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1 Introduction

Real–time audio transmission is now widely used over the Internet and has
become a very important application. Audio quality is still however an open
problem due to the loss of audio packets and the variation of end–to–end
delay (jitter). These two factors are a natural result of the simple best effort
service provided by the current Internet. Indeed, the Internet provides a simple
packet delivery service without any guarantee on bandwidth, delay or drop
probability. The audio quality deteriorates (noise, poor interactivity) when
packets cross a loaded part of the Internet. In the wait for some QoS facilities
from the network like resource reservation, call admission control, etc., the
problem of audio quality must be studied and solved on an end–to–end basis.
Some mechanisms must be introduced at the sender and/or at the receiver
to compensate for packet losses and jitter. The jitter is often solved by some
adaptive playout algorithms at the receiver. Adaptive playout mechanisms are
treated in detail in [3], and more recently in [4]. In this paper we focus on the
problem of recovery from audio packet losses.

Mechanisms for recovering from packet losses can be classified as open loop
mechanisms, or closed loop mechanisms [5]. Closed loop end–to–end mecha-
nisms like ARQ (Automatic Repeat reQuest) are not adequate for real–time
interactive applications since they increase considerably the end–to–end delay
due to packet retransmission 3 . Open loop mechanisms like FEC (Forward Er-
ror Correction) are better adapted to real–time applications given that packet
losses are recovered without the need of a retransmission. Some redundant in-
formation is transmitted with the basic audio flow. Once a packet is lost, the
receiver uses (if possible) the redundant information to reconstruct the lost
information. FEC schemes are recommended whenever the end–to–end delay
is large so that a retransmission deteriorates the end–to–end quality.

An audio conversation is considered to be interactive if the two–way end–to–
end delay is less than 250 ms, including media coding and decoding, network
transit and playout buffering [?]. Moreover, an end–to–end delay less than 250
ms does not have any negative impact on the quality. We shall assume that
this limit on end–to–end delay is respected, and that the loss of packets is the
only source of deterioration of audio quality.

FEC has been often used for loss recovery in audio communication tools. It
is a sender–based repair mechanism. An efficient FEC scheme is one that is
able to repair most of packet losses. Now, when FEC fails to recover from a
loss, applications can resort to other receiver–based repair mechanisms like
insertion, interpolation, or regeneration, using well known methods [5].

3 Note however, that ARQ could perform well as part of a link level protocol for
some short links
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The FEC schemes proposed in the literature are often simple, so that the cod-
ing and the decoding of the redundancy can be quickly done without impacting
the interactivity. In particular, the redundancy is computed over small blocks
of audio packets. Well known audio tools as Rat [2], and Freephone [1], gen-
erally work by adding some redundant information of (i.e., a copy of) packet
n to the next packet n + 1, so that if packet n is dropped in the network, it
could be recovered and played out in case packet n + 1 is correctly received.
The redundant information carried by a packet is generally obtained by coding
the previous packet with a code of lower rate than that of the code used for
coding the basic audio flow. For example, a basic audio packet can be coded
with PCM and its copy with GSM [6] or LPC [7]. Thus, if the reconstruction
succeeds, the lost packet is played out with a copy coded at a lower rate. This
has been shown to give better quality than playing nothing at the receiver.
Figure 1 depicts this simple FEC scheme.

1 2 3 4

1 21 2 3 3 4

Original stream

Media-specific FEC
      (redundancy)

Packet loss3 4211

1 2 3 4 Reconstructed stream

Fig. 1. The simple FEC mechanism where packet n+1 carries redundant information
of packet n.

In this paper we address the problem of audio quality under this FEC scheme.
In all the paper, when we talk about FEC in general, it is this particular scheme
that we mean. We evaluate analytically the audio quality at the destination
as a function of the parameters of the FEC scheme, of the basic audio flow
and of the network. The performance of this FEC scheme has been evaluated
via simulations [8,9], and tools like Freephone and Rat have implemented it.
In [10], the authors propose to increase the offset between the original packet
and its redundancy. They claim that the loss process in the Internet is bursty
and thus, increasing the offset could give better performance than having
the redundancy placed in the packet following immediately the original one.
However, the authors in [10] did not propose any analytical expression that
permits to study the impact of this spacing on the audio quality.

The paper is organized in two parts. In the first part, we use probabilistic
methods and a Ballot theorem [11] to find an explicit expression for the audio
quality in the case of a general offset not necessarily equal to one. The audio
quality is supposed to be proportional to the volume of data received. We
consider a single bottleneck node for the network and we focus on the case
when the buffer size in the bottleneck router is only dedicated to the audio
flow (or to an aggregate of audio flows implementing the same FEC scheme
and sharing the same bottleneck). These assumptions hold when all flows
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in the network implement FEC, or when a round–robin scheduler with per–
flow queuing is used. Under these assumptions, our analysis shows that even
for the infinite–offset case (ϕ → ∞) which forms an upper bound on the
audio quality, adding FEC according to this simple scheme leads always to
a deterioration of quality caused by an important increase in network load.
Similar negative results have been already obtained using analytical tools for
more sophisticated FEC schemes, see [12–14]. We consider in this paper both
the case in which adding redundant information does not change the amount
of useful information in the packet, and thus the total size of the packet
increases with redundancy (along with appropriate scaling of loss probabilities
and buffering capabilities), as well as the case in which the total size of the
packet does not change, so that adding redundancy results in decreasing the
transmitted rate of useful information.

In the second part of the paper, we address the questions of how and where
this simple FEC scheme, which we recall is implemented in many audio tools
as Freephone and Rat, leads to an improvement in quality. We consider two
aspects that may contribute to quality improvement: multiplexing with other
flows and using quality functions which are not proportional to the volume of
well received data (goodput). The expected quality is computed by using a
utility function that indicates the audio quality at the receiver as a function
of the transmission rate. In the previously used linear utility function we sup-
posed that the more the user receives data, the better is the quality and that
the increase in quality for a certain amount of redundancy is the same for any
value of the transmission rate. In fact, the quality of an audio transmission is
quite a subjective measure and depends on a large number of parameters. Yet
some simplified non–linear utility functions have been proposed [15] to allow
to asses voice quality as a function of the transmission rate (see also [?]). Our
findings in this second part can be summarized as follows:

• With a linear utility function, the addition of FEC leads to an improvement
in quality if the (total) rate of the flow(s) adding FEC is small compared to
the total rate of the other flows sharing the same bottleneck and not adding
FEC. The addition of FEC in this case does not lead to an important
increase in the loss rate which explains this improvement. We start to lose
in quality when the (total) rate of the flow(s) using FEC increases.

• In the case when all flows add FEC, which is the worst case where the
addition of FEC has the biggest impact on the load of the network, it is
possible to obtain a gain in quality for some particular utility functions.
The utility function must increase with the amount of FEC faster than the
linear one, and higher increase rates are required for small amounts of FEC.

In Section 2, we present the analysis and results for the first part. The analysis
and results for the second part come in Section 3. We conclude the paper in
Section 4 where we also briefly mention the case of general network topology
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and distributions of packet sizes and interarrival times. Note that although we
are focusing on audio flows, our results on FEC are valid for any other kind
of multimedia application.

2 Analysis of expected goodput

This part is organized as follows. In Subsection 2.1, we describe our general
model for applications using FEC, and we define a quality function which we
will use in the rest of this part. We then present the scenario of fixed amount of
useful information per packet, and fixed packet size, in Subsection 2.2 and 2.3,
respectively. In Subsection 2.4, we study the simple case when packet n carries
redundant information of packet n−1 assuming an M/M/1/K queuing model.
In Subsection 2.5, we solve the problem for the general case when packet n
carries redundant information of packet n−ϕ, with ϕ ≥ 1. Finally, we look in
Subsection 2.7 at the quality in the case of infinite spacing ϕ → ∞. We use
this result to infer about multiplexing between several flows in Subsection 2.8.

2.1 Analysis

In a large network as the Internet, a flow of packets crosses several routers
before reaching the other end. Most of the losses from a flow occur in the
router having the smallest available bandwidth in the chain of routers, so that
one may model the whole chain by one single router called “the bottleneck.”
This assumption has both theoretical and experimental justification [16,17].
We shall use the simple M/M/1/K queue to model the network and thus the
loss process of audio packets. In other words, we assume that audio packets
arrive at the bottleneck according to a Poisson process of intensity λ, and we
assume that the time required to process an audio packet at the bottleneck
is exponentially distributed with parameter µ. The Poisson assumption on
inter–arrival times could be justified by the random delay added to packets by
routers located upstream the bottleneck. The service time represents the time
between the beginning of the transmission of an audio packet on the bottleneck
interface leading to the destination until the beginning of the transmission of
the next packet from the same audio flow. Since the two packets may be spaced
apart by a random number of packets from other applications, one may use
the exponential distribution as a candidate for modeling the service time of
audio packets at the bottleneck. The reason for choosing this simplistic model
for the network is to be able to obtain simple mathematical formulas that give
us some insights on the gain from using FEC.

Let ρ = λ/µ be the intensity of audio traffic. Assume that audio packets
share alone the buffer K. This can be the case of a bottleneck crossed only by
audio packets, or the case of a bottleneck router implementing a per–flow or
a per–class queuing. Thus, for ρ < 1, the loss probability of an audio packet
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in steady state is given by [18]:

π(ρ) =
1− ρ

1− ρK+1
ρK , (1)

and for ρ = 1 it is equal to

π(ρ) =
1

K + 1
.

Now, we add redundancy to each packet in a way that if a packet is lost, it
can be still “partially” retrieved if the packet containing its redundancy is not
lost. The redundancy is located ϕ packets apart from the original packet. It
consists in a low quality copy of the original packet. Let α be the ratio of the
volume of the redundant information and the volume of the original packet.
α is generally less than one. Along with the possibility to retrieve the lost
information in the network, we should consider the negative impact of the
addition of FEC. Two scenarios should be considered.

• The first, in which the amount of useful information in a packet does not
change when adding FEC. In that case, the FEC has a negative impact on
the loss probability. Indeed, additional redundant information has an impact
on the service times since packets require now more time to be retransmitted
at the output of the bottleneck. It may also have an impact on the buffering
capacity at the bottleneck since each packet now contains more bits.

• In the second scenario, the packet size does not depend on the amount of
added FEC. This means that the amount of useful information in a packet
reduces in order to leave space for redundant information of a previous
packet.

2.2 Constant amount of useful information in a packet

We shall propose the following two possible negative impacts of FEC, in order
to study later the tradeoff between the positive and negative impacts:

• Impact of FEC on service time.We assume that audio packets including
redundancy require a longer service time which is exponentially distributed
with parameter µ

(1+α)
. This can be the case when our audio flow has an

important share of the bottleneck bandwidth. If it is not the case, this
assumption can hold when the exogenous traffic at the bottleneck (or at
least an important part of it) is formed of audio flows that implement the
same FEC scheme. Our assumption also holds when the bottleneck router
implements a per–flow scheduling that accounts for the size of packets.

• Impact of FEC on buffering. The buffering capacity in the bottleneck
router will be affected by the addition of FEC in one of two ways: (1) Since
packets are now longer by a factor (1+α), we can consider that the amount
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of buffering is diminished by this quantity, or (2) We can assume that the
queue capacity is not function of packet length, but rather of the number of
packets. Hence, the queue capacity is not affected by the use of FEC. Let
Kα denote the buffer size after the addition of FEC in terms of packets. It
is equal to K/(1 + α) if the buffer capacity is changed, and it is equal to
K otherwise. Thus, the loss probability in the presence of FEC takes the
following form:

πρ(α) =
1− ρ(1 + α)

1−
(
ρ(1 + α)

)Kα

(
ρ(1 + α)

)Kα

. (2)

Before we define the quality of audio received at the destination, we introduce
a random variable Yn that indicates a successful arrival of a packet at the
destination or not. Then,

Yn =0, if packet n is lost, and

Yn =1, if packet n is correctly received.

Let ϕ ≥ 1 be the variable indicating the distance, or the offset, between
the original packet and its redundancy. We make the simple assumption that
the audio quality is proportional to the amount of information we receive. A
quality equal to 1 indicates that we are receiving all the information (the basic
audio flow). The quality we get after the reconstruction of an original packet
from the redundancy is taken equal to α, where α is the ratio of redundancy
volume and original packet volume. We thus define the quality function as,

Q(α)=P (Yn = 1) + αP (Yn = 0)P (Yn+ϕ = 1|Yn = 0)

=1− πρ(α)(1− αP (Yn+ϕ = 1|Yn = 0)) . (3)

This equation gives us the audio quality at the destination under a FEC
scheme of rate (1 + α)−1, and of distance ϕ between an original packet and
its redundancy. For the case α = 0, our definition for the quality coincides
with the probability that a packet is correctly received. For the case α = 1,
it coincides with the probability that the information in an original packet
is correctly received, either because it was not lost, or because it was fully
retrieved from the redundancy. One may imagine to use another quality func-
tion that the one we chose. In particular, one can use a quality function that
is not only a function of the amount of data correctly received but also of the
coding algorithm used. Different algorithms have been used in [1,2] for coding
the original data and the redundancy. Table 1 resumes the notation we will
use in the rest of the paper.

4 As is frequently done, we include in Zj not only real services but also “potential
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Expression Definition

Q(α) The audio quality.

ϕ The offset between the original packet

and the packet including its redundancy.

Kα The size of the queue.

Xj The random variable which represents

the number of packets in the queue

just before the arrival of the j–th

audio packet.

Zj The random variable which represents

the number of services between the

arrivals of the j − 1–th and the j–th

audio packets. 4

Table 1
Notation used in this paper.

2.3 The case of constant packet size

We assume that the total packet size does not depend on the amount of FEC.
A packet is constituted of a fraction α of redundant information, and a fraction
of 1− α of useful information.

Since the packet size is constant here, the FEC has no impact on the loss
probabilities nor on the buffer size (in units of packets). In particular, the
probability πρ(α) does not depend on α, and ρ neither does not change with
α. So we do not need to include α and ρ in the notation.

The quality we get after the reconstruction of an original packet from the
redundancy is taken equal to α. But if we do not lose the original packet,
its quality is 1 − α, instead of 1 unit, as before. We thus define the quality
function as,

Q(α)= (1− α)P (Yn = 1) + αP (Yn = 0)P (Yn+ϕ = 1|Yn = 0)

= (1− π)(1− α) + απP (Yn+ϕ = 1|Yn = 0)) . (4)

For both scenarios (where useful information or where total information in
a packet are constant), we ask the following question: “How does the audio

services”: these are services that occur while the system is empty; thus at the end
of such a service no packet leaves.
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quality vary as a function of α?” That would permit us to evaluate the be-
nefits from such a recovery mechanism and to find the appropriate amount of
redundancy α that must be added to each packet. In the next sections we find
the audio quality for different values of ϕ. The only missing parameter is the
probability that the redundant information on a packet is correctly received
given that the packet itself is lost. This is the function P (Yn+ϕ = 1|Yn = 0)
in (3). In the following sections we put ourselves in the stationary regime and
we compute this probability.

2.4 Spacing by ϕ = 1

In this section we analyze the case when the redundant information of packet
n is carried by packet n + 1, i.e., ϕ = 1. This mechanism is implemented in
well known audio tools as Freephone [1] and Rat [2]. Let R be the event that
the redundancy is correctly received given that the original packet is lost. This
represents the case where the next event after the loss of the original packet
is a departure and not an arrival.

2.4.0.1 Fixed amount of useful information per packet. Consider
first the scenario in which the useful information in a packet is fixed. Then
the probability of event R is given by

P (Yn+1 = 1|Yn = 0) =
1

ρ(1 + α) + 1
. (5)

Substituting (5) in (3), we obtain

Qϕ=1(α) = 1− πρ(α)
(
1− α

ρ(1 + α) + 1

)
.

To study the impact of FEC on the audio quality, we plot Qϕ=1(α) as a
function of α for different values of Kα and ρ. In Figure 2 we show the results
when the buffering capacity at the bottleneck is assumed to change with the
amount of FEC (Kα = K/(1+α)), and in Figure 3 we show the results for the
case where the buffering capacity is not changed (Kα = K). We see that, for
both cases, audio quality deteriorates when α increases (when we add more
redundancy), and this deterioration becomes more important when the traffic
intensity increases and when the buffer size decreases. The main interpretation
of such behavior is that the loss probability of an original packet increases
with α faster than the gain in quality we got from retrieving the redundant
information. This should not be surprising. Indeed, even in more sophisticated
schemes in which a single redundant packet is added to protect a whole block
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ofM packets, it is known that FEC often has an overall negative effect, see [12–
14]. Yet in such schemes the negative effect of adding the redundancy is smaller
than in our scheme, since the amount of added information per packet is
smaller (i.e., a single packet protects a whole group of M packets). But, we
know that for such schemes and in case of light traffic, the overall contribution
of FEC is positive [13,14]. This motivates us to analyze more precisely the
impact of FEC in our simplistic scheme in case of light traffic.
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Fig. 2. ϕ = 1 and the queue capacity is changed.
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Fig. 3. ϕ = 1 and the queue capacity is not changed.

Define the function ∆(ρ) = Q(1) − Q(0) and consider the case when the
buffering capacity at the bottleneck is not affected by the amount of FEC.
This is an optimistic scenario where it is very probable to see the gain brought
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by FEC, of course if this gain exists. We have,

∆(ρ) = −2(2ρ)
Kα
2

(
1 + ρ

2ρ+ 1

)(
1− 2ρ

1− (2ρ)
Kα
2

+1

)
+

1− ρ

1− ρKα+1
ρKα (6)

Finding limρ→0 ∆(ρ) would permit us to evaluate the audio quality for a very
low traffic intensity. We took Kα = 2M in (6) and we expanded ∆(ρ) in a
Taylor series. We found that all the first coefficients of the series c0, c1, ..., cM−1

are equal to zero, and that the coefficient cM is negative and equal to −2(2ρ)M .
ci is the coefficient of ρi in the Taylor series of ∆(ρ) and can be computed by

cj =
d

dρj
∆j(ρ)|ρ=0.

Thus, for small ρ, ∆(ρ) can be written as −2(2ρ)M + o(ρM) and the gain from
the addition of FEC can be seen to be negative. With this simple FEC scheme,
we lose in audio quality when adding FEC even for a very low traffic intensity.
This loss in quality decreases with the increase in buffer size.

2.4.0.2 Fixed packet size. Substituting (5) in (4), we obtain

Qϕ=1(α) = (1− α)(1− π) +
απ

ρ(1 + α) + 1
.

In Section 2.7 we shall show that we loose in that case, as well as for any
general spacing ϕ > 1. This will be done by considering an optimistic bound
obtained by an infinite spacing.

2.5 General case: Spacing by ϕ ≥ 1

Now, we consider the more general case when the spacing between the original
packet and its redundancy is greater than 1. The idea behind this type of
spacing is that losses in real networks tend to appear in bursts, and thus
spacing the redundancy from the original packet by more than one improves
the probability to retrieve the redundancy in case the original packet is lost.
Indeed, a packet loss means that the queue is full and thus the probability of
losing the next packet is higher than the steady state probability of losing a
packet. The spacing gives the redundancy of a packet more chance to find a
non full buffer at the bottleneck, and thus to be correctly received. We note
that the phenomenon of the correlation between losses of packets was already
modeled and studied in other papers: [12–14]. Measurements have also shown
that most of the losses are correlated [19–21].
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Here, we are interested in finding the probability that packet n + ϕ is lost
given that packet n is also lost. This will give us P (Yn+ϕ = 1|Yn = 0) which in
turn gives us the expression for the audio quality (as expressed in (3)). Since
we assume that the system is in its steady state, we can omit the index n
and substitute it by zero. We have Y0 = 0 which means X0 = Kα. We are
interested in the probability that Xϕ = Kα. For the ease of computation, we
consider the case ϕ ≤ Kα. We believe that this is quite enough given that
a large spacing between the original packet and the redundancy leads to an
important jitter and a poor interactivity.

In order to obtain an explicit expression for the probability P (Xϕ = Kα|X0 =
Kα), we first provide an explicit sample–path expression for the event of loss
of the packet carrying the redundancy, given that the original packet itself was
lost.

Theorem 1 Let X0 = Kα and 1 ≤ ϕ ≤ Kα. then:

Packet ϕ is not lost if and only if

Xϕ < Kα ⇔



Zϕ − 1 ≥ 0

or

Zϕ + Zϕ−1 − 2 ≥ 0

or
...

or

Zϕ + Zϕ−1 + · · ·+ Z1 − ϕ ≥ 0

(7)

or equivalently, packet ϕ is lost if and only if

Xϕ = Kα ⇔



Zϕ − 1 < 0

and

Zϕ + Zϕ−1 − 2 < 0

and
...

and

Zϕ + Zϕ−1 + · · ·+ Z1 − ϕ < 0

(8)

Proof: We can express the number of packets that the i+ 1–th audio packet
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will find in the queue upon arrival as follows:

Xi+1 =
(
(Xi + 1) ∧Kα − Zi+1

)
∨ 0 ∀ i ≥ 0, (9)

where ∧ and ∨ are respectively the minimum and maximum operators. The
rest of the proof goes in three steps that are summarized in Lemma 1, Lemma 2
and Corollary 1 below. ⋄

Now, we define

X̃i+1 ≜ (X̃i + 1) ∧Kα − Zi+1. (10)

This new variable corresponds to the number of packets that would be found
in the queue upon the arrival of packet i + 1 if the queue size could become
negative. We next show that it can be used as a lower bound for Xi+1.

Lemma 1 If X̃0 ≤ X0 then X̃i ≤ Xi ∀i ≥ 0.

Proof: We proceed for the proof by induction. This relation is valid for i = 0.
Suppose that it is valid for i ≥ 0. We show that it is valid for i+ 1,

X̃i+1 ≤
(
(X̃i + 1) ∧Kα − Zi+1

)
∨ 0

≤
(
(Xi + 1) ∧Kα − Zi+1

)
∨ 0

=Xi+1.

⋄

Lemma 2 Let X̃0 = Kα, then

X̃i = Kα −max1≤l≤i
∑i

j=l(Zj − 1)− 1 ∀i ≥ 0.

Proof:
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X̃0 =Kα

X̃1 =Kα − Z1

X̃2 =(Kα − Z1 + 1) ∧Kα − Z2

X̃3 =
(
(Kα − Z1 + 1) ∧Kα − Z2 + 1

)
∧Kα − Z3

=(Kα − Z1 − Z2 + 2) ∧ (Kα − Z2 + 1) ∧Kα − Z3

=Kα − (Z1 + Z2 − 2) ∨ (Z2 − 1) ∨ 0− Z3

...

X̃i =Kα − max
1≤l<i

{
0,

i−1∑
j=l

(Zj − 1)
}
− Zi

=Kα − max
1≤l<i

{
0,

i−1∑
j=l

(Zj − 1)
}
− Zi

⇒ X̃i =Kα − max
1≤l≤i

{ i∑
j=l

(Zj − 1)
}
− 1.

⋄

Corollary 1 Expression (8) holds if X0 = Kα and ϕ ≤ Kα.

Proof: The right hand side in (8) is no other than:

max
1≤l≤ϕ

{ ϕ∑
j=l

(Zj − 1)
}
.

Suppose first that max1≤l≤ϕ

{∑ϕ
j=l(Zj−1)

}
< 0. Using Lemma 2 then Lemma 1,

we have X̃ϕ ≥ Kα which gives Xϕ ≥ Kα. Thus, Xϕ = Kα.

Now, we need to show that if Xϕ = Kα we get

max
1≤l≤ϕ

{ ϕ∑
j=l

(Zj − 1)
}
< 0.

We define:

ϕ∗ = min
{
i | X̃i < Xi

}
. (11)

According to (11), we distinguish between the two following cases:

• ϕ∗ > ϕ, and
• ϕ∗ ≤ ϕ.

14



Consider the first case. Using the definition of ϕ∗ and Lemma 2, we write:

ϕ∗ > ϕ ⇒ X̃ϕ = Xϕ ⇒ X̃ϕ = Kα ⇒ max1≤l≤ϕ

{∑ϕ
j=l(Zj − 1)

}
= −1 < 0.

Now, suppose that ϕ∗ ≤ ϕ, thus X̃ϕ∗ < 0 and Xϕ∗ = 0. We write,

Xϕ ≤ Xϕ∗ + (ϕ− ϕ∗) = (ϕ− ϕ∗) < ϕ ≤ Kα,

if there were no service. Thus, we get in this case Xϕ < Kα which is in
contradiction with our assumption that Xϕ = Kα. The case ϕ∗ ≤ ϕ does not
appear if ϕ is chosen less or equal to the buffering capacity. Thus, for Xϕ = Kα

we have max1≤l≤ϕ

{∑ϕ
j=l(Zj−1)

}
< 0. This concludes the proof of Theorem 1.

⋄

According to Ballot’s Theorem [11] (see the Appendix in Section 4 for details),
we have for k < ϕ:

Lemma 3

P
{
max
1≤l≤ϕ

{ ϕ∑
j=l

(Zj − 1)
}
< 0 |

ϕ∑
l=1

Zl = k
}
= 1− k

ϕ
. (12)

Let A be the event that Xϕ = Kα given that X0 = Kα. We sometimes write
Aϕ to stress the dependence on ϕ. We conclude from Theorem 1 that if packet
0 is lost, i.e. if packet 0 finds Kα packets in the system, then

A =

max
1≤l≤ϕ

{ ϕ∑
j=l

(Zj − 1)
}
< 0

 .

Then, we can represent the probability that packet n + ϕ is lost given that
packet n is lost as

P (Yn+ϕ = 0|Yn = 0) = P (A)

=
ϕ−1∑
k=0

P (A|Z1 + · · ·+ Zϕ = k)P (Z1 + · · ·+ Zϕ = k) (13)

Once this probability is computed, the audio quality can be directly derived
using (3).

Theorem 2 Define ρα = ρ(1 + α) and for the scenario in which the useful
amount of information in a packet is constant in α; define ρα = ρ and Kα =
K in the scenario in which the packet size does not depend of α. Consider
1 ≤ ϕ ≤ Kα. Given that packet n is lost, the probability that packet n + ϕ is

15



also lost is given by

P (A) =
ϕ−1∑
k=0

(
1− k

ϕ

)(
ρα

ρα + 1

)ϕ( 1

ρα + 1

)k
(
ϕ+ k − 1

ϕ− 1

)
, (14)

where
(
n
k

)
= n!

(n−k)!k!
denotes the binomial coefficient. The quality function can

be computed by substituting P (A) in (3). Note that P (Yn+ϕ = 1|Yn = 0) =
1− P (A).

Proof: The second right hand term of (13) must be solved by combinatorial

reasoning. For that purpose, we define the vector Z⃗ to be:

Z⃗ =



Z1

Z2

...

Zϕ


, (15)

where
∑ϕ

l=1 Zl = k, and we define S be the set of the different sets that Z⃗ may

acquire: S = {Z⃗}. We must sum over all the possible trajectories:

P (
ϕ∑

l=1

Zl = k)=
∑
S

P (Z1 = z1)P (Z2 = z2) · · ·P (Zϕ = zϕ)

=
∑
S

(
λ

λ+ µα

)ϕ( µα

λ+ µα

)k

=
(

λ

λ+ µα

)ϕ( µα

λ+ µα

)k
(
ϕ+ k − 1

ϕ− 1

)
. (16)

We define here µα as being equal to µ/(1 + α) for the scenario in which the
amount of useful information per packet does not depend on α, and µα = µ in
the case of fixed packet size. It’s easy to see that the combinatorial part of (16)
holds. To do that, we can see the problem to be the number of distinguishable
arrangements of k indistinguishable objects (the packet audio departures from
the bottleneck) in ϕ inter–arrival intervals, just as it’s depicted in Figure 4.

.    .    .

1 2 3 4

k  departures

φ

inter−arrival intervalsφ

Fig. 4. Model to solve the combinatorial part.
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Using (16) we get finally,

P (A) =
ϕ−1∑
k=0

(
1− k

ϕ

)(
λ

λ+ µα

)ϕ( µα

λ+ µα

)k
(
ϕ+ k − 1

ϕ− 1

)
, (17)

which yields (14) in terms of ρα = ρ(1 + α) = λ/µα. The quality function can
be obtained by substituting (14) in (3). The value of πα(ρ) is given in (2).

⋄

We trace now plots of the audio quality as given by (3) and (14) for different
values ofKα, ϕ and ρ. Figure 5 depicts the behavior of Q(α) when the buffering
capacity at the bottleneck is assumed to be divided by a factor (1 + α), and
Figure 6 depicts this behavior when the buffering capacity is not changed.
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Fig. 5. Quality behavior in the presence of FEC and spacing 1 < ϕ < Kα assuming
that queue size is changed.

We notice that, just as in the case of ϕ = 1, we always lose in quality when we
increase the amount of FEC even if we consider a large spacing. But, we also
notice that for a given amount of FEC, the quality improves when spacing
the redundancy from the original packet. This is the result of an improvement
in the probability to retrieve the redundancy given that the original packet is
lost. This monotonicity property holds, in fact, for any value of ϕ (not just for
ϕ ≤ Kα). We show this theoretically in the next section.

2.6 Monotone increase of the quality with the spacing

The steady state probability of loss of a packet n does not depend on ϕ. It thus
remains to check the behavior of P (Xn+ϕ = Kα|Xn = Kα) as a function of ϕ
in order to decide on the quality variation (Eq. 3). The quality is a decreasing
function of this probability. For ϕ ≤ Kα, the latter probability is equal to
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Fig. 6. Quality behavior in the presence of FEC and spacing 1 < ϕ < Kα assuming
that queue size is not changed.

P (Aϕ), and the monotonicity property can be seen directly from the fact that
Aϕ is a monotone decreasing set (since it requires for more summands to be
smaller than zero, as ϕ increases, see Eq. 8).

Now, to see that P (Xn+ϕ = Kα|Xn = Kα) is monotone decreasing for any ϕ,
we observe (9), which holds for any i > 0, and note that Xi+1 is monotone
increasing in Xi. Thus by iteration, we get that Xϕ is monotone increasing in
X0. Now using this monotonicity, we have

P (Xϕ+1 =Kα|X0 = Kα) = P (Xϕ = Kα|X−1 = Kα)

=
Kα∑
i=0

P (Xϕ = Kα|X0 = i,X−1 = Kα)× P (X0 = i|X−1 = Kα)

=
Kα∑
i=0

P (Xϕ = Kα|X0 = i)P (X0 = i|X−1 = Kα)

≤
Kα∑
i=0

P (Xϕ = Kα|X0 = Kα)P (X0 = i|X−1 = Kα)

=P (Xϕ = Kα|X0 = Kα).

2.7 Limiting case: Spacing ϕ → ∞

The case of large ϕ is not of interest in interactive applications, since it means
unacceptable delay. However, since we have found that the quality of the
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audio with FEC improves as the spacing grows, it is natural to study the
limit (ϕ → ∞) in order to get an upper bound. Indeed, if we see that in this
limiting case we do not improve the quality, it means that we lose by adding
FEC according to our simple scheme for any finite offset ϕ.

When ϕ → ∞, the probability that the redundancy is dropped becomes equal
to the steady state drop probability of a packet.

Consider the scenario of fixed amount of useful information per packet. Then,
(3) can be written as,

Qϕ→∞(α) = 1− πρ(α) + απρ(α)(1− πρ(α)) . (18)

We plot (18) in Figure 7 as a function of the amount of FEC for different
values of Kα and ρ. We see well how, although we are in the most optimistic
case, we lose in quality when adding FEC. That suggests that this class of
FEC mechanisms are not efficient for real time transmission because it never
improves the goodput of the connection.
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Fig. 7. Quality behavior in the presence of FEC and spacing ϕ → ∞.

Next we show that this conclusion also holds for the scenario of fixed packet
size. In the case of very large spacing, (4) can be written as

Qϕ→∞(α) = (1− π)(1− α) + απ(1− π) = (1− π)(1− α(1− π)) . (19)

We see that this is strictly smaller than 1 − π which is the quality with zero
redundancy!
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2.8 Multiplexing between traffic

We analyze the case when several input flows arrive to the bottleneck, an
audio flow and an exogenous flow which represent the superposition of all
other flows. We further consider here the case of general independent service
time distribution. We use the results of the previous subsection to show that we
do not gain in goodput by multiplexing (under both FEC scenarios) provided
that the packet size of all multiplexed streams has the same distribution. This
covers both the first scenario (in which packet size increases with FEC) where
all streams add FEC, as well as the second scenario in which it does not matter
any more how many streams add FEC (since the packet size is not affected
by FEC).

We model the multiplexing by the arrival of two independent Poisson input
flows, λ1 and λ2, representing the audio flow and the exogenous traffic (which
represents all other flows) respectively.

In order to compute the goodput of a flow that adds FEC, we can use the
fact that the spacing between a packet and its redundancy is now random,
with a geometric distribution with parameter λ1/λ2. We note that we cannot
use anymore the exact expressions for loss probabilities derived in Subsection
2.5, since the spacing can now be larger than the buffer size. However, we
can still use the fact that the quality is increasing with the spacing. Thus,
since we saw that we lose by adding FEC for ϕ → ∞, we conclude that
we lose in goodput by adding FEC when multiplexing flows under the above
assumptions. Nevertheless, we shall show in the next section that we may gain
in goodput under different assumptions.

3 Cases where FEC improves audio quality

As we explained in the Introduction, the negative result in the first part of the
paper holds in the case when all the flows in the network add FEC, or when
the audio flow has its own buffer in network routers. It also holds with the
particular linear utility function we considered. In this part, we consider other
cases where we prove that FEC may improve the audio quality. In Section 3.1,
we investigate the case of a single audio flow sharing the bottleneck with
an exogenous traffic not implementing FEC. In Section 3.2, we study the
performance of FEC for other non–linear utility functions. The results of this
part serve as guidelines for an efficient use of FEC in audio applications. They
will give us an explanation of the gain in audio quality we may perceive in
some real scenarios. Queuing models similar to those used in the first part of
the paper will be used through the second part.
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3.1 Multiplexing and FEC performance

3.1.1 The model

Consider the case of an audio flow implementing FEC and sharing a bottle-
neck router with some other flows not implementing FEC. We look at the
other flows as a single exogenous flow of constant rate and of packet size ex-
ponentially distributed. The latter choice can be justified by the mixture of a
large number of flows from different sources and of different packet sizes. Let
1/µ denote the average transmission time at the bottleneck of a packet from
the exogenous flow. This time is independent of the amount of FEC added
to the audio flow. We consider that the original audio packets have a fixed
length and we denote by 1/µ0 their average transmission time at the output
interface of the bottleneck router.

Let us suppose that packets (audio + exogenous) arrive at the bottleneck
router according to a Poisson process of constant rate λ. Suppose also that
audio packets arrive at the bottleneck according to a Poisson process. This
latter assumption can be justified by the fact that audio packets cross multi-
ple routers before arriving at the bottleneck, so that their inter–arrival times
can be approximated by an exponential distribution. Let β ∈ [0, 1] denote the
fraction of arriving packets belonging to the audio flow; this quantity repre-
sents the probability that a packet arriving at the bottleneck is of audio type.
Suppose finally that the bottleneck router implements the classical Drop Tail
policy and has a buffer of size K packets (packet in service included). Pack-
ets from different flows share the K places of the buffer and are served in
a FIFO (First–In First–Out) fashion. The system can be then considered as
an M/G/1/K queuing system where packets arrive according to a Poisson
process and where service times (or transmission times in our settings) are
independent and identically distributed. This system can be then solved using
some known results from queuing theory [18,22]. Our main objective is to find
an expression for the audio quality at the destination as a function of the dif-
ferent system parameters as well as the amount of FEC added to the original
packets by the audio source.

3.1.2 The analysis

Suppose first that the audio flow does not implement FEC. We look at the
audio quality at the moments at which packets would arrive at the destination.
We take a value equal to 1 as the quality obtained when the audio packet is
correctly received, and 0 as the quality when the packet is lost in the network.
The average audio quality during the conversation is equal to Q = 1−π, where
π denotes the stationary probability that a packet is dropped in an M/G/1/K

system. This probability is equal to π = 1+(ρ−1)f
1+ρf

, where ρ is the total system

load (or the total traffic intensity) given by ρ = λ( β
µ0

+ 1−β
µ
), and f is the
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K − 2 th coefficient of the Taylor series of a complex function G(s) defined as
G(s) = (B∗(λ(1 − s)) − s)−1. B∗(s) is the Laplace Stieltjes transform of the
service time distribution [22]. In our case,

B∗(s) =
∫ ∞

0
b(t)e−stdt = βe−s/µ0 + (1− β)µ/(µ+ s), for Re(s) ≥ 0 .

The coefficient f can be computed by developing the Taylor series of the func-
tion G(s) with some mathematical symbolic software. It can also be computed
using the theorem of residues as follows:

f =
1

(K − 2)!

dK−2G(s)

dsK−2

∣∣∣∣∣
s=0

=
1

2πi

∮
Dr

G(s)
ds

sK−1
,

where Dr is any circle in the complex plane with center 0 and with radius
chosen small enough so that the circle does not contain any pole of the function
G(s).

Now, the addition of FEC to the audio flow increases the transmission time of
audio packets at the output interface of the bottleneck router. This increases
the load of the system which changes the stationary probabilities. Let α ∈ [0, 1]
denote the ratio of the volume of FEC at the tail of a packet and the volume
of the original packet. The new transmission time of audio packets becomes
(1+α)
µ0

, and the new system load becomes

ρα = λ
(β(1 + α)

µ0

+
(1− β)

µ

)
. (20)

In the same way we can compute the new transform of the transmission time,
the new coefficient f , and the new drop probability of an audio packet (it
is the same for exogenous packets given that the arrival processes of both
flows are Poisson). For simplicity, we assume in this part that the size of the
bottleneck buffer in terms of packets does not change with the addition of
FEC. Henceforth, when we add an index α to a function, we mean the new
value of the function after the addition of an amount α of FEC. The quality
after the addition of FEC becomes

Qϕ
α = (1− πα) + U(α)πα(1− πϕ

α) . (21)

The first term corresponds to the quality obtained when the original audio
packet is correctly received. The second term corresponds to the quality ob-
tained when the redundant copy is correctly received and the original packet
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is lost. U(α) indicates how much quality we get from an amount α of FEC.
The quantity πϕ

α indicates the probability that the packet carrying the redun-
dancy is dropped given that the original packet is also dropped. ϕ represents
the offset (in number of audio packets) between the original packet and the
one containing its copy. In this section, and as in the first part, we will only
consider the case of a linear utility function U(α) = α. We keep the study of
the impact of other utility functions until Section 3.2.

The exact computation of Qϕ
α requires the computation of πϕ

α. This latter
function is quite difficult to compute given the multiplexing of packets from
both flows at the bottleneck. We must sum over all the possible numbers of
non–audio packets inserted between audio packets. What we can do instead
is to find bounds on this probability and thus bounds on the quality. From
Section 2.6, the probability that a packet is lost given that the n–th previous
packet is lost is a decreasing function of n and it converges to πα when n → ∞.
We can write πα ≤ πϕ

α ≤ π0
α, with π0

α being the probability that a packet (from
any flow) is lost given that the previous packet is also lost. This gives us the
following two bounds on the quality: Q0

α ≤ Qϕ
α ≤ Qα, where

Q0
α =(1− πα) + απα(1− π0

α) , (22)

Qα =(1− πα)(1 + απα) . (23)

We use these two bounds to study how the audio quality varies for different
amounts of FEC and for different intensities of audio traffic. We are sure that
if we gain in Q0

α (lose in Qα), we will gain (lose) in quality for any offset. Our
main objective here is to show how the quality varies with FEC for different
values of β. The analysis in the first part has shown that we always lose in
quality for β = 1 (i.e., when the audio flow occupies 100% of the bandwidth
at the bottleneck). All that we still need to do is to find the expression for the
lower bound on the quality which can be found from the expression of π0

α.

Theorem 3 π0
α is given by 1 + B∗

α(λ)−1
ρα

, with

B∗
α(λ) = βe−λ(1+α)/µ0 + (1− β)µ/(µ+ λ) ,

and ρα given by equation (20).

Proof: Consider a general M/G/1/K queuing system. We have to compute
the probability that a packet (say 1) is dropped given that the previous packet
(say 0) is also dropped. Let a(t) = λe−λt be the distribution of time intervals
between arrivals (of packets from both flows), and let b(t) be the distribution of
service times. Let r(t) be the distribution of the residual time for the packet in
service when packet 0 arrives (there is certainly a packet in service since packet

0 is supposed to be dropped). Using the results in [18], we write r(t) = 1−B(t)
σ

.
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B(t) is the cumulative distribution function of the service time and σ is the
average service time. In our case,

B(t) = β1{t ≥ (1 + α)/µ0}+ (1− β)(1− e−µt),

and σ = ρα/λ. The probability π0
α is no other than

π0
α =

∫ ∞

0

1− B(t)

σ
(1− e−λt)dt .

This is the probability that the inter–arrival time between packet 0 and packet
1 is less than the residual time of the packet in service, and we summarize over
all the possible values of the residual service time. With a simple computation
on this expression and by using the new values of the load intensity and the
Laplace Stieltjes Transform of the service time distribution after the addition
of FEC, we can prove the theorem.

⋄

3.1.3 Numerical results

We solve numerically the model for the two bounds on the audio quality
(Eq. 22 and 23). We set K=10 packets and λ=10000 packets/s. Without loss
of generality, we set µ0=µ. We consider four values of ρ: 0.5, 0.8, 1, and 1.5.
For every value of ρ, we plot the audio quality as a function of β and α. Recall
that β is the fraction of audio packets and α is the amount of FEC. Figure 8
shows the results.

We conclude from the above figures that it is possible to obtain a gain with
the simple FEC scheme we are studying. This requires that the intensity of
the audio flow is small compared to the intensity of the other flows not im-
plementing FEC. The gain diminishes as long as the intensity of the flows
implementing FEC increases. It disappears when most of the flows start to
implement FEC. This means that a FEC scheme with a simple linear utility
function is not a viable mechanism. The gain that we may obtain in some
cases is the result of the fact that the exogenous flows are not adding FEC
and then they are not so aggressive as audio flows.

3.2 Utility functions and FEC performance

We seek now for a FEC mechanism able to improve the quality in the worst
case when all flows in the network implement FEC. Suppose that the audio
flow (or an aggregate of audio flows) uses alone the bottleneck resources (β =
1). The negative results obtained in the first part can be caused by the linear
utility function adopted in the analysis. Adding an amount of FEC α increases
the drop probability of an audio packet, which reduces the first term in the
right–hand side of (21) more than it increases the second term. To get a
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Fig. 8. Audio quality for an M/G/1/K queue with two flows: the audio flow and
the exogenous flow. β represents the probability that an arriving packet belongs to
the audio flow. We see clearly how when β → 0, Qϕ

α starts having an increasing
behavior, and this gain becomes more important as ρ increases.

gain, the second term must increase faster than the decrease in the first term.
This can be achieved if the utility function increases faster than linearly as a
function of α.

Indeed, it has been shown in [15] that multimedia applications have different
utility functions than a simple linear one. These functions are typically non–
linear. They are convex around zero and concave after a certain rate (between
0 and 1, with 1 being the rate that gives a utility function equal to one). Mul-
timedia applications, and audio applications in particular, have strong delay
constraints so that the quality deteriorates sharply when the transmission rate
falls below a certain value. This kind of utility functions can be very useful for
FEC mechanisms since the reconstruction of a packet from a copy of volume
α < 1 may give a quality close to the that of the original packet.

For the scenario of fixed amount of useful information per packet, we obtain a
gain in quality when the redundant information we add to the original packet
is small so that it does not contribute to a big increase in loss probability π,
and at the same time, if reconstructed in case of the loss of the original packet,
it gives a quality close to 1. Such behavior can be also obtained by coding FEC
with a lower–rate codec as GSM [6]. Analytically speaking, a utility function
leads to an improvement of quality if for α < 1, we have

Qϕ
α = (1− πα) + U(α)πα(1− πϕ

α) > 1− π0 ,
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with π being the stationary drop probability before the addition of FEC.

In the scenario of fixed packet size (which does not depend on the amount of
FEC), we gain by adding FEC if

Qϕ
α = U(1− α)(1− πα) + U(α)πα(1− πϕ

α) > 1− π

(where we assumed U(0) = 0, U(1) = 1).

In the sequel we shall show how FEC can improve the quality for the scenario
of fixed amount of useful information per packet. Similar improvement can be
shown to occur also in the scenario of fixed packet size.

3.2.1 Some bounds on quality improvement

We already showed that we do not gain by multiplexing if the distribution
of the sizes of all packets does not depend on the amount of FEC. We thus
consider only the scenario in which the useful information is fixed per packet
in the flow that adds FEC, and thus the packet size of this flow increases with
FEC; we assume that other flows do not use FEC.

Again, we use here the bounds on the quality Q0
α ≤ Qϕ

α ≤ Qα, with

Q0
α =(1− πα) + U(α)πα(1− π0

α) ,

Qα =(1− πα)(1 + U(α)πα)

A utility function that improves the lower bound improves the quality for any
value of ϕ. A utility function that does not improve the upper bound will not
lead to an improvement of quality whatever is the value of ϕ. Using the upper
bound, we can find the maximum quality that this simple FEC scheme can
give and this is for the best utility function. Indeed, the best utility function is
one that jumps directly to one just after 0. This could be subjectively justified
by using redundant packets coded at very small rates, as LPC or GSM. A
very small amount of FEC (α ≃ 0) that does not change the load of the
network (i.e., that does not change π), will then lead to the same quality as
the original audio packet. The question that one may ask here is: “why to
send large original packets in this case, given that we are able to obtain the
same quality with small packets?” The important processing time required by
low–rate codes could be the answer to this question. We are not addressing
this issue here, and we will only focus on the computation of an upper bound
for the FEC scheme we are studying. Let Qmax be the maximum quality that
we could obtain, thus Qmax ≃ (1− π) + π(1− π) = 1− π2.

This Qmax has to be compared to the quality (1− π) we get in the absence of
FEC. Given that Qmax is larger than (1− π), we conclude that we can always
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find a utility function and an offset between original packets and redundancies
so as to gain in quality. Note that we are not considering the impact of the
coding and decoding delays on the audio quality. The impact of these delays
will be the subject of a future work. We also conclude from our analysis here
that the FEC scheme we are studying cannot improve the quality by more
than a factor of π. This means that the maximum gain in quality we could
obtain is 100% and this gain is an increasing function of the network load.
For example, for a network that drops 1% of packets, we cannot improve the
quality by more than 1%, and for a network that drops 10% of packets we can
get an improvement up to 10%.

Without loss of generality, we consider the family of utility functions that
jump from zero to 1 at a value α0. We denote such functions by Uα0(α).
These are the utility functions of the so called hard real–time applications.
We also consider the upper bound on the quality (an infinite offset). When
increasing the amount of FEC with such applications from 0 to α0, the quality
deteriorates since its equal to (1 − πα). When we cross α0, the quality jumps
from (1 − πα0) to (1 − π2

α0
) and it resumes then its decrease with α. For

such applications, the FEC scheme improves the quality if π2
α0

< π and the

maximum gain that we could obtain is a factor of
(π−πα0 )

(1−π)
. This maximum gain

corresponds to an amount of FEC slightly larger than α0. It is not clear how
the gain varies as a function of network load. But, what we can say here is
that the FEC scheme behaves better with functions having a small α0. After
a certain threshold on α0, the above condition becomes unsatisfied and it
becomes impossible to gain in quality.

3.2.2 Some numerical results

We give in Figure 9 some possible utility functions 5 that could serve to our
needs, and that are similar in their form to the utility functions proposed in
[15]. In Figure 9, U3(α) is plotted with α0 = 0.1.
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Fig. 9. Possible utility functions for rate adaptive applications.

We solve the model numerically for the two bounds on the quality. We compute

5 The function u(α) is the step unit function. It is equal to 1 if α > 0, and is equal
to zero otherwise. α0 represents the initial value giving a significant quality.
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first the stationary distribution of the model for different values of α and ρ.
We set K to 20 and λ to 10000 packets/sec. Then, for the the different utility
functions in Figure 9, we plot the upper and lower bounds on the quality (Qα

and Q0
α). Figure 10 shows plots for the lower bound and Figure 11 shows plots

for the upper bound. The top four plots were obtained with α0 = 0.1 and the
four bottom plots with α0 = 0.8 in both figures. We see clearly how the jump
in the utility function results in a jump in quality and how this jump leads
sometimes to better quality than that at α0 and sometimes not. We also see
how the case U(α) = α does not present any improvement in quality.
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Fig. 10. Lower bound for audio quality with K = 20, α0 = 0.1 (top) and α0 = 0.8
(bottom).
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Fig. 11. Upper bound for audio quality with K = 20, α0 = 0.1 (top) and α0 = 0.8
(bottom).

4 Conclusions

We studied in this paper the effect on audio quality of a FEC scheme similar
to the one used in [1,2]. This FEC scheme consists in adding a copy of an
audio packet to a subsequent packet so that the copy can be used when the
original packet is lost. First, we considered the case when all flows in the
network implements such a FEC scheme. With a simple queuing analysis and
assuming linear utility functions, we found an explicit expression for the audio
quality (corresponding to the goodput) for a general offset between an audio
packet and its copy. This expression as well as some optimistic bound showed
that the addition of FEC deteriorates the goodput instead of improving it.
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One might wonder whether the conclusions depend on the probabilistic as-
sumptions. However, one can note that the form of the optimistic bound (19)
does not depend on the exponential assumptions: it would be the same for any
service time and interarrival distributions, and even for topologies much more
complex than a single queue. The precise values of π will of course depend
on the distribution, and the form of the network, but the conclusion that we
draw from the general form of (19) will remain the same.

We then studied cases where the FEC scheme may be helpful. The first case
is when the audio flow has a small rate compared to an exogenous traffic that
does not implement FEC. The second case is when the utility function of the
audio application presents an important jump at small transmission rates. We
gave conditions on where the FEC scheme can improve the audio quality. We
also gave an upper bound on the gain in audio quality we could obtain.

Although we found some regions where the FEC scheme can behave well, we
believe that this scheme is not the appropriate solution for improving the
quality of audio applications. In the current Internet, this scheme profits from
the fact that most of the other flows do not implement FEC. This will not be
the case when a large number of flows start to add FEC to their packets. There
is also a problem with the mechanism in case of applications with different
utility functions than linear. We found that we get a gain especially when a
small amount of redundancy gives the same performance as the big original
packet. But it then seems intuitive to reduce the volume of original packets to
reduce the drop probability and to gain even more in quality instead of adding
FEC that does not improve the performance by more than 100%. There is no
need to send long packets if we are able to get good quality with small ones.

We believe that the main problem with this kind of mechanisms is that the
redundant information is constructed at the source using one packet and so the
destination has only two choices: either receive the original packet or receive
its copy. Better performance could be obtained if we gave the receiver more
choices by constructing at the source the redundancy carried by a packet from
a block of audio packets. This will the topic of our future research in this
direction.

A Ballot theorems

In this appendix, we cite the Ballot theorem that we have used to solve the
problem for case 1 ≤ ϕ ≤ Kα. The reader is referred to [11] for details.

Theorem 4 Suppose that an urn contains n cards marked with nonnegative
integers k1, k2, . . . , kn, respectively, where k1 + k2 + · · · + kn = k ≤ n. All
the n cards are drawn without replacement from the urn. Denote by νr, r =
1, 2, . . . , n, the number of the card drawn at the rth drawing. Then,
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P{ν1 + · · ·+ νr < r for r = 1, . . . , n} = 1− k

n
, (A.1)

provided that all possible results are equally probable.
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