ELSEVIER SCIENCE B.V. [DTD 4.1.0]

JOURNAL COMPNW ARTICLE No. 2443

COMPNW 2443 A

PAGES 01-17 DISPATCH 12 December 2000 PROD. TYPE: FROM Disk

COMPUTER
NETWORKS

ELSEVIER Computer Networks 000 (2000) 000-000

www.elsevier.com/locate/comnet

CitiTime: a system for rapid creation of portable next-
generation telephony services ™

Farooq Anjum, Francesco Caruso, Ravi Jain *, Paolo Missier, Adalberto Zordan '
Applied Research, Telcordia Technologies, 445 South Street, Morristown, NJ 07960, USA

Abstract

We present the architecture, design and experimental research prototype implementation of CitiTime, an open
system architecture for the rapid development of advanced next-generation telephony services that overcomes some of
the limitations of the current closed PSTN architecture and service model. CitiTime allows communication sessions to
be set up over the PSTN, the Internet, or a combination of both. Services can be provided by multiple cooperating
distributed service providers, some of whom may use third-party software components which can be “plugged in” or
even dynamically downloaded from the network as needed. This allows advanced services to be deployed and delivered
to users rapidly, a crucial requirement in the increasingly competitive telecommunications services marketplace. Citi-
Time is built upon an object-oriented call model called citi call control (CCC) which we have defined as a small set of
extensions to the standard Java telephony API (JTAPI) call model. JTAPI is designed primarily for centralized, single
provider, call center type applications. Our extensions provide support for multiple, distributed providers as well as
advanced services. CCC hides details of underlying call-state management, protocols and hardware from applications.
The CitiTime prototype software is currently operational in our laboratory. We briefly describe its current imple-
mentation as well as future work to address issues such as fault tolerance. © 2000 Elsevier Science B.V. All rights
reserved.

1. Introduction architecture, design and prototype implementation

of CitiTime 2, a system for the rapid development

It is increasingly being recognized that the
current public switched telephone network (PSTN)
infrastructure has an architecture that is outmoded
in several respects [1]. In this paper, we present the

* A preliminary version of this paper was presented at the
IEEE Conference on Open Architectures and Network Pro-
gramming (OPENARCH), New York, 26-27 March, 1999.

* Corresponding author. Tel.: +1-973-829-3178; fax: +1-973-
829-2645.

E-mail addresses: rjain@telcordia.com (R. Jain), zordan@li-
sa.record.unipd.it (A. Zordan).

! This work was done while the author was a summer intern at
Telcordia Technologies.

of advanced next-generation telephony services
that overcomes some of the limitations of the
current PSTN architecture and service model. In
particular, CitiTime allows communications ses-
sions (voice, video, multimedia, etc.) to be set up
over the PSTN, the Internet, or a combination of
both. More importantly, services can be provided
by multiple cooperating distributed service pro-
viders, some of whom may use third-party soft-

2 CitiTime (pronounced city-time): CitiTime is not an acro-
nym; although it could stand for Computer, Internet and
Telephony Integration (the Time for which is ripe).

1389-1286/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.

PI:S1389-1286(00)00195-X

COMPNW 2443

2 F. Anjum et al. | Computer Networks 000 (2000) 000-000

ware components which can be plugged in or even
dynamically downloaded from the network as
needed. This allows advanced services to be de-
ployed and delivered to users rapidly, a crucial
requirement in the increasingly competitive tele-
communication services marketplace.

Our contributions in this paper can be sum-
marized as follows. We argue that next-generation
telecommunications systems should allow rapid
creation of advanced, portable services by third
parties using interchangeable software compo-
nents. The CitiTime system represents a step to-
wards this goal. Intelligence is assumed to be
widely dispersed and available but not completely
ubiquitous; if the user does not have access to a
smart terminal, services can be provided, albeit
with some restrictions, by means of proxies located
in the network. The software architecture of Citi-
Time allows services to be deployed by means of
software components that can be developed by
third-party software vendors and added to the set
of available services transparently, while a session
is in progress.

In order to provide these facilities, CitiTime
needs a flexible and extensible call model, a spe-
cialized virtual machine for the development of
telephony-related applications. To this end, Citi-
Time itself is built upon an object-oriented call
model called citi call control (CCC) which we have
defined as a small set of extensions to the standard
Java telephony API (JTAPI) call model [2]. While
JTAPI is generally intended for use in a single-
platform environment (e.g., a PBX or a call cen-
ter), CCC is designed for use in a distributed en-
vironment, and can thus be regarded as
“distributed JTAPI”. CCC also hides the under-
lying communication protocols and architectures,
providing a high-level object model for maintain-
ing and managing the state of a call session. In
particular, CCC allows different underlying session
initiation and control protocols to be used, e.g.,
H.323 or SIP [3]. In our prototype, we have de-
signed a version of SIP, called extended SIP, for
session initiation which defines a small set of ex-
tensions to SIP for supporting advanced services.
The CitiTime prototype implementation is cur-
rently being used in our laboratory for voice, text,
whiteboard, and image-exchange sessions.

Our team is actively involved in the effort to
define the JAIN call control (JCC) API, for which
Telcordia is the expert group lead. The JCC API as
well as the call control API defined by Parlay have
many similarities to JTAPI, including many of the
same objects and methods as well as Java pro-
gramming patterns. For a description of the JCC
API, as well as its relationship to the Parlay APIs,
see [4,5]. The CitiTime call control (CCC) API
described in this paper is similar to JCC but differs
in many details. Firstly, it is much closer to JTAPI,
as it only makes modifications to the connection
object finite-state machine. Secondly, CCC is ex-
plicitly designed and implemented with the notion
of being able to execute at smart end-devices, while
JCC is intended to execute on call agents in the
network core or periphery. Nonetheless our expe-
rience with the CitiTime prototype has signifi-
cantly influenced our efforts in the JCC expert
group.

In practice, JAIN and Parlay today provide the
most promising migration path from IN systems
for enabling third-party services. Both the JAIN
and Parlay APIs incorporate many aspects of
JTAPI in their approach, just as is done in Citi-
Time.

The paper is organized as follows. In Section 2,
we present the background and motivation for this
work in more detail. In Section 3, we discuss the
main entities in the CitiTime architecture from a
services point of view, and how services are de-
ployed and implemented. The CCC call model and
the use of the SIP protocol are described briefly in
Section 4, using dynamic service download as an
example. We also describe how to provide a dif-
ferent type of advanced service, namely the ex-
change of electronic business cards between users
in the midst of a call, which requires multiple
parallel sessions to be set up between users. In
Section 5, we provide some more details on the
implementation, using the unified modeling lan-
guage (UML) [6], to describe the associations and
interactions among the objects in the system.
Section 6 briefly discusses the design as well as
directions for future work. In Section 7, we briefly
discuss how CitiTime is related to industry efforts
like JAIN and Parlay for enabling third-party

COMPNW 2443

F. Anjum et al. | Computer Networks 000 (2000) 000-000 3

service creation in converged networks, and in
Section 8, we end with brief concluding remarks.

2. Background and motivation

The PSTN implicitly assumes that the compu-
tational resources, the service creation process, and
the underlying business model for telecommunica-
tions services are centralized. In terms of compu-
tational resources, the current PSTN assumes that
the resources available at the user terminals, or
“customer premises equipment” (CPE), are ex-
tremely limited, so that all the intelligence required
to provide services is centralized in network
switches, databases, and operations support sys-
tems. In terms of the service creation process, the
intelligent network (IN) architecture represented
an important advance when it was introduced in
the PSTN. IN separated service development from
switching, allowing service logic to be developed
more quickly and placed in specialized network
databases (e.g., the intelligent service control
point, or ISCP) while switches could be optimized
for speed and efficiency. However, IN services are
typically created on specialized platforms, using
specialized languages and programming models,
by specialized personnel employed by a telecom-
munications service provider. Hand-in-hand with
this assumption was that of a business model in
which a centralized service provider, one per geo-
graphical region, controlled the available com-
munication resources and provided service.

Clearly, advances in hardware and software
technology, the rise of the Internet, and market
deregulation have combined to make the as-
sumptions underlying the PSTN invalid. One of
the likely scenarios for next-generation telephony
is one that blends feature from the old PSTN
world with those from the growing domain of IP-
based data networks. Many differences exist, of
course, between the two networks, but we are
concerned specifically with differences at the ser-
vice level. The PSTN architecture is network-cen-
tric and assumes that the service logic, or
“intelligence”, resides within the network itself,
normally in the form of programmable network
elements and of centralized systems, such as the

ISCP, which implement user-level services. IP-
based networks, on the other hand, are applica-
tion-centric, in that the network passively provides
connectivity among hosts, and is largely unaware
of the applications that run on those hosts.

Currently, market forces are increasingly calling
for these network models to converge, with con-
sequences on the way user services are defined,
developed and deployed. In a broad sense, the two
approaches are complementary and are already
converging: the PSTN, designed to provide pri-
marily basic telephony, has been evolving to sup-
port new user-level, “intelligent” services. The
Internet, traditionally used for client-server and
peer-to-peer data applications, is increasingly be-
ing used for telephony and telecommunications
services. One of the expected effects of this con-
vergence is that the service logic will now be spread
throughout the network. This means that rapid
development and deployment of telephony services
becomes possible, and that network providers and
the service providers no longer need to coincide.
One illustration of rapid deployment of an ad-
vanced service facilitated by CitiTime is the fol-
lowing:

Example scenario: dynamic service download. In
this scenario, a service can be activated for one-
time use on a customer’s terminal. If the terminal
is not set up for the service, the necessary software
can be downloaded and installed just prior to use.
The main steps in the proposed scenario are as
follows: (1) Alice, the user of terminal A, invites
Bob, who is using terminal B, to a communication
session where they can use a whiteboard to share
information; (2) A issues the whiteboard session
invitation to B; (3) unfortunately, B does not have
the whiteboard software installed, and it informs A
accordingly; (4) 4 suggests a location on the In-
ternet where the software can be obtained; (5) B
downloads the software, negotiating one-time use
payment with the software provider if the software
is not public-domain; (6) B sets up a whiteboard
session with 4 so that Alice and Bob can com-
municate. Note that Alice and Bob have largely
been spared the details of this session negotiation
and dynamic service download.

Several variations of this scenario are possible.
For instance, Bob may configure his terminal to

COMPNW 2443

4 F. Anjum et al. | Computer Networks 000 (2000) 000-000

consult him before paying for one-time service
activation fees if the fees exceed some threshold.
Alice may authorize her own terminal to down-
load the whiteboard software to Bob’s terminal.
Another possible situation is as follows. A third
party, Carol, is interested in having A4and Bes-
tablish the session. For instance, Carol may be
Alice and Bob’s common supervisor. In this case,
Carol may take an active role in providing Bob’s
terminal with information about suitable providers
that can supply the services required for the ses-
sion.

Fig. 1 illustrates the next-generation telephony
scenario we assume. The PSTN and the Internet
will continue to co-exist, and will interface with
each other through gateways. On the resulting
combined network, various types of terminal
equipment will exist, ranging from ““black” phones
to personal workstations. A user will be able to
enjoy a variety of advanced services, some of
which are offered by multiple cooperating provid-
ers that may or may not also be PSTN providers
or Internet service providers (ISPs). In some cases,
users or the service providers themselves will adopt
software developed by third-party independent
software vendors (ISVs), and from time-to-time
providers may download services from other pro-
viders on behalf of their users. A user who is using
a black phone will be able to obtain some services
by means of proxies connected to the network,
where the proxies themselves may be offered by
service providers. For instance, while black phones

may be unable to support video-based services,
some of the more advanced audio services can still
be available to them through the proxy.

In this context, we have developed a software
architecture and system, called CitiTime, that al-
lows for the rapid creation of advanced, portable
telephony applications by third-party providers.
We give an overview of the CitiTime system in the
following sections.

3. CitiTime service architecture

In this section, we describe how services are
deployed and activated in the CitiTime architec-
ture; in the following section, we will discuss the
CCC call model used to implement service de-
ployment and activation.

The CitiTime architecture consists of two main
software entities: endpoints and providers. An
Endpoint has a single unique logical address
(which may be a phone number or an Internet
address) in the system, and consists of one or more
user terminals, a terminal manager (TM), and
possibly a proxy server. A user’s terminal may be a
black phone, a wireless handset, a laptop, or a
workstation. Because the terminal itself may not
be able to support the processing logic required by
the TM (this would be the case for a black phone),
in our design, the terminals and their TMs are
distinct but associated entities. Namely, the TM is
software that either runs on the user’s terminal if

s (Intelligence)

\

Provider B with
Third-Party
services

l

Gateways

Proxy
Provider

——
Provider C with

downloaded
service

Fig. 1. Evolution of the telecommunication system.

COMPNW 2443

F. Anjum et al. | Computer Networks 000 (2000) 000-000 5

the terminal supports such functionality, or on a
proxy server in the network. Thus, from the point
of view of the provider, each terminal can be
uniformly addressed through the associated TM,
regardless of its actual capabilities. Additionally,
this decoupling allows for better scalability and
ease of distribution of the overall architecture. For
ease of exposition in this paper, we will assume
that an endpoint consists of a TM running on a
single user terminal, although other configurations
are possible, and refer to endpoints and TMs in-
terchangeably.

The CitiTime architecture is based on a network
of distributed, interconnected providers (e.g., B
and C in Fig. 1). While endpoints have a single
logical address, providers manage disjoint sets of
such addresses, called domains, and provide net-
work connectivity and session management for the
corresponding endpoints. Fig. 2 provides an
overview of the relationship between endpoints,
providers, and plug-in services. The CCC provider
manages the call processing logic, defined basically
in terms of a finite state machine, among peer
TMs. TMs whose logical addresses belong to the
provider’s domain are shown attached to the
provider.

Services can be hosted by providers or directly
by the TMs, or both. Thus, like services tradi-
tionally provided in the PSTN, a service can be
permanently installed and constantly active at a
provider. For instance, a translation service for
toll-free numbers (e.g., numbers with an 800 area
code), which maps 800-numbers to a physical ac-
cess line number (or an Internet address), can be

Terminal
Manager

Terminal

Terminal
Components <

~— (;‘ 800 Numbet
Java Call C translation
Control

~ Jco)

Provider
—
C Personal Info
~ Component M

Manager >

offered by a provider for its domain. The number
translation can take place in a transparent way
during a normal session setup when the caller ap-
plication requests a connection to a peer identified
by the 800 number. (The actual 800-number dat-
abase could be installed at the provider, or the
provider could itself access a database offered by a
service provider via the network.) Alternatively, a
service can be provided by the user’s TM. For
instance, a speed-dialing service, in which impor-
tant or frequently dialed numbers are mapped to
single digits (represented as hardware or software
buttons on the user’s terminal) could be provided
by the TM. Whether a particular service is pro-
vided by a TM or a provider depends upon several
factors. One such factor is that a service that is
likely to be shared by many TMs (e.g., 800-number
translation) may be better located at the provider,
while services that are very specialized or user-
specific may be better located at a TM.

In CitiTime, service and even activation can
take place as part of the session setup. An instance
of a service can be downloaded on demand, and
activated only for the duration of a session, as in
the whiteboard service of the dynamic service
download scenario. The whiteboard application
can be a short-lived service obtained for the du-
ration of that session. Its lifetime and the provider
designated to supply the service can be specified
during session setup.

As shown in Fig. 2, services are generally soft-
ware components that plug-in to the TM or the
provider. Although the idea of using plug-ins
borrows in part from the familiar notion of web

Directory

events

Provider
Components

Call Processing

Fig. 2. CitiTime service architecture.

COMPNW 2443

6 F. Anjum et al. | Computer Networks 000 (2000) 000-000

server plug-in, what distinguishes our model is the
active management of the attached third-party
software, namely activation, deactivation and ac-
cess control based possibly on a subscription
model. Two types of dynamic resources provide
access to services. The first consists of terminal
components that can be attached to a TM stati-
cally, or dynamically during call setup, and typi-
cally are user-specific or specialized services. The
second type of resource, provider components,
implement services that are normally shared
among TMs in the domain. A terminal component
is implemented as a software component (e.g., a
JavaBean [7]) that is analogous to (or, depending
upon the service, could in fact actually be) a web
applet [8]. A provider component is implemented
as a software component (e.g., a JavaBean or a
“CORBA Bean” [8,9]) that is analogous to a web
servlet [10] (one simplistic definition of servlets is
that servlets are to web servers what applets are to
web browsers). An example of a terminal compo-
nent is a JavaBean that provides a speed-dialing
service. An example of a provider component is a
JavaBean that maintains a cache of 800-number
translations, and if a dialed number is not avail-
able in the cache, contacts a database offered by an
800-number service provider to obtain the trans-
lation.

The motivation for implementing services as
software components is that, in principle, different
third-party software vendors can provide com-
peting implementations of the same service. For
instance, a provider may remove one vendor’s
implementation of 800-number translation, and
replace it with another vendor’s implementation
that offers better functionality (e.g., is more up-to-
date), performance (e.g., better caching or search
algorithms) or cost. Current software component
technology like JavaBeans, and enterprise Java-
Beans [8,11], offers support for discovering the
attributes of a software component at run-time by
means of standardized naming conventions, and
given further standardization of the service inter-
face, allowing components to be “plugged-in” for
use dynamically.

The issue of managing software components in
CitiTime is similar to that of managing applets and
servlets in a web-based client-server environment.

In general, CitiTime services are registered as
software components in a component directory.

In the case of terminal components, the current
CitiTime implementation only allows for services
that set up communication sessions with different
types of media. Thus, services are represented by
media types, which are described using the familiar
notion of MIME types. For instance, suppose that
during call setup the caller requests the use of a
whiteboard. A specific MIME type, say ‘“media/
whiteboard”, is used for the request. On the called
party’s side, if a terminal component is associated
with the requested type, then the call can be im-
mediately accepted and the component can be
activated. Otherwise, an attempt will be made to
obtain a resource that can be associated with that
MIME type, using dynamic service download. The
notion of MIME types has so far proven to be
sufficiently general to encompass all the media
types we have experimented with in our prototype.
Notice that in our model, MIME types are only
used to qualify a request for service activation, for
instance, with the INVITE message and to nego-
tiate a common media type, but they do not by
themselves trigger service activation. Thus, the
type is simply an attribute of a SIP request. The
“trigger points” in this prototype are currently
limited to INVITE messages.

Provider components are registered in a com-
ponent directory and can be activated either by a
TM or implicitly by the provider. The 800 number
translation service is an example of the latter. A
request for a connection to an 800 number triggers
the service invocation on the provider. Once the
service invocation returns with the translated
destination number (DN), the provider completes
the connection. Notice that there is nothing pre-
venting a provider implementation from exposing
the service to the TM for a direct invocation. We
omit further details of the use and maintenance of
the component directory due to lack of space.

The third-party component model described
raises some issues about service and feature inter-
action, that is, the possibility that two services that
are each well-defined and correctly deployed may
interact in undesirable ways when they are acti-
vated for the same user. While this service archi-
tecture does not make any specific provision for

COMPNW 2443

F. Anjum et al. | Computer Networks 000 (2000) 000-000 7

dealing with the problem, one can argue that in-
teraction management can be simplified by exe-
cuting the external services on a common service
platform controlled by a single service manager.

4. CitiTime call model

The call model used to implement CitiTime is
called CCC. By hiding the details of the underlying
communication protocols and architectures, CCC
provides a suitable abstraction of the telephony
network (the combined PSTN/IP network), and
offers a high-level object model for maintaining
and managing the state of a call session. Specifi-
cally, CCC builds upon complementary ideas de-
veloped by the computer telephony integration
(CTI) and Internet telephony (IT) communities.

The CTI approach is oriented towards devel-
oping portable software for applications such as
call centers, PBXs, etc. For example, Sun’s Java
telephony API (JTAPI) [2] provides applications
with a standard call model for maintaining call
state, and hides the hardware API or other API
(e.g., TAPI, TSAPI, etc.) from the application (see
the right side of Fig. 3). In contrast, the IT ap-
proach (left side of Fig. 3) is oriented towards
developing protocols (e.g., SIP, H.323) that allow
interoperability and communication between
software running on user terminals or gateways.

JTAPI itself, while offering a convenient ab-
straction for thinking about next generation tele-
phony and networking, is somewhat limited. In
particular, JTAPI seems to be oriented towards

Internet

Application Application
Haza 155,
Sockets Sockets
TCP / UDP TCP / UDP
IP P
Hardware Hardware

providing support for developing applications in
two types of scenarios. The first scenario is where
applications run on a single platform (e.g., a PBX).
The second scenario is where applications run on a
platform that is “horizontally partitioned”, i.c.,
the higher layers of software (the application and
the JTAPI layer) communicate via Java remote
method invocation (RMI) with the lower layers
(e.g., TAPI and the hardware) over a network. In
both cases, a JTAPI provider is assumed to be in
control of all the legs of a call (they all hang off the
same call object managed by the provider). While
this assumption may add to the convenience of
managing a centralized call center, it is not realistic
in the broader setting of IT. In particular, there is
no provision in JTAPI for sessions that involve
more than one provider, and for provider-to-pro-
vider communication for the purpose of session
management.

CCC is a “distributed JTAPI” that provides the
communication support for multiple providers to
coordinate and interact in order to provide ad-
vanced services. For example, the JTAPI model
assumes that the provider object does not change
throughout the lifetime of a call. It is not clear how
the JTAPI model could be used if the user wants to
have different providers for different portions of
the network traversed by a single call or different
legs of a multiparty call. CCC overcomes these
limitations.

The main goals of CCC are as follows. Firstly,
CitiTime aims to provide greater flexibility in ser-
vice creation, e.g., support dynamic service
download, one-time service activation, and multi-

PSTN

;D

PBX or
Call Center

Application

JTAPI

ITAPI/ TSAPI/ N-API
Telephony Hardware

Fig. 3. IT vs CTI approaches.

COMPNW 2443

8 F. Anjum et al. | Computer Networks 000 (2000) 000-000

ple parallel sessions between two users. Secondly,
it aims to facilitate rapid development of applica-
tions by providing higher layer abstractions for
call processing (rather than simply sockets, net-
work protocols or JTAPI). Finally, CitiTime aims
to provide application portability across various
communication protocols, e.g., SIP or H.323, and
across platforms, using Java.

The CCC architecture is organized by layers of
abstraction. At the top layer, CCC offers a high-
level API to applications (see Fig. 4), thus freeing
them from the tasks of call-state maintenance. An
intermediate protocol abstraction layer decouples
the implementation of the API primitives from the
underlying session control protocol. Thus, al-
though we use SIP, the applications are indepen-
dent of our choice, and the protocol can change
without any major impact on the upper layers.
Observe that CCC also essentially provides a

CitiTim
Prototy
Softwar

. TAPI
Sockets TSAPI

TcP/upp/ip| Native

TCP /UDP / IP|

Hardware

Hardware

Hardware

Physicali Logical @

means to integrate the IT and CTI paradigms. For
instance, as illustrated in Fig. 4, CCC can be im-
plemented at a smart user terminal or proxy,
where it can be used for advanced IT applications.
In addition, it could be implemented at a gateway
that interfaces between the PSTN and the Internet,
using telephony hardware and APIs for access to
the PSTN and IP-based protocols and data com-
munications hardware for access to the Internet.

In the rest of this section, we define the CCC
model in more detail. We first briefly describe the
JTAPI core model and then introduce the CCC
extensions.

4.1. JTAPI core model

The JTAPI [2], is a portable, object-oriented
interface for Java-based computer-telephony ap-
plications. The API defines a core call model to
support basic call setup, and a number of exten-
sions, mostly designed to model call center fea-
tures, multiparty conference calls, call routing, etc.
The core model consists of a few telephony classes
and their relationships, as shown in Fig. 5. Each
object in the figure corresponds to a physical or a
logical entity in the telephone world. The provider
is an abstraction of a telephony service provider. A
provider class manages call objects, representing
calls at various stage of progress.

Terminal objects represent the physical end-
point of a call, while address objects are logical
endpoints. Notice that each address can be asso-
ciated with multiple terminals and vice versa, re-
flecting the standard configuration for a call

(Connectior)

(Connectior) °ee

Terminal |
Connection

Terminal,

Terminal
Connection

Terminal

Fig. 5. Objects in the JTAPI core call model.

COMPNW 2443

F. Anjum et al. | Computer Networks 000 (2000) 000-000 9

center. Connections model the logical relationship
between a call and an address. For a multiparty
call, one connection object is associated to each leg
of the call. Finally, a terminal connection repre-
sents the relationship between one connection and
one physical terminal.

The state of a telephone call is maintained by
finite state machines associated with call, connec-
tion and terminal connection objects (07C) (e.g.,
when a call is answered by the called party, the
originating connection moves to the CONNECT-
ED state). The complete definition of the state
machines is part of the published JTAPI specifi-
cations.

4.2. Call model extensions

A TM in CitiTime is a user application that
corresponds to a single JTAPI address, plus all the
terminals that map to that address. Thus, a TM is
addressed using a JTAPI Address, and a terminal
becomes one of the resources available to the TM.
Each terminal connection models the state of that
resource.

The state machine for the JTAPI connection
object has been extended in order to support me-
dia negotiation during call setup. The number of
API method calls available to the calling parties
for conducting the negotiation has likewise been

BYE/-
EE2/BYE

EE6/INVITEUR
L
UMy

extended (a complete description of those is
omitted for reasons of space). Fig. 6 illustrates the
new state machine. The new states introduced are
Sender_Consult ,Sender_Suspend ,Receiver_Con-
sult ,and Receiver_Suspend. All state transitions
occur in response to events that are generated by
the parties involved. One instance of the state
machine is instantiated for each connection (leg) of
a call. The sender and receiver states are used by
the caller’s and receiver’s connections, respectively.

4.2.1. Dynamic service download

We illustrate the extended connection state
machine as well as our extensions to SIP using the
dynamic service download example (Fig. 7).

The caller initially sends an INVITE message to
a party specifying the use of a particular media
type. If the callee does not have a resource corre-
sponding to that media, it can respond with an
UNSUPPORTED_MEDIA message, which moves the
caller’s connection state to Sender_consult. In this
state, the caller’s TM has a chance to provide a
suggestion to the callee, indicating a service pro-
vider, reachable through a URL, which may be
able to supply the resource. If the callee accepts the
suggestion, it initiates a negotiation with the pro-
vider. Since this operation takes place during call
setup but is in fact conducted with a party not
involved in the call, the connection for the callee

EE7/SUSPEND!

Fig. 6. State machine for the extended call model. EEI: caller initiates call attempt; EE2: time out; EE3: caller concludes action (e.g.,
download); EE4: callee accepts call; EES: user hangs up; EE6: suggest action (e.g., URL for download) to callee; EE7: callee au-

thorization; EES: callee supports media.

COMPNW 2443

10 F. Anjum et al. | Computer Networks 000 (2000) 000-000
User A User B
onnection N Connection
Connect INVITE (MEDIA) States

States

DIALLING

415:UNSUPPORTED MEDIA

IN PROGRESS

SEN CONSULT

INVITE (URL)

IN PROGRESS

DIALLING
SUSPEND

REC CONSULT

SEN SUSPEND OK

REC SUSPEND

ESTABLISHED
BYE

ESTABLISHED

Fig. 7. Message flow for dynamic service download.

moves to the Receiver_Consult state. In this state,
the human user at the callee end of the call may be
consulted, e.g., to authorize payment for or
download of the service. The caller is notified of
the suspension through a SUSPEND event, and its
connection is moved to Sender_Suspend. When the
callee has terminated the acquisition of the re-
source, it notifies the caller. In case of an ok
message, the caller then resumes its processing by
moving to the standard (JTAPI) established state.

Notice that, at any point of time, either party
can unilaterally decide to disconnect the call and
return to the IDLE state. Also, various timeouts,
not indicated in the figure, are set up in order to
provide an upper bound on the negotiation time.

The remaining standard state transitions are
defined in the JTAPI documentation [2].

4.2.2. Multiple concurrent sessions

A second example of the use of CCC for pro-
gramming complex user-level sessions, together
with media negotiation, is the support for con-
current sessions between the same TMs. Consider
the following example scenario of business card
exchange. Suppose that, during a session (after call
setup), two users want to exchange their business
cards from within that session. This is, inciden-
tally, a common problem when business is con-
ducted over the phone and a buyer is repeatedly
requested to supply her name, phone number,

address, etc. (Notice that a business card infor-
mation format is in fact being standardized [12],
and software for performing this function in lim-
ited domains, e.g., between pairs of PalmPilot
hand-held personal computers, is available.) Sup-
pose also that such a card exchange service is in
fact available to the users through a third party.

One way to accommodate this scenario in Cit-
iTime is to consider business cards as a new media
type. Supporting mid-call negotiation to exchange
this media, however, would further complicate the
call model. The alternative we use is to start a new
call, in which the new media is included during
setup, and then manage the logical relationship
between the old and the new call. This alternative
provides an opportunity to introduce and experi-
ment with dependent relationships between calls.
It also simplifies the design of the provider for the
support of complex interactions, and offers more
flexibility to the users. The same address and ter-
minals share a number of active calls. Each call
connection with the endpoint is represented by a
different connection and terminal connection ob-
ject.

Notice that the implementation of multiple
sessions can be very resource-intensive. However,
from the design standpoint, we believe that object-
oriented principles make the implementation much
simpler and more intuitive than it would otherwise
be under the IN model.

COMPNW 2443

F. Anjum et al. | Computer Networks 000 (2000) 000-000 11

A higher level session between TMs consists of
all the calls shared by those TMs. Each call can be
handled independently, or an explicit parent—child
relationship can be enforced among them. In the
case of the business card exchange, for instance,
suppose that one or more sessions are setup to
carry out subordinate tasks under the scope of the
main session, e.g., to exchange the business cards.
When the main session is terminated, the TMs
could specify whether the subordinate sessions
should also be terminated (as in the Unix standard
parent—child process model), or should be de-
tached from the parent and allowed to continue. In
general, the ability to manage relationships among
calls is a useful feature. In the context of billing,
for instance, it makes it possible to bill together
calls that belong to the same high-level session,
possibly at a discount.

To conclude, we note that several optimizations
can be implemented in order to potentially reduce
the number of messages that need to be exchanged
both at call-setup time and in mid-session. For
instance, the location of a downloadable service
can be sent along with the initial invitation. Also,
business cards can be sent as part of the mid-ses-
sion signaling, as part of a SIP “info” message.
However, because we try to maintain protocol-
independence throughout our model, we have
chosen not to implement some of these optimiza-
tions, which rely on assumptions about the un-
derlying protocol (namely, SIP in this example).

5. Object model and implementation

In this section, we provide some details of the
existing prototype implementation of CitiTime.

We describe the implementation using the
UML [6], a graphical language that is rapidly
gaining acceptance as a standard for modeling and
designing object-oriented systems. The UML
model described here was prepared using the ra-
tional rose CASE tool [13].

A UML object model as shown in Fig. 8 de-
scribes the static view of a system in terms of
classes and their associations. In the figure, the
boxes denote classes and the undirected lines de-
note associations between them. Some of the

methods available for the classes may be specified
in the class box. An association can be labeled with
its multiplicity at either end of the line indicating,
for example, that a call may have zero or more
connections (labeled as 0..*) but has a one-to-one
association with a terminal connection (shown as
1..1). A specialization association, indicated by the
triangle symbol, specifies that the class(es) at the
bottom inherit the behavior of the single class at
the top and specialize it in some way, typically by
overriding some of the method definitions or by
defining new methods (the new methods are usu-
ally listed in the class box.). For instance, a “Da-
taTerminal” is a specialization of a generic
“terminal”. In this figure, it should be easy to
identify the classes in the JTAPI call model de-
scribed earlier, and in fact each JTAPI class is
represented by one class in the model. * The pur-
pose of the call observer class is to receive and
handle events emitted by a call object. In the CCC
event model, these events usually represent tran-
sitions in the state of the call. Examples of events
include a new incoming call, a hang up, call answer
or reject, etc. By subscribing to these events, call
observers can monitor the progress of a call. When
they are defined as part of the TerminalManager,
they are used to inform the user on the state of the
call and to ensure a consistent behavior for the
TM.

CCC specialization’s to JTAPI include the
PropertyManagerAddress, which is just an address
with the additional capability to query a remote
peer for the value of its properties (e.g., a property
could be the IP address of one of its attached
services, for instance, a listener object for a chat
service). Similarly, the DataTerminal class is a
specialization of the JTAPI terminal class that
supports the notion of a simple data line (a dif-
ferent specialization could be for voice terminal).

In Fig. 9, we present part of a UML sequence
diagram that shows the steps involved during a
remote call, i.e., when a call is placed from a ter-
minal on one provider to a terminal on a different
provider, normally situated on a different machine.
These steps in general subsume those involved in a

3 Some of the classes are omitted from the figure for clarity.

COMPNW 2443

F. Anjum et al. | Computer Networks 000 (2000) 000-000

12

QI NI 10J [9pow 1930 [9A[-aUl] puk [9Ad[-dO]

 (eieisuentd

V
R e (roeqe0y
oG]
BTl b
W

‘g 81

Uonejuswsduijdiiegeun
b

()eieiSiose

uonosuuoeUILLY | BIDO

K

uonosuuogeulllis]

(Joeisiase

(Momsueq T

Ll

JPULIs Beq

v

bt

(1oeuu0o,,

()sioniesqoiie01ebe,

jjleuLe]

eleqaunt

sseJppyiebeueAusdold

denIBsqOlieD

[

(emeisiese
uonoauuon

£0

(Jeieisiose,

()Auedoldpuase,

(h1oeuuoOpPUNOg ULy,

()100UL03g,

1120

ooVl

COMPNW 2443

F. Anjum et al. | Computer Networks 000 (2000) 000-000 13
tm : Terminal dA : Address p_: Provider c:Call c0: cl: oTC : Terminal dTC : Terminal LineManager
Manager Connection Connection Connection Connection

M 1: createCall() : § § §
2: cdnnect (0T, oA, DM
‘ 3: dA = resolveDestinatior] (DN) i i
4: <create>
5: <create>
Subscribe listeners
for originatirg| Connection ' : ' '
i 6 <create>
7. setState(ACTIVE] § §
Subscribe fistener
i | destination Canpection : :
8: <créate>
9: conheotCaII(oAddress, IjN) 3

Fig. 9. Sequence diagram for remote call setup.

local call between terminals supported by the same
provider. In our case, a remote call proceeds over
an IP network.

Unlike the static object model, a UML se-
quence diagram captures the dynamics of a par-
ticular interaction among objects in a system, as it
unfolds in time. The columns represent named
class instances, labeled in the boxes along the top
of the diagram according to their classes. The ar-
rows represent method invocations, with their in-
put arguments, and their return values (in many
cases only the critical parameters of interest are
shown). Each arrow is labeled with a number, in-
dicating its place in the sequence. Time proceeds
downwards along the page. Note that only the
invocation of a method by one object on another is
explicitly shown; the return is left implicit. The
boxes with a dog-eared corner are simply notes
explaining or providing clarifying comments. For
further details on UML, see [6].

For the sequence diagram in Fig. 9, the call
begins when the user enters the destination phone
number and presses the “call” button on the Cit-

iTime client GUI. The TM, object residing at the
client device issues a createCall() method invoca-
tion to the provider object, which creates a new
call object and returns a reference to it. The TM
then contacts the call object to set up the call,
supplying the originating terminal id o7, the
originating address 04, and the DN . The call
object obtains the destination address dA from the
provider. At this point, the d4 is still a reference to
a logical address, i.e., to a JTAPI address object. It
is the task of the lower CCC layers to handle it
appropriately. If the call is local, the actual dA
object exists in the process space of the same
provider, and it can be contacted directly. In the
case of a remote call, the address is translated by
the LineManager during the connectCall() meth-
od into the actual IP address and port of the
destination terminal (description of the directory
lookup process involved is outside the scope of the
present paper.). These differences are encapsulated
in the LineManager and are transparent to the
high-level call object. The connection objects rep-
resenting the originating and terminating legs of

COMPNW 2443

14 F. Anjum et al. | Computer Networks 000 (2000) 000-000

Network
interface’

destProxy :
LineProxy

LocalLine

‘ destLine :

dLineManager p_: Provider

|

2: destLine = getLine(DN)

3: signal(INVITE, DN)

4:inCall(callerID)

59

ine(destLine, callerID)

—

6: 0A = getAddress(callerID)

7: ¢ = createlncomingCall(oA, callerID, i)

Fig. 10. Remote call-receiving side.

the call are then created, and the CallObservers
defined for the call are subscribed to the call’s and
connections’ events.

Note that the terminating connection ¢/ in this
case is simply a proxy for the connection object
that will be created at the destination machine
once the call setup signaling messages arrive at the
destination. The use of proxies on both sides of a
remote connection shields the higher layers from
the details of remote signaling, by exposing a
uniform behavior regardless of the type of the call.
In a similar vein, when the call object creates the
oTC and dTC, the latter is really a proxy for the
corresponding remote object. Once the call model
is setup, the call object contacts the LineManager
to actually establish the connection through the
signaling protocol.

The LineManager sets up a pair of line objects,
representing the two legs of the call, on which the
actual signaling is carried out. The handler for the
signaling protocol, in this case SIP, is entirely en-
capsulated in the line objects. In fact, in the spirit
of abstraction, from the LineManager’s perspec-
tive it is irrelevant whether the line objects are
local or remote, and which signaling protocol they
use. Externally, a line object for a remote desti-
nation behaves the same as for a local one. Inter-
nally, it is really implemented as a proxy, and the
SIP signals to its remote peer are sent over sockets.

Fig. 10 illustrates the corresponding low-level
sequence on the terminating side. A proxy for the
sending line receives the initial INVITE signal
from its peer through the network interface, ob-
tains a reference to a local line that is responsible
for the indicated DN, and then signals that line. At
this point, the LineManager is responsible for
translating the line into a JTAPI Address object
that can be notified, with the help of the provider,
of the incoming call.

6. Discussion and further work

In this section, we briefly discuss various aspects
of the CitiTime implementation and features.

Use of SIP. We use SIP [3] as the common
signaling protocol among distributed providers.
Compared to other proposed protocols, such as
H.323, SIP offers the advantages of specification
and implementation simplicity, extensibility, and
neutrality with respect both to the transport pro-
tocol and to address format. The protocol is text-
based, much in the spirit of HTTP, and is designed
to be part of a larger suite of session management
protocols for the Internet that includes for in-
stance the service location protocol (SLP) as well
as the session definition protocol (SDP). Its sim-
plicity allowed us to quickly implement the slight
modifications we needed in order to support ne-

COMPNW 2443

F. Anjum et al. | Computer Networks 000 (2000) 000-000 15

gotiation during call setup. Namely, we used SIP’s
features to define specific messages for suspending
and resuming a session, for suggesting service
providers’ URLs, and for informing a party of the
unavailability of a resource.

Deployment model. The CitiTime architecture
can be deployed in various ways to provide for
scalability and, potentially, for fault tolerance. The
two basic deployment scenarios can be shown us-
ing the configurations depicted for IT and CTI in
Fig. 3. In the distributed deployment (left side of
the figure), each provider is responsible for a par-
tition of the global address space, and providers
communicate using SIP as their common signaling
protocol. In the centralized, “PBX-like” configu-
ration, one single provider manages all the con-
nections, as well as the interface with the PSTN.
Our laboratory prototype runs in both configura-
tions at present. Clearly, other intermediate con-
figurations are possible, ranging from applications
that run on top of a dedicated provider, to one
centralized call center with only one provider.
Notice that providers and endpoints can them-
selves be connected remotely, or they can be co-
located on a host.

Performance and scalability. The main focus of
the CCC architecture is on its distributed control
features and the flexbility in service deployment
and configuration. The features do not seem to
incur any penalty in terms of performance: al-
though no specific benchmarks have been per-
formed on the CCC architecture, simple
considerations based on its distributed nature
suggest that the latency experienced by the user
should be comparable to that expected in the IN
and CTI domains.

Thanks to the distributed nature of CCC, Cit-
iTime can scale reasonably well with the size of the
address space, i.e., ultimately, with the number of
endpoints in the network. In fact, while one pro-
vider manages an entire partition over the global
address space, the partitioning itself is quite arbi-
trary. This makes it possible to introduce new
providers and to reassign addresses to providers as
needed in order to balance the load across all of
them. In addition, by detaching the TMs from
their provider, one provider space can scale with
the number of managed TMs. Address resolution

currently remains a centralized operation that can
limit scalability. In CitiTime, address resolution is
done simply by mapping a logical address to the IP
addresses and port number of the provider re-
sponsible for that address. The mapping table is
managed by a translator server that is, in principle,
distinct from all of the providers. A call is setup by
contacting the involved providers through the IP
address returned by the translator. Each provider
will then internally route the call to the appropri-
ate TM, by setting up the call model as described
earlier. Several solutions are available for scaling
the translation step to a large number of addresses,
such as hierarchical resolution and local caching of
the translation tables. We will investigate these
issues in further work.

Another clear benefit of provider distribution is
its potential for fault tolerance. We can take ad-
vantage of the fact that each call object contains
the full call model, i.e., it models all the legs of a
call, to provide replication across providers for
every single call. In the case of a single provider
(i.e., of a “local call”’), a detached hot-standby
provider can be used for replication. CitiTime does
not at present support fault tolerance, but we plan
to address this issue in further work.

Finally, we mention that we have not consid-
ered the extremely important area of security in
this work. We recognize this problem and solu-
tions are being developed in the NGN space (e.g.,
in the Parlay framework) that may be applicable.
We plan to address this in future work.

7. Related work

Recently there has been a surge of interest in
programmable networks and open APIs for next-
generation converged networks, i.e., networks that
span the PSTN, IP and wireless networks. The
JAIN and Parlay industry consortia as well as the
Softswitch Consortium are currently defining
standards to enable third-party service creation on
software-based switches (called softswitches or call
agents) or application servers attached to those
switches.

COMPNW 2443

16 F. Anjum et al. | Computer Networks 000 (2000) 000-000

8. Concluding remarks

The CitiTime system is in the process of ongo-
ing development. A prototype implementation is
currently operational in our laboratory and is be-
ing used for voice, text, whiteboard, and image-
exchange sessions, as well as for advanced services
such as dynamic service download.

We are continuing to experiment with the use of
third-party JavaBeans software components both
in the TM and the provider. Our current experi-
ence suggests that while Java and JavaBeans pro-
vide a level of portability and name
standardization, an additional level of standard-
ization is required to allow seamless plug in of
software components at run time. The current
CitiTime implementation overcomes this limita-
tion by using a component launcher in addition to
the component directory which manages the de-
tails for launching components. To some extent,
this represents an industry-wide issue that needs to
be addressed via standardization. We are also
currently involved in instrumenting and configur-
ing CitiTime for performance measurements and
for evaluating its scalability.

Acknowledgements

We thank the anonymous referees for their
helpful comments.

References

[1] A. Lazar, Programming telecommunication networks,
IEEE Network 11 (5) (1997) 8-18.

[2] E. Margulies (Ed.), Understanding Java Telephony, Flat-
iron Publishing, 1997.

[3] M. Handley, H. Schulzrinne, E. Schooler, SIP: Session
Initiation Protocol, IETF Draft, draft-ietf-mmusic-sip-
04.txt, 11 November 1997.

[4] R. Jain, F. Anjum, P. Missier, S. Shastry, Java call control,
coordination and transactions, IEEE Communications,
January 2000.

[5] JAIN Web site: http://www.java.sun.com/jcp and http:/
www java.sun.com/products/jain.

[6] C. Larman, Applying UML and Patterns, Prentice-Hall,
Englewood Cliffs, NJ, 1998.

[7] R. Englander, Understanding Java Beans, O’Reilly, 1997.

[8] R. Orfali, D. Harkey, Client/server programming with
JAVA and CORBA, second ed., Wiley, New York, 1998.

[9] J. Nelson, CorbaBeans Proof-of-Concept, http://www.Dis-
tributedObjects.com/.

[10] Sun Microsystems, Servlet Tutorial, Available from http://
www.java.sun.com/products/jdk/1.2/cast- out/servlet/serv-
let_tutorial.html.

[11] A. Thomas, Enterprise JavaBeans: server component
model for Java, Patricia Seybold Group White Paper,
December 1997, available from http://www.java.sun.com/
products/ejb/white_paper.html.

[12] Internet Mail Consortium, vCard: The Electronic Business
Card Version 2.1, versit Consortium White Paper, 1
January 1997.

[13] Rational Software Corp., Rational Rose/C++ software
version 4.0.3, 1996.

Farooq Anjum is a research scientist at
Telcordia Technologies, USA. His ar-
eas of research include middleware
technologies, software agents, call
control, mobile and wireless network-
ing, intrusion tolerance, etc. He is also
active in standardization forums like
Java APIs for advanced integrated
networks (JAIN). Farooq joined Tel-
cordia after completing a Ph.D. in
Electrical and Computer Engineering
from the University of Maryland at
College Park in 1999.

Francesco Caruso is a research scientist
at Telcordia Technologies in the In-
formation Technology and Internet
Applications Department. His current
interests include: distributed systems,
web and Internet technologies, com-
ponent architectures, and database
management systems. Mr. Caruso
earned a University Degree in Com-
puter Science from University of Pisa,
Italy in 1992.

Ravi Jain received the Ph.D. in Com-
puter Science from the University of
Texas at Austin in 1992. Currently he
is the Director of the Middleware and
Mobile Applications Research Grou at
Applied Research, Telcordia Technol-
ogies. His interests include program-
mability, middleware and applications
for next-generation networks, mobile
Internet access and applications, and
mobile and wireless networking. Jain
has numerous publications in these
areas and several issued and pending
patents. He is also Edit Lead for the
JAIN expert group defining Java call control (JCC). Jain is a
member of the Upsilon Pi Epsilon and Phi Kappa Phihonorary
societies, a senior member of IEEE, and a member of ACM.

COMPNW 2443

F. Anjum et al. | Computer Networks 000 (2000) 000-000 17

Paolo Missier is a research scientist at
Telcordia Technologies, USA. He has
worked in several areas, including
next-generation services for integrated
telecommunication networks, large-
scale and component-based software
engineering, distributed object-orient-
ed software architectures, and feder-
ated database technology. He holds an
M.Sc. in Computer Science from
Universita’di Udine, Italy and an
M.Sc. in Computer Science from
University of Houston, Texas, USA.

Adalberto Zordan is a consultant for
Telcordia Technologies in the area of
component-based distributed software
architectures, and integration and mi-
gration of information systems. He
holds an M.Sc. degree in Electronic
Engineering from University of Pado-
va, Italy.

