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Abstract

At the access to networks, in contrast to the core, distances and feedback delays, as well as link capacities are small,

which has network engineering implications that are investigated in this paper. We consider a single point in the access

network which multiplexes several bursty users. The users adapt their sending rates based on feedback from the access

multiplexer. Important parameters are the user�s peak transmission rate p, which is the access line speed, the user�s
guaranteed minimum rate r, and the bound � on the fraction of lost data.

Two feedback schemes are proposed. In both schemes the users are allowed to send at rate p if the system is relatively

lightly loaded, at rate r during periods of congestion, and at a rate between r and p, in an intermediate region. For both

feedback schemes we present an exact analysis, under the assumption that the users� job sizes and think times have

exponential distributions. We use our techniques to design the schemes jointly with admission control, i.e., the selection

of the number of admissible users, to maximize throughput for given p, r, and �. Next we consider the case in which the

number of users is large. Under a specific scaling, we derive explicit large deviations asymptotics for both models. We

discuss the extension to general distributions of user data and think times.

� 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

In today�s communication networks, design and

control of the network core and access are different,

primarily because of the differences in scale in
bandwidth and distance. Quite often the bottleneck

is the access, rather than the core. This may happen

because the access network is characterized by

relatively low line speeds and the limited ability of

users to buffer and shape traffic (think of the ex-

treme case of a user with a wireless handset). Access

control, supported by the use of feedback, is an

important mechanism to address this problem.
Since distances between users/clients and network

access points are relatively short, feedback delay
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due to propagation is negligible, which contributes

to the efficacy of feedback control. In this paper we

investigate the problems of access control by in-

troducing simple models and techniques for their

evaluation, design and performance optimization.

We make three main contributions. First, we
present two simple models of network access. The

models provide a framework for the joint design of

feedback-based schemes for the adaptation of

source rates and admission control. Second, we

show how to compute the stationary behavior of

the aforementioned feedback queues. We illustrate

the use of these techniques to solve the design

problem. Finally we show how to use the theory of
large deviations to obtain explicit results when the

system and the number of sources is large.

In our model each user alternates between �on�
periods of transmission, and �off� periods or �think

times�. The user model here differs from the fa-

miliar on–off source models, e.g. [2], in that file

sizes (where a file size is the amount of data the

source transmits during an active period) are in-
dependent, identically distributed (i.i.d.) random

variables, but the on periods are not specified a

priori. The on-periods are determined by the

combination of the file sizes and the transmission

rates allocated by the access control scheme, to be

described below, which depend on the interaction

of the multiplexer with the collective behavior of

users. In contrast, the think times are i.i.d. random
variables. The lengths of on periods and the

throughputs of the individual users are key per-

formance quantities to be obtained from an anal-

ysis of the model.

The access line speed (p for each of the users) is

typically small compared to the output rate of the

access multiplexer, and therefore constitutes an

important constraint.
Another model feature is the minimum

throughput rate (r) that is guaranteed to the users.

In a number of applications clients derive zero

utility if the throughput is below a threshold. This

point has been made by Massouli�ee and Roberts

[18] for the case of TCP traffic, in which perfor-

mance collapse may ensue. As soon as the notion

of a minimum guaranteed rate is introduced, ad-
mission control needs to be considered, together

with the calculation of the capacity of the network.

We present two schemes for feedback-based

adaptation of the users� rates. In both schemes

users are allowed to transmit at rate p if the system

is relatively lightly loaded, at rate r during periods

of congestion, and at a rate between r and p, which

is determined by the processor sharing discipline, in
an intermediate region. In our model the feedback

signal from the buffer to the sources is assumed to

arrive with negligible delay, which is reasonable

when the round trip distances are small. In the first

scheme the feedback is based on the number of

active users and whether the queue is empty or not.

The second scheme utilizes a threshold B� on the

buffer content. Depending on whether the buffer
content is less than, greater than, or equal to B�, the

user rate is p, r, or determined by the processor

sharing discipline, respectively. Importantly, the

second scheme does not require knowledge of the

(activity) state of the users, and is simpler to im-

plement on that count. However, the analysis of the

first queue is simpler and our results for it are in

closed form. As discussed below, the combined use
of the threshold and the number of admissible users

in the second model provides a greater facility for

regulating important trade-offs.

We note a feature of the behavior of the models,

which is counter-intuitive. Our analysis shows that

the effect of feedback is to increase the mean time

that the buffer is empty, while simultaneously in-

creasing the throughputs of the users. The expla-
nation of this apparently paradoxical behavior is

that the rates allocated to the users are higher

during the periods that the buffer is empty. Hence

feedback has the effect of reducing the on periods

and consequently the cycle time of each user, and

thereby it increases individual users� throughput

and the system throughput, which is defined as the

sum of the individual users� throughputs.
Next consider the role of the feedback parame-

ter B�, the threshold level in the buffer content in

the second model. By reasoning as above, we infer

that increasing B� has the effect of increasing the

throughput of the users. However, this is at the cost

of increasing the probability of buffer overflow.

Similarly, with all other parameters held fixed, in-

creasing the number of users N has the effect of
increasing both the total system throughput as well

as the probability of buffer overflow. Hence, this
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model allows the study of interesting trade-offs

between several important quantities, including the

individual users� throughput, the system through-

put, the loss probability and the number of users.

By proper design the parameters B� and N can

regulate the trade-off.
There are several possible frameworks in which

the trade-offs may be studied and quantified. We

require that the fraction of source data that is lost

does not exceed a given Quality of Service (QoS)

parameter �. Then we may seek a joint design of

the feedback control scheme and admission con-

trol, i.e., selection of B� and N such that the system

throughput is maximized. The numerical proce-
dure that is developed in this paper allows such

design questions to be addressed. Indeed one of

the highlights of the numerical results that we

present later in the paper is the computed solution

for an instance of the above design problem.

The two proposed feedback schemes both fall

into the category of feedback fluid queues, which

were introduced in [24] as generalizations of the
well-known Markov-modulated fluid models in

[2,15]. In the latter, a fluid buffer receives or depletes

fluid at rate ri (positive or negative) at times when a

background continuous-time Markov chain is in

state i. Typically, stochastic fluid models are char-

acterized by the generator (Q) of the background

process and a diagonal rate matrix (R) which con-

tains all fluid rates ri. In feedback fluid queues most
of the above remains true, except that the behavior

of the background process (i.e. the matrix Q), and

possibly the matrixR as well, depends on the current

buffer content. As a result the background process

is no longer an autonomous Markov process. In

this paper we confine ourselves to feedback fluid

queues in which Q and R are piecewise constant

functions of the buffer content level, see also [25].
Notice the crucial difference with [9], in which there

are also thresholds, like here, but these only affect R,

and not also Q. The analysis of these feedback fluid

queues, based on spectral expansions [2,8,9,15], is

one of the main contributions of this paper.

An intrinsic drawback of the analytical ap-

proach described so far is that it is computationally

intensive. This provides motivation for simpler,
asymptotic approaches to deal with the access

models. In both access models, we study large-

deviations asymptotics for the scaling introduced

by Weiss [28], i.e. the regime in which the number

of users grows large and resources (buffer and

bandwidth) scale proportionally. We derive �expo-

nential approximations�, comparable to those in

[3,4,7] for the ordinary FIFO discipline. Expo-
nential approximations of the first feedback model,

i.e., without the threshold, were obtained earlier by

Ramanan and Weiss [21] for exponential file sizes

and think times. Our major contribution is that

these results are explicit and the computations are

simple. Some of them have nice insensitivity

properties, i.e., depend on the distributions of the

think times and job sizes only through their means.
The role of feedback in packet networks has a

long history, see [26, Chapter 7] for a review. Re-

cently there has been a resurgence of interest,

driven in part by work on explicit congestion no-

tification (ECN) marking schemes by Gibbens and

Kelly [10,11,14], and others. In [20] a feedback

model with feedback delays is considered based on

the marking scheme of [8]. However, the feedback
considered there regulates the marking of packets

to be dropped later on, whereas in our model the

feedback regulates the actual source rate. The

processor sharing discipline has been highlighted

in recent work on QoS delivery by Roberts et al.

[22,23], albeit in the bufferless framework.

The organization of the paper is as follows.

Section 2 deals with the first access model. Section
3 considers the more advanced feedback scheme

that utilizes a threshold. The large deviations as-

ymptotics are described in Section 4. Finally Sec-

tion 5 reports on several numerical examples.

For reasons of space we have had to omit sev-

eral general results, specifically a treatment of

general feedback fluid queues, including finite

buffers and multiple thresholds, and the large de-
viations asymptotics for the feedback model with a

threshold. These results are in [17].

2. Feedback model without threshold

2.1. Model

We model a single aggregation or multiplexing

point in the network. The output trunk speed is C,

M. Mandjes et al. / Computer Networks 41 (2003) 489–504 491



and there are N access links. The peak (or line) rate

of each access link is p. The minimum rate given to

each access user is r. We make the simplifying

modeling assumption that traffic can be considered

to be continuous fluid. For the benefit of the

reader, we note that in fluid models there may be
considerable transfer of fluid, i.e., high through-

put, even during periods when the buffer is empty.

This is because in fluid models, once the buffer is

empty, it remains empty for as long as the total

input rate does not exceed the output capacity.

In this section we describe the scheme without

threshold. When the multiplexer buffer is empty,

the access rate will be determined by dividing
equally the trunk rate between the (small) number

of active users, truncated to p. At the other ex-

treme, when the number of active users exceeds a

critical number, N 00 in this work, then the fair share

of the trunk rate for an active user drops below the

guaranteed rate of r, and the buffer is no longer

empty and its content grows. As long as the buffer

content is positive, each source is assigned the rate
of just r. Clearly, N 00 is the largest integer not ex-

ceeding C=r.
While the buffer is empty and the number of

active users is small, say below a critical number

N 0, then each active user transmits at peak access

rate p. It is easily seen that N 0 is the largest integer

not exceeding C=p. When the number of active

users is between N 0 and N 00, which is the middle
range, and the buffer is empty, then the trunk

speed is shared equally, i.e., the processor sharing

regime holds. Hence, when the buffer is empty

there are two regimes characterized respectively by

the access line speed and the processor sharing

rate. In contrast, when the buffer is not empty,

there is a unique transmission rate, namely r, the

guaranteed minimum.
Table 1 summarizes the feedback protocol. Let

Y ðtÞ denote the number of active sources at time t,
and W ðtÞ the buffer content at time t. In the table

the allocated rate, as well as the sign of the �drift�
of the buffer content are given, as functions of Y ðtÞ
and W ðtÞ.

An important aspect of our model is the be-

havior of the homogeneous sources. Each source
alternates between activity (on) and inactivity (off).

The inactivity periods are independent, exponen-

tially distributed random variables with mean k�1.
Each source transmits a file during its activity

period, whose size (in bits) is independent of ev-

erything else and exponentially distributed with

mean l�1. The length of the induced activity pe-

riod is not given a priori, since this depends on the

rate(s) at which the file is transmitted. An impor-

tant parameter for the QoS is �, which the buffer

overflow probability is required not to exceed.
We follow a conventional approach in inferring

finite-buffer performance from an infinite-buffer

model. Since the long run fraction of time a source

is on, given that the buffer level is large, is

k=ðk þ lrÞ (note that ðlrÞ�1
is the maximum time

to transmit a file of size l�1), the stability condi-

tion of this infinite-buffer model is given by

N
kr

k þ lr
< C: ð1Þ

In practice, there is a need to prevent N from being

too large. One of the objectives of the analysis is to
calculate the capacity of our system, which is the

largest value of N such that the overflow proba-

bility of the queue does not exceed �. In particular,

the number Nrð�Þ of connections admissible as a

function of � and the guaranteed rate r, is an im-

portant design parameter. We return to the cal-

culation of this quantity in Section 5.2.

2.2. Preliminary results

To analyze the model described in Section 2.1,

we first review some results from the model without
feedback. Anick et al. [2] consider the model in

which the sources transmit at a constant rate, say

r, while in the on-state, i.e., the allowable trans-

mission rate does not depend on current occu-

pancy of the system. Detailed results on this model

are available [2,8,15].

Table 1

Allowed user transmission rates (and sign of the buffer drift), as

functions of number of active sources and buffer content

Number of active sources W ðtÞ ¼ 0 W ðtÞ > 0

06 Y ðtÞ6N 0 p ð0Þ r ð�Þ
N 0 < Y ðtÞ6N 00 C=Y ðtÞ ð0Þ r ð�Þ
N 00 < Y ðtÞ6N NA r ðþÞ
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Buffer content distribution. For this case without

feedback we denote the state of the background

process (i.e. the number of sources that are trans-

mitting) and the buffer content process at time t as

X ðtÞ and V ðtÞ respectively. In [2] the stationary

distribution of the content process is given. It is
computed as follows. Clearly X ð�Þ constitutes a

continuous-time Markov chain on the state space

f0; . . . ;Ng. The ði; jÞth element (i 6¼ j) of its gen-

erator Q is given by

Qði; jÞ :¼
ðN � iÞk if j ¼ iþ 1;
irl if j ¼ i� 1;
0 otherwise:

8<
:

The diagonal elements (i ¼ j) are such that the

rowsums are zero. Element ði; jÞ represents the

probability flux of the continuous-time Markov

chain from state i to state j. Define by R the di-

agonal matrix diag fr0; . . . ; rNg with ri the net in-

put rate if there are i sources in the on state, i.e.,

ri ¼ ir � C.
To find the stationary buffer content distribu-

tion, we first define FiðxÞ :¼ PðX ¼ i; V 6 xÞ. It is

not hard to show that the vector Fð�Þ :¼
ðF0ð�Þ; . . . ; FN ð�ÞÞ satisfies F0ðxÞR ¼ FðxÞQ. The

spectral expansion of the solution is given by

FðxÞ ¼
XN
j¼0

ajvj exp½zjx
; ð2Þ

where the aj are coefficients determined later, and

ðzj; vjÞ is an eigenvalue–eigenvector pair, i.e., ob-

tained from zjvjR ¼ vjQ.

The coefficients aj are calculated as follows.
Define D, the set of states with downward drifts, by

all states i such that ir < C, and U , the set of states

with upward drifts, by all other states. Assume that

there is no state i such that ir ¼ C. Let QDD, QDU ,

QUD, QUU be the submatrices that are obtained by

partitioning Q. The vector FDðxÞ consists of the

FiðxÞ with i 2 D; FUðxÞ is defined analogously. It is

easily seen that aj ¼ 0 if ReðzjÞ > 0, as the distri-
bution should range between 0 and 1. The re-

maining aj follow from FU ð0Þ ¼ 0. It turns out that

there are just as many unknowns as equations.

Clearly, PðV 6 xÞ ¼
P

i FiðxÞ.
Idle and busy periods. Elwalid and Mitra [8] give

explicit expressions for a number of quantities that

are related to the busy and idle periods of the

queue. A busy period is defined as a period in

which the buffer content is positive, whereas an

idle period is a period in which the buffer is empty.

It is easily seen that at the beginning of a busy

period the number of sources in the on-state is
equal to N 00 þ 1; at the end of the busy period the

number of sources in the on state is in D. The

lengths of consecutive busy and idle periods are

independent.

Denote by P the distribution at the end of the

busy period. Then it is not hard to prove that

P ¼ 1

hFDð0ÞQDD; 1i
FDð0ÞQDD; ð3Þ

see Eq. (5.9) of [8]; h�; �i denotes the inner product

of two vectors. The mean idle period EI is given by

EI ¼ �
P

i2D Fið0Þ
hFDð0ÞQDD; 1i

:

Finally, the mean busy period EB can be calculated

using
P

i2D Fið0Þ ¼ EI=ðEI þ EBÞ:

EB ¼ EI
1 �

P
i2D Fið0ÞP

i2D Fið0Þ
: ð4Þ

2.3. Analysis

The model analyzed in this section has been de-

scribed in Section 2.1. Recall that Y ðtÞ 2 f0; . . . ;Ng
denotes the number of sources that are transmitting

at time t in the feedback model of Section 2.1.

Notice that this does not constitute a Markov
chain, unlike X ðtÞ in Section 2.2. This is because the

sojourn times and transition probabilities depend

on the amount of fluid stored in the buffer. How-

ever, as long as the buffer is empty, Y ðtÞ behaves as a

continuous-time Markov chain.

Denote the stationary buffer content distribu-

tion in the feedback model by PðW < xÞ. A busy

period in this model is distributed as the random
variable B0, and an idle period as I 0. The sequence

of busy periods is i.i.d., and so is the sequence of

idle periods, as can be seen easily. The distribution

of Y ðtÞ at the end of the busy period is denoted by

(the vector) P 0. The next lemma links B0 and P 0 to

the corresponding quantities in the model without

feedback.
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Lemma 2.1. Busy periods B and B0 have the same
distribution. Also, the distributions P and P 0 are
identical.

Proof. Both in the models with (Section 2.1) and
without (Section 2.2) feedback, during busy peri-

ods on-periods terminate at a rate irl when there

are i sources in their on-state. In both models the

busy period starts when there are N 00 þ 1 ¼ dC=re
sources transmitting. Hence, the buffer dynamics

in both models have the same probabilistic prop-

erties during a busy period. This immediately im-

plies both assertions. �

Corollary 2.2. With the same argument as in the
proof of the previous lemma, we find

PðW 6 xjW > 0Þ ¼ PðV 6 xjV > 0Þ; x > 0:

This immediately implies that

PðW 6 xÞ ¼ PðV 6 xjV > 0ÞPðW > 0Þ þ PðW ¼ 0Þ

¼
P

i FiðxÞ �
P

i Fið0Þ
1 �

P
i Fið0Þ

PðW > 0Þ þ PðW ¼ 0Þ:

As PðW ¼ 0Þ ¼ 1 � PðW > 0Þ, the only quantity

that is left to compute is the probability of an

empty buffer in our feedback model. This is given

by

PðW ¼ 0Þ ¼ EI 0

EI 0 þ EB0 ¼
EI 0

EI 0 þ EB
;

applying Lemma 2.1. As we know EB from Section

2.2, we only have to find EI 0. This will be done in

the next lemma, but first we introduce some re-

quired notation.

Q0
DD is a square matrix of dimension N 00 þ 1.

For i 6¼ j:

Q0
DDði; jÞ :¼

ðN � iÞk if j ¼ iþ 1;
ipl if j ¼ i� 1;
0 otherwise;

8<
:

if i6N 0, and

Q0
DDði; jÞ :¼

ðN � iÞk if j ¼ iþ 1;
Cl if j ¼ i� 1;
0 otherwise;

8<
:

if i is between N 0 þ 1 and N 00. The diagonal ele-

ments are such that the rowsums are zero, except

for Q0
DDðN 00;N 00Þ, which equals �Cl � ðN � N 00Þk.

Notice that, as long as the buffer is empty, Y ðtÞ is a

Markov chain which obeys the transition rates of

Q0
DD.

Lemma 2.3. With P is defined in (3), the mean idle
time in the feedback-based model is given by

EI 0 ¼ h�PðQ0
DDÞ

�1
; 1i: ð5Þ

Proof. This follows directly from standard results

of mean passage times [13]. It says that the mean

time spent by Y ðtÞ in j before the set D is left, given

that the process starts in i, is given by the ði; jÞ
entry of �ðQ0

DDÞ
�1
:

Then the reasoning is analogous to Eqs. (5.11)

and (5.14) of [8], as follows. The vector �PðQ0
DDÞ

�1

gives the mean time spent in all states in D during

an idle period of the buffer, applying Lemma 2.1.

The sum of its entries is the mean length of the idle

period. �

We arrive at the following result for the buffer

content distribution in the feedback-based model.

A similar proportionality result was found, al-
though not explicitly mentioned, in Adan et al. [1],

where another feedback fluid queue is analyzed

that has two types of behavior, depending on

whether the buffer is empty or not.

Theorem 2.4. In the feedback-based model, the
stationary buffer content distribution is given by

PðW 6 xÞ ¼
P

i FiðxÞ �
P

i Fið0Þ
1 �

P
i Fið0Þ

EB
EI 0 þ EB

þ EI 0

EI 0 þ EB
;

where the vector FðxÞ is given by (2), EB by (4), and
EI 0 by (5). Equivalently,

PðW > xÞ ¼ PðV > xÞ EI þ EB
EI 0 þ EB

:

An important interpretation of the above the-

orem is the following: the gain with respect to the

model without feedback (where the sources always

send at rate r when active) is expressed by the term

EI þ EB
EI 0 þ EB

6 1: ð6Þ
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The fact that this ratio is less than 1 is due to the

fact that EI 0 P EI , which can be understood as

follows. Clearly, I 0 can be interpreted as a first

entrance time in the birth–death process with

generator Q0
DD, namely as the first entrance time to

state N 00 þ 1, starting from a state i6N 00 that is

drawn from the distribution P 0. Similarly I is the

corresponding entrance time in the birth–death

process with generator Q, due to the fact that

P ¼ P 0. Since the death rates in Q0
DD are larger than

those in Q, while the birth rates are equal, it fol-

lows that EI 0 P EI .
In many situations, particularly when the

number of sources is large, EB will be much

smaller than EI and EI 0. In that case (6) is well

approximated by EI � ðEI 0Þ�1
. That is, the ratio of

mean idle times of the buffer in the models without

and with feedback effectively quantifies the per-

formance gain from feedback.

3. Feedback model with threshold

3.1. Model

In this section we consider a generalization of

the feedback model presented in Section 2.1. As

before, Y ðtÞ is the number of active users at time t
(with state space f0; . . . ;Ng) and W ðtÞ is the buffer

content at time t. We now introduce a threshold

level B� > 0 such that the sources are allowed to

send at peak rate p as long as W ðtÞ < B�. When

W ðtÞ > B� the sources are allowed to transmit data
only at the guaranteed rate r. When W ðtÞ ¼ B� the

processor sharing policy applies. In that case the

buffer content process will �stick� at level B� for as

long as the number of active users lies in the set

N 0 þ 1; . . . ;N 00. The algorithm is summarized in

Table 2. Notice that the model described in Sec-

tion 2.1 is a limiting case of this model, as it is

obtained by letting B� # 0. We will describe the

exact solution of the stationary buffer content

distribution.

Notice that the stability condition for this

model is the same as (1). Define the matrix QðrÞ to

be Q (as defined in Section 2.2); generator QðpÞ is
also defined as Q, but with rate r replaced by rate

p. Finally, Qð�Þ is similarly defined, but now

Qði; i� 1Þ ¼ Cl. The idea is that Y ðtÞ behaves like

a Markov chain with generator QðpÞ, Qð�Þ, QðrÞ,

whenever the buffer content process W ðtÞ is re-

spectively below, at, or above level B�. Further-

more RðrÞ is defined as in Section 2.2, i.e. as a

diagonal matrix of dimension N þ 1, its ith diag-
onal element being given by ir � C. RðpÞ is similarly

defined, except that its ith diagonal element is

given by ip � C. The entries in these matrices are

the net fluid rates into the buffer for the guaran-

teed rate (W ðtÞ > B�) and peak rate (W ðtÞ < B�)

regimes respectively.

3.2. Analysis

Our purpose is to find the joint distribution

GiðxÞ defined as

GiðxÞ ¼ lim
t!1

PðY ðtÞ ¼ i;W ðtÞ6 xÞ:

To do this we determine the Kolmogorov forward

equations for

GðpÞ
i ðt; xÞ :¼ PðY ðtÞ ¼ i;W ðtÞ6 xÞ; 06 x < B�;

GðrÞ
i ðt; xÞ :¼ PðY ðtÞ ¼ i;W ðtÞ6 xÞ; xPB�:

For x < B� we have that

GðpÞ
i ðt þ h; xÞ ¼ ð1 � hðqðpÞi;i�1 þ qðpÞi;iþ1ÞÞG

ðpÞ
i ðt; x� hrðpÞi Þ

þ hqðpÞi�1;iG
ðpÞ
i�1ðt; xÞ

þ hqðpÞiþ1;iG
ðpÞ
iþ1ðt; xÞ þ OðhÞ;

cf. [2]. By taking h # 0 we find, in matrix form,

Table 2

Allowed user transmission rates (and sign of the buffer drift), as functions of number of active sources and buffer content

Number of active sources W ðtÞ < B� W ðtÞ ¼ B� W ðtÞ > B�

06 Y ðtÞ6N 0 p ð�Þ NA r ð�Þ
N 0 < Y ðtÞ6N 00 p ðþÞ C=Y ðtÞ ð0Þ r ð�Þ
N 00 < Y ðtÞ6N p ðþÞ NA r ðþÞ
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o

ot
GðpÞðt; xÞ þ o

ox
GðpÞðt; xÞRðpÞ ¼ GðpÞðt; xÞQðpÞ;

where GðpÞðt; xÞ is an N -dimensional row vector.

However, for x > B� the Kolmogorov equations

take a less simple form. With GðpÞ
i ðt;B��Þ :¼

limx"B� GðpÞ
i ðt; xÞ, we find that

GðrÞ
i ðt þ h; xÞ ¼ GðrÞ

i ðt; x� hrðrÞi Þ � hðqðrÞi;i�1 þ qðrÞi;iþ1Þ
� ðGðrÞ

i ðt; x� hrðrÞi Þ � GðrÞ
i ðt;B�ÞÞ

� hðqð�Þi;i�1 þ qð�Þi;iþ1Þ
� ðGðrÞ

i ðt;B�Þ � GðpÞ
i ðt;B��ÞÞ

� hðqðpÞi;i�1 þ qðpÞi;iþ1ÞG
ðpÞ
i ðt;B��Þ

þ hqðrÞi�1;iðG
ðrÞ
i�1ðt; xÞ � GðrÞ

i�1ðt;B�ÞÞ
þ hqðrÞiþ1;iðG

ðrÞ
iþ1ðt; xÞ � GðrÞ

iþ1ðt;B�ÞÞ
þ hqð�Þi�1;iðG

ðrÞ
i�1ðt;B�Þ � GðpÞ

i�1ðt;B��ÞÞ
þ hqð�Þiþ1;iðG

ðrÞ
iþ1ðt;B�Þ � GðpÞ

iþ1ðt;B��ÞÞ
þ hqðpÞi�1;iG

ðpÞ
i�1ðt;B��Þ

þ hqðpÞiþ1;iG
ðpÞ
iþ1ðt;B��Þ þ OðhÞ:

After letting h ! 0, this leads to

o

ot
GðrÞðt; xÞ þ o

ox
GðrÞðt; xÞRðrÞ

¼ ðGðrÞðt; xÞ �GðrÞðt;B�ÞÞQðrÞ

þ ðGðrÞðt;B�Þ �GðpÞðt;B��ÞÞQð�Þ

þGðpÞðt;B��ÞQðpÞ:

Assuming stationarity, we now set GðrÞ
i ðt; xÞ �

GðrÞ
i ðxÞ and GðpÞ

i ðt; xÞ � GðpÞ
i ðxÞ for i ¼ 0; . . . ;N , and

take all derivatives with respect to t equal to 0.

In matrix form,

d

dx
GðpÞðxÞRðpÞ ¼ GðpÞðxÞQðpÞ; ð7Þ

and

d

dx
GðrÞðxÞRðrÞ ¼ ðGðrÞðxÞ �GðrÞðB�ÞÞQðrÞ

þ ðGðrÞðB�Þ �GðpÞðB��ÞÞQð�Þ

þGðpÞðB��ÞQðpÞ: ð8Þ
Solving (7) is immediate and leads to

GðpÞðxÞ ¼
XN
j¼0

aðpÞj v
ðpÞ
j exp½zðpÞj x
; ð9Þ

where ðzðpÞj ; v
ðpÞ
j Þ is an eigenvalue–eigenvector pair

of zðpÞj v
ðpÞ
j RðpÞ ¼ v

ðpÞ
j QðpÞ, and the aðpÞj are coefficients.

The solution of (8) can be found as follows. To

deal with the inhomogeneous terms we first dif-

ferentiate with respect to x, so that we find ho-
mogeneous equations for

gðrÞðxÞ � d

dx
GðrÞðxÞ:

We write down the solution for the resulting
system of equations using the spectral method.

In the case that all eigenvalues are different, we

find the solution to the differentiated system to be

of the form

gðrÞðxÞ ¼
XN
j¼1

~aaðrÞj v
ðrÞ
j exp½zðrÞj x
;

where ðzðrÞj ; v
ðrÞ
j Þ is an eigenvalue–eigenvector pair

of zðrÞj v
ðrÞ
j RðrÞ ¼ v

ðrÞ
j QðrÞ, and the ~aaðrÞj are coefficients.

As QðrÞ is a generator, it has an eigenvalue 0, and

hence one of the eigenvalues zðrÞj is zero, say

zðrÞj� ¼ 0, cf. [19]. With this in mind integration
immediately yields that

GðrÞðxÞ ¼
X
j 6¼j�

aðrÞj v
ðrÞ
j exp½zðrÞj x
 þ aðrÞj� v

ðrÞ
j� xþ w; ð10Þ

where aðrÞj ¼ ~aaðrÞj =zðrÞj for j 6¼ j�, a
ðrÞ
j� ¼ ~aaðrÞj� , and the

components wi of w are integration constants.

Now the vectors aðpÞ, aðrÞ, and w can be found by

considering the following boundary conditions:

ii(i) GðpÞ
i ð0Þ ¼ 0 for all iPN 0 þ 1 (i.e., the buffer

cannot be empty when it fills), leading to N�
N 0 equations.

i(ii) Similarly, GðpÞ
i ðB��Þ ¼ GðrÞ

i ðB�Þ for all i 2
fN 0 þ 1; . . . ;N 0g: This gives N þ N 0 � N 00 þ 1

equations.

(iii) For all zðrÞj with a non-negative real part, the

corresponding aðrÞj is zero, since the GðrÞ
i ðxÞ

should remain bounded for x ! 1. There
are N 00 þ 1 such eigenvalues [19]. Notice that

this also entails that the equilibrium distribu-

tion of Y ðtÞ is given by w.

(iv) By letting x ! 1 in (8), setting the left-hand

side equal to zero, we find the N þ 1 global

balance equations for w ¼ limx!1G
ðrÞðxÞ.

What we do here in fact, is to substitute the

integrated solution (10) back into the inhomo-
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geneous (undifferentiated) equations (8) to

find the integration constants. From the glo-

bal balance equations we can derive the N
local balance equations for i 2 f1; . . . ;Ng;

ðN � iþ 1Þkwi�1 ¼ irlðwi �GðrÞ
i ðB�ÞÞ

þ ClðGðrÞ
i ðB�Þ �GðpÞ

i ðB��ÞÞ
þ iplGðpÞ

i ðB��Þ:

i(v) Finally we normalize:
PN

i¼0 wi ¼ 1.

Noticing that there are just as many boundary

conditions as coefficients (namely 3N þ 3), we
conclude that the system is solvable. We have

proved:

Theorem 3.1. The above procedure gives the exact
solution to the buffer content distribution.

The above solution enables the computation of

several key quantities. Denoting the throughput
per user by s, it is straightforward to obtain that

Ns ¼
XN
i¼0

ipGðpÞ
i ðB��Þ

þ
XN 00

i¼N 0þ1

CðGðrÞ
i ðB�Þ � GðpÞ

i ðB��ÞÞ

þ
XN
i¼0

irðwi � GðrÞ
i ðB�ÞÞ:

The mean file transfer delay ET is found from

s ¼ 1=l
ET þ 1=k

: ð11Þ

4. Many sources

The intrinsic drawback of the technique of the

previous sections is its computational complexity.

When the size of the system (i.e., the number of

sources) grows, a large eigensystem needs to be

solved. This explains the interest in simpler as-
ymptotic approaches. In this section we will focus

on the so-called �many-sources scaling�, which was

introduced by Weiss [28]. In this regime, we derive

explicit results on the overflow probability.

In the many-sources scaling, buffer and band-

width resources are scaled by the number of users

N . In other words, if we scale C � Nc, the expo-

nential decay rate of PðW PNxÞ can be deter-

mined explicitly in terms of x and model

parameters r, p, k, l, and c. Because W is now

implicitly parametrized by N , we write WN . The

random variable VN is defined as the buffer content
in the corresponding model without feedback (as

in Section 2.2).

4.1. Feedback model without threshold

Asymptotics. First we estimate the average be-

havior of the number of active sources in the as-

ymptotic limit (large N ). It is not hard to show that
there are two regimes.

(A) In the first regime kp=ðk þ lpÞ < c, cf. (1). In

this case, in the asymptotic limit, on average

the sources are allowed to transmit at peak

rate; the buffer will be empty nearly always.

The number of active sources on average will

be Nm, with m :¼ k=ðk þ lpÞ.
(B) In the second regime, c is between kr=ðk þ lrÞ

and kp=ðk þ lpÞ. In this case, the network will

in general be in the processor sharing regime.

The average number of active users simulta-

neously in the system is Nm with

m :¼ 1 � lc � k�1. The sources are allowed to

transmit at a rate m0 between r and p, where

m0 :¼ c=m ¼ kc=ðk � lcÞ.

The following lemma gives the decay rate of the

probability of a non-empty buffer in each of the

regimes. A similar result can be found in Ramanan

and Weiss [21].

Lemma 4.1. The decay rate of the probability of a
non-empty buffer is given by

lim
N!1

1

N
logPðWN > 0Þ ¼ Ið0Þ:

When kp=ðk þ lpÞ < c (regime (A)), Ið0Þ is given by

Ið0Þ ¼ 1
�

� c
r

�
log

1 � c=r
cl=k

� 	

þ log
cðk þ plÞ

pk

� 	
þ c

r
� c
p

and when kr=ðk þ lrÞ < c6 kp=ðk þ lpÞ (regime
(B)), Ið0Þ is given by
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Ið0Þ ¼ 1
�

� c
r

�
log

1 � c=r
cl=k

� 	
þ cl

k
� 1
�

� c
r

�
:

Proof. Directly from Theorem 11.15 of [27], the

decay rate of the probability of a non-empty buffer

equalsZ c=r

m
log

lxx
kð1 � xÞ

� 	
dx:

Here lx is the (downward) probability flux per

source, when the number of sources in the on state

is Nx:

lx :¼
pl if xp < c;
cl � x�1 otherwise:

�

Direct calculation yields the stated expression. �

Define AðtÞ as the amount of fluid generated in

the interval ½0; tÞ by one source with off-periods
that are i.i.d. Exp(k) random variables, and

on-periods that are i.i.d. Exp(rl), and constant

generation rate r. Let E0 (E1, respectively) denote

expectation given that the source start in the off

(on) state at time 0.

Proposition 4.2. The decay rate for positive buffer
content values is given by

lim
N!1

1

N
logPðWN > NxÞ ¼: IðxÞ ¼ JðxÞ þ Ið0Þ;

with

JðxÞ ¼ inf
t>0

sup
h

hðx
�

þ ctÞ � c
r

log E1 ehAðtÞ

� 1
�

� c
r

�
log E0 ehAðtÞ

�
: ð12Þ

Proof. Evidently,

PðWN > NxÞ ¼ PðWN > NxjWN > 0ÞPðWN > 0Þ:
As shown in Section 2.3,

PðWN > NxjWN > 0Þ ¼ PðVN > NxjVN > 0Þ:
Immediately from Theorem 1 of [6], we have

lim
N!1

1

N
logPðVN > NxjVN > 0Þ ¼ JðxÞ:

Together with Lemma 4.1 this proves the

stated. �

The variational problem in (12) cannot be

solved analytically; numerical methods have to be

applied. Fortunately, for large x asymptotics are

available.

Simple approximations for large buffers. Let hH

satisfy the equation limt!1 t�1 log EehAðtÞ ¼ ch.
Define, for i ¼ 0, 1,

ai :¼ lim
t!1

log Ei e
hHAðtÞ � chHt:

In [6] it is proven that, for x ! 1,

JðxÞ ¼ hHx� c
r
a1 � 1

�
� c

r

�
a0 þ OðxÞ:

Following the Chernoff dominant eigenvalue
method of [7], we propose an even simpler ap-

proximation:

lim
N!1

1

N
logPðWN > NxÞ � hHxþ Ið0Þ: ð13Þ

Here hH ¼ rl=ðr � cÞ � k=c, and Ið0Þ is given in

Lemma 4.1. In [7] it is shown that this approxi-
mation is conservative for all x (in fact it is the best

possible linear estimate that is conservative for all

x). Notice that the analysis of [7] requires the

sources to be time-reversible, which condition is

trivially met for exponentially distributed file sizes

and user think times. In [7] it is concluded that the

approximation is usually not overly conservative.

General think-time and file-size distributions for
large buffers. The nature of approximation (13) is,

for large x,

PðVN > NxÞ � PðVN > 0Þe�hHNx: ð14Þ
We may follow the same approach in case of

general (rather than exponentially distributed)

think-time and file-size distributions. The ques-
tions then are: how to compute the counterparts of

the probability of a non-empty buffer PðVN > 0Þ
and the exponential decay rate hH?

The probability of a non-empty buffer is com-

puted as follows. As long as the buffer is empty,

the process behaves like an infinite-server queue if

the number of jobs is below N 0, and like a pro-

cessor sharing queue if the number of jobs is be-
tween N 0 and N 00 þ 1: Let DN be the number of jobs

in the system. It is easily verified that in the case of

exponential think-times and file-sizes, the blocking

probability (i.e., the probability of DN ¼ N 00 þ 1)

equals
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1

Norm

l
k

� �N 00þ1

rN
00�N 0þ1pN

0
� �N 0!ðN � N 00 � 1Þ!

N !
;

ð15Þ

where the normalizing constant Norm is given by

Norm ¼
XN 0

j¼0

l
k

� �j
ðpjÞ ðN � jÞ!

N !

þ
XN 00þ1

j¼N 0þ1

l
k

� �j
ðrj�N 0

pN
0 ÞN

0!ðN � jÞ!
N !

:

It is tedious but straightforward to verify that the
decay rate of (15) is indeed Ið0Þ; as was defined in

Lemma 4.1.

Importantly, formula (15) also holds in the case

of general think-time and file-size distributions,

with respective means k�1 and l�1: This is due to

insensitivity results for networks of generalized

processor sharing queues, as was shown by Cohen

[5].
We now focus on the exponential decay rate hH.

Let T be the distribution of the think-time and F
the distribution of the file-size. During busy peri-

ods, the buffer is fed by a superposition of N on–

off sources with off-times distributed like T , and

on-times distributed like F =r (with peak rate r).
Let AðtÞ be the amount of traffic generated by such

a source, in steady state, in an interval of length t.
Then (under mild technical conditions) the expo-

nential decay rate in this model is the solution of

lim
t!1

1

t
log EehAðtÞ ¼ ch; ð16Þ

see Glynn and Whitt [12]. Eq. (16) does not nec-

essarily have a solution. In case of heavy-tailed on-

times there is no solution––approximation (14)
does not apply.

General think-time and file-size distributions for
small buffers. Above we concentrated on loss be-

havior under general think-time (with mean 1=k)

and file-size distributions (with mean 1=l), and

large buffers. For small buffers a result from

Mandjes and Kim [16] is applicable: for x # 0,

lim
N!1

1

N
logPðWN > NxÞ ¼ 2r

r

ffiffiffi
x

p
þ Ið0Þ þ OðxÞ;

with constant r given by

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcrl þ ðr � cÞkÞ log

crl
ðr � cÞk

� 	
� 2ðcrl � ðr � cÞkÞ

s
:

Strikingly, r depends on the distributions of the

think times and file sizes only through their means,

making this an insensitivity result.

4.2. Feedback model with threshold

As before, we scale the resources buffer and
bandwidth: C � Nc, and B� � Nb�. Again, this

regime allows explicit results, which we describe

below.

As in Section 4.1, it turns out that there are two

possible regimes: (A) the buffer is empty with an

overwhelming probability and the active sources

transmit at rate p almost all the time, and (B) the

buffer occupancy is approximately nb� on average,
and the active sources send at a rate between r and p.

(A) pðpÞp < c, where pðpÞ is the on-probability in

the �peak rate regime�: kðk þ plÞ�1
. In this

case the �average state� of the system is a

(nearly) empty buffer, and the active sources

transmit at peak rate. In order for the buffer

to exceed level Nx, where x exceeds b�, four
events have to occur in order: (1) The buffer

must become non-empty, i.e., the number of

sources in the on-state must exceed Nc=p. (2)

Given that the buffer content is at the point

of becoming positive, an amount of Nb� of

fluid has to accumulate. At the epoch the buf-

fer content reaches Nb�, let the number of

sources transmitting be Na. (3) If a is smaller
than c=r, then the number of sources in the

on-state has to grow to Nc=r, in order for

the buffer to exceed level Nb�. If a is already

at least c=r then in this phase nothing has to

happen. Let Na0 be the number of sources in

the on-state at the end of this phase. (4) An

amount of Nðx� b�Þ of fluid has to accumu-

late in the buffer, where at the beginning of
this phase the number of sources transmitting

is Na0. This makes the decay rate be the sum

of four decay rates:

lim
N!1

1

N
logPðWN > NxÞ �

X4

i¼1

Ii: ð17Þ
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Notice that this construction (the decay rate

of a steady-state probability being formulated

as the solution of a transient problem, namely

the decay rate of the path from equilibrium

towards the rare event) is essentially of the
Freidlin–Wentzell type. Details on this ap-

proach are found in [27, Chapter 6]. In [17]

explicit expressions for the four decay rates

are given, in terms of the model parameters r,
p, c, k, and l.

(B) pðrÞr < c6 pðpÞp. In this case the �average state�
of the system is a buffer occupancy of Nb�, and

all active sources sending at rate m0 ¼
ck=ðk � clÞ. In equilibrium, the system is op-

erating in the processor sharing regime.

Clearly, the first two decay rates of case A

do not apply anymore, as the queue is already

operating at level nb� on average. Hence, only

the other two decay rates have to be com-

puted. Again [17] provides the explicit expres-

sions.

5. Numerical results

In this section we provide numerical results. We

first consider an example where we maximize the

system throughput, using the procedure of Section

3. The second example relies on the many sources
asymptotics of Section 4.

5.1. System throughput maximization

We consider a buffer that is fed by 10 identical

and independent on–off sources. Let Y ðtÞ denote

the number of active sources at time t; we choose

the process Y ð�Þ as the regulating process. As be-
fore, W ðtÞ will denote the buffer content at time t.
The output trunk speed is C ¼ 11. The off-times of

the sources are exponentially distributed with

k ¼ 3. File sizes are exponentially distributed with

l ¼ 2. The peak transmission rate of the sources

p ¼ 4, which is the actual transmission rate when

the buffer content is below B� ¼ 2, and the rate

drops to its minimum value r ¼ 2 when the content
is above B�. Notice that the buffer content may

stick at B� for as long as 3, 4, or 5 sources are

active; then the total actual transmission rate is 11,

i.e., the output trunk speed, equally shared among

the active sources. As a consequence the transition

intensity of the process Y ð�Þ from state i to i� 1,

given that the buffer process remains at 2, is equal

to i � 2C=i ¼ 22. These considerations allow us to

write down the diagonal matrices RðpÞ and RðrÞ, as
well as the tri-diagonal matrices QðpÞ, QðrÞ and Qð�Þ.

After the numerical determination of the

eigensystems of the matrices QðpÞðRðpÞÞ�1
and

QðrÞðRðrÞÞ�1
, we apply the appropriate boundary

conditions to find the 33 unknowns (note that

N ¼ 10). After solving this (linear) set of equa-

tions, the stationary distribution G of the joint

process (Y ðtÞ, W ðtÞ) can be found numerically. A
graphical representation of GðyÞ � PðW 6 yÞ ¼P10

i¼0 GiðyÞ is given in Fig. 1. The throughput s
of the system can be found as

s ¼
X10

j¼0

jrðpj � GðrÞ
j ðB�ÞÞ þ jpGðpÞ

j ðB��Þ

þ CðGðrÞ
j ðB�Þ � GðpÞ

j ðB��ÞÞ ¼ 10:2652: ð18Þ

Finite-buffer model. The corresponding finite-buf-

fer system can be solved similarly [17]. We did the

calculations for B ¼ 5, leaving all other parameters
the same. Clearly, now the size of the �jump� that

GðyÞ has at y ¼ 5 is exactly the (time average)

probability of a full buffer:

PðW ¼ BÞ ¼ 1 �
X10

j¼0

GðrÞ
j ðBÞ ¼ 2:01 � 10�4:

Fig. 1. B ¼ 1: log10 ð1 � GðyÞÞ as a function of y.
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It is also not difficult to find the average amount of

fluid sent into the buffer per unit of time, or fluid

input rate sH:

sH ¼
X10

j¼0

jrðpj � GðrÞ
j ðB�ÞÞ þ jpGðpÞ

j ðB��Þ

þ CðGðrÞ
j ðB�Þ � GðpÞ

j ðB��ÞÞ ¼ 10:2656; ð19Þ

and the average amount of fluid sent over the link
per unit of time, or throughput, as

s ¼
X10

j¼0

Cðpj � GðpÞ
j ð0ÞÞ þ jpGðpÞ

j ð0Þ

¼ 10:2651: ð20Þ

Notice that the numerical outcomes for these

quantities are close to each other and to (18),

which can be explained by the fact that we chose

the (finite) size of the buffer quite large. Indeed by

subtracting (20) from (19) we immediately find

that the average amount of lost fluid per unit of

time, or fluid loss rate,

Fluid loss rate ¼ sH � s ¼ 5:83 � 10�4; ð21Þ
is small. Another way to find this result is to use

Fluid loss rate ¼
X10

j¼0

ðjr � CÞðpj � GðrÞ
j ðBÞÞ: ð22Þ

The fraction of fluid that is lost can be found as the

ratio of the fluid loss rate (21) and the fluid input

rate (19):

Fraction of fluid lost ¼ Fluid loss rate

Fluid input rate

¼ 5:67 � 10�5: ð23Þ

Fig. 2. Throughput as a function of threshold B� for

N ¼ 7 ðbottomÞ; . . . ; 12 ðtopÞ.
Fig. 3. log10 (loss fraction) as a function of threshold B� for

N ¼ 7 ðbottomÞ; . . . ; 12 ðtopÞ.
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Maximization of system throughput. As a final

application we show how the threshold level B�

and the number of sources N may be jointly cho-

sen such that the system throughput is maximized,

with the fraction of lost fluid not to exceed
� ¼ 10�6. The other parameters are as before. In

Figs. 2 and 3 we plot the throughput and the loss

fraction as functions of the threshold level for

N ¼ 7; . . . ; 12. From Fig. 3 it can be seen that only

for N 6 9 the loss fraction criterion can be satisfied

for some value of B�. From Fig. 2 we compare the

corresponding throughputs for these pairs of

ðN ;B�Þ. It turns out that the system throughput is
maximized by choosing N ¼ 9 and B� ¼ 2:05,

giving a throughput of 9:5725. This also allows us

to compute the mean file transfer time, see (11):

solve ET from

9:5725

9
¼ 0:5000

ET þ 0:3333
;

giving ET ¼ 0:1368. During the active period a

source�s throughput is 0:5000=0:1368 ¼ 3:6526,

which is between r ¼ 2 and p ¼ 4.

5.2. Impact of the choice of the guaranteed rate r

The purpose of this subsection is to provide an

illustration of the effect of the feedback mecha-

nisms proposed in a more practical situation. For
reasons of convenience, we assume that the num-

ber of sources is sufficiently large to use the ap-

proximations of Section 4. We consider a 45 Mbit/

s link, with a buffer of 10 Mbit. The sources have

peak rates of 3 Mbit/s. The users alternately send

files (exponentially distributed with mean 100 kbit)

and �think� (for an exponentially distributed time

with mean 10 s). We again require that the loss
probability is below � ¼ 10�6. We focus on the

impact of r, the guaranteed minimum throughput

advertised to customers, because this is an im-

portant parameter.

Clearly, for a fixed value of B� (possibly 0), the

loss probability increases with r. On the other

hand, the number of admissible sources Nr de-

creases in r, for fixed loss probability. In Fig. 4, Nr

is given as a function of r, for different values of B�

(B� ¼ 0; 2; . . . ; 8 Mbit). We observe that for low

Fig. 4. Number of admissible sources as a function of the guaranteed rate r.
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values of r, Nr is quite sensitive to the threshold

value B�; the opposite is true for r in the neigh-

borhood of p.
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