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Summary
We describe an interface and architecture for ad hoc temporal query of TrialDB, a clinical study data
management system (CSDMS). A clinical study focuses primarily on the effect of therapy on a group
of patients, who have individually enrolled in a study at different times. Relative times (chronological
offsets from the time of enrollment) are therefore more useful than absolute times when collectively
describing therapeutic or adverse events. For logistic reasons, study parameter values are typically
recorded at fixed relative times (‘study events’), which serve as timestamps and can be used by
CSDMS temporal query algorithms to simplify temporal computations. The entity-attribute-value
model of clinical data storage, used by both CSDMSs and clinical patient record systems, complicates
temporal query. To apply temporal operators, data for parameters of interest must first be transiently
converted into conventional relational form, with one column per parameter.
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1. Introduction
Recording of parameters derived from history taking, clinical examination or investigations is
an integral component in patient care. Because all such parameters are time-stamped, querying
of patient data is greatly facilitated by the ability to allow temporal criteria to be specified in
a query. Most research to date has focused on temporal query of clinical patient record systems
(CPRSs), or data abstracted from CPRSs. Clinical study data management systems (CSDMSs),
however, also form an important category of patient-related data. Typically, CSDMSs are large
repositories, with the ability to record data from an arbitrary number of studies with an arbitrary
number of parameters for each study.

In this paper, we describe the addition of temporal query capability to TrialDB [1,2], a generic,
web-accessible CSDMS that is used by multiple departments at Yale University, the Vanderbilt
University Cancer Center, and the National Cancer Institute-supported Cancer Genetics
Network, a national consortium of investigators.
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2. Background
To apply temporal operations on data, every row of data should be associated with either a
single time stamp (recording when the event associated with that row occurred), or two time
stamps, representing the event’s start and end. Data with one and two time stamps are called
instant and period (interval) data, respectively. Period data are much more challenging
computationally than instant data, which is why they have been of greater research interest.
For example, Shahar and his colleagues have developed a system for the temporal abstraction
of both instant and period clinical data (using domain-specific ontologies acquired from domain
experts), which has been applied to several clinical domains [3-5].

In clinical medicine, however, the vast majority of data tend to be instant, though a few (such
as IV infusions or course of radiotherapy) are periods. Because of this factor, temporal query
engines for clinical data repositories such as Nigrin and Kohane’s elegant DxTractor [6], which
operate on ‘instant’ data exclusively, are quite viable in clinical settings. DxTractor, in fact,
performs an essential operation that is quite typical of real-world temporal query systems; it
permits the inference of periods from raw ‘instant’ data.

Artificial intelligence (AI) researchers were the first to consider computational aspects of
temporal reasoning and temporal data query: a good review of these efforts is presented in
Refs. [7,8]. In a classic paper [9], James Allen defined a set of binary temporal Boolean
operators, which compare two periods in various ways. For example, the operator BEFORE
(as in X BEFORE Y) returns True if the end of period X occurs before the start of period Y.
In medical informatics, the Stanford group has been particularly active in clinical temporal
research, producing an impressive series of papers [4,5,10-13].

Various attempts have been made to add temporal query support to mainstream relational
database management systems (RDBMSs). A standardization effort led by Snodgrass yielded
a proposal, TSQL2 [14], for a core set of additions to structured query language (SQL, the data
manipulation language of RDBMSs). In 1995, efforts were made to amalgamate TSQL2’s
features into the forthcoming version of SQL, by adding a new component called SQL/
Temporal [15,16]. While these efforts were approved in 1996 by ANSI (the American National
Standards Institute), the International Standards Organization (ISO) has yet to vote on them:
the current version of SQL (SQL-99) therefore lacks periods and temporal operations.
Historically, moreover, even when ISO approves SQL changes, most database vendors are
very slow to upgrade their DBMS engines. Temporal support within RDBMSs therefore still
requires approaches that are unique to a particular research group, as opposed to being
standards-based.

2.1. An introduction to clinical database architecture
Much clinically related temporal research published to date makes the simplifying assumption
that the clinical data on which temporal operations will be performed has individual parameters
of interest residing in their own distinct columns in one or more tables. In practice, this is not
usually the case. Large-scale clinical databases store much of their clinical data using a generic
or entity-attribute-value (EAV) data model [17]. EAV systems used in clinical medicine
include the well-known HELP system [18,19], now commercialized as the 3M clinical data
repository (CDR) [20] and the Columbia-Presbyterian CDR [21,22]. In EAV design, every
fact is conceptually stored in a single table with three sets of columns: the entity: (patient ID
plus timestamps recording event occurrence), the ID of an attribute or parameter, e.g. ‘serum
potassium,’ and the value of the attribute, e.g. ‘4.5’. One row stores a single fact. In a
conventional table that has one column per attribute, by contrast, one row stores a set of facts.
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EAV design is appropriate when the number of clinical parameters that potentially apply to a
patient (e.g. the thousands of parameters in medicine), is vastly more than those that actually
apply to a given patient. All data in a production EAV system does not have to be stored in
EAV form: patient demographics, for example, are typically stored conventionally. End-users
as well as analytical programs take a conventional view of the data, and therefore a usable EAV
system must create the illusion of conventional data storage. This illusion is achieved through
a set of tables containing metadata, whose contents comprise a kind of ‘data dictionary,’ and
user-interface code that drives off this metadata. Examples of CSDMS metadata include the
definitions of individual parameters (and whether they represent instant or period events), the
case report forms that group these parameters together, the study events, information about
which case report forms are used in a study (and during which study events), and so on.

The above description of EAV structure is somewhat simplified. Instead of a single EAV table,
some systems, including TrialDB, segregate EAV data by the data type of the value column,
so that there are separate EAV tables for strings, integers, real numbers and so forth. In any
case, the existence of EAV structure means that in order to answer temporal queries, there is
an additional processing step involved compared with conventional data. Specifically, the data
for the attributes of interest must be extracted from the general-purpose EAV tables and
transformed transiently into conventionally structured columnar data before temporal operators
can be applied. This naturally increases the processing time, but is unavoidable when one is
operating on a database that uses a generic design.

The temporal research literature distinguishes between two kinds of time stamps that are
attached to data items. Valid-time stamps record when an event occurred in the real world.
Transaction-time stamps record when a data item was entered in the system, or when it was
last changed. While transaction-time is important for particular purposes (e.g. recording audit
trails when sensitive data is created and altered), the focus of clinical temporal research is on
valid-time.

Many participants in clinical studies are healthy volunteers, and should more accurately be
labeled as subjects rather than patients. The account below, however, uses ‘patient’ to avoid
switching back and forth when contrasting CPRSs with CSDMSs. The differences between
CPRSs and CSDMSs that impact temporal query operations are now discussed. We note that
many CSDMSs do not have data structures needed for temporal support, and our discussion
below focuses on the few that do. For example, in many commercial CSDMSs, valid-time
stamps are not associated with individual parameter values. Instead, to record valid-time
information, the study designer must invent pseudo-parameters such as ‘date of interview’ or
‘date/time of blood collection’, and add them to the case report forms where other attributes
are being recorded. Such approaches make robust temporal query support very difficult.

2.2. Special temporal aspects of CSDMSs
In the CPRS, clinical data gathering is open-ended, while in the CSDMS it is limited to the
duration of a study in which the patient participates. In clinical studies, individual response to
therapy is less important than how patients react as a group. Therefore, a study is typically
divided, from the patient’s perspective, into study periods by critical time points, or study
events, whose timing is determined by the study’s protocol. Study events are typically given
meaningful labels that usually indicate chronology and/or serialization, as well as the purpose
of the event, e.g. ‘Baseline’, ‘3-month follow-up’, ‘Chemotherapy Cycle 1’, etc. At any given
instant, various patients will typically be within different study periods, e.g. one patient may
be halfway through the study while another has just enrolled. Whenever a patient’s study event
occurs, the investigator performs a predetermined set of evaluations, e.g. based on lab tests or
questionnaires. All clinical parameters relevant to a particular study are not evaluated for all
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events: parameters that are expensive to evaluate (or whose determination poses a significant
clinical hazard) are evaluated less frequently.

Once a patient has enrolled in a study, a ‘calendar of events’ for that patient can be computed.
This calendar is essential to the satisfactory conduct of a study, because it serves as the basis
for resource and appointment scheduling. For example, to optimally schedule relatively scarce
resources, such as a PET scan, a particular patient’s calendar can be computed backward from
the scheduled scan date. Because of the importance of study events, data-entry personnel
provide two kinds of time-stamp for every clinical data item: an absolute (valid-time) stamp
and the study event ID, which serves as a relative time-stamp. When studying the time course
of therapeutic response or adverse effects for the set of patients collectively, as is the focus of
clinical studies, the study event IDs are much more useful than absolute timestamps, which
vary across patients. The event IDs are also more readily interpretable. For example, during a
long-term study, the investigations that are required for a given patient during a particular event
(e.g. the annual follow-up) may be numerous, and may be performed over a week or more,
rather than on a single day. While the resultant data items will have slightly different absolute
time stamps, they will all have the same study event ID.

The importance of study events makes it essential to have a CSDMS’s query interface support
search of data items in terms of their associated study events: such search behavior should be
the default rather than the use of absolute timestamps. In temporal query of clinical studies,
absolute date/times are only important in unusual circumstances such as problems with the
batch of the drug that was administered to several patients.

Previous research in this area has demonstrated temporal query support for rule-based expert
systems [23] and data abstracts of CSDMSs [3-5] utilizing absolute valid-time stamps. Systems
that additionally allow temporal queries based on relative time-stamps (study events) or that
directly query an EAV CSDMS have not been previously reported. We now describe such an
application with a graphical interface to make it accessible to the end user.

3. System description
We first provide a brief overview of our system architecture and database model, which has
been described previously [24], and then describe in detail the component that enables
execution of temporal queries.

3.1. Schematic of architecture
The overall system design is based on a standard, ‘3-tier’ web architecture, where a web server
application mediates between a user operating a web browser and a database server. This is
shown in Fig. 1. The web server is implemented with Active Server Pages on a Microsoft
Windows 2000 server machine. The Oracle database server runs on a CPU separate from the
web server.

3.2. Trial DB’s data and metadata model
An overview of Trial DB’s data and metadata model is depicted in Fig. 2. The metadata tables
are on the right side of the diagram, and the data tables are on the left. Each arrow represents
a one-to-many relationship, originating from the ‘many’ or child table and pointing to the ‘one’
or parent table. Each dotted line with a double-headed arrow represents a many-to-many
relationship, which is modeled using a bridging table (not shown).

When data is gathered for a study, it is entered into a case report form (CRF) over a secure web
connection. Individual questions on a CRF are segregated into question groups, based on their
functional relationship and sharing of a common timestamp (or timestamps). For example,
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during each clinic visit, a set of vital signs may be obtained. The temperature, pulse rate, blood
pressure and respiratory rate are a group of related questions that share a common single
timestamp (date/time of examination), and they would be placed together into one question
group. (Since this group contains only a single timestamp, it describes instant events.)

There are, however, certain groups of questions that are unpredictable in number. For example,
‘adverse events’ is a group of questions that include the type of adverse reaction, the severity
of the reaction, and the alleged medication/therapy that caused the reaction. But there may be
zero, one or any number of adverse events reported during the same clinic visit for a given
patient. Also the timestamps for each adverse event could be different. A patient could have a
mild headache due to omeprazole which started on 1/1/2002 at 12:00 h and ended at 15:00 h,
and severe vomiting due to chemotherapy that started on 1/2/2002 at 15:00 h and ended on
1/4/2002 at 6:00 h. Information for both of these adverse events could be collected during the
weekly evaluation on 1/5/2002. Therefore, ‘adverse events’ is an example of a ‘repeating
group,’ a group of questions that may have an indeterminate number of repeat instances. Note
that each adverse event has two timestamps—the date/time of onset and the date/time of
resolution—thus describing a period event.

The Question_Groups table contains specific temporal metadata in the form of a field called
Patient_Event_Type, which associates every question group with the type of timestamp, either
instant or period. The actual timestamps (data) are stored in the Event_Subheader table as
Start_Of_Event only (for instant events) or both Start_Of_Event and End_Of_Event (for period
events).

When a new CRF is created for a patient, a new row is created in the Event_Header table. This
table records, among other things, the Patient ID and Event_ID (for study events, described
later). After the form is completed and saved, a new row is created in the Event_Subheader
table for each question group in the CRF. For repeating groups, a new row is created for every
separate repeat instance. Every row in the Event_Subheader table gets its own calendar
timestamp(s): one timestamp for instant events and two timestamps for period events.

Finally, every question with a non-null value is recorded in an EAV table with the triplet
Subheader_ID, Question_ID and Value. (The figure shows a single such table, EAV_Int: we
actually create a separate EAV table for each data type, e.g. integers, strings, dates, etc., which
allows indexing by value.)

One aspect of the temporal model, the study event (a study-designer specified time unit), is
stored in the Study_Events table. This allows individual studies to maintain information
correlating every patient data point with a study event (in the Event_Header table). For
example, if, during a particular study, patients are evaluated weekly, the study events would
be week 1, week 2, etc. Consequently, all the information on a CRF would not only be
associated with an absolute timestamp, but also a relative timestamp (relative to when the
patient enrolled in the study).

3.3. The user interface
The interface is designed to perform parameter-centric query, where the user can search for
patients matching criteria based on clinical or demographic parameters. Parameters are selected
using either a drill-down approach based on the case report form to which they belong, or by
keyword. Searching by form is more useful when multiple related parameters from the same
form are to be chosen. For a selected parameter, the user can optionally specify restrictions
based on comparison operators (e.g. less than, greater than, between, contains), statistical
aggregate operators (e.g. average, max, min), values, and a range of study events or absolute
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datetimes to limit the set of values to be searched. Individual criteria can be combined in
Boolean fashion.

TrialDB’s query interface is driven by metadata, so that when the user chooses a study, only
that information (case report forms, attributes, etc.) that is applicable to the chosen study is
presented. Metadata is also used to validate the user’s actions, by preventing the selection of
choices that are inappropriate to a particular parameter. For example, the user is prevented
from specifying certain period operators for a parameter representing instant events.

After execution, a query’s definition may be saved for later reuse and modification. A single
query definition corresponds to numerous consecutively executed SQL statements (often more
than fifty, when multiple Boolean and temporal criteria are specified by the user). Further, the
meaning of these individual statements is not intuitively obvious to the user, especially when
multiple statements correspond to a single logical operation. In order to characterize the
semantics of a query concisely, we use an XML-based representation. The user’s actions, in
fact, result in composition of an XML stream, which is then validated and interpreted by the
query engine to generate the appropriate SQL. The query process ultimately results in the
creation of one or more conventionally structured tables containing the desired results.

3.4. The temporal query component
The user interface is illustrated in Fig. 3. This consists of a set of frames where the user performs
individual actions related to the query: browsing of metadata and selection of attributes;
composing non-temporal criteria based on selected attributes; defining temporal criteria in
terms of these non-temporal criteria; and combining both temporal and non-temporal criteria
in Boolean fashion. (Not all queries have a temporal component.)

It should be noted that even for clinical events of the instant type, using a non-temporal criterion
that contains a statistical aggregate function effectively results in a conversion from instant
data to period data. For example, even though blood hemoglobin is measured at an instant in
time, if we create a criterion based on the average or minimum hemoglobin for a patient, we
must specify the start and end times or events between which this average or minimum must
be computed. (By default, these are the first and last events defined for the study.) The resultant
aggregate value is then tagged with relative and absolute timestamps.

A sample temporal query is illustrated in Figs. 3-7. Here, we wish to identify patients from a
breast cancer dataset through criteria based on prior therapy: specifically, patients who have
received more than six courses (cycles) of chemotherapy and more than 3000 rads of radiation.
We further wish to apply a temporal restriction, limiting the patients to those who either 1)
started and completed the radiation treatment during the chemotherapy interval or 2) completed
the chemotherapy cycles before and within one month of the start of the radiation therapy. The
latter restrictions form the basis of a temporal query.

In Fig. 3, the user composes the non-temporal portion of the query. Here, the individual criteria
are ([Number of Chemotherapy Courses] > 6) and ([Total Dose of Radiotherapy] > 3000),
which are referenced as criteria 1 and 2. These are combined with a Boolean AND operator,
yielding the final (compound) non-temporal criterion, ‘1 and 2’ of the lower left of Fig. 3. Fig.
4 illustrates the next step: defining the temporal criteria in terms of the non-temporal ones. The
details of an individual temporal criterion (shown in the third frame of Fig. 4) are now
summarized. We first discuss traditional temporal operations; trend operations are discussed
later.
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3.5. Traditional temporal operations
We first outline the structure of a temporal criterion, and then provide explanatory details,
using Fig. 4 as reference. A temporal criterion consists of either one or two non-temporal
criteria (Crit. 1 and Crit. 2). To each of these, one may optionally apply a unary temporal
(qualifying) operator (Qual.1 and Qual.2). If two non-temporal criteria are used, one can apply
a binary temporal (Allen) operator to them in the TimeOp column. The meaning of certain
temporal operators can be optionally quantified by a triplet consisting of a relational operator
(e.g. less than, greater than), a value (a real number), and a unit of time (e.g. days, weeks) that
applies to the value. This triplet is recorded in the columns ‘RelOp’, ‘Value’ and ‘Units’. The
program serially numbers individual temporal criteria: in Fig. 4, they are designated as T1 and
T2. Individual temporal criteria can be combined with Boolean operators (e.g. ‘T1 OR T2’).

• Allen operators: the designated names of these operators are somewhat arbitrary and
unintuitive: for example, the precise meaning of ‘X MEETS Y’ or ‘X FINISHES Y’
is difficult for occasional users to remember. (Allen himself used line graphics to
illustrate the operators’ meanings in his paper.) Therefore, we let the user invoke a
help screen and choose an operator by clicking on the graphic icon that describes its
function. Fig. 5 shows the user interface for this purpose, and also illustrates the
meaning of the individual Allen operators.

Although the Allen operators have been described strictly for period events, the user should
not be prevented from applying them to comparisons of an instant event with a period event
or even to two instant events, if the user’s intended meaning is sufficiently unambiguous. Thus,
for the Allen operator X BEFORE Y (which, as explained earlier, means the end of X precedes
the start of Y) it does not really matter whether X, Y or both are instant events.

• Quantifiers: the quantifier triplet is optionally used to augment an Allen operator
through the use of numeric thresholds. For example, in Fig. 4, criterion T2 states that
non-temporal criterion 1 (Number of courses > 6) must occur BEFORE criterion 2
(total radiotherapy dose > 3000), but the gap separating the end of chemotherapy and
the start of radiotherapy must be less than 1 month. The relational operator, value and
time-unit are: ‘<’, ‘1’, and ‘month’ respectively. Temporal criterion T1 does not have
any quantifiers: it merely states that any episode of radiotherapy > 3000 rads should
have occurred during chemotherapy. (The temporal operator X DURING Y means
that the start and end of X should occur within the bounds indicated by the start and
end of Y.)

For certain time operators such as EQUALS or MEETS, the relational operator ‘<’ is used with
a value and time unit to indicate a significance threshold, as we now explain. X EQUALS Y
is true if the two periods X and Y have the same start and end times, and X MEETS Y is true
if the end of X coincides with the start of Y. In reality, because time is recorded by a computer’s
clock to an accuracy of a second (or fractions of a second), neither of these conditions is ever
likely to be true with real clinical data. Therefore, the user can specify that two instant events
should be treated as co-occurring if they are less than so many time units (e.g. 30 minutes)
apart.

• Unary (qualifying) operators: for traditional temporal operations, the unary operators,
which are ‘Start,’ ‘End,’ and ‘Duration,’ get the start time, end time and duration of
an event. (For instant events, Start and End times are identical. The Duration operator
applies only to periods, and is used with a quantifier triplet, so we can, for example,
look for particular adverse events that lasted for more than 1 week). The Start and
End unary operators allow more flexibility in specifying conditions than if we were
forced to use the Allen operators exclusively. For example, suppose we only care that
the start of event X comes before the start of event Y. The criterion Start(X) BEFORE
Start(Y) is far more concise than the unwieldy and inefficient equivalent criterion: (X
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BEFORE Y) OR (X MEETS Y) OR (X OVERLAPS Y) OR (Y FINISHES X) OR
(Y DURING X).

3.5.1. Query results—The results of query execution are shown in Figs. 6 and 7. The output
tables are uniquely named using a convention based on a sequentially ascending number
prefixed by the user’s login name. The non-temporal query results are shown in Fig. 6, while
the temporal results are shown in Fig. 7. The first table, ‘anid_TQ_2409_1,’ is the result of the
first temporal specification; the second table, ‘anid_TQ_2409_2,’ is the result of the second
specification. Finally, the final table is the Boolean ‘OR’ combination of the other two.

3.5.2. Trend operators—The values of certain instant events form a time-series, within
which one can look for trends, such as progressively ascending or descending values of a
parameter. Trends for hematological parameters are particularly important in cancer
chemotherapy. We therefore, support trend operators, which are unary Boolean operators that
inspect a sequence of values for a pattern. The operators that are supported are ‘Ascending’,
and ‘Descending’, whose meaning is obvious.

Sometimes, within a single study event, one may record multiple values of a parameter. An
example is cancer chemotherapy, where absolute neutrophil count is recorded several times
during each chemotherapy cycle. The count shows a cyclical pattern: it drops soon after
chemotherapy is given, and gradually comes back toward the baseline until the next
chemotherapy is administered, typically four weeks later. Here, one is less concerned with
individual values than the average count or the minimum count (the ‘nadir’) for each cycle:
we therefore allow the user to apply the statistical operators AVERAGE, MAX and MIN to
group values per event before the trend operator is applied.

Another issue with trend operators is that very small differences amongst consecutive values
may simply reflect the intrinsic measurement error (statistical noise). One may therefore wish
to specify a ‘noise’ threshold [25]. Thus, a noise threshold of 2% with a DESCENDING
operator would mean that, while the final value of the parameter in the time series must be less
than the initial value, random ascents between consecutive values of < = 2% would be
considered acceptable and still allow DESCENDING to return True.

Fig. 8 shows the use of trend operators. Here, the user selects ‘AVG’ in Qual. 1, and
‘Descending’ in TimeOp, with a noise threshold of 2%. Our implementation of trend operators
is relatively recent. It is possible to conceive of numerous other operators: (e.g. based on rate
of ascent or descent). A decision to support additional operators, however, will only be made
after users articulate specific needs.

3.6. The temporal query engine
The user’s interactions with the browser are converted by browser-based code into an XML
stream (the query specification), which is then transmitted to the Web server. The XML schema
for the temporal portion of the query is described in Appendix A. We use the W3C XML
schema notation, rather than the older document type definition (DTD) notation, to allow more
extensive data validation. The XML schema for the non-temporal part of the query has been
described previously [24].

Temporal criteria are evaluated through a two-step process:

1. The first step is common to all queries. The query engine extracts rows from tables
containing patient-related data based on non-temporal criteria, and performs EAV-
to-conventional-structure transformations. The result is one or more temporary tables,
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each with one column per attribute of interest, along with patient ID and the
appropriate valid-time stamps.

2. If the user has specified temporal criteria, the temporal query engine then operates on
these temporary tables to generate the desired result.

Compound Boolean expressions are evaluated using the standard ‘stack machine’ approach
that is described in compiler-design textbooks, e.g. Ref. [26]. Briefly, one converts the
expression from infix form, where the Boolean operators lie between their two operands, to
postfix form, where the operators follow their two operands. For example, the infix expression
(X AND Y) OR (P AND Q), where X, Y, P and Q are temporal operations, is converted to the
postfix form X Y AND P Q AND OR. Infix-to-postfix conversion eliminates parentheses, and
allows a very simple evaluation algorithm, which uses a stack data structure, to operate on the
resultant expression.

We implement the temporal operators themselves using ‘theta joins’[27], which are generalized
join operations where the condition joining two tables is not necessarily equality. This requires
more elaborate generation of SQL code, but query performance is better than with simpler
alternative approaches that generate a Cartesian product of the tables followed by elimination
of all rows not matching the condition, e.g. [28].

We illustrate this with the examples of Figs. 3-7. In the first step, we create a temporary table
for each non-temporal criterion, (at least six cycles of chemotherapy, criterion 1) and (radiation
dose > 3000 rads, criterion 2). These yield the temporary tables STN_507 and STN_508 of
Fig. 6. Both these tables contain only the patient events that match the entire Boolean criteria
of Fig. 3, along with the timestamps for each event. Consequently, both tables contain the same
list of patients (although any patient may appear more than once in either table).

Using these two tables, then, we narrow down to the patients that also match each temporal
criterion. Thus, the specification in the second row of the third frame in Fig. 4, ‘1 BEFORE 2
within 1 month,’ is converted to a temporary table:

CREATE TABLE anid_TQ_2409_1 AS

SELECT T1.Patient_ID,

T1.Start_of_Event as SOE_1,

T1.End_of_Event as EOE_1,

T1.Chemotherapy_Num_Courses,

T2.Start_of_Event as SOE_2,

T2.End_of_Event as EOE_2,

T2.Radiotherapy_Total_Dose

FROM STN_507 T1, STN_508 T2

WHERE T1.Patient_ID = T2.Patient_ID

AND T2.Start_of_Event-T1.Start_of_Event > 0

AND ABS (T2.Start_of_Event-T1.End_of_Event) < = 30.44

In the above code, the conditions on the last two lines implement the theta join. The
specification in the first row of the third frame in Fig. 4, ‘2 DURING 1’ is calculated in the
same manner. Finally, a set union (to evaluate the Boolean time criteria ‘T1 or T2’) is performed
on the above temporary temporal tables to get the final set of patients shown in Fig. 7. The
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Boolean time expression, ‘T1 OR T2,’ is evaluated using a stack engine similar to that described
in [24].

We now provide a brief explanation of the last line of the above code. Relational databases
store dates in Julian form, as real numbers that are offsets from an arbitrary ‘time-zero’, where
integer increments represent a whole day: the conventional display form of a date is computed
on demand. A well-known problem with temporal data is that the concepts ‘year’ and ‘month’
do not represent fixed time intervals. Strictly speaking, therefore, one would have to determine
the truth of the condition ‘date X precedes date Y by less than a month’ by using a complicated
algorithm that successively compared various parts of X and Y: the year, month, day and
fractional day. This would require several function calls that extracted each part of the date
within the last part of the theta join. We use a short-cut approach by treating a year as 365.25
days and an ‘average’ month as 30.44 days (365.25/12). (This is explained to the user in a help
screen.) Given the temporal granularity of data recorded in CSDMSs, our short-cut yields
results in practice that are not significantly different from a purist’s approach, while being
much more efficient. In any case, since the value can be a decimal number, the user is at liberty
to supply slightly different values to see if the result set is different.

Note the use of the ‘ABS’ function in the SQL above, which returns the absolute value of a
number. Given that most RDBMS engines do not try to optimize any sub-expression that
contains a function, the question is whether replacing ABS with an equivalent expression would
improve performance. For example, the expression:

ABS (T2.StartofEvent-T1.EndofEvent) <= 30.44 could be replaced by

T2.StartofEvent-T1.EndofEvent BETWEEN − 30.44 and 30.44

At least with the relatively modest number of rows returned in the temporary tables, our
benchmarks indicate no appreciable difference in performance with either alternative.

The implementation of the trend operators is straightforward: one retrieves a chronologically
sorted set of parameter values from the database, loads them into an array, and inspects
consecutive pairs of values, as well as the first and last, for a trend.

At this point, it would be useful to discuss the issue of temporal granularity [25]. In a CSDMS,
timestamps are usually saved either to the minute (e.g. for blood draws) or to the day (when
the time of day is unimportant). The study designers determine the level of granularity
appropriate for their study by creating study-specific metadata; this level of granularity is
directly available to the end users during the temporal querying process. We also allow the end
users to specify coarser granularities. For example, to find patients who have been concurrently
given chemotherapy A and chemotherapy B, with a granularity of one week, the user would
specify ‘1 equals 2’ and ‘ < 1 week.’ The SQL generated for this temporal specification is ABS
(T2.Start_of_Event–T1.Start_of_Event) < 7. For period events, the SQL using End_of_Event
would be similarly generated.

In this scenario, the relational operator, value and units can double as a granularity
specification, similar to the ‘noise’ threshold described above for trend operators. The
advantage of this specification is that the user is not limited to any predefined granularities;
any arbitrary granularity, such as 72 h may be specified.

4. Present status and future work
The temporal query system has been tested and validated with a wide variety of queries on real
data. Two non-programmer users within the Center for Medical Informatics have tested the
system in addition to the authors. We are, however, focusing on improving response time before
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making it generally available to all of TrialDB’s users. Our reasons and approach are now
discussed.

TrialDB’s production schema is transaction-oriented. Specifically, it is highly
‘normalized’ [29], that is, data is stored with minimal redundancy across several tables. The
conceptual ‘EAV table’ described in the Background section of this paper, for example, is
actually divided into four physical tables for a single data type. (Without going into details, we
only state here that the multiple fields comprising the ‘Entity’—patient ID, study ID, etc.—
are stored in a separate table. Also, multiple attribute-value pairs can be given the same valid-
time stamp, because the attributes may have a common source—e.g. hematology parameters
all derived from the same blood draw. This timestamp is stored in a separate table that groups
the set of parameters.)

Highly normalized schemas work well for interactive updates, as well as browsing of small
volumes of data (in this case, individual case report forms for a patient in a study). Every time,
however, that TrialDB has to identify patients by parameter-based criteria, the RDBMS must
perform a join of these three tables. Such operations can process large numbers of rows, and
can be potentially lengthy. In general, queries of arbitrary complexity should not be performed
on a transactional schema, because response times for users who are entering or editing data
(and who must be given priority) can be affected adversely. The correct approach in such a
case is to move the production data in bulk to a separate CPU on a periodic basis, e.g. nightly.
The separate CPU acts as a ‘query server’ whose data is read-only. The read-only nature of the
data then allows us to perform certain schema-redesign optimizations to allow the queries to
run faster. The most straight-forward of these is ‘view materialization’, which is now explained.

A view is a combination (a ‘join’) of data from several tables that are linked together based on
shared fields. View materialization is based on the philosophy that ‘permanently’ joining the
several tables that comprise a view into a new physical table achieves superior query
performance at the cost of space. Practically every column in the new table is indexed. The
DBMS may save a significant amount of time because multi-table joins do not need to be
performed repeatedly, though the new table takes up extra space because the patient ID, study
ID, etc. are repeated redundantly for every value of every parameter. Such an approach, termed
de-normalization, is used in data warehouses, and is justified when there are no interactive
edits to the data, as is the case for query servers.

Materialized views can be a mixed blessing. In some cases, because the resultant rows are
much larger than the original rows, the DBMS must do more work in pulling a certain number
of rows off disk. Fewer rows fit into the DBMS’s memory cache: therefore, for queries that
search through large volumes of data, many more cycles of cache-refill must be performed.
Cache effects can therefore partially offset the benefits of joins.

We have benchmarked a few queries with and without view materialization. (These
benchmarks were performed on a test CPU that contained the same data set as our production
CPU.) The query of Figs. 3-7 took 1.4 and 0.7 s without and with view materialization. Another
looked at pretreatment serum bilirubin and albumin levels as well as chemotherapy agents for
patients on concomitant therapy with any one of 12 named medications (not listed here for
brevity) that are known to be transported by binding to serum albumin. The run time of this
query went from 14.7 s without view materialization to 0.8 s with view materialization.

We speculate that the much greater gain in run time for the second query is due to the fact that
much of the query searches a table containing string values (which can be up to 255 bytes in
length), whereas all the data types specified in the first query are numbers (which have much
smaller space requirements). Therefore, adverse cache effects are likely to be seen with
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numbers, while their effects are less pronounced with strings. We will need to perform further
experiments to determine the optimum degree of de-normalization for each data type.

We have planned a more comprehensive benchmarking of queries for the future, after which
we will set up our query server and create scripts that restructure nightly imports of data that
are migrated from our production CPU. Making the query server available to all of TrialDB’s
users will enable us to get detailed feedback.

We are also planning to allow the storage of indeterminate timestamps [25]. For example, if a
patient reported that he had a ‘headache two days ago sometime between noon and 15:00 h,’
it should be recorded as having an indeterminate timestamp. There are several ways to approach
this issue. One method involves adding a field to the Event_Subheader table (Fig. 2) that would
store indeterminacy as a time value. In our example, we could assign the timestamp as 13:30
h, with an indeterminacy of 90 min. An alternative method would involve recording the
minimum and maximum values for the timestamps. The method we choose will depend upon
feedback from our users.

5. Discussion
5.1. Temporal operations on CSDMSs versus CPRSs

Temporal operations on CSDMS can differ significantly from temporal operations on CPRSs.
Patients in a CPRS do not necessarily have any common constraining ‘events’ such as ‘Date
of Entry into Study’ or ‘Date of Initial Chemotherapy.’ In a CSDMS, by contrast, the users of
CSDMSs tag all parameter values with Study Event IDs during data entry (along with the
absolute datetimes). The Study Event IDs act as relative time stamps, pre-aligning all patients’
data on a common time axis, even though individual patients have entered the study at different
absolute times.

In CPRSs, on the other hand, when we compare the data for different patients with similar
clinical conditions, this alignment must be computed by temporarily subtracting the first time
stamp for each patient’s data (for a given clinical parameter) from all subsequent time points
for that patient. This operation involves manipulation of fairly significant data volumes, and
therefore adds a database-intensive computation step when processing temporal queries

The use of study event IDs greatly simplifies many queries. For example, suppose we wish to
get a list of patients with ‘late bone marrow toxicity,’ or bone marrow toxicity nine cycles after
starting chemotherapy (but not earlier). With the use of study events, we can generate the query
without specifying using a temporal engine. We simply specify patients with bone marrow
toxicity between two periods (Fig. 9), where toxicity is defined by the criterion [WBC count
in thousands] < 2.5, and execute the query in one step. (Not shown in the figure, but accessible
by the user, is a ‘key’ that shows the chronological sequence of individual events: for cancer
chemotherapy, for example, the events are 4 weeks apart, so that event 10 would occur at 40
weeks after start of therapy.)

Without study events, we would need to take the following steps: (1) Find the date of entry
into a study for each patient. (2) Find all patients who were treated with any chemotherapy
agent and who developed bone marrow toxicity, along with the date of toxicity. (3) Find the
date difference between the date of entry into the study and the date of first appearance of
toxicity. (4) Narrow down to the list of patients whose date difference was between 40 and 48
weeks, and save this list. (5) Repeat steps 2–4 to eliminate from this list patients where the
toxicity appeared earlier.
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5.2. Putting our approach in perspective
The approaches used by temporal query engines described in the literature fall into two
categories. Engines at one end of the spectrum, typified by Nigrin and Kohane’s DxTractor,
aim at users with very modest database skills: few assumptions are made about the user’s
expertise. The user interface lets the user compose complex operations one step at a time, in
much the same manner as interfaces to bibliographic databases such as Ovid™ and Silver
Platter™. The engine returns intermediate results every step of the way, until the user obtains
the final results of interest. Such systems are by far the easiest to learn, and much of their
sophistication lies in their user interface-code.

At the other end are engines such as CHRONUS (Das and Musen) [10] and CHRONUS II
(O’Connor, Tu and Musen) [28]. These implement a complete temporal query language,
typically a SQL extension, and assume a power-user fluent in SQL. Their strength lies in
parsing/interpreter technology: they are less concerned with the user interface, beyond
returning the data requested. These engines are also the most powerful and expressive in terms
of what the user can do in a single step, and performance is also good.

The pros of one technology constitute the cons of the other:

• The slow performance of easy-to-learn engines is partly a function of their user
interface metaphor. Intermediate results must be specified by the user in single steps
(and stored by the system), while in a more advanced system that allows the user to
write arbitrarily complex constructs, these intermediate results can often be optimized
away either by the DBMS or the implementation.

• Temporal languages are, understandably, hardest to learn. Another practical problem
is seen with temporal languages that are used in production systems. (This is due to
the inertia of international committees and database vendors rather than the fault of
the researchers concerned.) The language specification needs to be reworked, often
significantly, as and when standards change. For example, some of CHRONUS II’s
software engineering involves changing the earlier syntax of CHRONUS to be
TSQL2-compatible. Further, production code (e.g. stored queries) may then need to
be rewritten; it is hard to maintain backward-compatibility.

Our approach falls between these two.

• Like DxTractor, we focus significantly on the user interface. We postpone SQL
generation, however, until the user has specified several operations. The resultant
SQL code then performs multiple DxTractor-equivalent steps in one statement. This
allows the back-end DBMS to perform some optimizations, and fewer intermediate
results need to be stored.

For example, the binary temporal (Allen) operators are really a form of shorthand, whose
equivalent can be achieved, as DxTractor does, by combining the Start and End operators with
relational and Boolean operators. Thus, the operator DURING (as in X DURING Y) can be
expressed as (START (X) > START (Y)) AND (END (X) < END (Y)). Supporting the Allen
operators directly, as we do, allows generating compact SQL code, and reduces (albeit very
modestly) the user effort required to compose such queries.

• We diverge from the temporal-language approach in that we use an XML-based
exchange format rather than a true computational language. Like temporal-SQL
query, an XML-based query specification can be saved for later reuse. In our case,
however, the choice of XML was virtually forced on us for several reasons:

– Our user interface hides the difference between attributes represented in
EAV form and attributes (such as demographics) that are represented
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conventionally. This is because the representation of an attribute in a
particular fashion is a pragmatic decision that is made by the database
developer, and may even change during the lifetime of a system. (Such
changes have occurred in production EAV systems such as the 3M CDR.)
The query engine should be able to determine the representation of an
attribute dynamically by consulting the attribute’s metadata, without having
to force the user to write program code that uses two different data-access
metaphors (which has to be rewritten if the underlying representation of an
attribute is changed). For languages tied closely to SQL, such differences in
data representation cannot be hidden, short of inventing a completely new
language for clinical database query.

– The XML-based specification defines the query in terms of higher-level
semantics that are converted to multiple SQL operations. Such a
specification is possibly less vulnerable to changes in the underlying
RDBMS engine than a computational language. For example, it is easier to
take advantage of true temporal support if and when it becomes available in
RDBMSs without requiring a rewrite of the specification existing code that
uses the XML.

– From the software-engineering perspective, implementing an XML-based
specification is simply much less work. XML is readily parsed and validated
using lightweight software components that are often available at no cost
(e.g. the Microsoft XML parser). A temporal language, by contrast, requires
the building of a custom interpreter using lexer-and parser-generator
technology. Similarly, the turnaround time for revision of an XML-based
specification (and the ‘interpreter’) is much shorter than for a computational
language. (Our specification has undergone several revisions in the course
of its development.)

– Trend operators are not specified in TSQL2, and we wished to avoid devising
our own language/syntax for these operators, especially because more
operators may be added by us in future.

• Temporal expressivity: our engine is able to support three of the four temporal patterns
specified by Das [12]. The three temporal patterns, ‘Temporal Duration,’ ‘Temporal
Window’ and ‘Prior Presence’ are directly supported by our user interface.

The fourth temporal pattern, ‘Temporal Concatenation,’ is not supported. The example shown
in Das’ paper consists of finding patients ‘with a documented history of a positive PPD skin
test without subsequent treatment with more than one month of any antimycobacterial
medication.’ The authors define an operator that ‘concatenates adjacent or overlapping
intervals’ (italics added)—in this case combining all the adjacent/overlapping intervals during
which any antimycobacterial drug was administered. The authors’ example, however, is
somewhat artificial. To be more practical, their concatenation operator should allow the user
to specify an acceptable temporal gap. Time intervals separated by less than this gap could be
considered adjacent and therefore could be concatenated. For example, if a patient took
Isoniazid from days 1–29, skipped day 30 and resumed it on days 31–59, the gap of one day
might not be clinically significant enough to preclude concatenation of these intervals.

Although our query engine can generate temporary tables (which the user can download)
containing patients with a history of positive PPD and their timestamped antimycobacterial
treatment regimens, one would have to write procedural code to concatenate adjacent/
overlapping intervals and generate the desired result.
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The cons of our approach also follow from its positioning: it is possibly harder to use than a
DxTractor-like approach, and it reliance on XML makes it distinctly less expressive than one
based on a true computational language. The above account is by no means intended to be
critical of other approaches: they are eminently suited to the problems for which they have
been devised. Our own ‘compromise’ approach appears to be a reasonable fit for the needs of
production CSDMSs. The contribution of this paper is in highlighting how CSDMSs differ
temporally from CPRSs, and how to utilize these differences in simplifying the code generation
that supports their temporal query.

Availability of software: TrialDB is copyrighted software, but is freely available from Dr.
Nadkarni as open-source to investigators in academia.

Appendix A: The XML-based query specification
The query specification is given below using the W3C XML schema syntax. The schema shown
is only the part used for temporal operations. A description of the elements in the specification
follows.
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A.1. Description of the temporal query specification
The specification consists of TIME_CRITERIA that describe a set of one or more
TIME_ROWs. Description of Individual Row Elements (TIME_ROW):
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TIME_SERIAL_NO
Each row depicts one temporal specification and has an associated row number, numbered
serially with a ‘T’ prefix (for ‘Temporal’). The row numbers are used to compose complex
Boolean criteria, such as (T1 and T2) or (T3 and T4).

CRITERION_1, CRITERION_2
An integer, which refers to the row number in the non-temporal query specification.

QUALIFIER_1
May be used to qualify the period data for Criterion_1. Possible values include ‘Start,’ ‘End,’
and ‘Duration,’. For trend operators, we allow the statistical aggregates ‘Average’, ‘Min’ and
‘Max’.

QUALIFIER_2
In some scenarios, the period data for Criterion_2 may also be qualified. The possible values
are ‘Start’, ‘End’ and ‘Duration.’ The trend operators are unary, and therefore the statistical
aggregates do not apply here

TIMEOP
These are the Allen temporal operators for period data, such as ‘Before,’ ‘Meets,’ ‘Equals,’
‘During,’ ‘Starts,’ ‘Finishes,’ and ‘Overlaps.’ The meaning of these operators is illustrated in
Fig. 5. The permissible trend operators are ‘Ascending,’ and ‘Descending.’

TIME_RELOP (Relational Operator
This is used to express equality or inequality between the CRITERIA and the TIME_VALUE/
TIME_UNITS, and consist of the five operators: <, < =, =, > =, >. For trend operators,
‘WITHIN’ is used to specify a ‘random noise’ threshold, as discussed in the text

TIME_VALUE
A real number, referred to by the TIME_RELOP in conjunction with the TIME_UNITS.

TIME_UNITS
Possible values include minutes (mn), hours (hr), days (dd), weeks (wk), months (mm), years
(yy). For trend operators, we also permit percent (pp), which works in conjunction with
WITHIN.
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Fig. 1.
Schematic of the TrialDB query system architecture. A web server mediates communication
between the web browser and the database. The user browses the study metadata, identifies
parameters of interest and composes nontemporal and temporal criteria based on these
parameters. The user’s actions are converted at the browser into an XML-based query
specification. When the user decides to execute a query, the browser sends this specification
to the Web server, which validates it semantically, and then uses it to generate SQL that extracts
data and creates one or more output tables that the user can then browse. Queries can be saved
for later reuse.
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Fig. 2.
The Trial DB data and metadata model. A simplified overview of the Trial DB model is shown.
A dashed line separates the data tables and metadata tables. Every arrow represents a one-to-
many relationship and originates from the ‘many’ table and points to the ‘one’ table. Dotted
lines with double-headed arrows represent many-to-many relationships and use bridging tables,
which are not shown. Metadata tables associate case report forms (CRFs) with studies, question
groups with CRFs and questions with question groups. Question groups record the temporal
nature of individual attributes (in the Patient_Event_Type field). Data tables: the Event_Header
table records the case report form ID as well as the patient ID and study event ID. The
Event_Subheader table records the question group ID as well as the timestamps for the group
of questions. The EAV tables (only one of the six types is shown) contain the subheader ID,
question ID and the value for each question in the question group that has an actual recorded
value (we do not record null values in the EAV tables).
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Fig. 3.
The Ad Hoc query user interface: specifying non-temporal criteria. As described in the text,
temporal query is integrated with general-purpose ad hoc query. The parameters of interest are
identified using search (by keyword) or by drill-down from the list of case report forms for the
present study, as shown in the second frame from top. Selected parameters are appended to the
table in frame 3. The user then applies restrictions based on these parameters, by combining
with comparison operators and values. Here, we are restricting the set of patients of interest to
those who have had more than six courses (cycles) of chemotherapy and a total dose of more
than 3000 rads of radiation. Individual criteria (denoted by row number) can be combined in
Boolean fashion in the ‘Boolean Criteria’ textbox in the bottom frame. (Here, we are using the
Boolean operator ‘AND.’) When the user clicks on ‘View Time Criteria’ in the top frame, the
temporal criteria frame becomes visible (which is described in Fig. 4).
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Fig. 4.
The Ad Hoc query user interface: specifying temporal criteria. The user has specified patients
who have received more than six courses (cycles) of chemotherapy and more than 3000 rads
of radiation (the criteria of Fig. 3, reproduced in the second frame). The temporal criteria (in
the third frame from top) specify that either (a) the radiation dose occurs ‘during’ the
chemotherapy cycles or (b) the chemotherapy cycles occur less than 1 month ‘before’ the
radiation dose. The Boolean Criteria and the Boolean Time Criteria is specified in the bottom
frame.
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Fig. 5.
The GUI for the Allen operators for period data. The user may select a temporal operator by
clicking in the corresponding region.
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Fig. 6.
Results for non-temporal query. The ‘clinical events’ of interest for patients who have received
more than 6 courses of chemotherapy and more than 3000 rads of radiation. To maintain the
meaning of the start of event and end of event, every clinical event is listed (rather than just
the patient id).
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Fig. 7.
Temporal query results. The top table consists of the patient events for the first temporal
specification (radiation dose occurs ‘during’ the chemotherapy cycles). The middle table
consists of the patient events for the second temporal specification (chemotherapy cycles occur
less than 1 month ‘before’ the radiation), and the bottom table shows a list of patients matching
the Boolean combination (‘or’) of the other two tables.
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Fig. 8.
Use of trend operators: criterion 2 in the top frame chooses the parameter ‘total WBC
count’ (the ‘X 1000’ in the name indicates that the parameter is expressed in thousands as a
decimal number, versus being expressed as an absolute count). Criterion 2 is the basis of a
temporal query in the lower frame that identifies patients where the average white cell count
(per study event/cycle) shows a descending trend (where random increases between
consecutive values of less than or equal to 2% are ignored).
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Fig. 9.
Use of study events to define temporal criteria. By specifying values in the study event start
and study event end columns, the user can limit the results to patients who have received
chemotherapy and then developed leukopenia in cycles 10– 12 (but not in earlier cycles). This
does not require the use of the temporal query engine. (criterion 1, chemotherapy_Rx < > ‘’,
is a means of specifying ‘any chemotherapy’.) Not shown in the figure, but accessible by the
user, is a ‘key’ that shows the chronological sequence of individual events: for cancer
chemotherapy, for example, the events are four weeks apart, so that event 10 would occur at
40 weeks after start of therapy.
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