

current sequential value. This shadow register structure requires only one shadow register file for 

any level of branch speculation. However, it allows at most one uncommitted speculative write to 

any register, because there is only one shadow register for each register. 

2.2 Handling Speculative Exceptions 

Because of the speculative instruction movement, some exceptions which will not occur in the 

original execut ion may occur during the speculative execution. The simplest hardware mechanism 
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to handle such speculative exceptions is to convert all speculative instructions which could cause 

exceptions into non-excepting or silent version of those instructions. When an exception occurs to 

a silent instruction, instead of signaling the exception, the instruction write a polluted result to its 

destination register. The continuing execution of the program may lead some later non-speculative 

instruction to read the polluted value. The non-speculative instruction will signal the exception 

when it reads the polluted value. Colwell et al [4] use a NaN (i.e. Not-A-Number in the IEEE 

floating point standard) to represent the polluted result of a speculative instruction which causes 

exception. The use of a NaN by a non-speculative instruction will signal the exception. There are 

several shortcomings with this method. First, it is not guaranteed to signal an exception if the 

polluted result is conditionally used. Also, it is very difficult to locate and re-execute the original 

instruction which causes the exception. 

Mahlke et al. proposed a sentinel scheduling model [10] to accurately detect and report all 

exceptions caused by speculative instructions. Sentinel scheduling model divides each speculative 

instruction into two parts, the non-excepting part that performs the actual speculative operation, 

and the sentinel part that signals an exception, if necessary. T he sentinel part always remains in 

the original basic block of the speculative instruction. If the execution of the non-excepting part 

causes an exception, the processor writes the excepting address into the destination register and 

sets the exception tag of the register. Any later speculative instructions that use the register will 

copy the excepting address and the exception tag to their destination register. The detection of 

the exception will be postponed until the execution of a non-speculative inst ruction which uses the 

register with the exception tag set, or until the execution of the non-speculative sentinel part of 

the speculative instruction which causes the exception. · With the excepting address stored in the 

source register, the processor can accurately locate the speculative instruction which causes the 

exception. 
Boosting [19, 18] and predicating [2] also postpone speculative exceptions until the commit 

point. Instead of saving the excepting address in the destination register, they mark the except ion 

flag in the corresponding shadow register when an exception occurs. Later, when the processor 

is committing the shadow value to the sequential register, the exception is detected and signaled. 

When the exception is signaled, the processor discards all speculative data in shadow registers, and 

starts the exception handling process. After handling the exception, the processor must restart the 

execution of the program. In boosting, the exception handler uses the address of the committing 

branch to index a jump table and then jump to the recovery code associated with the committing 

branch. The jump table and the recovery code (which contains the instructions to be re-executed at 

each commit point) are both generated by the compiler. In predicating, the processor re-executes 

all speculative instructions which are yet to be committed. It uses a special execution mode called 
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recovery mode to differentiate recovery execution from normal execution. 

2.3 Representing Future Condition and Control Dependencies 

To support multiple-path speculative execution, we must provide a way to represent future branch 

conditions and the control dependences related to the future branch conditions that a speculative 

instruction is dependent on. By encoding the control dependences in instructions, the compiler 

can inform the hardware in what conditions to commit or to squash the results of the instructions. 

The representation of future conditions and control dependences must be easy to manipulate and 

to encode. 

Boosting [19, 18] supports speculative execution along a single control path, that is, only in

structions in the most-frequently taken direction of each conditional branch can be speculatively 

moved above the branch instruction. Since only one control path is possible at any time, the control 

dependences of a speculative instruction can be encoded as a count of the number of the conditional 

branches it has been moved above. The representation of control dependences in boosting is very 

simple and efficient, but it also restricts the opportunities of exploiting ILP from other control 

paths. 

Predicating [2] supports speculative execution along multiple control paths. In this scheduling 

model, instructions from both directions of a conditional branch can be moved above the branch 

instruction. Predicating mechanism gives each conditional branch in a region a unique condition 

name. The predicate tag of an instruction specifies its control dependences related to all the branch 

conditions in the region. The execution result of an instruction can be committed if and only if its 

predicate evaluates to be true with respect to all the branch conditions in the region. By predicating 

an instruction with all branch conditions in the region, the hardware can easily decide whether the 

instruction should be committed or squashed. The drawback of this mechanism is that the number 

of conditional branches in a region is limited by the size of the predicate tag. Since the speculative 

execution doesn't exploit ILP across region boundaries, limiting the size of a region will reduce the 

exploitable ILP in the region. 

3 The Predicate Shifting Mechanism 

In this section, a multiple-path speculative execution mechanism, · called predicate shifting, is de

scribed. Like predicating, predicate shifting allows a compiler to perform unconstrained speculative 

code motion along multiple control paths. This mechanism, however, uses a different scheme to 

represent control dependencies and their corresponding predicates of a speculative instruction. The 

basic idea is, instead of using the boundary of a region, we use a condition/predicate window to 
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specify branch conditions and their corresponding predicates currently in use. When a branch 

condition and its corresponding predicate are no longer in use, they will be shifted out of the con

dition/predicate window, and the succeeding future branch condition and its predicate are shifted 

in. In a sense, the condition/predicate window is being moved downward. The size of the predicate 

tag that represents a window only limits the size of the window. It will not limit the number of 

conditional branches in a region. Additionally, the proposed scheme provides a new mechanism 

to buffer speculative results. This result-buffering mechanism can simplify the handling of spec

ulative exceptions, and allows multiple uncommitted results to be written into the same register. 

In the following subsections, the execution model, the hardware support, the exception handling 

mechanism, and the compiler support are described. 

3.1 Execution Model 

In our model, global instruction scheduling is performed within a region. A region is a set of basic 

blocks that includes an entry basic block which dominates all other basic blocks in the region [l]. 

Similar to [2], tail duplication is performed to make every basic block in a region, except the entry 

block, having only one predecessor in the control flow graph. To simplify global scheduling and 

tail duplication, our region formation algorithm will not include loops or function calls inside a 

region. After tail duplication, every conditional branch inside a region is converted into a condition 

defining instruction (called SETC) followed by a predicated jump to the branch target. The value of 

a condition can be (1) true {branch taken), (2) false {branch not taken}, or (3) undefined {unknown 

yet). The control dependency related to a condition is represented by a predicate, which can be 

(1) execute only if the condition is true {branch taken}, (2) execute only if the condition is false 

{branch not taken), or (3) don't care. The execution or committing of an instruction which is control 

dependent on the branch condition is guarded by its predicates. An instruction can be guarded 

by several predicates as long as the predicate t.ag is wide enough to hold them. For an instruction 

guarded by multiple predicates, the execution result of the instruction can be committed if and 

only if all its predicates evaluate to true. 

In our execution model, there is no unique name (address) or absolute storage location associated 

with each branch condition and its corresponding predicate. Instead, we use a condition/predicate 

window. The condition/predicate window represents the scope of cont iguous conditions and their 

predicates with respect to each basic block. The number of entries in a condition/predicate window 

is equal to the number of predicates in the predicate tag. For each basic block, the condition window 

logically contains conditions2 defined in the basic block and in basic blocks on the succeeding control 

2Since our model supports predicated execution, several basic blocks can be fully predicated into a larger basic 
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Id r6, r29(30) 
aiu r3, rO, irnm 
ld r2, r6(12) 
aiu r5, r29, imm 
aiu rl5, r2, imm 
alu r24, r2, imm 
beq rl5, rO, LC 

aiu r25, r2, imm 
bgt r24, rO, LA 

alu rl, rO, imm 
alu r8, r2, imm 
beq r25, rl, LA 

alu r9, r8, irnm 
st r6(12), r9 
jmp LC 

LA: beq r3, rO, LB 

alu r4, r6, rO 
ret 

LB: aiu r4, rO, im.m 
ret 

LC: Id r4, r29(52) 
st r29(32), r3 
st r29(48), r6 
ret 

Figure 1: A code segment from compress. 

paths. The first entry in the condition window is the condition defined by the first SETC instruction 

in the basic block3 • The second entry in the condition window is the conditions which immediatedly 

follow the first condition in the control flow graph, and so on. Instructions in a basic block thus 

can use the predicate window to specify their control dependencies in the window. 

Figure 1 is a code segment from Spec92 benchmark compress. The corresponding code after tail 

duplication and branch conversion is shown in Figure 2. In the restructured code, all conditional 

branches have been converted into SETC/JMP pairs. The condition window for each basic block 

is shown on the upper-left corner of each basic block. Condition Cn in a condition window denotes 

the nth level branch condition counted from the first basic block LL For basic block 12, the first 

entry of its condition window is the condition defined by ilO ( denoted by C2). However, the second 

entry is the condition defined by either i14 or i28 (denoted by C3). They can be denoted by the 

same condition C3 because the execution of these two instructions are always exclusive. After the 

execution of basic block L2, the condition C2 is shifted out of the window. Either i14 in L3 or i28 

block, which may contains several conditions. 
3 After instruction scheduling, the first SETC instruction may be moved up to the last instruction cycle of the 

predecessor basic block. 
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Pn Predicate 

O 1 Execute only if Cn = False 

1 O Execute only if Cn = True 

1 1 Don't care 

C2C3 C4 

L2 P2P3 P4 

Condition window 

Cl C2C3 

L1 Pl P2 P3 
il:(111111)1d r6,r29(30) 
i2:( 11 11 11 )alu r3,r0,imm 
i3:(I I 11 11 )Id r2,r6(12) 
i4:( 11 ti 11 )alu rS,r29,imm 
iS:(11 11 11 )alu r IS,r2,imm 
i6:(l I II 11 )alu r24,r2,imm 
i7:(I I II ll)setc eq,r lS,rO 
iS:(1011 ll)jmp Lll 

C2C3C4 

Lll P2P3P4 

Cl 

C1 =T 

i9 :(11 11 1 t)alu r25,r2,imm 
i!0:(1111 ll)setc gt,r24,r0 C2 

i34( 11 11 11 )Id r4,r29(52) 
i3S(l 1 11 I !)st r29(32),r3 
i36(1 ! II II )st r29( 48),r6 
i37(11 11 1 l )ret 

ill:(1011 ll)jmp L8 

C2 = T 

C3 C4CS 

LJ P3 P4P5 
LS P3P4PS i 12:(1 I 11 I l )alu rl ,rO,imm 

i!3:(I I 11 1 l)alu r8,r2,imm 
il4:(ll 11 l l )setc eq,r25,rl CJ 

i28:(ll 11 ll)sctc eq.r3,r0 
i29:(10 11 1 l)jmp LIO 

CJ 

i lS:(10 11 I l)jmp LS 

C4CSC6 

IA P4P5P6 
il6:(ll 11 ll)alu r9,r8,imm 
il7:(l l ll ll)st r6(12),r9 

C3 = T 

LS P4 P5 P6 

C3=F 

P4 PS P6 
i30:(l 1 JI 11 )alu r4,r6,r0 
i31:(l I 11 l l)ret 

i 18:( 11 11 I !)Id r4,r29(52) 
il9:(1111 ll)st r29(32),r3 
i20:(l I 11 I !)st r29(48),r6 
i2 1:(1 I II l l)ret 

i22:(l I 11 l l)setc eq,r3,r0 
i23:(I0 11 ll)jmp L7 

C4 

C4=F 

CS C6C7 

L6 PS P6 P7 
i24:(1 l 11 1 l)alu r4,r6,r0 
i25:(l 1 11 1 l)ret 

C4 = T 

C5 C6C7 

L7 P5 P6 P7 
i26:(1 l 11 l l)alu r4,r0,imm 
i27:(11 11 ll)ret 

P4 PS P6 
i32:(l I 11 1 l)alu r4,r0,imm 
i33:(l l 11 I !)rel 

Figure 2: The code segment from compress after t ail duplication and branch conversion. 

in LS will be executed and define C3, which becomes the first entry of the condit ion window. 

Figure 2 also shows the predicate tag associated with each inst ruction. Here, we assume the 

hardware can support 3 predicate levels. Each predicate requires two tag bits to represent the 

following cont rol dependency relations. 

• 0 1 : Execute only if t he corresponding condition is false. 

• 1 0 : Execute only if the corresponding condition is true. 

• 1 1 ; Don't care. 

• 0 0 : Squashed (used by hardware only) 
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The code in Figure 2 is before global scheduling. There is no speculative instruction movement 

yet. All instructions except the predicated jumps are independent of any current conditions and 

future conditions, hence, all have a predicate tag of (11 11 11). A condition is said to be current 

with respect to an instruction if its value is known and still in use when the instruction is issued. 

A condition is said to be a future condition if its value is not yet defined when the instruction is 

issued. To move an instruction above a SETC instruction, the compiler must update its predicate 

tag to indicate its control dependencies on the condition defined by the SETC instruction. For 

example, if i30 in basic block L9 is moved to Ll, its predicate tag will become (01 10 01), which 

means the committing of i30 is dependent on Cl(false), C2(true), and C3(false). 

At run time, the processor also maintains a dynamic condition window to hold current condi

tions and future conditions. The dynamic condition window is the same as the condition window 

viewed at compile time. The condition window is updated when the processor crosses a basic block 

boundary. The processor identifies a basic block boundary when it encounters a branch instruction4
. 

When the processor decodes a branch instruction, the conditions defined in the current basic block 

are retired and shifted out of the condition window, and new future conditions are shifted in (see 

Figure 2). Note that a condition defined by a SETC instruction issued as the last instruction of 

the current basic block is regarded as the condition defined in the next basic block, so it will not 

be shifted out of the condition window when the current basic block is terminated. 

Since the condition window can contain both current conditions and future conditions, the 

compiler can encode the control dependencies of an instruction on future conditions (for speculative 

execution) as well as on current conditions (for predicated execution). In this mechanism, unlike 

predicating [2], the predicate tag only contains control dependencies on conditions in current use 

instead of on all conditions in a region. The width of predicate tag only limits the levels of branch 

predication and speculation instead of the size of a region. This allows instruction scheduler to 

form regions of larger sizes for more ILP. 

3.2 Architectural Support 

To efficiently support the model described in the subsection 3.1, we need to provide mechanisms 

for buffering execution results, and committing or squashing the results according to the run-time 

conditions. 

Figure 3 shows the block diagram of a generic four-issue processor. Like other VLIW processors, 

this processor provides multiple decoders and functional units for multiple-instruction issue and 

4In our execution model, all basic blocks are terminated by a branch instruction (including function call and 

return) after full tail duplication 
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Dst & Predicate Tag 

Decoder 
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! 
Register File 

Past Buffer Dst Reg No 

t Predicate Tag 

Data Cache Valid Flag 
Exception Flag 

Future Buffer 

Figure 3: The processor block diagram 

execution. The condition register above the branch units is a shifting register which stores the values 

of conditions in the current condition window. The past-condition register beside the condition 

register is also a shifting register. It stores the values of recently retired conditions from the 

condition register. The retired condition values are needed for exception recovery. 

This processor model provides a future buffer to buffer uncommitted results. The future buffer is 

organized as a first-in, first-out (FIFO) queue to allow instructions to be completed and committed 

in order . By committing instructions in the program order, the processor can greatly simplify the 

exception handling and recovery. The mechanism for exception handling is described in the next 

section. The future buffer contains a data field for storing execution results, a register-name field 

for specifying the destination registers of the execution results, a predicate tag field for storing the 

predicate state associated with each result. In addition, each entry in the future buffer includes 



Condition 

Cond Pred Action 

0 X 0 Clear tag 

0 X 1 Shift left by 2 bits 

0 X Clear tag 

X Shift left by 2 bits 

Predicate tag Shift left by 2 bits and 
Insert 11 to right 

Clear 

Figure 4: Actions taken on predicate fields of a future buffer entry when executing SETC instruction 

a valid flag to indicate whether the result is ready or not, and an exception flag for signaling the 

exception caused by the instruction associated with the entry. Like the past-condition register, 

there is a past buffer for saving the recently committed data being shifted out of the future buffer. 

The past buffer is also used for exception recovery. The number of entries in the past buffer must 

be equal to the number of entries in the future buffer. 

When the processor starts executing a program, all entries in the condition register are initialized 

to undefined. At this point, all conditions in the condition window are future conditions. When 

a decoder fetches and issues instructions, the decoder allocates an entry at the top of the future 

buffer for each instruction and copies its destination register name and the predicate tag into the 

corresponding fields in the entry. After the execution, the result of the instruction is written into 

the data field of the allocated entry, and the valid flag is set to true. The predicate state of an 

instruction is initially assigned by the compiler as described in the previous subsection. During 

execution, the predicate state will be evaluated and updated by the processor according to the 

condition values defined by the SETC instruction. Figure 4 shows the hardware mechanism in each 

entry of the future buffer. When a SETC instruction is executed, the condition value defined by 

the SETC instruction is saved in the corresponding entry of the condition register and passed on 

to the future file. Every future buffer entry wiU use the condition to evaluate the first predicate in 

the predicate field. If the predicate evaluates to true, the predicate tag is shifted left by two bits 

and 11 is shifted into the rightmost two bits. A result can be committed if all its predicates are 11, 

because it means this result is not dependent on any condition. If the predicate evaluates to false, 

the predicate tag is set to zero, which means this result is squashed. 

When the result of an instruction reaches the bottom of the future buffer, the result can be 

either committed to the register file, discarded, or just held in the future buffer according to its 

predicate state and valid flag. As shown in Figure 5, if all its predicates in the predicate field 
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Future Buffer 

Data R No 

l t-----+-~~l 
Predicate Tag Action• 

0 
1 

0 XI X X X Skip & Shift down 

1 , 1 1 1 1 , 1 WB & Shift down 

0 1 1 X X X X Hold 

1 0 X X X 
1 
X Hold 

• Assume valid bit is 1 and exception bit is O 

To Past Buffer To Register File 

Figure 5: The write back mechanism for future buffer. 

are 11 and the valid flag is set, and there is no exception caused by the result, the result can be 

committed and written back to the register file. If the first predicate in the predicate field is 00, 

which means this result was squashed, the result is shifted out of the future buffer and discarded. 

If the predicate field still contains predicates that are dependent on some future conditions, the 

results are held in the future buffer until all the predicates evaluate to 11 or 00. The committing 

of a result will also be stalled if its valid bit is false, which means the result is not available yet. 

When a result is shifted out of the future buffer, regardless of being committed or discarded, the 

result value is saved in the past buffer for exception recovery. If the result of an instruction is ready 

to be committed but its exception flag is set, the processor will withhold the write back and signal 

the exception. 

Since our execution model also supports predicated execution, the predicate tag of an instruction 

may contain predicates that depend on some current conditions. The current conditions are the 

conditions defined by the previous SETC instructions which are still live in the condition register. 

In this case, the decoder is responsible for evaluating and updating those predicates before writing 

them to the predicate field of the corresponding entry in the future buffer. As mentioned in the 

previous section, the current conditions will be retired when the processor completes the instruction 

issue of the current basic block and moves to the next basic block. The processor identifies basic 
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block boundaries by a branch instruction, regardless of the branch being executed or not. When the 

decoder detects a branch instruction, the conditions defined in the current basic block are shifted 

out of the condition register and passed on to the past-condition register. Note that the condition 

defined by a SETC instruction issued at the last instruction cycle of the current basic block is 

regarded as a condition defined in the next basic block and will not be shifted out of the condition 

register. 

Moving an instruction too far above it control dependent SETC instruction may cause a deadlock 

in the future buffer. A deadlock occurs when the result of an instruction reaches the bottom of 

the future buffer but cannot be committed or discarded because its dependent condition is not 

defined yet. In the meantime, the SETC instruction that defines the condition cannot be issued 

and executed because the future buffer is full. To avoid such a deadlock, the distance between a 

speculative instruction and its control dependent SETC instructions must be less than the number 

of entries in the future buffer. In other words, the maximum distance of the speculative execution 

is limited by the size of the future buffer. 

The FIFO mechanism of the future buffer is very similar to the reorder buffer [7, 16] used in 

superscalar processors. The main disadvantage of a reorder buffer is that it requires associative 

hardware to provide later instructions with the uncommitted results produced by earlier instruc

tions. The hardware complexity and its associated latency often limit the size of a reorder buffer 

in superscalar processors [7]. The design of the future buffer eliminates the need of the associa

tive hardware with the assistance of the compiler. Since instruction scheduling is done at compile 

time, the compiler knows the register dependency and the distance between instructions. If an 

instruction depends on the result of a previous instruction which may be still in the future buffer 

when the instruct ion is issued, the compiler will replace the register name of the operand with an 

offset which is the distance between the current instruction and the previous instruction. Only 

operands which depend on the previous results with a distance less than the size of the future 

buffer need to be renamed with an offset. iF the distances are greater than the size of the future 

buffer, the instruction can read the results from the register file with the original register names, 

because the results must have been committed when this instruction is issued. The compile time 

renaming scheme can greatly simplify the implementation of the future buffer. In other words, the 

complex associative hardware can be replaced by a simpler address calculation hardware for offset 

references. 

Another advantage of the future buffer is that it allows multiple uncommitted writes to the same 

register. The multiple uncommitted writes are caused by output dependencies with an instruction 

distance less than the size of the future buffer, or by the execution of speculative instructions along 

different control paths which write to the same register. The allocate-on-demand nature of the 
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future buffer allows multiple entries allocated to the same register, and thus allows the compiler to 

use the buffer more efficiently. 

While the future buffer allows multiple uncommitted writes to the same register, there is still 

a problem when an instruction i needs to read a register which is written by two instructions from 

different control paths that are merged before the instruction. In this situation, the compiler cannot 

know which results (offsets) should be used. To solve this problem, we introduce a new instruction, 

called PHI5 , to select the result from the actual control path and write it to the same register at 

run time. By inserting the PHI instruction before the instruction i, the compiler can use an offset 

to reference the result of the PHI instruction and get the correct value for the instruction i. Figure 

6 shows an example of how the PHI instruction is used. In our execution model, two control paths 

will be merged when several basic blocks are fully predicated into a basic block as shown in figure 

6. Not that a PHI instruction cannot be moved above the SETC instruction that separates the 

control paths, because the PHI instruction needs to use its condition value to select the correct 

result value. 

Ll 
il :(1111 ll)ld r4,r29(12) 
i2:(ll 11 ll)ld r5,r29(16) 
i3:(l 1 11 ll)setc eq, r4,r0 
i4:(JO 11 ll)jmp L3 

L2 L3 

i5:(11 11 I !)add r6,r5,l i6:(l l 11 1 l)sub 

L4 L4' 

i7:(l I 11 l l)st r29(16),r6 i7' :(11 11 ll)st 

(a) After tail duplication 

r6,r5,l 

r29(16),r6 

L1 

il :(11 11 1 l)ld 
i2 :(11 11 I l)ld 
i3 :(11 11 ll)sctc 
i5 :(01 I I 1 l)add 
i6 :(JO 11 l l)sub 

:(l l llll)phi 
i7 :(11 11 ll)st 

r4,r29(12) 
r5,r29(16) 
eq, r[-2],rO 
r6,r[-2],l 
r6,r[-3],1 
r6,[-l},[-2] 
r29( 16),r[-1] 

(b) After full predication and scheduling 

Figure 6: The use of the PHI instruction. 

The architecture model also provides a store buffer to buffer uncommitted store data. Like the 

future buffer, the store buffer is organized as a FIFO queue. Each store buffer entry consists of the 

store address, the store data and its associated predicate tag. The predicate tags are evaluated and 

updated at run time similar to those in the future buffer. The predicate tag, however, is used for 

determining the data dependency between a store instruction and a later load instruction rather 

than for determining if its store data can be committed. The store data can be committed and 

5We name this instruction PHI because it performs a. similar function of the cp-function used in the Static Single 

Assignment (SSA) form (14] 
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written back to the data cache only when the corresponding entry in the future buffer is committed. 

Another difference between the store buffer and the future buffer is that the store buffer uses 

associative hardware to check the data dependencies between load and store instructions. The 

associative hardware for store buffer will not cost much since the store buffer only needs a small 

number of entries. When a load instruction is executed, if its load address matches the address 

field of a store buffer entry and its predicate tag is dominated by the predicate tag of the entry, the 

store buffer will forward the uncommitted store data to the load instruction. A predicate tag P is 

said to be dominated by another predicate tag Q if, for every predicate in the predicates tag Q, the 

predicate is either 11 or is equal to the corresponding predicate in the predicate tag P. 

3.3 Handling Exceptions 

With the in-order completion provided by the future buffer, the exception handling and recovery 

mechanism is very straightforward and simple. When an exception occurs to an instruction, the 

processor sets the exception flag in the corresponding future buffer en.try. The detection. of the 

exception is postponed until the instruction reaches the bottom of the future buffer and is ready to 

be committed. The logic for detecting the exception is also shown in Figure 5. When the exception 

is detected and signaled, the processor discards all the data in the future buffer and the store buffer 

and evokes the exception handling process. The past state stored in the past-condition register and 

the past buffer as well as the current state stored in the condition register and the register file need 

to be saved in the memory before the exception handling process starts. The exception handling 

process will restore these state and data when it returns. 

After the exception is handled, if it is not fatal, the processor will restart from the instruction 

which caused the exception. All the instructions after the excepting instruction must also be re

executed. Two things are needed to ensure the correctness of the re-execution. First, the condition 

window stored in the condition register needs to be rolled back. During the program execution, 

the instruction being committed is behind the instruction being decoded with a maximum distance 

of the size of the future buffer. Because the scope of the condition window is with respect to 

the instruction being decoded rather than to the instruction being committed, it is possible that 

some conditions affecting the instructions after the excepting instruction may have been retired 

and shifted to the past-condition. register. Note that the program is restarted from the excepting 

instruction, hence, these operations must be undone. To roll back the condition register, the 

recovery process needs to restore the conditions retired after the excepting instruction from the 

past-condition register back to the condition register. In addition, all the condition values defined 

by the SETC instructions after the excepting instruction are reset to undefined. 
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Second, the processor must provide the instructions to be re-executed with the register data 

accessed by offset references. Remember that instructions use offsets to read uncommitted register 

values from the future buffer. When an instruction is re-executed, the register value which it 

accesses with an offset may have been committed to the register file or squashed and no longer 

exists in the future buffer. This problem is solved by the use of the past buffer. The past buffer is 

implemented as an extension of the future buffer, and can be accessed also by an offset reference. 

During the program execution, the committed and squashed results being shifted out of the future 

buffer are all shifted into the past buffer. The number of entries in the past buffer is equal to 

that in the future buffer. The register values to be accessed by the offset references after exception 

handling can always be found either in the past buffer or in the future buffer. With the support of 

the past buffer, the compiler can replace an operand with an offset reference without worrying if 

the result is committed or not. 

3.4 Compiler Support 

Our execution model relies on the compiler to exploit ILP across basic block boundaries and to 

generate the correct code for speculative and predicated execution. In this subsection, we briefly 

outline the compiler techniques for instruction scheduling and code generation. 

Region Formation The region formation algorithm starts from a basic block in the global 

control fl.ow graph and includes as many basic blocks as possible provided that the basic blocks are 

dominated by the entry block. The algorithm stops growing a region along a control path when it 

encounters a function call on the control path. In addition, the algorithm always starts a new region 

whenever it encounters a loop head (or an entry block of a backward edge), so that there will be 

no loop formed inside a region. To control possible code expansion caused by the tail duplication, 

we may limit the levels of conditional branches allowable in a region. 

Tail Duplication After the region formation we perform tail duplication. I t forces every basic 

block in a region, except the entry block, to have only one predecessor in the control flow graph. 

Although the code size may grow in this process, the later full predication pass will eliminate many 

redundant duplications to reduce the code size. 

Branch Conversion In this pass, all conditional branches in a region are converted into a SETC 

instruction followed by a predicated jump to the branch target. In addition, every instruction is 

assigned an absolute predicate tag which specifies the control dependencies related to all the SETC 

instructions on the control path from the entry block to the basic block it is in. 
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Cl C2 C3 j 

L1 ii :(ll ll ll)ld r6,r29(30) i2 :(11 11 1 l)alu r3,r0,irnm 

i4 :(11 11 l l)alu r5,r29,imm i34:(10 l l ll)ld r4,r29(52) 

i3 :( 11 11 ll)ld r2,r[-4](12) i35:(10 ll ll)st r29(32),r[-4) 

i36:(10 ll ll)st r29(48),r[--6) il2:(01 01 l l)alu rl,rO,imm 

i5 :(11 11 l l)alu rlS,r[-4),imm i6 :(11 11 1 l)alu r24,r[-5],irnm 

Cl ◄ .... i7 :(11 11 I l)setc eq,r[-2),rO i9 :(01 11 1 l)alu r25,r[-7],imm 

C2 ◄ il0:(01 11 I l)setc gt,r[-3),rO i8 :(10 ll ll)ret 

1c2 c3 C4l 
~=F 

L2 I i14:(01 11 11) setc eq,r[-3),r[-7] ] ii 1:(10 I I I l)jmp L8 l C2=T 

J3 --L8 
C3 C4 cs I ----- . 

C2= F i28:(I I 11 I l)setc eq,r3,r0 I i30:(01 11 I l)alu r4,r6,r0 I 
i31:(01 11 1 l)ret I I i29:(10 I I l l)jmp LIO I 

C3 C4C5 I C4C5C6 I J3 ~3=T 

L3 i13:(1 l 11 l l)alu r8,r[-12),imm i15:(10 11 11 1 l)jrnp LS Ll~ i32:(11 ll ll)alu r4,r0,imm li33:(ll ll ll)ret I 

C3= F ~3 = T 

C4C5 C6 I C4C5C6 I ------L4 i16:(11 11 I l)alu r9,r[-2),imm NOP LS i22:(l 1 11 l l)setc eq,r3,r0 I i24:(01 11 l t)alu r4,r6,r0 I 
il7:(ll l l !!)st r6(12),r[-2] i 18:(11 11 11 )ld r4,r29(52) i25:(0I II ll)ret I li23:(10 II II)jmp L7 I 
it9:(l I 11 I !)st r29(32),r3 i20:(11 ll ll)st r29(48),r6 

c!4 ~=T C5 C6C7 I 
i21:(11 11 I l)ret NOP 

L7l i26:(1 I 11 l l)alu r4,r0,imm I i27:(l 1 11 11) ret I 

Figure 7: The code segment from compress after code generation. 

Full Predication In this pass, the compiler traverses the control flow graph of each region to 

identify candidate blocks for full predicating. If two control paths are different in only a few 

instructions, the compiler will fully predicate the different parts and eliminate one of the control 

paths. With full predication, the compiler can reduce the code size as well as eliminate some 

branch instructions. Full predication, however, may waste resources due to unnecessary execution 

of instructions in the untaken control paths. In addition, merging two control paths may introduce 

PHI instructions that may limit the speculative instruction movement. As mentioned earlier, 

the PHI instructions and the instructions dependent on them cannot be moved above the SETO 

instruction they are control dependent on. In order to control the overhead in full predication, the 

compiler uses a threshold to determine whether a candidate basic block should be fully predicated 

or not. A basic block can be fully predicated only if its size is less than the threshold value. 

Instruction Scheduling The compiler performs global instruction scheduling in a region by 

scheduling basic blocks in a top-down order. When scheduling instructions in a basic block, the 
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compiler only schedules the branch, the SETC instructions, and their dependent instructions. All 

the other instructions are pushed down to the succeeding basic blocks in order to minimize the 

required instruction cycles for the basic block. Although pushing those instructions to the suc

ceeding basic blocks may require duplicating the instructions and, thus, increase the code size, we 

found most of the instructions can be scheduled back to an empty instruction slot in their prede

cessor blocks in the later scheduling phase, and eliminate their clone instructions. The remaining 

instructions in the basic block are scheduled using list scheduling. 

When scheduling an instruction, the compiler tries to find an empty instruction slot as early as 

possible along the control path from the entry block. After scheduling a basic block, the compiler 

selects the next schedulable basic block with or without profile information. A basic block is 

schedulable if its predecessor has been scheduled. When scheduling with profile information, the 

basic block with the highest execution count is chosen to be scheduled. If no profile information is 

available, the schedulable basic block which is closest to the entry block is chosen. 

Code Generation After all instructions are scheduled, the compiler generates the predicate tags 

and the offset references as required. The predicate tag of an instruction is computed by comparing 

the absolute predicate tag of the instruction with the absolute predicate tag associated with the 

basic block the instruction is scheduled into. The operand of an instruction is replaced by an offset 

reference if the operand depends on the result of a previous instruction whose distance is less than 

the size of the future buffer. 

Figure 7 shows the final version of the code shown in Figure 2 generated by the compiler. The 

machine model for this code is a two-issue processor with 16-entry future buffer and a 6-bit predicate 

tag. Some basic blocks in the original code have disappeared because all of their instructions have 

been moved to the predecessor blocks. Also, note some SETC instructions have been moved to the 

last instruction of their predecessor blocks. 

4 Performance Evaluation 

Ando et al. [2] have shown that multiple-path speculative execution through predicating outper

forms traditional global scheduling techniques and single-path speculative execution techniques 

such as boosting [19, 18]. Hence, we only compare the performance of the predicate shifting model 

with the predicating model. Some performance-related issues, which include the size of the future 

buffer, instruction scheduling with or without profiling, and code expansion rate, are also studied 

in this section. 
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4.1 Methodology 

We implement the instruction scheduler and simulator based on pixie and xsim [17). Pixie is 

used to partition an executable program into basic blocks and generate dynamic basic block trace 

for simulation. Xsim is used to construct the global control fl.ow graph. Xsim also provides a 

disassembler for decoding instructions with given addresses. With the global control fl.ow graph 

and instructions associated with each basic block, we can perform instruction scheduling and code 

generation for our machine models. Our simulator simulates the execution of the optimized code 

cycle-by-cycle, using the dynamic basic block trace generated by pixie. The performance of the 

optimized program run on a machine model is expressed in terms of the speedup over the MIPS 

R4000 processor. The execution cycle count of the program run on a R4000 processor is reported 

by prof, which also uses the profile information generated by pixie to derive the execution cycle 

count . 

Program Dynamic R4000 R4000 

Instructions Cycles CPI 

008.espresso 496M 713M 1.44 

022.li 1128M 1722M 1.53 

023.eqntott 866M 1406M 1.62 

026.compress 87M 126M 1.45 

072.sc 148M 223M 1.51 

085.gcc 140M 210M 1.49 

gawk 164M 230M 1.40 

grep 690K 1045K 1.51 

cmp 745K 813K 1.09 

Table 1: Benchmark Programs and their simulation information. 

Table 1 lists the benchmark programs used in our study. It consists of SPEC92 integer bench

mark programs 008.espresso, 022.li, 023.eqntott, 026.compress, 072.sc and 085.gcc, and three GNU 

utilities gawk, grep, and cmp. These programs are compiled into executables using SGI C compiler 

version 5.3 with -sopt (source-to-source optimization) and -03 options. The executables are then 

processed by pixie, xsim, and our code scheduler. Table 1 also lists the dynamic instruction counts 

and cycle counts reported by prof. 

The base machine model used in our simulation is a full 4-issue VLIW processor. There is 
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Figure 8: Performance comparison of the predicating model (P) and the predicate shifting model 

(PS) with predicate tags of different sizes. 

no limitation on the combination of instructions that can be issued in each cycle. However, at 

most one SETC instruction and one branch instruction can be executed in each cycle. If multiple 

SETC's or branch instructions are scheduled in the same cycle, the scheduler must guarantee that 

their predicate states are exclusive, i.e., at most one of their predicate tags will evaluate to be 

true when they are issued. All instructions, except branch instructions, have the same latencies 

as those of R4000. For branch instructions, we assume a branch target buffer [9] is used and all 

branch targets except indirect jumps will hit the branch target buffer. Note that branch prediction 

is not essentialin our model because a conditional branch instruction is always executed at least 

one cycle after the SETC instruction that defines the branch condition. To simplify our model, we 

also assume a perfect memory subsystem with a latency of two cycles. 
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Program Predicating with predicate tag of Predicate 

4 bits 6 bits 8 bits 10 bits Shifting 

espresso 8.56 9.75 10.57 11.33 28.16 

li 7.44 8.58 9.45 10.13 22.10 

eqntott 6.51 7.27 7.88 8.45 13.28 

compress 8.45 9.67 10.85 11.69 21.98 

SC 7.67 8.85 9.84 10.73 37.41 

gee 7.46 8.70 9.75 10.63 65.03 

gawk 9.28 10.99 12.47 13.86 90.07 

grep 8.35 9.84 11.10 12.06 104.67 

cmp 8.24 9.60 10.69 11.52 22.40 

I Harmonic Mean I 7.96 I 9.20 I 10.22 I 11.071 35.66 1 

Table 2: Average instruction count (static) per region in different predicating models 

4.2 Results 

Our scheduler and simulator can generate andl execute codes for both the predicating model and 

the predicate shifting model with varying machine configurations. To make the comparison fair, 

we use the same future buffer mechanism to buffer uncommitted results for both models. In the 

following performance evaluation results, the default machine model is a 4-issue processor with a 

32-entry future buffer and a 8-bit predicate tag. The default threshold value for full predication is 

zero, and the instruction scheduling is done without using profile information. 

Comparison of Predicate Shifting and Predicating Figure 8 shows the performance com

parison of the predicate shifting model and the predicating model with predicate tags of different 

sizes. When a predicate tag size of 10 bits is used for both models, the harmonic mean of speedup is 

2.80 for predicate shifting model, and 2.42 for the predicating model. The predicate shifting model 

achieves 16% improvement over the predicating model. When the predicate tag size is reduceded 

to 4 bits, the predicate shifting model can still maintain a speedup of 2.79, while the speedup of 

predicating model drops to 2.25. In this case, The predicate shifting model performs 24% better 

than the predicating model. The reason for the better performance is that its predicate encoding 

mechanism does not limit the size of regions. Hence, more ILP can be exploited within larger 

regions. Table 2 shows the average region sizes of the programs in both models with predicate tags 
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Program Number of entries in future buffer 

16 32 48 64 

espresso 2.14 (100%) 2.14 (100%) 2.14 (100%) 2.14 

li 3.06 (99.7%) 3.07 (100%) 3.07 (100%) 3.07 

eqntott 3.15 (99.7%) 3.16 (100%) 3.16 (100%) 3.16 

compress 2.78 (98.6%) 2.82 (100%) 2.82 {100%) 2.82 

SC 2.67 (99.6%) 2.68 (100%) 2.68 {100%) 2.68 

gee 2.67 (100%) 2.67 (100%) 2.67 {100%) 2.67 

gawk 2.67 (98.5%) 2.71 (100%) 2.71 (100%) 2.71 

grep 2.58 (100%) 2.58 (100%) 2.58 (100%) 2.58 

cmp 3.56 (100%) 3.56 (100%) 3.56 (100%) 3.56 

I Harmonic Mean I 2.78 (99.3%) I 2.80 (100%) I 2.80 (100%) I 2.80 I 

Table 3: Cycle-count speedup with future buffers of different sizes. (percentages are speedup 

comparing with 64-entry future buffer) 

of different sizes. In the predicating model, the average region size is merely 8 to 11 instructions 

per region and glows slowly as the size of the predicate tag increases. On the contrary, the region 

size in the predicate shifting model is independent of the predicate tag size and has 35 instructions 

per region on average. 

Effect of Future Buffer Size on Performance As mentioned in section 3.2, the maximum 

distance of speculative execution is limited by the size of the future buffer. With a larger future 

buffer, the compiler can move an instruction further above its dependent SETC instructions. How

ever, a large future buffer is costly because it requires the same number of entries in the past 

buffer and, most importantly, it requires additional bits in every instruction word to specify offset 

references for accessing results in the future buffer. Table 3 shows the cycle-count speedup of the 

4-issue machine model with future buffers of 16, 32, 48, and 64 entries. The result shows that a 

future buffer with 32 entries can perform as well as a future buffer of 64 entries. The result also 

shows that the performance of a 16-entry future buffer can be within 99.3% of a 64-entry future 

buffer. Hence, the size of the future buffer need not be very large. 

Instruction Scheduling with Profile Information The performance of instruction scheduling 

with and without profile information is compared in Table 4. It can be seen that profile information 
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Program Speedup 

Without profiling With profiling 

espresso 2.14 2.14 (100.00%) 

li 3.07 3.11 (101.30%) 

eqntott 3.16 3.17 (100.32%) 

compress 2.82 2.82 (100.00%) 

SC 2.68 2.69 (100.37%) 

gee 2.67 2.70 (101.11%) 

gawk 2.71 2.72 (100.36%) 

grep 2.58 2.63 (101.93%) 

cmp 3.56 3.56 (100.00%) 

I Harmonic Mean J 2.80 1 2.81 (100.36%) 1 

Table 4: Cycle-count speedup comparison of instruction scheduling with and without profileinfor

mation. 

can only improve performance by an average of 0.36%. Profiling information is very important in 

traditional global instruction scheduling techniques such as trace scheduling [5], and in single-path 

speculative execution supported by boosting. They rely on the profile information to select the 

most-frequently executed control path for performing speculative instruction movement. Optimiz

ing one control path, however, may affect the performance of the other control paths. In our 

execution model, all control paths can be optimized through multiple-path speculative execution 

provided that there are sufficient resources. As a result, our execution model can achieve good 

performance without profile information. 

Code Expansion Rate and Full Predication To support the predicate shifting execution 

model, the scheduler needs to perform tail duplication. Full tail duplication may cause the code 

size to grow exponentially. As mentioned in Section 3.4, we can reduce the code size by limiting the 

level of conditional branches in a region and by performing full predication to merge control paths. 

In our region formation pass, the maximum level of conditional branches in a region is 16. In the 

full predication pass, the compiler uses a threshold to determine whether a basic block should be 

fully predicated. With a larger threshold value, more basic blocks can be fully predicated and the 

code size will be reduced. On the other hand, if the threshold value is too large, the performance 

may suffer as discussed in Section 3.4. Table 5 shows the effects of the threshold value on the 
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Threshold for fully predicating 

Program 0 4 8 16 

Expansion Speedup Expansion Speedup Expansion Speedup Expansion Speedup 

espresso 2.93 2.14 2.40 2.14 1.58 2.07 1.46 2.07 

Ii 2.37 3.07 1.88 3.07 1.80 3.07 1.77 3.07 

eqntott 1.76 3.16 1.45 3.23 1.39 3.23 1.36 3.29 

compress 2.23 2.82 1.72 2.76 1.58 2.73 1.52 2.73 

SC 3.66 2.68 2.11 2.66 1.93 2.64 1.79 2.64 

gee 6.07 2.67 2.67 2.63 2.28 2.62 2.13 2.59 

gawk 7.30 2.71 2.41 2.68 2.11 2.66 2.05 2.64 

grep 9.17 2.58 1.98 2.59 1.79 2.58 1.72 2.58 

cmp 2.26 3.56 1.74 3.56 1.59 3.56 1.54 3.56 

Harmonic 

Mean 3.56 2.80 2.01 2.79 1.76 2.77 1.69 2.77 

Table 5: The effects of full predicating on code expansion rate and speedup 

performance and the code expansion rate. The code expansion rate is the ratio of the code size 

after full predication pass and the original code size. When the threshold value is 0, which means 

no basic block is fully predicated, the harmonic mean of the code expansion rates is 3.56. When 

the full predication is performed, the code expansion rate is reduced to 2.01 with the threshold 

value of 4, and to 1.69 with the threshold value of 16. The performance doesn't vary much with 

the threshold values used in Table 5. This result shows that we can reduce the code expansion rate 

to a reasonable range without harming the performance. 

5 Conclusions 

This paper presents a control dependency encoding and manipulating mechanism, called predicate 

shifting, to effectively support both predicated and speculative execution. The predicate shifting 

mechanism provides the compiler and the processor a cost-effective way to specify and to store the 

control dependencies of an instruction. The key idea is using a shifting condition/predicate window 

to specify the scope of branch. With the support of predicate shifting mechanism, the compiler can 

fully predicate basic blocks or speculatively move instructions from multiple control paths above 

the conditional branches they are dependent on. Unlike the previous predicating mechanism [2], 

this mechanism will not limit the number of conditions in a region and thus can achieve good 

24 



performance with a small predicate tag. The simulation results show that the predicate shifting 

model can achieve 16% performance improvement over the predicating model when using a 10-bit 

predicate tag, and achieve 24% performance improvement when using a 4-bit predicate tag. The 

experimental results also shows that, with the support for multiple-path speculative execution, 

the compiler can effectively exploit ILP across basic block boundaries without relying on profile 

information. This is a significant improvement over other schemes [5, 3, 18], which can only 

speculate along one selected control path. 

This paper also presents a structure, called future buffer, to buffer uncommitted results and to 

evaluate the predicate state associated with each result. The FIFO nature ofthe future buffer can 

simplify exception handling and allow multiple uncommitted writes to the same register. To avoid 

complex hardware for associative lookup, we introduce an offset reference mechanism to access 

uncommitted results in the future buffer. The experimental results show that a future buffer of 16 

entries is able to provide sufficient buffering space for a 4-issue processor. 

One of the possible drawbacks of the predicate shifting mechanism is the code expansion caused 

by tail duplication. We solve this problem by limiting the level of conditional branches in a region 

and by using full predication to merge control paths. With these methods, we can reduce the code 

expansion rate to a reasonable factor without harming the performance. 
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