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Abstract

Separation of concerns has been presented as a promising tool to tackle the design of complex systems in which 
cross-cutting properties that do not fit into the scope of a class must be satisfied. Unfortunately, current proposals 
assume that objects interact by means of object-oriented method calls, which implies that they embed interactions with 
others into their functional code. This makes them dependent on this interaction model, and makes it difficult to reuse 
them in a context in which another interaction model is more suited, e.g., tuple spaces, multiparty meetings, ports, and 
so forth. In this paper, we show that functionality can be described separately from the interaction model used, which 
helps enhance reusability of functional code and coordination patterns. Our proposal is innovative in that it is the first 
that achieves a clear separation between functionality and interaction in an aspect-oriented manner. In order to show 
that it is feasible, we adapted the multiparty interaction model to the context of multiorganisational web-based systems 
and developed a class framework to build business objects whose performance rates comparably to handmade im-

plementations; the development time, however, decreases significantly.
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1. Introduction

Distributed object computing is nowadays
considered the way forward in devising multi-

organisational solutions. Many leading companies

have realised that the Internet is more than a sell-

and-buy arena and offers many opportunities to

thrive in the web world. As the Internet settles,

companies are finding ways to take advantage of
its capabilities, and there is an ever-increasing

demand for frameworks [36–39] to build multior-

ganisational web-based systems (MOWS) [26–

28,49] at sensible costs. Such frameworks typically

describe a MOWS as a collection of components

that are exposed to programmers as services that

are usually implemented as a set of interrelated

business objects that encapsulate a semantic pro-
tocol for a logical unit of work, e.g., transferring

money, processing an order, updating a customer
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record or moving a task to the next person in a

workflow queue [36,38]. From an abstract point of

view, business objects model real-world actors and

data, and this is the reason why they greatly en-

hance communication amongst developers and

customers and help reduce production costs
[40,41].

In theory, programmers should only care about

the functionality they provide. Unfortunately, this

vision is far too idealistic because business objects

need to care about concerns such as synchronisa-

tion, persistence, or replication, and they are sel-

dom isolated in a system, i.e., they constitute the

functional pieces of a semantic protocol and have
to work coordinately with others in order to

achieve a common goal. Separation of concerns

was presented as a promising tool to enhance

modularity, understandability and reusability of

functional code during the development of a

business object. In fact, this is the cornerstone of

the new aspect-oriented programming (AOP)

paradigm [3,33,34,57], which got inspiration from
Dijkstra�s and Parnas�s early expressions of the

seminar principle of software decomposition

[31,34,69].

Since the earliest works on separation of con-

cerns, synchronization [61], distribution [61,80],

security [83], coordination [5,74], persistence [59],

replication [13] and other domain-specific features

such as the one described in [50] have been con-
sidered as clear concerns that can be dealt with by

using aspect languages or frameworks. Unfortu-

nately, prominent aspect-oriented approaches do

not succeed in isolating computation from inter-

action with other objects in a system, i.e., the

mechanism by means of which two or more objects

get in touch and can carry out an elementary piece

of work. As we show in Section 5, current
proposals rely on variations of the classical

message-passing interaction model and embed

object-oriented method calls into the functional

code, which prevents developers from adapting

their code easily if the interaction model needs to

be changed or an object needs to work in contexts

in which different interaction models are used.

Furthermore, semantic protocols are often hard-
wired into the functional core, which makes them

difficult to reuse, too [5,46].

Besides point-to-point communication, many

other interaction models have been proposed in

the literature [68], some of which also provide

synchronisation or coordination mechanisms.

Each one has its own strengths and weaknesses, so

that there is not a universally accepted interaction
model, but a wide spectrum of choices. Thus, it

seems desirable for aspect-oriented languages

dealing with interaction to exist. Such languages

would enhance reusability of functional code and

coordination patterns, which could be applied to

similar situations as long as adequate mapping

languages existed. Such languages would also

allow programmers to decide which interaction
model best suits their needs, which has a direct

effect on understandability, maintainability and

evolvability. Furthermore, this technology for

object interaction should be applied automatically

so that business objects remain as much abstract,

handy and reusable as possible [5,46]. Therefore,

the concerns of abstractness and reusability argue

for an aspect-oriented solution to the problem of
separation amongst coordination, interaction

models and functionality. This way, business ob-

jects would not embed interactions into their

functionality, and they might be coordinated using

different interaction models depending on the

context in which they are going to be reused.

This motivation is supported by previous re-

search results by other authors. For instance, in
[67], the authors mention that much of the soft-

ware evolution, reuse and integration are of an

unexpected nature. However, this is not necessarily

due to a poor design, but rather due to the fact

that the world is changing so fast that it is im-

possible to predict the paths through which soft-

ware will evolve. Selecting an adequate interaction

model is an important decision, and the same
functionality encapsulated in a class might be in-

tegrated more easily into a scenario using message-

passing, but using tuple spaces in another scenario.

Thus, having a way to change the interaction

model whilst preserving functionality seems to be

quite a reasonable motivation.

Furthermore, in [29], the authors presented a

case study comparing aspect-oriented technolo-
gies. They concluded that they make it easier to

write and change some concerns and also that the



underlying design of aspectual applications is more

important than the concrete mechanisms provided

by those technologies. The latter is an important

result, because it is worth noting that separation of

concerns has been addressed from points of view

other than AOP. For instance, in [10], composition
filters are used to compose cross-cutting concerns

on multiple objects; in [30], the authors present a

proposal based on decomposing software into two

levels called aspectual and functional; in [60,81],

the authors show two approaches based on re-

flection capabilities. Generally speaking, separa-

tion of concerns can be thought of as an approach

that can be beneficial not only at the programming
phase, but also at different stages of the software

life cycle and at various levels of abstraction [48],

including the abstraction level that the concrete

interaction mechanism used provides.

These results support our motivation to sepa-

rate interaction from functionality, which, to the

best of our knowledge, is an innovative, original

concern that has not been addressed so far in the
context of aspect orientation. 1 We illustrate that

our idea is feasible by presenting a new interaction

model for MOWS called open multiparty interac-

tion model (OMIM). It builds on the basis of a

well-known interaction model and enhances it so

as to deal with both passive and active objects in

an open context. We also provide a class frame-

work to implement business objects using this
model, and prove that it does not affect perfor-

mance but reduces development time significantly.

The framework allows to use different algorithms

to implement coordination and communication,

thus making it possible to customise the underly-

ing implementation.

The rest of the paper is organised as follows: in

Section 2, we prove that our idea can go beyond

classical object-oriented method calls and present

a novel, higher-level interaction model that is ad-

equate in the context of MOWS; in Section 3, we

present a class framework we designed to imple-
ment our proposal; in Section 4, we show how the

development of a MOWS may benefit from using

our framework and evaluate it regarding perfor-

mance and development time; in Section 5, we

analyse other authors� work and conclude that

none of them attempts to separate interaction

from other aspects; finally, we present our main

conclusions in Section 6.

2. A high-level interaction model for MOWS

Roughly speaking, a MOWS can be viewed as a

system composed of several coarse-grained busi-

ness objects that reside on different organisations

and need to cooperate frequently by means of the

Internet. They seem to be the cornerstone of next

generation distributed software developments.

Client/server primitives such as remote proce-

dure call or message passing are the de facto in-
dustrial standard for object interaction in this

context, and new materialisations such as SOAP

[12,35] are sprouting out at an increasing pace.

However, solutions that are based on (sequences

of one-way) binary interactions are difficult to

apply in typical MOWS in which several objects

need to cooperate simultaneously in order to

achieve a common goal [44]. Such problems in-
clude: transferring money from a bank to another

by means of a point of sales terminal (three ob-

jects), paying taxes on-line (three objects in Spain:

a taxpayer, the Exchequer, and Spain�s Certifica-

tion Authority), filtering in e-commerce [36] (a

customer, a filter system, and several service pro-

viders), or reaching a virtual agreement in an

auction sale (multiple objects). Current technology
provides transactional servers for grouping indi-

vidual binary interactions, but there is not a clear

separation between the problem to be solved and

the underlying technology to be used or the pro-

tocol needed to coordinate the objects involved in

a transaction.

1 Notice that we use the term �interaction� to refer to the

underlying mechanism used to stimulate objects, independently

from the synchronisation or coordination mechanism used to

implement semantic protocols in business objects. This may be

confusing if the reader takes a look at old papers on this topic.

In [5] or [46], for instance, the authors use the same term to refer

to coordination. However, we decided to use the term �inter-
action� because it captures the idea behind an object getting or

sending stimuli from/to others; coordination concerns are

higher level, and it seems to be a well-established research area

in which this term is considered rather obsolete.



Most object-oriented analysis and design

methods recognise the need for coordinating sev-

eral objects and provide designers with tools to

model such multiobject collaborations. Different

terms are used to refer to them: object diagrams

[11], process models [16], message connections [18],
data-flow diagrams [78], collaboration graphs

[84], scenario diagrams [76] or collaborations [32,

79]. These proposals are accompanied by a rich

set of examples that show the adequacy of such

modelling tools in fields including finance, tele-

communication, insurance, manufacturing, embed-

ded systems, process control, flight simulation,

travel and transportation, or systems manage-
ment. Recently, this need for multiobject interac-

tion has also been recognised in the field of

multiagent societies [6,8,9,14,66], and it has also

deserved the attention of industrial infrastructure

providers such as Microsoft, which provides a tool

to orchestrate any group of web services on the

Internet as a part of their new .NET platform [75].

The underlying interaction model, however, is
object-oriented method calls in all cases, which

implies designers still need to decompose complex

collaborations into a carefully designed sequence

of calls. Several authors have also reported on

design patterns and frameworks that allow to

model and implement those collaborations as

business objects that allow for reuse of common

coordination patterns [36–39].
Unfortunately, current programming languages

do not seem to have adequate support so that

several objects can interact simultaneously, al-

though a great deal of theoretical research has

been carried out in this field [68]. JavaSpaces [45] is

one of the most prominent recent proposals in this

context. It is a Linda-based [15] model for coor-

dinating Java objects on the web that provides a
mechanism for storing a group of related objects

and retrieving them based on a value-matching

lookup for specified fields. It allows the program-

mer to easily build distributed semantic protocols

that can be designed as flows of objects through

one or more servers. If your application can be

modeled this way, JavaSpaces technology will

provide many benefits, but workflow is not enough
often, chiefly in the field of MOWS and e-

commerce applications. The reason is that many

problems in this context require several objects to

cooperate simultaneously in order to achieve a

global goal, and transforming them into workflow

tasks or sequences of method calls may harm ex-

pressiveness and thus easy adaptation to new en-

vironments.
For instance, assume we have to design a

debit-card system [77], which is one of the basic

behaviour patterns in a distributed e-commerce

application. Such a system is composed of a set of

point of sales terminals and a number of com-

puters that hold customer accounts and merchant

accounts; the goal is to design a business object

responsible for transferring money from a cus-
tomer account to a merchant account every time a

customer pays with his or her debit card. With

JavaSpaces, for instance, it is relatively easy to

devise a simple solution to solve this problem, but

it would have two main drawbacks: first, the whole

transaction can be viewed as an atomic event co-

ordinating three objects, but this interaction model

leads to a solution in which this event needs to be
decomposed into a number of method calls that

need to be coordinated by means of a specific

protocol based on tuple spaces; furthermore, this

protocol may be reusable in other systems, but

current technology merges protocols and func-

tionality so much that sorting out the difference is

almost impossible [57].

2.1. Our proposal

The concerns presented above argue for an in-

teraction model able to describe coordination

patterns amongst an arbitrary number of objects

independently from the functionality they imple-

ment and the current underlying technology.

In order to devise such an interaction model, we
got inspiration from the well-known multiparty

interaction model [44], which is well suited to

capture the essence of problems in which several

objects residing on different machines need to co-

operate coordinately and simultaneously. It pro-

vides a higher level of abstraction because it allows

them to exchange data and perform some joint

actions coordinately without taking implementa-
tion details into account. Multiparty interactions

are higher level in the sense that they abstract the



concrete mechanism used to synchronise, coordi-

nate or communicate several objects simulta-

neously. They thus make it feasible to customise

the implementation of multiobject interaction since

the low-level coordination protocols are no longer

hard-wired into business objects, but specified by
means of high-level language constructs. Multi-

party interactions hide several underlying point-

to-point communication operations, as well as the

order in which they must occur or the algorithm

used to achieve multiparty synchronisation. The

programmer does not need to care about these low-

level details, which can be generated in a com-

pletely automatic way, thus easing maintainability.
Although this interaction model has attracted

the attention of many researchers who have fo-

cused on implementation issues [1,22,24,25,43,

44,51,53,85], it suffers from several drawbacks that

need to be addressed before using it in the context

of a MOWS. In particular, the model does not

allow for passive objects, objects participating in

an interaction need to be known at compile time,
and they need to have access to the local state of

the objects with which they communicate. That is

the reason why we have developed an enhanced

version that addresses these problems and solves

them adequately. We refer to it as OMIM.

In order to support OMIM, we have designed a

language called CAL [23] and a set of algorithms

that allow to implement it quite efficiently [71–73].
In the following subsections, we summarise our

results so that the reader may have an overall idea

of the work we have already done. In Section 3, we

report on the framework we have built, which is

one of the contributions of this paper. It integrates

these algorithms and proposals by other authors,

thus proving that interaction may be separated

from functionality; the result benefits from en-
hancing reusability and allows to customise the

implementation by quickly changing the algo-

rithms used to implement a system. The impact on

the development time is quite significant, as shown

in Section 4.3.

2.2. Linguistic support

In this section, we glance at CAL and describe

its main features by means of the debit-card system

presented previously. This problem can be easily

described by means of multiparty interactions be-

cause a three-party interaction needs to be carried

out when a clerk inserts a debit card into a ter-

minal in order to transfer funds from a customer�s
account to a merchant�s account. Fig. 1 shows a
description of the debit-card system in CAL, and it

is analysed in the following subsections.

2.2.1. Describing interactions

Interactions are defined by means of the fol-

lowing syntax:

interaction hnamei[hparticipantsi](hslotsi)
where hread/write permissionsi

Each interaction is given a different name, a

number of participating objects, a number of slots,

and some read/write permissions. In the example

in Fig. 1, an interaction called transfer has been

defined, and it is a three-party interaction that

allows to interact a terminal that plays role term
and two bank accounts that play roles source and
dest. This interaction is intended to be the channel

by means of which they can coordinate so that

funds can be transferred from the source account

to the destination account.

Interactions are equipped with a local state that

is composed of several slots. In our example, in-

teraction transfer has two slots called sum and
approval. sum is used to store the amount of money

to be transferred, and approval is a flag that indi-

cates whether the source account can transfer such

a sum to the destination account. These slots make

up a local state that simulates the temporary glo-

bal combined state in the basic multiparty inter-

action model [44], being the most important

difference that an object does not need to have
access to the local state of other objects in order to

get the information it needs.

The read/write permissions state which partici-

pant in an interaction can read and/or write each

slot. In our example, the terminal is responsible for

storing the sum to be transferred in slot sum,

whereas it only reads slot approval in order to

display a message on its screen; the account play-
ing role source can read slot sum to decide whether

it can transfer such a sum, and it can write slot



approval to store its decision; finally, the destina-

tion account can read both slots, but it is not al-

lowed to write any of them.

Every object can offer participation in one or
more interactions simultaneously. In every offer, a

participant states which role it plays in the inter-

action, and may establish constraints on what

objects should play the other roles. An interaction

may be executed as long as a set of objects satis-

fying the following constraints is found: (i) there is

an object per role willing to participate in that

interaction and to play that role; (ii) those objects
agree in interacting with each other, i.e., the con-

straints they establish are satisfied. A set of objects

which can execute an interaction is what we call a

enablement.

Fig. 1. A description of the debit-card system in CAL.



Since exclusion must be guaranteed, an object

cannot commit to more than one interaction at a

time. However, since an object can offer partici-

pation simultaneously in more than one interac-

tion, it can be in more than one enablement. So,

when two or more enablements share objects, they
cannot be executed simultaneously. The set of

enablements that cannot be executed are said to be

refused.

2.2.2. Describing behaviours

Each interaction requires a number of objects,

and they must behave the right way. We use the

following syntax to describe behaviour patterns:

behaviour hnamei
requires hinterfacesi

{

hbehaviour statementi
}

Each one is given a different name, and requires
a number of operations (i.e., an interface) to be

implemented by the objects onto which it can be

mapped. In the example in Fig. 1, two behaviour

patterns are described: Terminal, which describes

the behaviour of a terminal, and Account, which
describes the behaviour of a bank account, both as

debtor and creditor.

Pattern Terminal requires that the operations
in interface ITerminal (Fig. 2) be implemented by

the objects that can behave the way it describes:

Wait_For_Sale, which encapsulates the details

concerning waiting for a new sale and interactions

with the clerk initiating it, Get_Price, which can be

invoked after a new sale has been initiated and

reports its price, Get_Customer_Account and

Get_Merchant_Account, which provide references
to the involved accounts, and Report_Result,
which can be invoked to report whether a transfer

has been done or not. Similarly, pattern Account
requires that the three operations in interface

IAccount be implemented: Charge, to withdraw

money from an account, Pay_In, to pay money

into it, and Authorise_Payment, which decides

whether an account can afford a payment or not.
The operations required by a behaviour pattern

are the operations whose execution is coordinated

by means of multiparty interactions. In order to

model how a terminal or an account cooperate, we

use interaction statements of the form I[expres-
sion_list]{comm_stat}, where I is the name of an

interaction, the expressions within brackets iden-

tify the objects with which the object executing
such a statement is interested in cooperating, and

comm_stat is a communication statement involv-

ing the slots of interaction I. The expressions be-

tween brackets are of the form role!id, which

means that role role must be played by the object

identified by id. The expression role!self is used to

denote the role played by the object that issues the

offer. If no expression is given for a role, it means
that it can be played by any object.

Therefore, the behaviour of a terminal can be

summarised as follows: it is an infinite loop where

it first waits for a new sale operation to begin and

then tries to engage interaction transfer together

with the objects that model the customer�s account
and the merchant�s account. If this interaction is

fired, the terminal participating in it executes then
its communication code, which consists of storing

the sum to be transferred in slot sum, and dis-

playing a message on its screen. The behaviour of

an Account also consists of an infinite loop where

engaging interaction transfer is offered either as a

source account or a destination account. If the

interaction where an account plays the first role is

fired, it checks whether it can afford the charge,
stores the result in slot approval and updates its

balance accordingly. If the interaction in which it

Fig. 2. Interfaces required the by behaviours in Fig. 1.



plays the other role is fired, it simply reads slot

approval and then updates its balance accordingly.

Obviously, a multiparty interaction delays an

object that tries to read a slot that has not been

initialized yet, e.g., a terminal that executes the

statement Report_Result(approval) is delayed until
the source account participating in the same in-

teraction has written slot approval. Thus, the com-

munication statements are executed in a critical

region where no race conditions can occur.

2.2.3. Mapping behaviours onto object classes

Behaviour patterns are abstract because they

describe how an object that implements a set of
operations cooperates with others. These opera-

tions are also abstract, and they usually need to be

adapted when we need to map a behaviour onto an

object class.

CAL provides a simple mechanism for adapting

operations, and it is shown in Fig. 3. In this ex-

ample, behaviour Account has been mapped onto

a Java class called bankAccount, but it does not
provide the operations this pattern requires. For

instance, there is not an operation for deciding

whether charging a sum is affordable or not.

Fortunately, the expression getBalanceð ÞP sum
implements it easily.

This mapping allows us to write fully abstract,

reusable behaviour specifications. This is impor-

tant, because in other aspect languages such as
COOL [61], RIDL [61], AspectJ [56] or AML [50],

aspect specifications reference the classes onto

which they are applied by name, which makes it

difficult to reuse them effectively.

3. The framework

We have carefully designed a framework that

offers a number of high-level services for imple-

menting CAL. 2 We have arrived at its design
largely through experimentation, and our main

design goals were the following:

(1) The framework should be extensible, so that

new middlewares or coordination algorithms

may be easily incorporated. This enhances

the choices the designer has to produce the

final version of his or her business objects inde-
pendently from the functionality he or she has

programmed.

(2) It should allow for passive objects. The tradi-

tional multiparty interaction model assumes

that every object participating in a multiparty

interaction is active, i.e., they can autono-

mously offer to participate in an interaction.

However, objects are passive in many real-
world problems, i.e., they offer interaction on

demand; thus, a good framework should be

able to deal with them without compromising

effectiveness.

(3) It must allow to describe other orthogonal as-

pects using well-known aspect-oriented lan-

guages.

Fig. 4 shows a snapshot of a running system

that sketches the architecture of our solution. It is

composed of the following elements:

The gatekeeper: It is one of the most important

components of our architecture because it is re-

sponsible for tasks such as security policies, billing,

generating and managing UUIDs, locating inter-

action coordinators or interacting with the system
administrator.

Interaction coordinators: They are responsible

for detecting enabled interactions and arbitrating

amongst conflicting ones, i.e., interactions that

cannot be executed simultaneously because they

share a common object.

Fig. 3. Mapping behaviour Account onto class bankAccount.

2 The framework is available on request. Please, send mail to

jperez@lsi.us.es to ask for the package.



Proxies: In our framework, user objects are

considered to be external entities that use proxies

to interact. This makes a clean separation between

functionality and coordination details and simpli-

fies the framework implementation because it does

only need to care about proxies, independently

from the objects they represent. This implies that
those objects may have pure functionality or may

have been woven with other aspects previously.

For instance, an object having synchronisation or

replication constraints may be implemented by

weaving functional code with a COOL [61] speci-

fication and the proposal described in [13].

Communication managers: They are responsible

for managing communication amongst a number
of objects that have committed to an interaction.

This way, many different occurrences of the same

interaction may be running simultaneously and

independently from each other. Communication

managers are also responsible for coping with

faults during multiparty communication [85].

At a first glance, it might seem that the gate-

keeper is a bottleneck component, but it is not.
The reason is that the functionality it offers is used

only when new objects or interactions are added to

the system, or when an object needs to fetch ref-

erences to the coordinators responsible for the

interactions in which it may be interested. It is also

worth noting that nothing prevents us from cre-

ating several instances of the gatekeeper, thus re-

ducing the impact of a crash. However we usually
refer to this component as �the gatekeeper� because
all of its instances are functionally equivalent.

It is also worth mentioning that having proxies

does not amount to inefficiency because they reside

in the same memory space as the objects they

represent. Furthermore, separating coordination

concerns from business objects at runtime is

worthwhile because this draws a clear line between

the functionality they encapsulate and the way
they interact with others. This facilitates the

construction of a weaver because proxies may be

implemented using a combination of design pat-

terns that are collectively called the role object

pattern [38]. This helps keep the different contexts

in which a business object may participate sepa-

rated.

Fig. 5 shows the class framework we have de-
signed. Notice that our design is general enough

to accommodate several middlewares as well as

several coordination or communication algorithms

proposed in the literature. The designer may make

a choice depending on the application domain and

the problem to be solved. If all of the objects know

the objects with which they have to interact, the

designer might use a classical algorithm for coor-
dinating them; however, if some objects are se-

lected at runtime, the designer may use the

algorithms we have implemented to deal with open

multiparty interactions [71,73]. It is worth men-

tioning that proxies implement two interfaces be-

cause they have to communicate with both objects

and coordinators. We have split their interface

into IPartProxy, which groups the operations an
object needs, and ICoordProxy, which groups the

operations coordinators need.

Fig. 4. The architecture of our solution.



3.1. Coordination algorithms

Several solutions to implement multiparty in-
teractions have been proposed in the literature. We

have found a variety of centralised and distributed

techniques for implementing this interaction

model, but, unfortunately, most of them have been

devised to deal with a fixed set of objects [7,

17,24,25,52,54]. Although they may work well in

some MOWS, it is problematical insofar the ser-

vices business objects offer may be used by a dy-
namic set of objects.

An important feature of a good business

framework is that it must allow for evolution [38].

Thus it is needed a better solution allowing for

open interactions in which the set of participating

objects is not known until runtime. We have de-

signed an algorithm for dealing with multiparty

coordination in this context, and we refer to it as a.
It is responsible for two main tasks: (i) detection of

interacting groups, i.e., groups of objects that are

interested in participating in the same interaction,

and (ii) arbitrating amongst conflicting interac-

tions that share a common object. Therefore, a
was split into two parts referred to as a-Solver [72]
and a-Core [71,73].

We sketch the main ideas behind a-Solver by
means of a simple example depicted in Fig. 6.

Assume that our system has an interaction called I,
and that it coordinates three active objects that

may play roles P, Q and R. Let us also assume that

objects p1 and p2 are interested in playing role P,
objects q1 and q2 offer to play role Q, and object r1
offers to play role R. The offers are represented

by means of arrows from proxies to coordina-

tors, and each one is labeled by the list of expres-

sions that identifies the participants that may

engage the interaction. For instance, the expres-

sion ½P!self; Q!q2� offered by p2 means that this

object is willing to play role P in interaction I, that
it requires object q2 to play role Q, but does not

care about the object playing role R.
a-Solver processes the offers as they arrive and

builds the consolidation graph in Fig. 7 incre-

mentally. This graph is used to detect groups of

objects that are willing to participate in the

same interaction. For instance, assume that the

offer made by p1 arrives first so that a-Solver
constructs a consolidation graph with only one

node ½p1; ðq1Þ; ðr1Þ� that is interpreted the following

way: there is an offer in which object p1 is willing

to play role P, object q1 is required to play role Q
and object r1 is required to play role R. If the

second offer is made by object p2, a new node of

the form [p2, (q2), ( )] is added to the graph, but

no connecting node is constructed because the

Fig. 5. Class framework.



tuples so far processed cannot be consolidated, i.e.,

objects p1 and p2 cannot interact together.

If the offer made by q1 is then received, a node

of the form ½ðp1Þ; q1; ð Þ� is added. Since it con-

solidates with ½p1; ðq1Þ; ðr1Þ�, a connecting node of
the form ½p1; q1; ðr1Þ� is added. It indicates that

both p1 and q1 are willing to participate in inter-

action I and agree in committing to this interaction

together with object r1. Notice that no interaction

group is found until object r1 makes its offer. When

this happens, two interaction groups are found

simultaneously, but, unfortunately, they are con-

flicting because they share a common participant.
Thus, a-Core is called to arbitrate amongst these

conflicting groups and decide which one commits

to interaction I first.

The idea behind a-Core is quite simple because

shared participants are considered to be shared

resources amongst the coordinators responsible

for the interactions in which they are interested. In

order for an interacting group to execute an in-
teraction, a-Core must ensure exclusive access to

all of the objects participating in that interaction.

The algorithm we use to lock objects is based on a

simple idea that was presented years ago in the

field of operating systems [19]: a-Core locks ob-

jects in order of increasing UUID. Although this

idea did not work well in the field of operating

systems because processes are difficult to pro-
gramme so that they request resources in increas-

ing order, it has been proven to be quite effective in

this context (cf. Section 4.3).

Fig. 7. Consolidation graph for the system in Fig. 6.
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Fig. 6. A simple system.



3.2. Coordinating passive objects

In previous section, we presented a system

whose objects were assumed to be active, i.e., their

proxies send messages to coordinators responsible
for the interactions in which they are interested.

However, objects in MOWS tend to be passive in

the sense that they offer services on request, and

each interaction has a relatively small set of active

objects. For instance, it is likely that both accounts

in the debit-card system are passive and do not try

to engage any interaction actively.

Our framework can deal with such objects using
a simple protocol: each time an active object ini-

tiates an interaction in which a passive object may

participate, the runtime system sends a notification

to the proxy associated with that object; if it can

participate in that interaction, the proxy then

makes an offer, thus behaving as if its object was

active; otherwise, it stores the notification and re-

processes it each time the passive object it repre-
sents changes its state. If one of the active objects

willing to participate in that interaction gives up,

the coordinator also notifies the involved passive

objects and their proxies stop monitoring them.

For instance, assume that objects that play roles

P and Q in the system in Fig. 6 are active and

objects that play role R are passive. On reception

of the offer made by q1, the coordinator of inter-
action I adds the connecting node ½p1; q1; ðr1Þ� to
the consolidation graph and knows that p1 and q1
are willing to interact as soon as r1 is ready to play

role R. Thus, the coordinator searches for such an

object and notifies its proxy that it is requested to

participate in interaction I. The proxy then stores

this notification and waits for its object to reach a

state in which it can participate in this interaction.
If its current state allows it to participate, the

notification is sent immediately.

Sometimes, many passive objects reside on the

same machine. In those cases, the designer may

decide to assign a set of objects to the same proxy

in order to improve scalability. Passive objects

usually reside on a database, so that having an

individual proxy responsible for each one may
degrade performance significantly. In those cases,

it is better to use a small set of proxies managing

the whole set of objects in a class. The ratio be-

tween proxies and objects depends completely on

the context, and it is a trade-off between reliability,

performance and scalability.

4. Realising the benefits

There are three usual approaches to separate

concerns, and we refer to them as linguistic, ob-

ject-oriented, and architectural. In [29], the au-

thors report on the results of a case study in which

they compared these approaches and concluded

that each one has its own strengths and weak-

nesses so that no-one clearly outstands globally.
The linguistic approach is quite efficient in general

but cannot deal with aspect evolution easily be-

cause aspects tend to be somewhat linked to lan-

guage constructs; contrarily, object-oriented

approaches that are based on the reflective capa-

bilities of the underlying language are usually quite

flexible but inefficient.

Our proposal consists of both a language to
describe business objects separately from the

functionality of base objects and a framework that

can be used to implement this language or business

objects independently. It thus benefits from the

strengths of both proposals simultaneously, as we

show next.

4.1. Changing the interaction model

One important feature of our proposal is that it

allows to reuse objects that implement functional-

ity easily, even if the underlying interaction model

is changed. We illustrate this by means of an ex-

ample in which we reuse class bankAccount in an

environment in which JavaSpaces [45] is the inter-

action model used.
Fig. 8 presents the Java code needed to reuse

class bankAccount so that some accounts are

charged commission. commissionCharger is a busi-

ness object that monitors tuple space commission-
Space. Every time a tuple of the form comission(oid,
p) appears in this space, it fetches the object of class

bankAccount identified by oid and charges it per-

centage p.
This example shows that the basic functionality

in class bankAccount can be reused effectively in



contexts other than transfers as long as it is kept

independent from the underlying interaction

model used.

4.2. Integration with other orthogonal aspects

The language we have designed can be easily

integrated with other aspects as shown in Fig. 9.
The idea is to weave aspects such as intra-object

synchronisation or replication using specific lan-

guages so that the class onto which we apply a

behaviour designed using CAL has already been

woven with the aspects under consideration. For

instance, Fig. 10 shows a COOL specification that

states that no two concurrent threads may be ex-

ecuting method updateBalance simultaneously or

concurrently with method getBalance. We can use

the COOL weaver to merge this specification into

class bankAccount so that the resulting class has

intra-object synchronisation. Similarly, we can use

the AspectJ advices reported in [13] to add repli-

cation capabilities to our class smoothly.
Very little work has been reported in the liter-

ature about dealing with aspects that are not or-

thogonal, i.e., aspects that depend on each other or

conflict each other. Refs. [30,70,82] are amongst

the very few papers on this topic, but they do not

attempt to provide a solid characterisation of

Fig. 8. A business object to charge commissions using JavaSpaces.



non-orthogonal aspects and how they can be dealt

with. They only report on how to deal with some

conflicting aspects using a given technology, and

the authors conclude that integrating such aspects

remains an open research field. In such cases, the
classes that compose the framework can be ex-

tended to deal with such concerns, but this obvi-

ously depends completely on the concern to be

added.

4.3. Empirical results

According to [62,63], AOP and other techniques
can be evaluated by using synthetic experiments.

Next we present our results and main conclusions

from an experimental study we conducted in order

to evaluate our proposal. They prove that it is

feasible, its efficiency compares to handmade im-

plementations, and reduces the development time

significantly.

Our experiments were implemented by several
independent teams composed of three students

each. The students were selected from a four-level

course according to the Personal Software Process

Tests [42,47,55], which implies they were quite

homogeneous. All the students had good pro-

gramming skills using Java technologies, so they

only had to be trained in using our framework and

AspectJ. The programmes were run on a 10 Mbps

Ethernet network in which every object run inde-

pendently from the others on its own computer.

The machines we used were equipped with Pen-

tium 200 MHz processors, 64 MB of RAM
memory, and run Windows NT 4.0, Sun�s JDK

1.2.1, and Orbacus 3.3.2.

Regarding our synthetic experiments, we fo-

cused on several well-known coordination patterns

presented in [44], and the debit-card system pre-

sented in Section 2.2. Table 1 summarises the

patterns we used and the keys by means of which

we refer to them in the following figures.
After training our students, we selected some of

them and divided them into 12 groups of three

students each. They implemented the above-

mentioned coordination patterns, the difference

being that Teams 1–4 used our framework (Group

A), Teams 5–8 used AspectJ and CORBA (Group

B), and the others used standard Java and COR-

BA (Group C).
Fig. 11 reports on the efficiency of the imple-

mentation each group produced. We measured the

average number of interactions per second each

implementation achieved during a run that was

long enough to complete 10,000 interactions; the

figure shows the average efficiency in each group.

This metric is meaningful because the standard

deviation did not exceed 5.4%. The average num-
ber of interactions per second our framework

achieves using the algorithms we outlined in Sec-

tion 3.1 is 163.12, which compares very well to

handmade implementations using AspectJ or

standard Java. The penalty our framework intro-

duces is about 0.62% with respect to AspectJ, and

5.34% with respect to standard Java. This penalty

seems reasonable and compensates for the reduc-

Fig. 9. Weaving orthogonal aspects with CAL.

Fig. 10. An orthogonal aspect that can be woven with a CAL

behaviour.



tion in development time. We evaluated the time

our students took to complete their assignments

and show the results in Fig. 12. As the figures

prove, using the framework amounts to 121.43%

less development time than using AspectJ, and

114.29% less development time than using stan-
dard Java.

From these results, we conclude that using As-

pectJ to solve specific problems in the field of co-

ordination does not entail a significant reduction

of the time needed to develop a project. We think

that the reason is that AspectJ does not provide

programmers with specific constructs to deal with

this aspect, so they have to spend almost the same

time at implementing it than using standard Java.
It is also worth mentioning that the implementa-

tion could not be reused, and that the students

soon began arguing for a specific language able to

deal with coordination.

We followed the guidelines in [63], and also

conducted some �debugging and change� experi-
ments. The first one consisted of seeding each

implementation with an error that the students
had to locate an solve. Each team worked on an

implementation they had not developed to avoid

interferences and simulate that they have to solve a

problem encountered on a programme they have

not developed. As Fig. 13 shows, teams using our

framework could correct the error 44.44% faster

than the teams working with AspectJ and 66.67%

Table 1

Coordination patterns used to test our proposal

Key Description

DCS The debit-card system presented in Section 2.2

LE(n) The Leader Election problem, which is very usual in round-based auctions on the Internet. The number of auctioneers

is given in parenthesis

DF(n) The Dining Philosophers problem, which is the paradigm of those situations in which an object needs to get exclusive

access to several objects simultaneously. The number of philosophers is given in parenthesis

MM The Matrix Multiplication problem, which is a typical example of a task that needs to be divided into several subtasks

on which several workers work loosely coupled until the results need to be aggregated. This is a typical pattern in

systems that need to search for goods or services using several providers [36]

TH The Towers of Hanoy. Although this pattern is not likely to arise in practice, it is a good example of a problem in

which a relatively small number of objects need to interact very frequently using complex coordination patterns. We

used it to test our implementation in an extreme situation

Fig. 11. Performance of our framework.

Fig. 12. Average development time. Fig. 13. Time to correct an error.



faster than the teams working with standard Java.

The experiments were repeated introducing errors

in the semantic protocol, the base class, and the

coordination pattern, and they all concluded in

similar results. Furthermore, we noticed that the
teams that used AspectJ or our framework had less

discussions about the semantics of the base code,

which was expected according to the results re-

ported in [63].

We also measured the time our teams took to

change their code at different levels. In this case,

the teams using AspectJ or our framework did not

took significantly less time than the teams using
standard Java, as shown in Fig. 14. We think that

the reason may be that programmers that use

aspect-oriented technologies tend to think that

changes can be largely dealt with by using the as-

pect language. That is the reason why they did not

take enough time to analyse the code before they

began making changes. Notice that some teams in

Group B outperformed the other teams in some
cases. However, we do not think this difference is

important because the time they took was almost

the same in average. There is not a concluding

reason to explain why those teams excelled at

changing their code.

5. Related work

Coordination is a concern that has attracted the

attention of many researchers in the aspect-orien-

tation arena. It has been dealt with from very

different points of view, so there is a wide variety

of related proposals in the literature. In this sec-

tion, we summarise and compare some of the work

that has been done, and conclude that none of

them has addressed a clear separation between the

interaction model used to get objects in touch and

other aspects.

One of the first proposals that considered co-
ordination as a cross-cutting aspect was COOL

[61]. In COOL, a special construct called coordi-

nator can be associated with each class (one co-

ordinator per class) describing a synchronisation

policy. The coordinator of a class describes the

possible states of the class from the coordina-

tion point of view, how the state changes when

methods of the class are called, and establishes
constraints on how a method call is executed de-

pending on the state.

COOL deviates from our proposal in that it

does only deal with intra-object coordination, i.e.,

protocols that control whether a method call needs

to be delayed until a synchronising condition

holds. Therefore, coordination amongst a number

of objects needs to be coded manually into the
functional code. Furthermore, COOL assumes

that the underlying interaction model is method

call, which makes it difficult to change it.

Formerly, in [46], the authors presented a pro-

posal called language framework for multiobject

coordination (LFMOC). It uses multiobject con-

straints implemented by synchronisers that allow

to describe coordination patterns. 3 Conceptually,
a synchroniser is an object that constraints the

invocations accepted by a set of ordinary objects

that are being constrained. They allow to enforce

temporal ordering constraints and atomicity on

groups of invocations. Consequently, this pro-

posal improves COOL in that it takes coordina-

tion amongst several objects into account and can

also deal with atomicity.
Abstract communication types (ACT) [5] is a

proposal similar to LFMOC. It is based on com-

position filters [4], which are used to design meta-

objects that control how a set of methods in one or

several objects get synchronised. LFMOC and

Fig. 14. Time to make a change.

3 Notice that the authors use the term �interaction� to refer to

coordination, but not the mechanism by means of which two or

more objects can stimulate each other.



ACT are similar in spirit, but differ in that the

language composition filters provides is much

richer than the language LFMOC provides.

However, LFMOC allows to generate low-level

protocols automatically, and they can be custo-

mised according to specific-domain constraints.
Contrarily, low-level protocols must be imple-

mented in composition filters, but they can be

reused later in similar situations.

Our proposal is similar to both LFMOC and

ACT in that it also allows to coordinate groups of

objects without hard-coding low-level protocols

into the functional code. However, it differs in that

semantic protocols in both LFMOC and ACT
need to be hard-wired by means of sequences of

method calls that are synchronised by the mecha-

nisms they provide. Objects are thus dependent on

the interaction model used, which is not easy to

change once an object encapsulates a part of a

semantic protocol.

Another interesting approach can be found in

[74]. The authors present a dynamic aspect-ori-
ented framework (DAOF) which can deal with

different concerns by means of method call adap-

tation. In DAOF, aspects are first-order entities

that can be composed at runtime by using the in-

formation stored in a middleware layer. To deal

with an aspect, it must be encapsulated into a

handmade class and registered in the middleware,

which is responsible for applying them in a given
order each time it intercepts a call to an object.

The proposal is illustrated by means of the coor-

dination aspect, which is very similar to LFMOC

or composition filters. In DAOF the coordination

aspect is implemented by means of an object that

encapsulates a piece of logic that allows to moni-

tor and control the invocations of a method in

an object. However, it is not clear whether the
authors can address multiobject synchronisa-

tion. Contrarily to LFMOC and our proposal,

DAOF does not provide an automatic mecha-

nism to generate low-level protocols automati-

cally.

DAOF is similar in spirit to the aspect moder-

ator framework (AMF) [20,21], which was recently

enhanced and transformed into the layered aspect
moderator framework (LAMF) [64,65]. The

LAMF is an architectural proposal that aims at

decomposing systems into a number of well-

defined layers composed of functional components

and aspectual properties controlled by an aspect

moderator, which is similar in essence to the ob-

jects that implement aspects in DAOF.

Although the layered approach greatly en-
hances decomposition and abstraction, aspects

need to be coded manually and coordination is

not addressed explicitly, although it can be incor-

porated similarly to DAOF. Neither does this

framework achieve a clear separation between

functional code and the underlying interaction

model, which is also assumed to be object-oriented

method calls. In fact, the framework works by
intercepting method invocations at runtime and

deciding which aspects need to be applied before

the method begins executing. Thus, semantic

protocols also need to be hard-coded into the

functional code, whereas low-level protocols

are coded into specific classes and thus kept sep-

arated.

Meta-object protocols (MOP) [81] is a recent
proposal that aims at adding aspects to an object

by using a limited set of reflection capabilities that

allow programmers to modify how an object be-

haves at runtime. The proposal is similar in spirit

to COOL and allows to implement this language

efficiently. However, the aspects that can be inte-

grated at runtime are not limited to synchroni-

sation because they are coded using the same
programming language. Although this proposal

allows to integrate multiple aspects, they need to

be coded manually, and does not allow for aspects

such as coordination because they cross-cut the

boundaries of several classes. The underlying in-

teraction model is also assumed to be object-

oriented method calls.

MOP builds on the spirit to languages such as
MAUD [2], which provide full reflection. How-

ever, full reflective languages have complicated

semantics and may bring unnecessary additional

complexity [5], which argues for more effective

solutions such as MOP. Each object in MAUD,

for instance, has three meta-objects, namely a

dispatcher, a mail queue and acquaintances. The

messages sent and received are handled by the
dispatcher and mail queue objects, respectively.

The acquaintances object contains a list of objects



that may be addressed by its owner. In MAUD,

one can implement coordinated behavior by re-

placing the meta-objects with the objects im-

plementing the required protocol. To install a

protocol for an object, the original mail queue and

dispatcher must be replaced by a pair implement-
ing the required protocol. In MAUD, a shared

protocol amongst objects is implemented by mail

queues and dispatchers. Coordinated behavior is

distributed amongst mail queue and dispatcher

objects which are added to all participating ob-

jects.

In a sense, our proposal resembles MAUD in

that we attach an object called proxy to each user
object. The main difference is that we do not re-

quire the underlying language to be reflective,

which has a direct effect on efficiency, and the se-

mantic protocol is encapsulated in an indepen-

dent business object that can be constructed using

the most appropriate interaction model in each

context. Unfortunately, MAUD objects assume

that the interaction model is message passing, so
that even if the meta-objects are changed, they still

communicate and embed semantic protocols by

means of sequences of messages.

The proposal described in [60] also deserves

some attention. The authors present a solution

called adaptive methods (AM) to deal with cross-

cutting concerns in scenarios in which a set of in-

terrelated objects need to carry out a common
task. It consists of a Java library that allows to

implement traversal strategies [58]. Such strategies

allow to describe high-level cooperations as a high-

level description of how to reach the participants

of a computation, plus a description of what to do

when each participant is reached. Although AM

might seem similar to ours, it is completely dif-

ferent because AM are targeted towards designing
workflow algorithms in which participants are

designed carefully to accomplish a part of the

workflow. No real coordination is needed amongst

a set of distributed objects, just a description of

how to reach each participant and the work it has

to do. As the authors point out, AM can only deal

with a limited class of behavioural concerns and

coordination of objects that run independently
does not seem to be amongst them, except for the

case of workflow coordination.

6. Conclusions

In this paper, we have explored the aspect-ori-

ented paradigm, the multiparty interaction model,

and how programming distributed systems may
benefit from both. Separating computation from

interaction encourages reuse, improves compre-

hension, and eases maintenance and evolution of

software because classes that are purely functional

can be easily reused in contexts in which specific

interaction models are more suited than object-

oriented method calls. We have also shown that

the proposal is feasible, and the efficiency of the
framework we have presented rates comparably to

handmade implementations, but reduces develop-

ment time significantly.

To the best of our knowledge, this piece of work

is novel in that none of the references consulted

aims at separating the underlying interaction

model from other aspects. It is assumed that ob-

jects communicate by means of method calls,
which make them dependent on this interaction

model and makes it difficult to reuse them in

contexts in which other interaction models are best

suited.

OMIM also seems valuable in the context of

MOWS because it allows several objects to inter-

act simultaneously. Although most analysis and

design methods use constructs in which several
objects need to interact simultaneously, very little

support is available in current programming lan-

guages, which makes our framework valuable be-

cause it can be used to reduce the gap between the

constructs such methods provide and their imple-

mentation.
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