
Online Stable Matching as a
Means of Allocating Distributed Resources1

Hyunyoung Lee
Dept of Computer Science, Texas A&M University, College Station, TX 77843

E-mail: hlee@cs.tamu.edu

Abstract

In heterogeneous distributed systems, achieving optimality in both effective use of computational
resources (e.g. throughput) and user satisfaction (e.g. response time) is an important unresolved prob-
lem. If the users of the system participate dynamically as consumers as well as donors of computational
resources, the task of optimizing the exchange of these computational resources leads to a combinato-
rial problem. As a solution, we propose a novel algorithm,Adaptive Online Stable Matching (AOSM).
We present experimental data which compare the performanceof AOSM with the performance of two
alternative algorithms, First-come First-served (FCFS) and Fixed-k online.

Keywords: stable matching, distributed resources, online algorithm, approximation, adaptive win-
dowing.

1. Introduction

The concept ofbarter marketing [5] has been proposed as a means of maximizing the utilization of the
computational resources of heterogeneous distributed systems with varying computational power and de-
mands (e.g. the Internet). In system architectures of this kind, the group of processors and processes
dynamically forms two logical sets: donors and consumers. Each donor makes a certain amount of com-
putational power available for a guest process, thereby accumulating credit. Each consumer wants to
acquire a certain amount of computational power to run its process, reducing its credit. And as a whole,
the system will always have zero credit [5]. From a global point of view, the purpose of such a mechanism
is to maximize system utilization. From the point of view of the individual user, the system allows access to
vast computational resources. If the user requires these resources only for short amounts of time, ‘renting’
them from the system is far more economical for the user than buying the corresponding hardware.

This paper describes a resource allocation algorithm which, in such a system environment, yields a
desirable matching between donors and consumers. We assumethat the two sets of donors and consumers
are dynamically changing in time. Thus, the algorithm should run in real time. We design an online match-
ing algorithm, which is based on the stable marriage matching algorithm [3] and its online version [7]. The
notions ofapproximated stability anddegree of satisfaction are defined and are used as measures of the
performance of the algorithm. The algorithm computes a matching based on the events which happen
within a certaintime window. The window size is determined dynamically based on estimates of approxi-
mated stability and degree of satisfaction. These dynamic decisions are based on a prediction for the near
future, which, in turn, is based on the performance of the system in the past and current information about
donors and consumers.1Journal of Systems Architecture. Vol. 45, pages 1345–1355.1999

1

The contribution of this paper is twofold. Firstly, we develop a cooperative distributed system paradigm
and design the system model. We apply a problem from traditional combinatorial matching theory to the
resource allocation problem of our system. Secondly, we propose an online algorithm calledAdaptive
Online Stable Matching (AOSM) and analyze its behavior in terms of stability and degree of satisfaction.

The rest of this paper is organized as follows. Section 2 introduces notions and definitions regarding
stability and our approach to windowing. The AOSM algorithmis introduced and analyzed in Section 3,
and experimental evidence that AOSM performs better than FCFS and fixed-k online, is shown in Section
4. We conclude with a discussion of further research in Section 5.

1.1. Problem Definition

We consider a heterogeneous distributed system, for example, a group of processors and their users on the
Internet. Processors form dynamically a setD of donors. Jobs arrive online, dynamically forming a setC
of consumers. Thus, the entire set of usersU of the system consists of the two subsetsD andC, such thatU � D [C andD \ C = fg at any given point in time. Each donor and each consumer is characterized
by a list of preferences. For example, a processor may preferlonger-executing jobs because this will allow
the processor to accumulate more credit. Jobs may prefer faster processors etc.

We are seeking an online algorithm which dynamically decides on a suitable point in time when the
matching between donors and consumers is to become effective, that is, when jobs go for execution. We
assume that processors are always able to accept jobs for execution. If a job is allocated to a processor
in a matching, this means that the job is ready for execution on the processor right away. In this context,
the criterion we are aiming at is to produce a stable matching, trying to maximize the system throughput
as well as to minimize the waiting time of the users. Since thesystem is online, without any a priori
information aboutD andC, we cannot guarantee the same optimality as in an offline environment where
all the information for both sets is known in advance. Instead, we pursue near-optimality with the help
of the knowledge of previous inputs and the resulting matchings, as well as current input. Furthermore,
based on the previous performance of the algorithm, we try topredict the behavior of the system in the
near future in order to improve performance.

1.2. The Matching Approach

An important part of the system is the protocol which allocates processors to processes. This is different
from just resource allocation. It has to ensure fair sharingof the resources and availability of the system
even in peak times. In this work, we consider the combinatorial matching problem as a solution candidate.

A matching in a graph is a set of edges such that the degrees of all vertices are at most 1. We will
consider only bipartite matchings, i.e. matchings in bipartite graphs. The setsC andD are the two vertex
sets of the bipartite graph. There is an edgefc; dg whenever a consumerc 2 fCg could use the resources
of a donord 2 fDg.

There is a large body of theoretical results concerning the stable marriage matching problem. The
problem was originally considered by Gale and Shapley in 1962, who established the concept ofstability.
The book by Gusfield and Irving [4] addresses related theories and analyses. In the context of the dynamic
system model where participants are continuously arrivingand/or leaving the system, and both parties
are dynamically changing in time, Khuller et al. [7] consider an online version of the stable matching
algorithm. Their algorithm is first-come-first-served (FCFS), in which all preferences of a party are initially
known. When a member of the other party arrives, it is matchedwith its most preferred available partner.

We relax the restriction of matching a requestimmediately upon arrival. Thus, we obtain the flexibility
to accumulate requests for a certain period of time, which may allow us to produce a better matching.

2

New
Consumer
Processes

Profile

Each Member
of
Information

Donor

Credit
Information

Resources New
Request

no

Window?

yes

Start

Matching

Phase I

Phase II
Credit
InformationExecution

Donor

Start New
or

Critical?
Time

Matching

Preference Lists

Figure 1: Software architecture

The time period constitutes ourwindow. The window size is limited by the amount of time users can
be expected to wait before they become dissatisfied with the system. In this setting, we aim to find the
most profitable window size with respect to throughput and response time, rather than simply trying to
maximize credit transfer. This approach yields better insight into the behavior of the system and results in
a clearer way of analyzing the performance of the system.

The classical criterion in analyzing online algorithms is ‘competitiveness’, i.e. theworst-case ratio
between the performance of the on-line algorithm and that ofthe optimal offline algorithm with respect
to some performance measure. In this work, however, we show the superiority of our algorithm by other
means, and consider additional criteria such as the overallstability of the algorithm.

2. The Conceptual Model

2.1. System Parameters

The software architecture of the proposed system is shown inFigure 1. Each member of the two sets
of donors (resources) and consumers (processes) is specified by the following parameters, whose values
may be provided by the member at the time of submission or by default: Each member provides its own
information about preferences. Based on this information,Phase I in Figure 1, constructs sorted specific
preference lists with currently available members in each set. Phase II uses those sorted preference lists to
produce a matching. The matching algorithm is given in Section 3.2.2.

Each consumer process provides an (optional) deadline (delay bound) for execution, and an estimate
of the required computational resources as a function of processor speed and execution time. Each donor
specifies the amount of computational power as a function of processor speed and available service time.
The computation of credit for time consumption is normalized to accrue weight fairly proportional to the
processor speed. Credit information for both consumers anddonors is provided by the name server. It plays
the role of virtual money which consumers spend when they useother machines and which donors earn by
‘leasing’ their own machines to other processes. Accumulated credit is computed by computational power
multiplied by the actual execution time.

3

2.2. Approximated Stability and Degree of Satisfaction

In the original stable marriage problem which was first formally discussed by Gale and Shapley, ‘stability’
is defined in terms ofstable matchings. A matching is calledunstable if there are two parties who are not
matched with each other, each of which strictly prefers the other to his/her partner in the matching [3]. A
stable matching is a matching that is not unstable. Following this definition of stability, Khuller et al. [7]
count the expected number of instabilities to show the competitiveness of their online algorithm with
respect to the optimal offline algorithm.

In our problem context, the ‘stability’ of a matching, produced solely based on each party’s preference,
yields neither a sufficient nor a necessary condition for an optimal transfer rate of the overall system. The
credit information does not appear in the preference list. However, it is an important factor in making
a decision in producing a matching. Thus, the credit information is looked up by the matching protocol
whenever competition occurs in any stage of the matching. Therefore, in the system environment discussed
in this paper, a matching is produced based on both preferences and credit information.

We follow the original stable matching algorithm. The smaller of the two setsC andD will propose
matchings to the larger set. (IfjCj = jDj eitherC orD may propose.) We modify the algorithm as follows:
Whenever in the original algorithm two membersA;B of the proposing set target the same elementc
of the other set,c is matched with the element (A or B) which ranks highest inc’s preference list. We
substitute this decision by the following rule which combines preferences and credit information. For each
of the two proposers, we multiply its credit with its rank in the preference list ofc. We matchc with the
proposer whose value is higher.

Example 1 Let jCj = jDj = 4. The preference list of each donor and request and the credits of each
donor are shown in Table 1. The stages of the execution of the matching algorithm are shown in Figure 2.
In stage 1, resources 1 and 3 compete for request 1, and resources 2 and 4 compete for request 2. The
preference list of request 1 shows that it prefers resource 3to resource 1, and the credit information shows
that resource 3 has higher credit than resource 1. Thus, request 1 is allocated to resource 3. The preference
list of request 2 gives rank 4 to resource 4 and only rank 2 to resource 2. However, the credit of resource
2 is 5 times higher than the credit of resource 4. Thus, request 2 is allocated to resource 2.

In stage 2, request 2 is proposed by resource 1, but rejects since resource 1 has lower credit and
preference values than its current match (resource 2). Request 3 is proposed by and allocated to resource
4. In stage 3, resource 1 competes with resource 4. Resource 1has higher credit (2.5 times), but the rank
of resource 4 in the preference list of request 3 is four timeshigher than the rank of resource 1. Thus,
request 3 remains allocated to resource 4. In stage 4, resource 1 proposes to request 4 and is accepted
without competition.

Table 1: Credits and preferences

Donor (resources) Consumer (requests)
credits preferences preferences

1 50 1 2 3 4 4 3 2 1
2 100 2 1 3 4 4 3 2 1
3 100 1 2 3 4 4 3 2 1
4 20 2 3 4 1 4 3 2 1

The matching protocol, by knowing not only the preferences,but also the credit information of each
donor and consumer, produces a matching which is consideredto be the most appropriate. This is, even

4

Stage Proposals
1 1! 1 f2 ! 2g f3! 1g 4! 2
2 1! 2 f4 ! 3g
3 1! 3
4 f1! 4g

Figure 2: Stages of matching; enclosed in braces are accepted proposals.

though there exist pairs such that two members of one party strictly prefer the other’s partner to their own
partner in the matching, the matching will be superior, as ittakes credit information into account. The
influence of credit information may cause members to be paired with less desired partners than would
be the case without credit. We capture the degradation due tothe credit information in the following
definition:

Definition 1 An �% approximated stable matching is a matching based on not only the preference lists
but also credit information as described by the rule above, in which each elementc is matched with a
partner whose rank inc’s original preference list is in top�% of the preference list.

It is observed by the experimental measurements, that with increased window size, the chance that the
system produces a matching with higher stability also increases. In terms of the satisfiability of the users
of the system, increased stability indicates better balanced credit within tolerable delay.

Now, using the concept of approximated stability,matching throughput for credit anddegree of satis-
faction are defined. These concepts will be used to measure the performance of the matching algorithm.

Definition 2 Matching throughput for credit (MT) is the total credit transfer rate of all the donors partic-

ipating in the matching such thatMT = Pki=1 C(di) wherefd1; : : : ; dkg are the donors in the matchingM , andC(di) is credit transfer rate of donordi in M . The credit transfer rate is computed as the amount
of computing power multiplied by the time consumed by the consumer processci.
Definition 3 fDoS is a function ofMT andR, to compute thedegree of satisfaction (DoS) of the members

in the matching such thatfDoS(MT ;R) = MT(�� 1m)R whereMT is the matching throughput,R is the sum

of the waiting times of all consumers inM , � is the approximation factor, andm is the size of preference

list. fDoS(MT ;R) =MT if �� 1m orR (or both) is zero.

We will analyze the fluctuations offDoS over time. This is important in the sense that when the system
produces stable matchings within a certain approximation and in a steady manner, our prediction for future
matchings will be more reliable than when the system is in a fluctuating state. The ‘steady state of stability’
will be explained in the following section.

2.3. Adapting the Window Size and Steady State of Stability

Unlike the first-come-first-served algorithm of Khuller et al. [7], our algorithm permits a delay before
producing a matching, dynamically setting the size of window in which a matching is produced. The
decision of setting a window is based on prediction which depends on previous inputs and the correspond-
ing matching. After each matching is produced, the overall system performance is analyzed and will be
used as a prediction metric for the next matching. We use two schemes to set the window size adaptively:

5

Predicted windowing determines the size of next window by prediction without anyknowledge about in-
coming input. Lazy windowing postpones determining the size of window until some of the incoming
inputs are known, but without delaying them beyond their deadlines. That is, by lazy windowing, closing
the window is put off as late as possible without any harm to a process’s execution. These two windowing
schemes are to be used in our algorithm in a combined manner. During the initial stages, lazy windowing
will be mainly used. As the system approaches a predictable and steady state, predicted windowing will
allow immediate acceptance of matchings and so will render reliable results, as well as more efficient ones.
Lazy windowing, however, enables deferred acceptance of matching and so yields more stable matchings.

The system is said to be in asteady state of stability when the variation of the measurements offDoS
becomes negligible with time flow. When the system is in a steady state of stability, its performance can be
correctly predicted with high accuracy, such that the algorithm can rely on predicted windowing. A steady
state may be in either positive or negative growth.

3. The Adaptive Online Stable Matching Algorithm (AOSM)

3.1. Basic Policies

Firstly, only one process is scheduled to run on one processor in a matching. Because it is not guaranteed
that the execution of a process will be finished in the time predicted by its submitter, the process may take
more than its predicted time and, thus, there may not be enough time to execute other already-assigned
processes. Therefore, allocating one processor to more than one process in a matching is avoided, as it
may lead to unpredictable results.

Secondly, the matching algorithm is invoked based upon two conditions: (1) When the time interval
between two arrivals of consumer processes is smaller than or equal to the time period of the window,
the invocation is driven by the latter. (2) If no new processes arrive during the entire window period, the
algorithm should be set to its initial status and wait for newarrivals of consumer processes.

Third, the algorithm is always donor-optimal and consumer-pessimal, in such a way that any donor
and consumer can become the proposer, however, the policy for choosing the partner differs. When the
donor is proposing, it proposes to the most preferred process in its preference list. When the consumer is
proposing, it proposes to the worst possible processor in its preference list. It can be proved that in both
cases the resulted matching is a stable matching.

Fourth, when a processor finishes the execution of the matched process in any previous matching,
the processor becomes a new member of the donor set, which is different from the static input status of
the offline algorithm. Therefore, even with as appropriate as possible matchings overall, the matchings
produced cannot be considered to be the same for both offline and online algorithms.

3.2. Algorithms

The algorithms consist of two parts. One is to decide the sizeof window of each matching adaptively,
using prediction or postponing the decision until some degree of convincing information is available. The
other part performs the matching within the window.

3.2.1. Adaptive Online Windowing

The algorithm takes three factors into account when adaptively determining the window size: (1) Degree
of satisfaction (DoS) of matchings, which is computed by useof fDoS. When the relative values of DoS of
consecutive matchings are getting better with increased window size, the algorithm increases the window
size. (2) Delay-bound of matching. When a matching is produced, it may happen that not all requests are

6

allocated to resources, which may cause unbounded delay until such requests are matched. To avoid such
starving situations, the system defines a maximum possible delay-bound. Also, each request can have its
own delay-bound (deadline). If a consumer doesn’t specify adeadline, the delay-bound is given by the
system. However, in principle, starvation cannot be avoided altogether if no donor becomes available for
a very long time. (3) Estimate that lazy windowing will produce a better matching. Initially, this estimate
is 0:5. The algorithm keeps track of three matchings,M0;M1;M2. M0 is the matching produced in the
previous windowW0. M1 is the matching produced in current windowW1. M2 is the matching produced
from the union ofW0 andW1. In other words, given three points in timet0 < t1 < t2, M0 is produced
with the members arrived betweent0 andt1, M1 betweent1 andt2, andM2 betweent0 andt2. With the
computed values of DoS of these matchings, the algorithm examines ifM2, which is produced by lazy
windowing, yields a better result than the combined result of M0 andM1, which are produced separately
by predicted windowing. If so, the estimate is increased by afactor of two, and otherwise, decreased by a
factor of two.

1. Prelude: InitializeMax delay which is maximum time a consumer should ever wait.

2. Initial Step: As soon as a donordi becomes available, and if there is any process submitted by aconsumer,

match this processcj to its worst possible partnerdcj . Let this base matching beM0 and the time whenM0
is produced bet0. Measure the time between the arrivals of the first and the second job submitted and use

this time length as the initial window sizeW0. SetW1 := W0. SetMax delay as the deadline ofcj if cj
specifies any deadline, and setP := 12 .

3. While waiting for next arrivals of processes, ifaccumulated delay reachesMax delay, then letM0 go for

execution. Go to the initial step. Otherwise, continue at step 4 with the newly arrived processes.

4. (a) t1 t0 +W1;

(b) If ((accumulated delay +W1) > Max delay)
then ifP < 12

then 1. go for execution withM0 right away
2. compute newM0 with the jobs that have arrived betweent0 andt1
3. t0 t1; t1 t0 +W1; go to the beginning of step 4(b)

else 1. wait untilMax delay
2. computeM2 with M0 and the jobs which have arrived sincet0
3. lett2 be the time whenM2 is produced; go for execution withM2
4. t0 t2 +W1; computeM0 with the jobs which arrived betweent2 andt0
5. t1 t0 +W1; go to the beginning of step 4(b)

(c) ComputeM1 only with the jobs which have arrived betweent0 andt1. ComputeM2 including members

in M0. Compute degree of satisfaction2 s0, s1, ands2 for M0, M1, andM2, respectively.

(d) Compute the new predicted window sizeW1 by use of s2s0 as a parameter.s2s0 provides a reasonable

indication of how better (or how worse) is the matching that the larger window produced compared to

the matching of the smaller window.W0 W1; W1 W1 � s2s0 ;2computed by use offDoS function

7

(e) Based on the degree of satisfaction� Case 1. If s2s0 > 1 : M2 is a better matching thanM0, that is, increasing the window size is

profitable. Thus, letM2 be the base matching of next phase and increase the estimate that lazy

windowing will produce a better matching.M0 M2; P 2P ; t0 t1; Go to the beginning of step 3.� Case 2. Ifs2s0 = 1 : M0 andM2 have the same degree of satisfaction, i.e. lazy windowing did

not do better, because the profit in throughput achieved by increased size of window, is offset by

latency in response time.M0 is obsolete due to the delay. Thus, useM2 as the base matching of

next phase, but keep the estimate unchanged.M0 M2; t0 t1; Go to the beginning of step 3.� Case 3. If s2s0 < 1 and s2s1 < 1 : M0 has better degree of satisfaction thanM2. Since lazy

windowing has produced a poorer matching, decrease the estimate. M1 is also better thanM2,
thus letM1 be the base matching of next phase.

i. LetM0 go for execution.

ii. M0 M1; P 12P ; t0 t1; Go to the beginning of step 3.� Case 4. Ifs2s0 < 1 and s2s1 � 1 : M0 is better matching thanM2, and so isM2 in regards ofM1.M2 will yield the best result, however, the estimate is not changed. Compute newM0.
i. LetM2 go for execution.

ii. ComputeM0 with the jobs which have arrived betweent1 andt0 wheret0 = t1 +W0. Go to

the beginning of step 3.

3.2.2. Matching

Each of donors and consumers which arrives comes with a sorted preference list which is input to the
matching procedure. The matching procedure functions as a gateway to and from the name server to
deal with credit information, and is to produce a stable matching3 to have the processes scheduled to run.
After the matching is done, the credit of the members involved in this window should be updated properly
through the name server. This matching procedure requires O(n2) in time, wheren is the size of proposing
set.

/* compute a stable matching, and following the matching, update credit history */
assign each donor and consumer process to be free;
assign Donor set or Consumer set as proposer, which is smaller in size;
while some proposer p is free do

q := first member on p’s preference list to whom p has not yet proposed3 The algorithm is based on Gale-Shapley’s stable marriage matching algorithm; the changes are to handle different sizesof
the two input sets and credit information.

8

if q is free
then assign p and q to be paired /* to each other */
else if p wins over q’s partner p’ following the rule in section 2.2

then assign p and q to be paired and p’ to be free
else q rejects p /* and p remains free */

output the stable matching consisting of the n pairs;
update the credit history of each member involved in the matching;

3.3. Stability and Bounded Delays

Steady State of Stability: We aim for a “steady state” of stability which shows the long term proportion
of stable matchings during a certain periodT . Since the arrivals of donors and consumers and their inputs
are assumed to be predictable in some degree, it is expected that the steady state of stability will eventually
be reached.

The variableP in the algorithm in section 3.2.1 contributes toward reducing fluctuations in degree
of satisfaction:P is modified depending on whether the matching yields higher degree of satisfaction or
not and whether the already-assigned processes have started their execution or not. These categories are
shown in the cases of step 4(e) of the algorithm.

Guaranteed delay bound:Max delay is guaranteed for each processpi 2Mi for all i within T , i.e.,
no process should be revoked or starved, once it is submittedand as far as there are available processors,
and further, once it is scheduled to run by any matching. Thiscan be proved by the fact that the execution
of the process will not be indefinitely put off, with the help of the maximum permissible delay bound
(Max delay) which is known to every consumer upon submission and checked at step 3 and 4 in every
iteration of the algorithm.

4. Experimental Measurements

In this section, we will perform experiments in order to compare the performance of AOSM with that of
two other matching algorithms: FCFS and fixed-k online algorithm wherek is initially given and fixed
until it is changed explicitly through an external mechanism. The latter two algorithms can be considered
as special cases of AOSM. If the window size of AOSM is kept constant then AOSM is just fixed-k online.
If the window size is set such that each window contains only one arrival event, thus matching any donor
or consumer as soon as it arrives, we obtain FCFS.

We have run the three algorithms on random input data. The inter-arrival times of donors and con-
sumers were generated uniformly at random from the setf1; : : : ; 10g seconds. The preference lists, credit
and deadline information, processor speed, and execution time of the arriving processes were also gener-
ated at random. (Details omitted due to space restrictions.)

We measured matching throughput and cumulative response time. The values offDoS were computed
following the formula given above. We simulated the system over a total of 1000 seconds, gathering data
every 100 seconds. This procedure was run 100 times and the results were computed by averaging them.

We have used two measures to compare the three algorithms. The first measure is matching throughputMT . As shown in Figure 3, overall, AOSM produced a higherMT value than FCFS and Fixed-k online.
The second measure is the delay incurred by the algorithm. FCFS, in theory, incurs no delay since the
request is matched upon its arrival. However, in practice, in case that there is no available resource for
newly arrived request, FCFS also suffers from delay, waiting for new resources to become available. For all
three algorithms, we assume that an indefinite waiting situation should not happen, and that some partner
will always become available after a tolerable delay. Therefore, consumers always become proposers.

9

Depending on the distribution of the inter-arrival times, statements of this kind can be shown to hold with
high probability. Fixed-k online yieldsT (k) seconds of delay on average, whereT is the function to
compute the average delay for all pairs in a matching. Assuming periodic arrivals of requests, this function
should be proportional to the window size. LetR(Wj) denote the total delay under AOSM for consumer
processes within the windowWj , until they are matched.

100 200 300 400 500 600 700 800 900 1000

200

400

600

800

1000

1200

1400

1600

M
T

 (
cr

e
d

its
)

Time (seconds)

(k=3)Fixed-k online
AOSM

FCFS

Figure 3: Measurement of matching throughput

100 200 300 400 500 600 700 800 900 1000

40

60

80

100

120

140

160

 20

R
 (

se
co

n
d

s)

Time (seconds)

FCFS

Fixed-k online

AOSM

(k=3)

Figure 4: Measurement of response time

100 200 300 400 500 600 700 800 900 1000

10

20

30

40

50

60

70

80

fD
o

S

Time (seconds)

FCFS

Fixed-k online

AOSM

(k=3)

Figure 5: Measurement of degree of satisfaction

The degree of satisfaction can be computed fromMT andR by use offDoS. Figure 5 shows that FCFS
produces fluctuating results of matchings. Fixed-k online algorithm produces steady results but suffers
from large delays. AOSM results in a steady state of stability with small variation and provides pre-
dictability for the system.

5. Conclusion and Future Work

We have presented an analysis of online matching algorithmsincluding FCFS, fixed-k online, and AOSM,
with respect to stability and degree of satisfaction. We have shown experimental measurements which
provide evidence that AOSM performs in a more steady manner,producing better matchings in terms of
stability and reliable performance of the system. Achieving a steady state of stability is important in that
when a group of users wants to cooperate in sharing computational resources, fairness and availability are

10

the main concerns. Users can easily determine their trust ina distributed system, using the measurements
introduced and the metrics adopted in this paper.

The problem of DoS can be transformed to the problem of Quality of Service (QoS) in a communica-
tion network such as ATM, where we consider communication channels on the network links as distributed
resources. With that, an applicable system model on communication networks can be established. Another
issue is the construction of a real-world system model whichwill produce more robust and realistic execu-
tion results of the algorithms, which can therefore providesolutions for policies for some yet unresolved
problems, such as cheating about the computational power, demand exceeding supply, etc.

Acknowledgments

This work was performed while the author was at Boston University. The author would like to thank
Abdelsalam Heddaya who provided motivation of and important guidance for the work overall, and Steve
Homer who gave a direction to online stable matching algorithms. The author also wishes to thank Jennifer
Welch and the anonymous referees for their helpful comments.

References

[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line load balancing with applications to
machine scheduling and virtual circuit routing.25th ACM STOC, pages 623–631, 1993.

[2] E. Bernstein and S. Rajagopalan. The roommates problem:On-line matching and general graphs.
Technical Report UCB//CSD-93-757, Computer Sci. Division, Univ. California, Berkeley, CA, 1993.

[3] D. Gale and L. S. Shapley. College admissions and the stability of marriage.American Mathematical
Monthly, 69:9–15, 1962.

[4] D. Gusfield and R. W. Irving.The stable marriage problem: structure and algorithms. MIT Press,
Cambridge, Mass, 1989.

[5] A. Heddaya. On the exchange of computational value. Notes for Distributed Systems Seminar, Dept.
Computer Sci., Boston Univ., Fall 1996. Unpublished.

[6] B. Kalyanasundaram and K. Pruhs. Online weighted matching. J. Algorithms, 14(3):478–488, 1993.

[7] S. Khuller, S. G. Mitchell, and V. V. Vazirani. On-line algorithms for weighted bipartite matching and
stable marriages.Theoretical Computer Science, 127:255–267, 1994.

[8] M. Manasse, L. A. McGeoch, and D. Sleator. Competitive algorithms for server problems.J. Algo-
rithms, 11(2):208–230, 1990.

11

