Online Stable Matching as a
Means of Allocating Distributed Resources

Hyunyoung Lee
Dept of Computer Science, Texas A&M University, Collegetidtg TX 77843
E-mail: hl ee@s. t anu. edu

Abstract

In heterogeneous distributed systems, achieving optiynaliboth effective use of computational
resources (e.g. throughput) and user satisfaction (esporese time) is an important unresolved prob-
lem. If the users of the system participate dynamically asuamers as well as donors of computational
resources, the task of optimizing the exchange of these atatipnal resources leads to a combinato-
rial problem. As a solution, we propose a novel algoritiagptive Online Stable Matching (AOSM).

We present experimental data which compare the perforn@a®SM with the performance of two
alternative algorithms, First-come First-served (FCH®) Bixed-k online.

Keywords: stable matching, distributed resources, online algoritapproximation, adaptive win-
dowing.

1. Introduction

The concept obarter marketing [5] has been proposed as a means of maximizing the utilizatidhe
computational resources of heterogeneous distributdéragswith varying computational power and de-
mands (e.g. the Internet). In system architectures of timd, khe group of processors and processes
dynamically forms two logical sets: donors and consumeeshElonor makes a certain amount of com-
putational power available for a guest process, therebyraatating credit. Each consumer wants to
acquire a certain amount of computational power to run ibe@ss, reducing its credit. And as a whole,
the system will always have zero credit [5]. From a globahpof view, the purpose of such a mechanism
is to maximize system utilization. From the point of view leétindividual user, the system allows access to
vast computational resources. If the user requires thaeseirees only for short amounts of time, ‘renting’
them from the system is far more economical for the user thigmg the corresponding hardware.

This paper describes a resource allocation algorithm whickuch a system environment, yields a
desirable matching between donors and consumers. We adisattiee two sets of donors and consumers
are dynamically changing in time. Thus, the algorithm sti@uh in real time. We design an online match-
ing algorithm, which is based on the stable marriage maggcaigorithm [3] and its online version [7]. The
notions ofapproximated stability and degree of satisfaction are defined and are used as measures of the
performance of the algorithm. The algorithm computes a hiagcbased on the events which happen
within a certaintime window. The window size is determined dynamically based on estisnat approxi-
mated stability and degree of satisfaction. These dynamittsibns are based on a prediction for the near
future, which, in turn, is based on the performance of théesysn the past and current information about
donors and consumers.

1Journal of Systems Architecture. Vol. 45, pages 1345—18589

The contribution of this paper is twofold. Firstly, we demela cooperative distributed system paradigm
and design the system model. We apply a problem from traditiocombinatorial matching theory to the
resource allocation problem of our system. Secondly, wegae an online algorithm callefidaptive
Online Sable Matching (AOSM) and analyze its behavior in terms of stability and degreau$fction.

The rest of this paper is organized as follows. Section ®thtces notions and definitions regarding
stability and our approach to windowing. The AOSM algoritiintroduced and analyzed in Section 3,
and experimental evidence that AOSM performs better tharS-&hd fixed: online, is shown in Section
4. We conclude with a discussion of further research in Sedi

1.1. Problem Definition

We consider a heterogeneous distributed system, for exampiroup of processors and their users on the
Internet. Processors form dynamically a Bebf donors. Jobs arrive online, dynamically forming aGet
of consumers. Thus, the entire set of ugémsf the system consists of the two subsBtand(, such that

U D DUCandD NC = {} at any given point in time. Each donor and each consumer iscteized

by a list of preferences. For example, a processor may gdafger-executing jobs because this will allow
the processor to accumulate more credit. Jobs may preter fa®cessors etc.

We are seeking an online algorithm which dynamically dexide a suitable point in time when the
matching between donors and consumers is to become effettiat is, when jobs go for execution. We
assume that processors are always able to accept jobs fautiexe If a job is allocated to a processor
in a matching, this means that the job is ready for executiothe processor right away. In this context,
the criterion we are aiming at is to produce a stable matchigog to maximize the system throughput
as well as to minimize the waiting time of the users. Sincesystem is online, without any a priori
information about® andC, we cannot guarantee the same optimality as in an offline@mwvient where
all the information for both sets is known in advance. Indfase pursue near-optimality with the help
of the knowledge of previous inputs and the resulting matghi as well as current input. Furthermore,
based on the previous performance of the algorithm, we tpredict the behavior of the system in the
near future in order to improve performance.

1.2. The Matching Approach

An important part of the system is the protocol which allesgprocessors to processes. This is different
from just resource allocation. It has to ensure fair shaohtpe resources and availability of the system
even in peak times. In this work, we consider the combinaltoniatching problem as a solution candidate.

A matching in a graph is a set of edges such that the degredbvafrtices are at most 1. We will
consider only bipartite matchings, i.e. matchings in Hipagraphs. The setSandD are the two vertex
sets of the bipartite graph. There is an edgel} whenever a consumerc {C} could use the resources
of a donord € {D}.

There is a large body of theoretical results concerning thkles marriage matching problem. The
problem was originally considered by Gale and Shapley ir2 180 established the concepttbility.
The book by Gusfield and Irving [4] addresses related theaniel analyses. In the context of the dynamic
system model where participants are continuously arrignd/or leaving the system, and both parties
are dynamically changing in time, Khuller et al. [7] considm online version of the stable matching
algorithm. Their algorithm is first-come-first-served (F&Fn which all preferences of a party are initially
known. When a member of the other party arrives, it is matetiddits most preferred available partner.

We relax the restriction of matching a requesinediately upon arrival. Thus, we obtain the flexibility
to accumulate requests for a certain period of time, whicly ailbw us to produce a better matching.

Consurer Donor
—_— =
New Processes Resour ces New

Request Donor

Time
Critical?
or

Profile
I nformation

Start New of ~ 0
W ndow? Credit
Each Menber I'nformation

Start
Mat chi ng

| Phase '/ Mat chi ng ‘
Phase |1
Credit
‘ Execution }M

Figure 1: Software architecture

Preference Lists ‘

The time period constitutes owindow. The window size is limited by the amount of time users can
be expected to wait before they become dissatisfied withytbe®. In this setting, we aim to find the
most profitable window size with respect to throughput arspoase time, rather than simply trying to
maximize credit transfer. This approach yields betteminisinto the behavior of the system and results in
a clearer way of analyzing the performance of the system.

The classical criterion in analyzing online algorithms ésrpetitiveness’, i.e. theorst-case ratio
between the performance of the on-line algorithm and thah@foptimal offline algorithm with respect
to some performance measure. In this work, however, we shewuperiority of our algorithm by other
means, and consider additional criteria such as the owaaddility of the algorithm.

2. The Conceptual Model

2.1. System Parameters

The software architecture of the proposed system is showgare 1. Each member of the two sets
of donors (resources) and consumers (processes) is sdujfite following parameters, whose values
may be provided by the member at the time of submission or lgutte Each member provides its own
information about preferences. Based on this informatRitgse | in Figure 1, constructs sorted specific
preference lists with currently available members in e@thRBhase Il uses those sorted preference lists to
produce a matching. The matching algorithm is given in $ac3i.2.2.

Each consumer process provides an (optional) deadlinay(delund) for execution, and an estimate
of the required computational resources as a function afgasor speed and execution time. Each donor
specifies the amount of computational power as a functiorrafgssor speed and available service time.
The computation of credit for time consumption is normalite accrue weight fairly proportional to the
processor speed. Credit information for both consumerslandrs is provided by the name server. It plays
the role of virtual money which consumers spend when theytisa machines and which donors earn by
‘leasing’ their own machines to other processes. Accuradlatedit is computed by computational power
multiplied by the actual execution time.

2.2. Approximated Stability and Degree of Satisfaction

In the original stable marriage problem which was first fafyndiscussed by Gale and Shapley, ‘stability’
is defined in terms odtable matchings. A matching is callaghstable if there are two parties who are not
matched with each other, each of which strictly prefers therto his/her partner in the matching [3]. A
stable matching is a matching that is not unstable. Follgwins definition of stability, Khuller et al. [7]
count the expected number of instabilities to show the cdithymness of their online algorithm with
respect to the optimal offline algorithm.

In our problem context, the ‘stability’ of a matching, pradal solely based on each party’s preference,
yields neither a sufficient nor a necessary condition forgtimwl transfer rate of the overall system. The
credit information does not appear in the preference listweber, it is an important factor in making
a decision in producing a matching. Thus, the credit infdaiomais looked up by the matching protocol
whenever competition occurs in any stage of the matchingréfbre, in the system environment discussed
in this paper, a matching is produced based on both prefesatd credit information.

We follow the original stable matching algorithm. The sraabf the two set€ andD will propose
matchings to the larger set. (| = |D| eitherC or D may propose.) We modify the algorithm as follows:
Whenever in the original algorithm two membets B of the proposing set target the same element
of the other set¢ is matched with the elementi(or B) which ranks highest ie’'s preference list. We
substitute this decision by the following rule which conmdsrpreferences and credit information. For each
of the two proposers, we multiply its credit with its rank letpreference list of. We matche with the
proposer whose value is higher.

Example 1 Let |C| = |D| = 4. The preference list of each donor and request and the srefdéach
donor are shown in Table 1. The stages of the execution of #tehimg algorithm are shown in Figure 2.
In stage 1, resources 1 and 3 compete for request 1, and cesatiand 4 compete for request 2. The
preference list of request 1 shows that it prefers resoutog&source 1, and the credit information shows
that resource 3 has higher credit than resource 1. Thussedjs allocated to resource 3. The preference
list of request 2 gives rank 4 to resource 4 and only rank 24ouree 2. However, the credit of resource
2 is 5 times higher than the credit of resource 4. Thus, réquissallocated to resource 2.

In stage 2, request 2 is proposed by resource 1, but rejeuts sesource 1 has lower credit and
preference values than its current match (resource 2). é&8e@Qus proposed by and allocated to resource
4. In stage 3, resource 1 competes with resource 4. Resoulras Higher credit (2.5 times), but the rank
of resource 4 in the preference list of request 3 is four tilmgher than the rank of resource 1. Thus,
request 3 remains allocated to resource 4. In stage 4, msduproposes to request 4 and is accepted
without competition.

Table 1: Credits and preferences

Donor (resources) | Consumer (requests)
credits | preferences| preferences
1 50 1234 4321
2 100 2134 4321
3 100 1234 4321
4 20 2341 4321

The matching protocol, by knowing not only the preferendes,also the credit information of each
donor and consumer, produces a matching which is considered the most appropriate. This is, even

4

Stage Proposals
1 1-1{2—->2}{3—>1}4—2
1—-2{4—3}
1—-3
{1—->4}

A WN

Figure 2: Stages of matching; enclosed in braces are accppiposals.

though there exist pairs such that two members of one paityigtprefer the other’s partner to their own
partner in the matching, the matching will be superior, aakes credit information into account. The
influence of credit information may cause members to be gaii¢h less desired partners than would
be the case without credit. We capture the degradation ddleetaredit information in the following
definition:

Definition 1 An o% approximated stable matching is a matching based on not only the preference lists
but also credit information as described by the rule abaveyhich each element is matched with a
partner whose rank ids original preference list is in top% of the preference list.

It is observed by the experimental measurements, that métleased window size, the chance that the
system produces a matching with higher stability also mses. In terms of the satisfiability of the users
of the system, increased stability indicates better baldmcedit within tolerable delay.

Now, using the concept of approximated stabilibatching throughput for credit anddegree of satis-
faction are defined. These concepts will be used to measure the iparioe of the matching algorithm.

Definition 2 Matching throughput for credit (MT) is the total credit transfer rate of all the donors partic-
ipating in the matching such thau7 = Y% | C(d;) where{ds, ..., d;} are the donors in the matching
M, andC(d;) is credit transfer rate of donak; in M. The credit transfer rate is computed as the amount
of computing power multiplied by the time consumed by thestoner process;.

Definition 3 fp,s is a function ofM 7 andR, to compute thelegree of satisfaction (DoS) of the members
in the matching such thgb,s(MT,R) = MTR whereMT is the matching throughpug is the sum

(=)
of the waiting times of all consumers i, « is the approximation factor, and is the size of preference
list. fpos(MT,R) = MT if @ — L orR (or both) is zero.

We will analyze the fluctuations g¢f,s over time. This is important in the sense that when the system
produces stable matchings within a certain approximati@hima steady manner, our prediction for future
matchings will be more reliable than when the system is incatikting state. The ‘steady state of stability’
will be explained in the following section.

2.3. Adapting the Window Size and Steady State of Stability

Unlike the first-come-first-served algorithm of Khuller dt @], our algorithm permits a delay before
producing a matching, dynamically setting the size of wimdo which a matching is produced. The
decision of setting a window is based on prediction whichethels on previous inputs and the correspond-
ing matching. After each matching is produced, the ovesatasn performance is analyzed and will be
used as a prediction metric for the next matching. We use tlveraes to set the window size adaptively:

Predicted windowing determines the size of next window by prediction without kngwledge about in-
coming input. Lazy windowing postpones determining the size of window until some of tlw@nmng
inputs are known, but without delaying them beyond theidiieas. That is, by lazy windowing, closing
the window is put off as late as possible without any harm tooagss’s execution. These two windowing
schemes are to be used in our algorithm in a combined mannendXxhe initial stages, lazy windowing
will be mainly used. As the system approaches a predictatilesteady state, predicted windowing will
allow immediate acceptance of matchings and so will rerelehie results, as well as more efficient ones.
Lazy windowing, however, enables deferred acceptance tfhimg and so yields more stable matchings.

The system is said to be inseady state of stability when the variation of the measurementsfgis
becomes negligible with time flow. When the system is in adstestiate of stability, its performance can be
correctly predicted with high accuracy, such that the aligor can rely on predicted windowing. A steady
state may be in either positive or negative growth.

3. The Adaptive Online Stable Matching Algorithm (AOSM)

3.1. Basic Policies

Firstly, only one process is scheduled to run on one procéssomatching. Because it is not guaranteed
that the execution of a process will be finished in the timalioted by its submitter, the process may take
more than its predicted time and, thus, there may not be énbomg to execute other already-assigned
processes. Therefore, allocating one processor to monedia process in a matching is avoided, as it
may lead to unpredictable results.

Secondly, the matching algorithm is invoked based upon twalitions: (1) When the time interval
between two arrivals of consumer processes is smaller thagual to the time period of the window,
the invocation is driven by the latter. (2) If no new procesagive during the entire window period, the
algorithm should be set to its initial status and wait for rewwals of consumer processes.

Third, the algorithm is always donor-optimal and consupessimal, in such a way that any donor
and consumer can become the proposer, however, the potichémsing the partner differs. When the
donor is proposing, it proposes to the most preferred psoiceiss preference list. When the consumer is
proposing, it proposes to the worst possible processos ipréference list. It can be proved that in both
cases the resulted matching is a stable matching.

Fourth, when a processor finishes the execution of the maitplmcess in any previous matching,
the processor becomes a new member of the donor set, whidfeigit from the static input status of
the offline algorithm. Therefore, even with as appropriaeassible matchings overall, the matchings
produced cannot be considered to be the same for both officherline algorithms.

3.2. Algorithms

The algorithms consist of two parts. One is to decide the asiagindow of each matching adaptively,
using prediction or postponing the decision until some éegf convincing information is available. The
other part performs the matching within the window.

3.2.1. Adaptive Online Windowing

The algorithm takes three factors into account when adalgtiletermining the window size: (1) Degree
of satisfaction (DoS) of matchings, which is computed byafsf,,s. When the relative values of DoS of
consecutive matchings are getting better with increasedaw size, the algorithm increases the window
size. (2) Delay-bound of matching. When a matching is predud may happen that not all requests are

6

allocated to resources, which may cause unbounded deldpueh requests are matched. To avoid such
starving situations, the system defines a maximum posséig/-dbound. Also, each request can have its
own delay-bound (deadline). If a consumer doesn't specifigadline, the delay-bound is given by the
system. However, in principle, starvation cannot be avbialéogether if no donor becomes available for
a very long time. (3) Estimate that lazy windowing will pragua better matching. Initially, this estimate
is 0.5. The algorithm keeps track of three matchings,, M, M,. M, is the matching produced in the
previous windowi,. M; is the matching produced in current wind®# . M, is the matching produced
from the union ofi#y, andW;. In other words, given three points in timg < ¢; < t3, My is produced
with the members arrived betweé&nandt;, M; betweent; andt,, andMy betweent, andts. With the
computed values of DoS of these matchings, the algorithrmies if M5, which is produced by lazy
windowing, yields a better result than the combined redulZg and M, which are produced separately
by predicted windowing. If so, the estimate is increased factor of two, and otherwise, decreased by a
factor of two.

1. Prelude: InitializeV! ax_delay which is maximum time a consumer should ever wait.

2. Initial Step: As soon as a dondy becomes available, and if there is any process submittedcopsumer,
match this process; to its worst possible partnet.;. Let this base matching b#, and the time whei/,
is produced be,. Measure the time between the arrivals of the first and therskjpb submitted and use

this time length as the initial window sid&,,. SetW; := W,. SetMax_delay as the deadline aof; if ¢;

specifies any deadline, and get= %

3. While waiting for next arrivals of processesaifcumulated_delay reachesV ax_delay, then letM, go for

execution. Go to the initial step. Otherwise, continue ep 2t with the newly arrived processes.

4, (a) ty — to + Wh;

(b) If ((accumulated_delay + W1) > Max_delay)
then ifP <3

then 1. go for execution with/, right away
2. compute newt/, with the jobs that have arrived betwegrandt,
3.t < t1; t1 < to + Wi, go to the beginning of step 4(b)

else 1. wait untilM az_delay
2. computell, with My and the jobs which have arrived singe
3. lett, be the time whem/, is produced; go for execution with/,
4.ty < to + W1; computeM, with the jobs which arrived between andi
5.t1 < to + Wi, go to the beginning of step 4(b)

(c) Computel; only with the jobs which have arrived betwegrandt, . Computel/, including members

in My. Compute degree of satisfactfosy, s;, ands, for My, M;, andM-, respectively.

(d) Compute the new predicted window sidg§ by use of§—§ as a parameterg provides a reasonable
indication of how better (or how worse) is the matching tiat flarger window produced compared to
the matching of the smaller window.

Wo < Wi, Wi « Wy % 52 -

sp !

Zcomputed by use ofp.s function

(e) Based on the degree of satisfaction

e Case 1. If§—§ > 1: M, is a better matching than/y, that is, increasing the window size is
profitable. Thus, lef\/, be the base matching of next phase and increase the estimatazy
windowing will produce a better matching.

My < Ms; P < 2P; ty < t1; Go to the beginning of step 3.

e Case 2. Ifj—i = 1: M, and M, have the same degree of satisfaction, i.e. lazy windowidg di
not do better, because the profit in throughput achieved érg@sed size of window, is offset by
latency in response timél, is obsolete due to the delay. Thus, ude as the base matching of
next phase, but keep the estimate unchanged.

My <+ Ms; ty < t1; Go to the beginning of step 3.

e Case 3. Ifi—i <1 andi—f < 1: My has better degree of satisfaction thafy. Since lazy

windowing has produced a poorer matching, decrease theasti M/, is also better thad/s,

thus letd/; be the base matching of next phase.
i. Let My go for execution.
ii. Mo+« M;;P « %P; to < t1; Go to the beginning of step 3.
e Case 4. If§—§ <1 andZ—’;‘ > 1: My is better matching than/,, and so isM5 in regards ofM/;.
M, will yield the best result, however, the estimate is not deth Compute new/,.
i. Let M, go for execution.

ii. ComputelM, with the jobs which have arrived betwegnandt, wheret, = t; + Wy. Goto

the beginning of step 3.

3.2.2. Matching

Each of donors and consumers which arrives comes with adspregerence list which is input to the
matching procedure. The matching procedure functions astewgy to and from the name server to
deal with credit information, and is to produce a stable imatf to have the processes scheduled to run.
After the matching is done, the credit of the members invivethis window should be updated properly
through the name server. This matching procedure requife®) @ time, wheren is the size of proposing
set.

[* compute a stable matching, and following the matchingiaip credit history */
assign each donor and consumer process to be free;
assign Donor set or Consumer set as proposer, which is srmaflize;
while some proposer p is free do
g := first member on p’s preference list to whom p has not ygvgsed

% The algorithm is based on Gale-Shapley's stable marriagehing algorithm; the changes are to handle different sifes
the two input sets and credit information.

if g is free
then assign p and q to be paired /* to each other */
else if p wins over g's partner p’ following the rule in sectid.2
then assign p and g to be paired and p’ to be free
else q rejects p /* and p remains free */
output the stable matching consisting of the n pairs;
update the credit history of each member involved in the hiatg

3.3. Stability and Bounded Delays

Steady State of Stability: We aim for a “steady state” of stability which shows the loagn proportion
of stable matchings during a certain periBdSince the arrivals of donors and consumers and their inputs
are assumed to be predictable in some degree, it is expéeteithé steady state of stability will eventually
be reached.

The variableP in the algorithm in section 3.2.1 contributes toward redgdiuctuations in degree
of satisfaction: P is modified depending on whether the matching yields higlegree of satisfaction or
not and whether the already-assigned processes havaldtegteexecution or not. These categories are
shown in the cases of step 4(e) of the algorithm.

Guaranteed delay bound: M az _delay is guaranteed for each procegsc M; for all ¢ within T', i.e.,
no process should be revoked or starved, once it is subnzttddis far as there are available processors,
and further, once it is scheduled to run by any matching. Tamsbe proved by the fact that the execution
of the process will not be indefinitely put off, with the helptbe maximum permissible delay bound
(M ax_delay) which is known to every consumer upon submission and chicekstep 3 and 4 in every
iteration of the algorithm.

4. Experimental Measurements

In this section, we will perform experiments in order to cargthe performance of AOSM with that of
two other matching algorithms: FCFS and fixeanline algorithm where: is initially given and fixed
until it is changed explicitly through an external mechanis he latter two algorithms can be considered
as special cases of AOSM. If the window size of AOSM is keptstant then AOSM is just fixed-online.

If the window size is set such that each window contains only arrival event, thus matching any donor
Or consumer as soon as it arrives, we obtain FCFS.

We have run the three algorithms on random input data. Tke-artival times of donors and con-
sumers were generated uniformly at random from the ket ., 10} seconds. The preference lists, credit
and deadline information, processor speed, and execumiendf the arriving processes were also gener-
ated at random. (Details omitted due to space restricjions.

We measured matching throughput and cumulative respamge Tihe values of,s were computed
following the formula given above. We simulated the systemr@ total of 1000 seconds, gathering data
every 100 seconds. This procedure was run 100 times andgbksrevere computed by averaging them.

We have used two measures to compare the three algorithradir§tmeasure is matching throughput
MT . As shown in Figure 3, overall, AOSM produced a highdfl” value than FCFS and Fixédenline.
The second measure is the delay incurred by the algorithn=SE@ theory, incurs no delay since the
request is matched upon its arrival. However, in practioezase that there is no available resource for
newly arrived request, FCFS also suffers from delay, waiiim new resources to become available. For all
three algorithms, we assume that an indefinite waiting timahould not happen, and that some partner
will always become available after a tolerable delay. Tfuwee consumers always become proposers.

Depending on the distribution of the inter-arrival timestements of this kind can be shown to hold with
high probability. Fixedk online yields7 (k) seconds of delay on average, whéres the function to
compute the average delay for all pairs in a matching. Assgipériodic arrivals of requests, this function
should be proportional to the window size. 1{WW;) denote the total delay under AOSM for consumer
processes within the windoW’;, until they are matched.

1600

1400

160

140

o 1200— 120
= %)
° °
(3] c
§, 1000(— S 100
'_ \8).)/
FCFS
= 800 — [-
— FCFs e Fixed-k online (k=3)
00— s Fixed-k online (k=3) 60 AOSM
AOSM

IS
S
3

N
S
5]

40

20

|
100 200 300 400 500 600 700 800 1000

Time (seconds)

900

|
100 200 300 400 500 600 700 800 1000

Time (seconds)

900

Figure 3: Measurement of matching throughput Figure 4. Measurement of response time

80

FCFS
70

Fixed-k online (k=3)

0 AOSM

50

fDoS

40

30

20

10— == ST TNl LeemTTTTTTS

| |
100 200 300 400 500 600 1000

Time (seconds)

Figure 5: Measurement of degree of satisfaction

700 800 900

The degree of satisfaction can be computed frbtT andR by use offp,s. Figure 5 shows that FCFS
produces fluctuating results of matchings. Fixednline algorithm produces steady results but suffers
from large delays. AOSM results in a steady state of stgbiliith small variation and provides pre-
dictability for the system.

5. Conclusion and Future Work

We have presented an analysis of online matching algorithohsding FCFS, fixed: online, and AOSM,
with respect to stability and degree of satisfaction. Weehgslvown experimental measurements which
provide evidence that AOSM performs in a more steady mammeducing better matchings in terms of
stability and reliable performance of the system. Achigwnsteady state of stability is important in that
when a group of users wants to cooperate in sharing compuigtiesources, fairness and availability are

10

the main concerns. Users can easily determine their trustligtributed system, using the measurements
introduced and the metrics adopted in this paper.

The problem of DoS can be transformed to the problem of QualiGervice (QoS) in a communica-
tion network such as ATM, where we consider communicaticanokels on the network links as distributed
resources. With that, an applicable system model on conuation networks can be established. Another
issue is the construction of a real-world system model whithproduce more robust and realistic execu-
tion results of the algorithms, which can therefore provdd&utions for policies for some yet unresolved
problems, such as cheating about the computational poesradd exceeding supply, etc.

Acknowledgments

This work was performed while the author was at Boston Usiter The author would like to thank
Abdelsalam Heddaya who provided motivation of and impdriamdance for the work overall, and Steve
Homer who gave a direction to online stable matching algoré. The author also wishes to thank Jennifer
Welch and the anonymous referees for their helpful comments

References

[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. e-load balancing with applications to
machine scheduling and virtual circuit routingbth ACM STOC, pages 623—631, 1993.

[2] E. Bernstein and S. Rajagopalan. The roommates probl@mline matching and general graphs.
Technical Report UCB//CSD-93-757, Computer Sci. Divisioniv. California, Berkeley, CA, 1993.

[3] D. Gale and L. S. Shapley. College admissions and thelisyatf marriage. American Mathematical
Monthly, 69:9-15, 1962.

[4] D. Gusfield and R. W. Irving.The stable marriage problem: structure and algorithms. MIT Press,
Cambridge, Mass, 1989.

[5] A. Heddaya. On the exchange of computational value. §lftieDistributed Systems Seminar, Dept.
Computer Sci., Boston Univ., Fall 1996. Unpublished.

[6] B. Kalyanasundaram and K. Pruhs. Online weighted matghl. Algorithms, 14(3):478-488, 1993.

[7] S. Khuller, S. G. Mitchell, and V. V. Vazirani. On-linegdrithms for weighted bipartite matching and
stable marriagesTheoretical Computer Science, 127:255-267, 1994.

[8] M. Manasse, L. A. McGeoch, and D. Sleator. Competitivgoathms for server problemsl. Algo-
rithms, 11(2):208-230, 1990.

11

