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Abstract

This paper analyzes a communication network, used by customers with heterogeneous service requirements. We

investigate priority queueing as a way to establish service differentiation. It is assumed that there is an infinite popu-

lation of customers, who join the network as long as their utility (which is a function of the queueing delay) is larger

than the price of the service. We focus on the specific situation with two types of users: one type is delay-sensitive

(�voice�), whereas the other is delay-tolerant (�data�); these preferences are reflected in their utility curves. Two models

are considered: in the first the network determines the priority class of the users, whereas the second model leaves this

choice to the users. For both models we determine the prices that maximize the provider�s profit. Importantly, these
situations do not coincide. Our analysis uses elements from queueing theory, but also from microeconomics and game

theory (e.g., the concept of a Nash equilibrium). We conclude the paper by considering a model in which throughput

(rather than delay) is the main performance measure. Again the pricing strategy exploits the heterogeneity in service

requirements and willingness-to-pay.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Current usage of data-networks, such as the

Internet, is still dominated by �traditional� data
services: web browsing, file transfer, remote ter-

minal, electronic mail, etc. These applications do

not impose severe requirements on the network, in

that they tolerate relatively large packet delays.
New Internet applications, e.g., real-time applica-

tions such as interactive voice and video, can be

characterized as delay-sensitive, and are conse-

quently considerably more demanding. This het-

erogeneity of the service requirements makes it

necessary that the delay-tolerant and delay-sensi-

tive users are handled differently––otherwise all

traffic must be handled according to the require-
ments of the most demanding class, i.e., the real-

time class, which will inevitably lead to a network

running at a relatively poor utilization level. A

possible solution is to give priority to the delay-

sensitive traffic in the queues of the network.
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Shenker [13] further motivates this prioritization

and related design issues for the Internet.

Pricing.Without an appropriate pricing scheme,

any prioritization is useless; if there were no

price difference between the priority classes, all

users would opt for the high-priority class. In
other words: the prices of the priority classes

should give users an incentive to join the �right�
priority class. In terms of the delay-tolerant user

(or, shortly, the data user) and the delay-sensitive

user (or, shortly, the voice user): voice users are

encouraged to use the high-priority class, whereas

data users are given an incentive to join the low-

priority class. This is done by imposing a higher
charge on the high-priority class. A next question

is: how should the network provider choose the

prices for both classes in order to maximize its

profit?

Here two models can be distinguished. In the

first model the provider assigns a priority class to

each user type––for instance, the provider can

decide that the voice customers are directed to the
high-priority queue, and the data users to the low-

priority queue. This model of �dedicated classes�
(or �implicit supply of service�, in Shenker�s [13]

terminology) is relatively simple to analyze, as the

network users have only two alternatives: joining

the network or not.

The harder, but perhaps more realistic, model is

the model with �open classes� (or �explicit supply of
service�, as it is called in [13]), in which the users

can choose between the priority classes. It is not

clear beforehand whether the prices that optimize

the profit in the dedicated-classes model, are also

profit optimizing for the open-classes model. The

reason is that the prices found in the dedicated-

classes model might lead to a situation in which

data (voice) users might appreciate the high-(low-)
priority class more. In other words: it is not a

priori clear whether the optimal prices from the

dedicated-classes model lead to an incentive-com-

patible situation in the open-classes model.

Incentive-compatibility. In economic terms, in

the model with open classes, the users of the net-

work are agents, who individually choose between

the three alternatives offered, that is, joining the
high-priority class, joining the low-priority class,

or not using the network at all. The situation in

which no user has any incentive to unilaterally

change his policy is called a Nash equilibrium [14].

It is not obvious that by making high-priority

transfer more expensive than low-priority transfer

the voice customers will use the high-priority class

and the data customers will use the low priority
class; this strongly depends on the price difference

between the queues, and the delay performance of

both queues. This statement can be made more

precise as follows. Let for both types of traffic the

mean delay determine the utility experienced by the

users. Now the utility curves for data and voice are

denoted by udð�Þ and uvð�Þ, respectively, and are

decreasing in their argument, i.e., the mean delay.
Clearly, this mean delay is affected by the number

of customers of both types who join both service

classes. Suppose that data (voice) customers are

assigned to the low-(high-)priority class, leading to

mean delays EDL and EDH, respectively. Assume

that customers are �infinitely divisible�, i.e., we do
not restrict ourselves to integer numbers of cus-

tomers. Then we have a Nash equilibrium if

udðEDLÞ � pL P maxfudðEDHÞ � pH; 0g;
uvðEDHÞ � pH P maxfuvðEDLÞ � pL; 0g: ð1Þ

Literature. The problems of price selection and

incentive-compatibility in priority queues were
dealt with in Mendelson and Whang [10]. They

consider the special case in which the penalty

functions––which can be interpreted as minus the

utility functions––are linear in the mean delays.

Conditions (1) become

vd � EDL þ pL 6 minfvd � EDH þ pH; 0g;
vv � EDH þ pH 6 minfvv � EDL þ pL; 0g:

In [10] prices are derived which are optimal and

incentive compatible: the prices maximize the

system�s �net value�, where the choice what class to
join is left to the individual users (and the solution

is a Nash equilibrium). Importantly, [10] shows

that the optima for dedicated classes and open

classes coincide.

We believe that some aspects of the model of

[10] do not apply to the situation of competing

data and voice users described above. In the first

place, clearly the choice of the penalty functions in

[10] is restrictive. As argued above, for low values
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of the delay the delay-sensitive voice users have a

higher utility than the delay-tolerant, whereas for

high delay the opposite holds. This cannot be

modeled in the framework of [10], as it is not clear

whether vd should be larger than vv or vice versa.
In other words, the utility curves (and hence the
penalty functions) should not have a monotonous

relation: they should intersect.

Another interesting approach to service differ-

entiation can be found in Odlyzko [11,12]: he

proposes to offer multiple qualities by using mul-

tiple logically separated networks with different

prices. The idea is that the expensive network at-

tracts the delay-sensitive users, whereas the delay-
tolerant users opt for the cheap network. Using

game-theoretic techniques, Gibbens et al. [2] ar-

gues that this mechanism, known as Paris Metro

Pricing, does not work if there are multiple com-

peting providers: in order to maximize profits the

providers rather focus on one user type. Principles

behind congestion pricing are given in, e.g., [3,6];

the former reference explicitly covers heteroge-
neous users. There are many references with more

practical reflections on pricing in multiservice

networks, see for instance [1,15], and several arti-

cles in [8].

Contribution and organization. This paper looks

at the situation in which the utility curves do in-

tersect: for ED 2 ð0; 1Þ it holds that uvðEDÞ >
udðEDÞ, whereas for ED > 1 the opposite holds:
udðEDÞ > uvðEDÞ. First we look at the situation in

which there are large populations of �potential�
voice and data users sharing a FIFO queue. We see

that, depending on the value of the link speed l,
the network population will consist of just one

class. For small l (i.e., the link is relatively slow)

data will dominate, whereas for fast links voice

will push aside data. This situation is considered in
Section 2. We focus on prices that maximize the

provider�s profit, which is slightly different from

the �net value� maximization problem solved in

[9,10] (cf. social welfare maximization).

An important conclusion of our paper is that

under our utility curves the solutions of the open-

classes model and the dedicated-classes model do

not coincide (which did hold in the setting of [10]).
Section 3 analyzes the profit maximization prob-

lem for the model with dedicated classes, whereas

Section 4 focuses on the situation with open clas-

ses. As could be expected, Section 4 is more in-

volved: the customers have more options, and

therefore the incentive-compatibility requirement

is more involved. We find that, depending on the

value of the link rate l, different regimes are op-
timal: for small l only data users will be present,

for moderate l the high-priority class is used by

voice and the low-priority class by data, whereas

for large l voice users dominate.

Strikingly, even in the cases where only one type

of traffic is present (i.e., small and large l), it is
optimal (i.e., profit maximizing) to use both the

high-priority and low-priority queue. In other
words, even for homogeneous users it is beneficial

to introduce service differentiation (and price dif-

ferentiation). This somewhat counterintuitive re-

sult is further explained in Section 5. This section

also contains a discussion on the specific shape of

the utility function, as well as a numerical exam-

ple.

The paper is concluded by a model in which
throughput (rather than packet delay) is the main

performance measure. We consider a stream of

jobs that is served according to the processor

sharing discipline [5, chapter IV]. For a job of

given size x, we can (given the load of the queue

and the service speed) compute the required

transmission time, and hence the throughput

during the transmission. The utility is an increas-
ing function of the throughput; we assume that the

utility curve Uxð�Þ is parametrized by the job size x.
Section 6 analyzes the situation in which a volume

charge is imposed on the jobs (i.e., a fixed price per

byte). It shows that under specific assumptions on

the ordering of the utility curves, it is beneficial to

discriminate the jobs on the basis of their size: if

Uxð�Þ decreases in x, the small jobs (usually referred
to as web mice) are preferred over the larger jobs

(elephants).

2. No service differentiation––tragedy of the com-

mons

Data and voice users––utility. Consider a system
with an infinite population of (potential) custom-

ers. The utility they get depends on the level of
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congestion. Obviously, generally speaking, the lar-

ger the number of users in the network, the lower

the utility. Throughout this paper we will use the

mean packet delay, ED, as the measure of conges-
tion, unless stated otherwise.

The price per packet transmission is p. Cus-
tomers want to use the service as long as utility

minus price––or compensated utility––is positive.

When customers join the level of congestion in-

creases. In other words, customers join as long as

the compensated utility is positive, cf. [9].

A complication is that we have two types of

users. In the first place there are users who strongly

prefer low congestion or, equivalently, low packet
delay. We will refer to these users as to voice users.

On the other hand, there are users who do not

mind so much about the delay: compared to voice

users, they assign less utility to low delay, but more

utility to high delay. We call these customers data

users. To model these specific preferences, we de-

fine the (compensated) utility curves of both types

of users by

UdðEDÞ :¼ udðEDÞ � p; with udðyÞ :¼ y�ad ;

UvðEDÞ :¼ uvðEDÞ � p; with uvðyÞ :¼ y�av ;

with 0 < ad < av: Notice that both expression are

equal for ED ¼ 1:
A system without service differentiation. Both

data and voice users generate information packets

that they feed into the system. Each data (voice)
user generates packets at rate kd (kv, respectively).
In this section we let both types of customers use

a single server queue that does not make any dis-

tinction between the packets of both sorts, a FIFO

queue. We assume that the service times of the

individual packets are i.i.d. exponentially distrib-

uted random variables, with mean l�1.

In an M/M/1 queue, with N (independent)
customers that generate packets according to a

Poisson process with rate k, and service times that

are i.i.d. exponential with mean l�1, the mean

delay is

ED ¼ 1

l � kN
;

provided that kN < l [5]. We now compute how

many users of each type will subscribe to the net-

work, as a function of the packet transmission

price p.
Equilibrium for fixed price. Consider first two

hypothetical cases:

• Suppose there are only data users. They enter as

long as their (compensated) utility is non-nega-

tive. For simplicity, we do not restrict ourselves

to an integer number of customers. It is not

hard to show that this number equals

NdðpÞ ¼
l � ffiffiffi

pad
p

kd
: ð2Þ

This holds if p < lad ; otherwise NdðpÞ ¼ 0:
• Similarly, with only voice users,

NvðpÞ ¼
l � ffiffiffi

pav
p

kv
:

This holds if p < lav ; otherwise NvðpÞ ¼ 0:

Now consider the situation that both groups are

competing for service. Suppose NdðpÞ customers

are present, with NdðpÞ given by (2). We may ask

ourselves if there is any incentive for voice users to

join? Notice that the utility an infinitesimally small

voice user would experience is

Uv :¼ l

�
� kd

l � ffiffiffi
pad

p

kd

� ��av

� p ¼ pav=ad � p:

Using that av > ad, it is easily seen that if p > 1

this number is positive, so voice users would join.

If p < 1 there is no incentive for voice users to
enter when NdðpÞ data users are present. Con-

versely, if NvðpÞ voice customers are present, data
users join if and only if p < 1. In fact we have

found a Nash equilibrium [14].

Tragedy of the commons. From the above, we

conclude that if prices are low, data users domi-

nate over voice users; the opposite happens when

prices are high.
This describes, albeit it in a stylized sense, the

current situation in the Internet. Prices are low, or,

more precisely, there is a usually a flat fee, i.e., the

amount of money charged does not depend on

usage. Customers who require low packet delay

(voice) are excluded. In fact, so many delay-indif-

ferent users join, that the congestion is unaccept-
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ably high for the delay-averse users. This phe-

nomenon is commonly referred to as the tragedy of

the commons [4].

The price selection problem. The network oper-

ator will choose the price such that his profit is

maximized. The customers pay for every packet
they transmit. We define profit as the expected

number of packets sent (by the users who sub-

scribe to the network) per unit time, multiplied by

the price per packet. From the above, this profit

function Pðp; lÞ, for a given price p > 0 and ser-

vice rate l, reads

Pðp;lÞ �

kd �NdðpÞ � p
¼ fdðpÞ :¼ ðl� ffiffiffi

pad
p Þp if p 2 ð0;1�;

kv �NvðpÞ � p
¼ fvðpÞ :¼ ðl� ffiffiffi

pav
p Þp if p 2 ð1;1Þ:

8>><
>>:

Notice that in fact this profit function Pð�; �Þ
should have been decreased by the provider�s costs.
Important components of these costs are

• The service costs, for instance the costs related

to the billing and invoicing process. These are

increasing in the usage (most notably the num-

bers of customers N ). We neglect these costs, as

taking them into account does not really pro-

vide additional insight, whereas it makes the re-

sulting expressions less explicit.

• The equipment costs, i.e., the costs of (the pur-
chase of) the router. These are increasing in

the link rate l: We assume that the time scale

on which the provider can adapt his capacity l
is relatively long, so l is not a decision variable.

Hence the provider wishes to maximize Pðp; lÞ
over pP 0. Notice that this function is continuous

in p ¼ 1:

Proposition 2.1. The profit function is given by

PHðlÞ :¼ max
p>0

Pðp; lÞ

¼ max
lad

ad þ 1

� �ad l
ad þ 1

� �
;

�
lav

av þ 1

� �av l
av þ 1

� �	
:

Proof. We prove this proposition in two steps.

Step 1. We first derive an elementary expression

for the profit as a function of service rate l:

• It is not hard to verify that, on p 2 Rþ, the func-
tion fdðpÞ attains its maximum at

pd :¼
lad

ad þ 1

� �ad

:

Notice that pd is indeed smaller than lad , as
desired. Hence, with ld :¼ 1þ a�1

d , the maxi-

mum value of Pðp; lÞ on p 2 ½0; 1� is

max
p2½0;1�

Pðp;lÞ ¼
fdðlÞ :¼

lad
adþ 1

� �ad l
adþ 1

� �
if l< ld; attained at p¼ pd;

l� 1

otherwise; attained at p¼ 1:

8>>>><
>>>>:

• Similarly, on Rþ, fvðpÞ is maximized by

pv :¼
lav

av þ 1

� �av

;

which is smaller than lav : Hence, with lv :¼ 1þ
a�1
v , the maximum value of Pðp; lÞ on p 2

½1;1Þ is

max
p2½1;1Þ

Pðp;lÞ¼
fvðlÞ :¼

lav
avþ1

� �av l
avþ1

� �
if l> lv; attained at p¼ pv;

maxf0;l�1g
otherwise; attained at p¼ 1:

8>>>><
>>>>:

Recall that lv < ld; we get that PHðlÞ ¼
maxp>0 Pðp; lÞ equals

gðlÞ :¼
maxfl � 1; fdðlÞg if 06 l6 lv;
maxffdðlÞ; fvðlÞg if lv 6 l6 ld;
maxf0; l � 1; fvðlÞg if l P ld:

8<
:

Step 2. We now prove the following two proper-

ties:

• It is trivial to show that fdðldÞ ¼ ld � 1. Also,

f 0
dðlÞ ¼

lad
ad þ 1

� �ad

< 1

on ½0; ldÞ. So both curves cannot intersect. This

proves that fdðlÞP l � 1 for l 2 ½0; ld�.
• Also fvðlvÞ ¼ lv � 1: With

f 0
vðlÞ ¼

lav
av þ 1

� �av

> 1
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on ðlv;1Þ, this yields fvðlÞP l � 1 for l 2
½lv;1Þ.

We arrive at

PHðlÞ ¼ gðlÞ ¼ maxffdðlÞ; fvðlÞg:
This completes our proof. �

The following corollary states that for small

(large) link rates data users (voice users, respec-

tively) dominate. We can compute the critical

service rate lH at which the system changes from
the data-regime to the voice-regime.

Corollary 2.2. With lH 2 ½lv; ld� defined by

lH :¼ ad
ad þ 1

� �ad

� av þ 1

av

� �av

� av þ 1

ad þ 1

� �1=ðav�adÞ

;

for all

• l < lH it holds that fdðlÞ > fvðlÞ. This implies
that kdNd ¼ l=ðad þ 1Þ > 0 and Nv ¼ 0, and the
price per packet transmission p equals pd < 1;

• l > lH it holds that fdðlÞ < fvðlÞ. This implies
that Nd ¼ 0 and kvNv ¼ l=ðav þ 1Þ > 0, and the
price per packet transmission p equals pv > 1.

3. Service differentiation by priority queueing:
dedicated classes

In the previous section we concluded that––in

case of heterogeneous traffic classes––the network

will serve only one of them. It depends on the

specific values of the link rate l and the �utility-
parameters� ad and av which type of customers will

dominate. In this section we concentrate on ways
to satisfy the demands of both classes. Adhering to

the principles explained in [13], we do this by using

a priority queueing system. We will argue that this

solution is beneficial for the network (as its profit

increases compared to the FIFO solution), the

dominating class (as the service will be offered

against a lower price), and the excluded class (as it

will receive service).
A priority queueing model; dedicated and open

classes. Let us assume that we are in the regime

that l < lH, so in a FIFO system the voice users

would not get any service. We now suppose that

they get strict service priority over the data sour-

ces. We assume that the voice users are directed to

the high priority queue, and the data users to the

low priority queue. As identified in the Introduc-

tion, this is the dedicated-classes model; this is in
contrast with the open-classes model, in which the

customers themselves choose the most attractive

queue (based on the expected delays in both

queues and the respective prices). We return to the

issue of dedicated and open classes in Section 4.

Standard queueing theory [5] gives that the

mean packet delay for both classes is given by

EDv ¼
1

l � kvNv

;

EDd ¼
l

ðl � kvNvÞðl � kvNv � kdNdÞ
:

Here we assume that the service of a low-priority

packet can be interrupted when high-priority

packets arrive; the service is resumed as soon as

the high-priority queue gets empty.
Equilibrium for fixed price. Suppose a packet in

the high priority queue is charged an amount pH,
and a packet in the low priority queue pL: Clearly,
as seen in Section 2, the number of voice users

joining is given by

NvðpL; pHÞ ¼
l � ffiffiffiffiffiffi

pHav
p

kv

if pH < lav and 0 otherwise. Similarly, data users

join as long as their compensated utility exceeds 0.

This results in

NdðpL; pHÞ ¼

k�1
d ð ffiffiffiffiffiffi

pHav
p � l

ffiffiffiffiffi
pLad

p
=

ffiffiffiffiffiffi
pHav

p Þ
if pL < p2ad=avH =lad and pH 6 lav ;

k�1
d ðl � ffiffiffiffiffi

pLad
p Þ

if pL < lad and pH > lav ;
0 otherwise:

8>>>><
>>>>:

ð3Þ

Notice that NdðpL; pHÞ decreases in pL and in-

creases in pH, as expected.
The price selection problem. Again the provider

wants to achieve maximum profit. Notice that the

priority system cannot lead to lower profits than

the FIFO system. The reason for this is that the

FIFO queue is a special case of the priority
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queue––this is seen by taking pH � lav or pL ¼
p2ad=avH =lad :

To obtain the optimal prices, we have to per-

form the following optimization:

PH

DðlÞ ¼ max
pL>0;pH>0

PDðpL; pH; lÞ;

with

PDðpL; pH; lÞ :¼ kd � NdðpL; pHÞ � pL
þ kv � NvðpL; pHÞ � pH;

where the subscript �D� denotes the regime of

dedicated classes. Let us for the moment assume
that both services are in a regime in which cus-

tomers get service. We get

max
pL>0;pH>0

ðl � ffiffiffiffiffiffi
pHav

p ÞpH þ ffiffiffiffiffiffi
pHav

p
�

� l
ffiffiffiffiffi
pLad

pffiffiffiffiffiffi
pHav

p
�
pL:

ð4Þ

We compute this maximum in two steps. First we

find the optimizing value of pL for given pH: Sub-
sequently, we maximize over pH:

Step 1. First find the optimal pL for a given

value of pH. Differentiation to pL and equating to 0
yields

pLðpHÞ ¼
ad

lðad þ 1Þ

� �ad

p2ad=avH ;

which is indeed smaller than p2ad=avH =lad . Directly

from (3) and (4), we get that PH

d ðlÞ equals

max
0<pH 6lav

gðpHÞ

with

gðpÞ :¼ ðl � ffiffiffi
pav

p Þp

þ ad
lðad þ 1Þ

� �ad

� 1

ad þ 1
� pð2adþ1Þ=av :

ð5Þ

Step 2. Now we find the profit-maximizing va-

lue of pH. It is straightforward that gð0Þ ¼ 0 and

g0ð0Þ > 0. Moreover,

g0ðpÞ ¼ l � av þ 1

av
� ffiffiffi

pav
p

þ ad
lðad þ 1Þ

� �ad

� 2ad þ 1

ad þ 1
� 1
av

� pð2adþ1Þ=av�1;

g00ðpÞ ¼ � av þ 1

av
� 1
av

� p1=av�1 þ ad
lðad þ 1Þ

� �ad

� 2ad þ 1

ad þ 1
� 2ad � av þ 1

av
� 1
av

� pð2adþ1Þ=av�2:

It is not hard to verify that the function g00ð�Þ
changes sign at

�pp :¼ lðadþ1Þ
ad

� �ad

� adþ1

2adþ1
� avþ1

2ad�avþ1

� �av=ð2ad�avÞ

if 2ad þ 1 > av; if 2ad þ 16 av there is not such a

point. More detailed inspection yields the follow-

ing corollary.

Corollary 3.1. The function gð�Þ, as defined in (5),
increases in the origin. Also,

• if 2ad < av < 2ad þ 1 the function gð�Þ shifts
from convexity to concavity at �pp;

• if 2ad > av the function gð�Þ shifts from concavity
to convexity at �pp;

• if 2ad þ 16 av the function gð�Þ is concave on
½0;1Þ:

We are now in a position to characterize the

optimizing pH; we do this in Lemmas 3.2 and 3.3.

We first define

lH

� :¼ ad
ad þ 1

� �ad

� 2ad þ 1

ad þ 1

� �1=ðav�adÞ

:

It is easy to verify that lH

� < lH and that lH

� < 1:

Lemma 3.2. For l 2 ðlH

�; l
HÞ the function gð�Þ is

first increasing and then decreasing on the interval
p 2 ½0; lav �.

Proof. Applying Corollary 3.1, it suffices to show

that g0ðlavÞ < 0 for l 2 ðlH

�; l
HÞ. This is a matter

of straightforward calculus. �

Lemma 3.3. For l 2 ð0; lH

�Þ the function gð�Þ is
non-decreasing on the interval p 2 ½0; lav �.

Proof. We prove this lemma by considering the

cases that 2ad is smaller and larger than av sepa-
rately.
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• First observe that for 2ad < av, Corollary 3.1

entails that g0ðlavÞ > 0 for l 2 ð0; lH

�Þ implies

the stated. This is easy to verify.

• Now consider 2ad > av: Write for ease

p � bavlav . We have to show that g0ðbavlavÞP
0 for all b 2 ½0; 1�: Elementary calculations give
that an equivalent condition is

ðb � ð1� bÞavÞ � lav�ad

6
ad

ad þ 1

� �ad

� 2ad þ 1

ad þ 1
� b2ad�avþ1; ð6Þ

for all b 2 ½0; 1� and l 2 ð0; lH

�Þ: The stated is

clearly true for b < bv :¼ av=ðav þ 1Þ; in this

case the left-hand side of (6) is negative,

whereas the right hand side is positive.

Now concentrate on b 2 ½bv; 1�. Because the
left-hand side of condition (6) is increasing in l,
we have to verify it only for l ¼ lH

�: For this
value of l, the condition reduces to

gðbÞ :¼ ðb � ð1� bÞavÞ � b2ad�avþ1
6 0:

As gðbvÞ ¼ �b2ad�avþ1
v < 0 and gð1Þ ¼ 0, it is

sufficient to prove that g0ðbÞP 0 for b 2 ½bv; 1�.
Since 2ad > av,

g0ðbÞ ¼ 1þ av � ð2ad � av þ 1Þ � b2ad�av

P 1þ av � ð2ad � av þ 1Þ
¼ 2ðav � adÞ > 0:

This proves the lemma. �

The following proposition follows immediately

from Lemmas 3.2 and 3.3.

Proposition 3.4. Assume l 2 ð0; lHÞ and suppose
that the provider can prioritize voice. We distinguish
between two cases:

• l 2 ð0; lH

�Þ: A FIFO queue is optimal for the pro-
vider. Only data users enter.
On the interval ½0; lav �, the function gð�Þ attains its
maximum at the upper limit, lav : The profit-
maximizing prices are

pH :¼ lav and pL :¼ lad
ad þ 1

� �ad

:

• l 2 ðlH

�; l
HÞ: The provider gives voice priority

over data. Both types of users enter.
On the interval ½0; lav �, the function gð�Þ attains its
maximum in the interior; there is a unique

�ppH 2 ½0; lav � with g0ð�ppHÞ ¼ 0: The profit-maxi-
mizing prices are

pH :¼ �ppH and pL :¼ ad
lðad þ 1Þ

� �ad

�pp 2ad=av
H :

The proposition implies that for l 2 ð0; lH

�Þ the
provider maximizes profit by having just a FIFO

queue. Prices will be relatively low, so that only

data users enter the system. In fact, the system is so

slow that prioritizing voice does not help increas-

ing the provider�s profit. For l 2 ðlH

�; l
HÞ profit is

increased by giving voice priority over data.

A similar analysis can be done for the situation
in which voice is dominant, i.e., l > lH. Again we

find that it is not always benificial to prioritize

traffic: for very fast link rates a �voice-only solu-

tion� generates higher profit; there is a threshold

link speed lH

þ.

4. Service differentiation by priority queueing: open
classes

In the previous section, an essential assumption

was that the network (i.e., the provider) selects the

queue for both types of users; more specifically:

the voice customers are forced to use the high-

priority queue, whereas the data users are directed

to the low-priority queue. In other words: we fo-
cused on the situation of dedicated classes.

The opposite situation relates to open classes.
There the provider offers a network with a certain

queueing discipline and prices, and the customers

have to decide themselves what class to join. In the

situation of a priority queue, the customers can

select the queue (or decide not to join any queue at

all) based on the prices of high priority and low
priority pH and pL, and the expected quality of

service (i.e., delay): they select the queue with the

highest compensated utility.

It is easy to check that if pH < 1 the high pri-

ority queue will be used exclusively by data users,

and if pH > 1 by voice users; the same holds for the

low priority queue. The procedure of Section 3

does not guarantee that pL < 1 and pH > 1. For
that reason, if the customers were to choose the
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most attractive queue themselves, the solution of

Proposition 3.4 would not persist. Put in a game-

theoretic language [14]: unilateral changes may

lead to increase of the compensated utility, and for

that reason the solution is possibly not a Nash

equilibrium. If for instance both pL and pH are
smaller than 1, in the model with open classes, the

data users would drive away the voice users from

both queues.

Equilibrium for fixed price. Like in Sections 2

and 3, we first analyze the network population for

given prices. For all combinations of prices

ðpL; pHÞ we analyze the type of equilibrium:

• R�. Trivially if both prices are smaller (larger)

than 1, the network will be populated exclu-

sively by data (voice) users. Hence in this regime

both types of users will not coexist in the sys-

tem. If both prices are smaller than 1, the profit

function reads

POðpL; pH; lÞ :¼ ðl � ffiffiffiffiffiffi
pHad

p ÞpH

þ ffiffiffiffiffiffi
pHad

p
�

� l
ffiffiffiffiffiffi
pL
pH

ad

r �
pL;

to be maximized over the set R� with prices

pL < 1 and pH < 1 such that pL 6 p2H=l
ad and

pH 6lad : The subscript �O� refers to the situa-

tion of open classes.
• Rþ. If both prices are larger than 1, ad is re-

placed by av:

POðpL; pH; lÞ :¼ ðl � ffiffiffiffiffiffi
pHav

p ÞpH

þ ffiffiffiffiffiffi
pHav

p
�

� l
ffiffiffiffiffiffi
pL
pH

av

r �
pL;

to be maximized over Rþ with prices pL > 1 and

pH > 1 such that pL 6 p2H=l
av and pH 6 lav :

• Now consider the situation in which pL > 1 and

pH < 1. Hence, the low-priority queue will be
used by voice customers, and the high-priority

queue by data customers. Similarly to the analy-

sis of Section 3, both types of users are present if

pH < lad and pL <
p2av=adH

lav
: ð7Þ

If l is smaller than 1, suppose that the first

condition in (7) is met. Then it is easy to con-

clude that the second requirement is violated:

p2av=adH

lav
<

l2av

lav
¼ lav < 1:

If l is larger than 1, the first condition in (7) is

automatically satisfied, whereas the second is

violated:

p2av=adH

lav
< l�av < 1:

• R0. The remaining regime is pL < 1 and pH > 1.

It is not hard to verify that in this case the an

equilibrium is possible in which voice users (in

the high-priority queue) and data users (in the

low-priority queue) coexist only if l > 1. We

have to maximize

POðpL; pH; lÞ :¼ ðl � ffiffiffiffiffiffi
pHav

p ÞpH

þ ffiffiffiffiffiffi
pHav

p
�

� l
ffiffiffiffiffi
pLad

pffiffiffiffiffiffi
pHav

p
�
pL;

over a region R0 that is given by

pL 2 0;min 1;
p2ad=avH

lad

( ) !
; pH 2 ð1; lav �:

ð8Þ

The resulting admissible region is depicted in

Fig. 1, with the R�, Rþ, and R0 defined above.

Notice that R0 and Rþ are empty for l < 1; then a

situation with only data users (R�) is the only

persistent solution.

The price selection problem. From the above, it

is clear that we have to evaluate

PH

OðlÞ :¼ maxfPH

O;�ðlÞ;PH

O;þðlÞ;PH

O;0ðlÞg;

with PH

O;iðlÞ :¼ maxðpL ;pHÞ2Ri POðpL; pH; lÞ, for i 2
f�;þ; 0g. We now compute these three maxima

subsequently, in Sections 4(A–C). First an auxil-

iary result is proven in Lemma 4.1.

Lemma 4.1. PH

OðlÞ is non-decreasing and convex
in l.

Proof. It suffices to prove that the PH

O;iðlÞ are non-
decreasing and convex in l, i 2 f�;þ; 0g:

• First notice that POðpL; pH; lÞ is a linear func-

tion of l.
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• The POðpL; pH; lÞ are non-decreasing in l. This
is seen as follows for R0 (a similar reasoning ap-

plies to R� and Rþ). In R0 the coefficient of l is

given by

pH �
ffiffiffiffiffi
pLad

pffiffiffiffiffiffi
pHav

p pL P pH � pad=av
H > 0;

as follows from pL 6 p2ad=avH =lad ¼ pad=av
H �

ðpad=av
H =lavÞ6 pad=av

H ; in conjunction with pH P 1:

As the PH

O;iðlÞ are maxima (over ðpL; pHÞ 2 Ri)

of non-decreasing, linear (and hence convex) func-

tions, they are non-decreasing and convex as

well. �

(A) Maximization over R�

The maximum over R� reduces to maximizing

g�ðpHÞ over 0 < pH 6 minflad ; 1g, where

g�ðpÞ :¼ ðl � p1=adÞp

þ ad
lðad þ 1Þ

� �ad

� 1

ad þ 1
� p2þ1=ad : ð9Þ

The price for the low priority service is given by

pLðpHÞ ¼ bdðlÞp2H;

with

bdðlÞ :¼
ad

lðad þ 1Þ

� �ad

:

With f�ðlÞ :¼ g0�ð1Þ, it is shown in Appendix A(A)
that

. A1. For l 2 ð0; 1� the optimum over R� is reached
at a price �ppH in the interior of ð0; lad �; this �ppH is
the unique solution of g0�ðpÞ ¼ 0 in ð0; lad �. Also,
�ppL ¼ bdðlÞ�pp2H:

. A2. Let m� be the unique solution to f�ðlÞ ¼ 0 in
ð1;1Þ. For l 2 ð1;1Þ the optimum over R� is
reached at a price �ppH
(i) in the interior of ð0; 1� if l 2 ð1; m�Þ; this �ppH is
the unique solution of g0�ðpÞ ¼ 0 in ð0; 1�. Also,
�ppL ¼ bdðlÞ�pp2H;
(ii) equal to 1 if l 2 ðm�;1Þ. Also, �ppL ¼ bdðlÞ.

(B) Maximization over Rþ

The region Rþ is empty if l6 1; we therefore

concentrate on l > 1. We have that

pLðpHÞ ¼ maxf1; bvðlÞp2Hg;

with

bvðlÞ :¼
av

lðav þ 1Þ

� �av

:

With lv :¼ 1þ a�1
v , we two cases need to be con-

sidered.

• If l 2 ð1; lvÞ, it is not hard to see that the opti-

mal pL equals 1. The maximizing pH should be

found from

Fig. 1. Admissible region. Left panel corresponds to l < 1, right panel to l > 1.
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max
lav=2<pH<lav

�ggþðpHÞ

with

�ggþðpÞ :¼ l
�

� ffiffiffi
pav

p �
p þ ffiffiffi

pav
p � l

1ffiffiffi
pav

p :

• If l 2 ðlv;1Þ, it turns out that

pLðpHÞ ¼
av

lðav þ 1Þ

� �av

p2H if pH 2 ½qþðlÞ;lav �;

with

qþðlÞ :¼
lðav þ 1Þ

av

� �av=2

;

and pLðpHÞ ¼ 1 if pH 2 ½lav=2; qþðlÞ�. Define

gþð�Þ as in (9), but with ad replaced by av. We

have to solve

max max
lav=2<pH<qþðlÞ

�ggþðpHÞ; max
qþðlÞ<pH<lav

gþðpHÞ
� 	

:

With fþðlÞ :¼ �gg0þðlavÞ and nþðlÞ ¼ g0þðqþðlÞÞ, it is
shown in the Appendix A(B) that

. B1. Let mþ;1 be the unique solution to fþðlÞ ¼ 0 in
ð1; lvÞ. For l 2 ð1; lvÞ the optimum over Rþ is
reached at a price �ppH
(i) equal to lav if l 2 ð1; mþ;1Þ. Also, �ppL ¼ 1;
(ii) in the interior of ½lav=2; lav � if l 2 ðmþ;1; lvÞ;
this �ppH is the unique solution of �gg0þðpÞ ¼ 0 in
½lav=2; lav �. Also, �ppL ¼ 1.

. B2. Let mþ;2 be the unique solution to nþðlÞ ¼ 0 in
ðlv;1Þ. For l 2 ðlv;1Þ the optimum over Rþ is
reached at a price �ppH
(i) in the interior of ½lav=2; qþðlÞ� if l 2 ðlv; mþ;2Þ;
this �ppH is the unique solution of �gg0þðpÞ ¼ 0 in
½lav=2; qþðlÞ�. Also, �ppL ¼ 1;
(ii) in the interior of ½qþðlÞ; lav � if l 2 ðmþ;2;1Þ;
this �ppH is the unique solution of g0þðpÞ ¼ 0 in
½qþðlÞ; lav �. Also �ppL ¼ bvðlÞ�pp2H:

(C) Maximization over R0

Again we first perform the optimization over pL
for given pH: It is straightforward to obtain that

the optimum is attained at

pLðpHÞ ¼ minf1; bdðlÞp
2ad=av
H g:

Defining ld :¼ 1þ a�1
d , two cases need to be dis-

tinguished.

• If l6 ld, it is not hard to verify that it holds

that

ad
lðad þ 1Þ

� �ad

p2ad=avH 6 1 for all pH 2 ð1; lav �;

so that, with g0ð�Þ defined as gð�Þ in (5), the

optimization reduces to

max
1<pH 6lav

g0ðpHÞ:

• If l 2 ðld;1Þ, we have that

bdðlÞp
2ad=av
H 6 1; if and only if

pH 6 q0ðlÞ :¼
lðad þ 1Þ

ad

� �av=2

:

Notice that q0ðlÞ is smaller than lav (as

ld ¼ ðad þ 1Þ=ad < l). So we get the optimization

max max
1<pH 6 q0ðlÞ

g0ðpHÞ; max
q0ðlÞ<pH 6lav

�gg0ðpHÞ
� 	

;

where �gg0ð�Þ ¼ �ggþð�Þ:
With f0ðlÞ :¼ g00ð1Þ and n0ðlÞ ¼ g00ðq0ðlÞÞ, it is

shown in the Appendix A(C) that

. C1. Let m0;1 be the unique solution to f0ðlÞ ¼ 0 in
ð1; ldÞ. For l 2 ð1; ldÞ the optimum over R0 is
reached at a price �ppH
(i) equal to 1 if l 2 ð1; m0;1Þ. Also, �ppL ¼ bdðlÞ;
(ii) in the interior of ½1;lav � if l 2 ðm0;1; ldÞ; this
�ppH is the unique solution of g00ðpÞ ¼ 0 in ½1; lav �.
Also, �ppL ¼ bdðlÞ�pp

2ad=av
H .

. C2. Let m0;2 be the unique solution to n0ðlÞ ¼ 0 in
ðld;1Þ. For l 2 ðld;1Þ the optimum over R0 is
reached at a price �ppH
(i) in the interior of ½1; q0ðlÞ� if l 2 ðld; m0;2Þ; this
�ppH is the unique solution of g00ðpÞ ¼ 0 in ½1; q0ðlÞ�.
Also, �ppL ¼ bdðlÞ�pp

2ad=av
H ;

(ii) in the interior of ½q0ðlÞ; lav � if l 2 ðm0;2;1Þ;
this �ppH is the unique solution of �gg00ðpÞ ¼ 0 in
½q0ðlÞ; lav �. Also, �ppL ¼ 1:

Characterization of the solution. We are now in

a position to prove that there are two possible

situations. In the first there are service rates mH� and
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mHþ such that (for the profit-maximizing prices)

voice will dominate in the network for all l < mH�,
data will dominate for l > mHþ, and there is a

�mixed scenario� (with priority for voice) for

l 2 ðmH�; mHþÞ: The second possibility data domi-

nates for l smaller than some mH, and voice
dominates otherwise.

Theorem 4.2. For l < mmin :¼ minfm0;1; mþ;2g; ‘data-
only’ maximizes the profit: PH

OðlÞ ¼ PH

O;�ðlÞ; for
l > mmax :¼ maxfm�; m0;2g; ‘voice-only’ maximizes
the profit: PH

OðlÞ ¼ PH

O;þðlÞ.

Proof. First notice that m0;1 < m0;2, implying that
mmin < mmax: The stated follows immediately from

the inequalities (i) PH

O;0ðlÞP PH

O;�ðlÞ for l > m�,
(ii) PH

O;0ðlÞP PH

O;þðlÞ for l < mþ;2, (iii) PH

O;0ðlÞ6
PH

O;�ðlÞ for l < m0;1, and (iv) PH

O;0ðlÞ6PH

O;þðlÞ for
l > m0;2. These inequalities are almost trivial to

prove from the maximizations over R�, Rþ, and R0

that were described above.

Consider for instance the first inequality. For l
larger than m�, the optimum PH

O;�ðlÞ over R� is

attained at �ppH ¼ 1 and a �ppL < 1, with profit g�ð1Þ.
As this price vector lies on the boundary of R� and

R0, it equals g0ð1Þ, which is, by definition, major-

ized by PH

O;0ðlÞ: The other inequalities are proven
similarly. �

Theorem 4.2 in conjunction with Lemma 4.1
(i.e., the convexity of the functions PH

O;ið�Þ, with
i 2 f�;þ; 0g) implies the following corollary.

Corollary 4.3. The global profit maximization can
be characterized as follows. Two regimes are possi-
ble:

• There exist service rates mH� and mHþ such that

PH

OðlÞ ¼
PH

O;�ðlÞ; l 2 ð0; mH�Þ;
PH

O;0ðlÞ; l 2 ðmH�; mHþÞ;
PH

O;þðlÞ; l 2 ðmHþ;1Þ:

8><
>:

• There exists a service rate mH such that

PH

OðlÞ ¼
PH

O;�ðlÞ; l 2 ð0; mHÞ;
PH

O;þðlÞ; l 2 ðmH;1Þ:

(

5. Discussion and example

In this section we start by giving a numerical

example that demonstrates the theory of the pre-

vious sections. Then we motivate the somewhat
paradoxical fact that in this model it is beneficial

to use both queues, even if the user population is
homogeneous. Finally we provide some reflections

on the utility functions and the queueing model.

Example. This example gives numerical results for

the model with open classes. We choose av ¼
2ad ¼ 2. The values of the �critical� service rates, as
introduced in Section 4, are given by m� ¼ 1:500;
mþ;1 ¼ 1:325; mþ;2 ¼ 2:422; m0;1 ¼ 1:183; and m0;2 ¼
3:948. Applying the inequalities used in the proof

of Theorem 4.2, it is not so hard to prove that, due

to m0;1 < m� < mþ;2 < m0;2, five regimes can be dis-

tinguished:

PH

OðlÞ¼

PH

O;�ðlÞ; l2 ð0;m0;1Þ;
maxfPH

O;�ðlÞ;PH

O;0ðlÞg; l2 ðm0;1;m�Þ;
PH

O;0ðlÞ; l2 ðm�;mþ;2Þ;
maxfPH

O;0ðlÞ;PH

O;þðlÞg; l2 ðmþ;2;m0;2Þ;
PH

O;þðlÞ; l2 ðm0;2;1Þ:

8>>>>><
>>>>>:

In Fig. 2 the three lines depict the maxima over R�,

Rþ, and R0, respectively. For l < 1:31 �data-only�
is optimal (i.e., maximum profit is achieved in R�),

for l > 2:96 �voice-only� is optimal (i.e., maximum

profit is achieved in Rþ), and in between a �mixed
scenario�––with priority for voice––is optimal

Fig. 2. Profit as a function of link speed, for l 2 ð0; 4�.
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(i.e., maximum profit is achieved in R0). Fig. 3 dis-

plays the optimizing prices for various values of l:

A paradox. Consider a single type of traffic,
with utility function Uð�Þ; for ease, assume that the

packet arrival rate k equals 1. Uð�Þ is a positive,

decreasing function of ED. Assume that Uð�Þ has
inverse V ð�Þ with derivative V 0ð�Þ. Then

NHðpL; pHÞ ¼ l � 1

V ðpHÞ
;

under the proviso that V ðpHÞP l�1, or pH 6

Uðl�1Þ: Similarly,

NLðpL; pHÞ ¼
1

V ðpHÞ
� l � V ðpHÞ

V ðpLÞ
;

requiring that V ðpLÞP lV 2ðpHÞ. So, for a given

value of pH, the largest admissible pL equals
pHL ðpHÞ :¼ UðlV 2ðpHÞÞ: We get the admissible re-

gion

R :¼ ðpL; pHÞjpL
�

6U lV 2ðpHÞ
� �

; pH 6U l�1� ��
:

Notice that for all ðpL; pHÞ 2 R it holds that

pL 6 pH, due to the fact that V ð�Þ decreases and
V ðpLÞP lV 2ðpHÞP V ðpHÞ:
This is of course what was expected: the price of
the low-priority service is lower than the high-

priority service.

We are now faced with the following profit

maximization problem:

max
pL;pH2R

pHNHðpL; pHÞ þ pLNLðpL; pHÞ:

To find the optimum we first differentiate (for

given pL) to pH:

MðpL; pHÞ :¼ NLðpL; pHÞ þ pL �
@NL

@pL

¼ NLðpL; pHÞ þ lpL �
V ðpHÞ
V 2ðpLÞ

� V 0ðpLÞ:

As NðpHL ðpHÞ; pHÞ ¼ 0, inserting pL ¼ pHL ðpHÞ gives

M pHL ðpHÞ; pH
� �

¼ lpL �
V ðpHÞ

V 2ðpHL ðpHÞÞ
� V 0ðpHL ðpHÞÞ;

notice that this quantity is negative, as V ð�Þ is
positive and decreasing, just like its inverse Uð�Þ:
Apparently Mð�; �Þ is negative in the neighborhood

of pL ¼ pHL ðpHÞ. In other words: a value of pL
smaller than pHL ðpHÞ gives a higher profit than

pHL ðpHÞ itself. This entails that under the profit-
maximizing prices both queues will be used! In other
words: even if the customers have a homogeneous

aversion to delay, it is beneficial to create perfor-
mance differentiation. Of course, the compensated

utility at both queues equals 0.

On the choice of the utility curves. As was stated
in the Introduction, one of the main purposes of

the paper, is to show that the result by Mendelson

and Whang [10] relies critically on the specific as-

sumptions imposed in that paper. We do this by

choosing hyperbolic (rather than linear) utility
curves, where it is noted that these new utility

curves are more realistic in the context of delay-

sensitive and delay-tolerant users (as they intersect
at some positive delay value). We find that indeed

the solutions under open classes and dedicated

classes do not coincide. We also identify a number

of other interesting phenomena, such as the trag-

edy of the commons, the way the nature of the
solution depends on the link speed, etc. The as-

sumption of hyperbolic utility curves can be con-

sidered restrictive, but it nicely captures the crucial

features of customer behavior, while maintaining

tractability.

As a next step, it would be interesting to see

under what minimal conditions these phenomena

are valid. The analysis of the above paradox
(featuring the situation with only one type of

users) suggests that the qualitative results of this

paper might not depend critically on the utility

curves chosen. An interesting question could be: is

Fig. 3. Relation between �ppL and �ppH. The bullets correspond to

l ¼ 1; . . . ; 5:
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it possible to characterize the solution to the profit

maximization problem (both for the model with

dedicated classes and the model with open classes),

if we somewhat relax the requirements on the

utility curves. Rather than assuming a hyperbolic

shape a priori, we could for instance consider the
class of utility curves that are such that the voice

users appreciate the service more for ED < 1, and

the data users for ED > 1. It can be expected that

the resulting models are more involved, and con-

stitute an interesting direction for further research.

It is noted that straightforward calculations

yield that the analysis remains tractable for a

broad class of functional forms. The major draw-
back of these alternative function forms, how-

ever, is that the resulting expressions become less

transparent. This motivates our choice for hyper-

bolic curves. Examples of other functional forms

are given in the Appendix A(D).

On the choice of the queueing model. It can be

expected that our results can be extended to M/G/1

priority systems (rather than M/M/1), given the
results on the mean delay in this type of networks

[5]. Another interesting direction is the extension

of the number of priority classes (i.e., queues).

Above, we already saw that having two queues,

rather than just one, increases the profit (given that

there are no costs associated with having an ad-

ditional queue), even for homogeneous users. The

next question is, of course, is it beneficial to have
even more queues? We expect that the profit in-

creases as the number of priority classes increases,

but remains bounded. It would be of interest to

verify this conjecture.

6. Competition between elastic flows

This last section focuses on the situation in

which the users� utility is primarily determined by

throughput, rather than packet delay. One could

think of files arriving at a network node, compet-

ing for service. Loosely speaking, in the Internet

the Transfer Control Protocol (TCP) divides the

available capacity equally among the active users.

Hence, during congestion the transmission rate
will be low, whereas jobs can claim a more sig-

nificant part of the link bandwidth during more

quiet periods. The corresponding type of traffic is

commonly called elastic, as the source transmis-

sion rate adapts to the level of congestion. Due to

these properties, the node can be modeled as an

M/G/1 processor sharing queue [5, chapter IV], if

the jobs arrive according to a Poisson process, and
their sizes are i.i.d. samples (independent of the

arrival process), as argued by Massouli�ee and

Roberts [7].

Where in the model of Sections 2–5 the hetero-

geneity between the delay-tolerant and delay-

sensitive users played a crucial role, we here

assume that the utility curves depend on the size of
the job. The underlying idea here is the following.
When retrieving an extremely large file the user�s
expectation of the throughput will be different

than when retrieving small files. One could imagine

that the retrieval of large files (for instance non-

real-time audio and video) usually does not bring

about the expectation of a �real-time response�––
this might be in contrast with the retrieval of

smaller files (for instance web surfing) for which
some kind of direct response is required. If the user

preferences are indeed ordered in this way, it

would suggest that the Uxð�Þ curves are decreasing
in x. Loosely speaking, it would mean that users

are willing to pay more per byte for small jobs than

for large jobs.

However, notice that the (decreasing) ordering

of the utility curves suggested above is just one
possibility; we emphasize that the framework be-

low does not require any specific ordering.

The parametrization by job size is inspired by a

phenomenon recently observed in traffic measure-

ments: most of the Internet connections are short

in terms of the amount of traffic they carry

(commonly referred to as �mice�), while a small

fraction of the connections are carrying a large
portion of the traffic (�elephants�). If there is no

usage charge, the presence of the (few) long files

might deteriorate the performance experienced by

the (many) short files. This gives rise to the idea of

somehow �protecting� the small files by imposing

(for instance) a volume charge (i.e., a fixed price

per volume unit, say, byte).

Suppose that, without any pricing, jobs would
arrive at the network node according to a Poisson

process with rate k. The job sizes are i.i.d. samples
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from a general distribution F (with finite first

moment EF ). The queue has a constant service

speed C. We do not explicitly impose the stability

condition k � EF < C:
Suppose there is a volume charge of p. In the M/

G/1 processor sharing queue, the throughput is
uniform for all users, namely C � q, where q is the

offered load, see for instance [5]. This entails that a

customer of file size x joins if UxðC � qÞ > p. As-
sume for ease that F has a continuous distribution;

then these customers cause a load of

q ¼ k
Z 1

0

1fUxðC � qÞ > pgxdPðF 6 xÞ:

The value of q ¼ qðpÞ can be solved from this

(fixed-point) equation––notice that the right-hand

side is decreasing in q: In fact the provider wants

to optimize PðpÞ � p � qðpÞ over all prices p > 0. If

k � EF � C this might lead to a situation in which

all traffic is accepted.
It is clear that the �policy� (i.e., which jobs join

the queue, and which jobs do not) strongly de-

pends on the behavior of Uxð�Þ as a function of x. If
indeed the utility curves decrease in x, as suggested
above, the pricing policy entails that there is a

certain threshold, up to which files join the queue.

In other words, it excludes the �elephants�. The
reason is that these large files �yield lower utility
per byte�. Obviously, other orderings of the utility
curves lead to different policies.

Example. Assume that UxðtÞ � bxt, with bx :¼
ðxþ 1Þ�1, i.e., bx is decreasing in x. Then files join

according to a threshold policy, as argued above.

The fixed point equation for q (with p given) re-

duces to

q ¼ k
Z f ðq;pÞ

0

xdPðF 6 xÞ;

with

f ðq; pÞ :¼ max
c� q
p

�
� 1; 0

	
:

We take k ¼ 2, C ¼ 1, and EF ¼ 1, i.e., a situation

of severe overload. We compare two different file

size distributions: (i) Pareto file sizes with density

bpðxÞ ¼ ðxþ 1Þ�a
, and (ii) exponential file sizes

with density beðxÞ ¼ e�x. Notice that a ¼ ð3þffiffiffi
5

p
Þ=2 to get EF ¼ 1.

As illustrated in Figs. 4 and 5, for exponential

job sizes the optimum 0.132 is attained at p ¼ 0:32
(with q ¼ 0:41), whereas for Pareto files the opti-

mum is 0.105, attained at p ¼ 0:33 (with q ¼ 0:32).
In the former case all files up to size 0.84 have the
incentive to join the queue, whereas in the latter

case all files up to 1.06. For uniformly distributed

files (with unit mean), the solution can be com-

puted explicitly: p ¼
ffiffiffiffiffiffiffiffi
2=3

p
(attained at q ¼ 1=3),

yielding profit 0.27.

Appendix A

Lemma A.1. For all x > 0,

f ðxÞ :¼ x
xþ 1

� �x

� 2xþ 1

xþ 1
< 1:

Fig. 4. Load q as a function of the price p; the upper (lower)
curve corresponds to exponential (Pareto) files.

Fig. 5. Profit PðpÞ � p � qðpÞ as a function of the price p; the
upper (lower) curve corresponds to exponential (Pareto) files.
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Proof. Some tedious calculus yields for x > 0,

f 0ðxÞ ¼ f ðxÞ � 1

xþ 1

�
þ log

x
xþ 1

� ��

< f ðxÞ � 1

xþ 1

�
þ x

xþ 1

�
� 1

��
¼ 0;

here the standard inequality log x < x� 1 is ap-

plied, in conjunction with f ðxÞ > 0 for x > 0. The

stated now follows from f ð0Þ ¼ 1 and f 0ðxÞ < 0
for all x > 0. As an aside we remark that

f ðxÞ ! 2=e for x ! 1. �

Lemma A.2. For all l > 0 and a > 0, the function
�ff ð�Þ defined by

�ff ðxÞ :¼ ðl �
ffiffiffi
xa

p
Þxþ

ffiffiffi
xa

p
� lffiffiffi

xa
p

is concave on ½1;1Þ. In addition, �ff 0ðla=2Þ > 0:

Proof. Differentiating twice yields

�ff 00ðxÞ ¼ � x1=a�2

a
x� 1

a

�
þ xþ 1

�

� l
a
� 1

a

�
þ 1

�
� x�1=a�2:

Notice that this is negative for x > 1; which proves
the first part of the lemma.

Furthermore, we have to prove that

affiffiffi
l

p �ff 0 la=2
� �

¼ a
ffiffiffi
l

p þ 2

la=2
� a � 1 > 0: ðA:1Þ

This inequality clearly holds for l ¼ 1. The second

claim in the lemma follows from the fact that (A.1)

increases in l, as is checked easily. �

(A) Maximization over R�

The maximum over R� reduces to maximizing

g�ðpHÞ over 0 < pH 6 minflad ; 1g, where

g�ðpÞ :¼ l
�

� p1=ad
�
p

þ ad
lðad þ 1Þ

� �ad

� 1

ad þ 1
� p2þ1=ad :

The price for the low priority service is given by

pLðpHÞ ¼ bdðlÞp2H;
with

bdðlÞ :¼
ad

lðad þ 1Þ

� �ad

:

Now distinguish between l smaller and larger than

1.

• Case A1: l 2 ð0; 1�. In this case the optimum has

to be computed over the interval ð0; lad �: It is
straightforward to derive that g0�ð0Þ > 0 and
g0�ðladÞ ¼ ðf ðadÞ � 1Þl=ad < 0, by Lemma A.1.

It also follows that g�ð�Þ is concave on ð0; lad �,
as

g00�ðpÞ ¼
ad þ 1

a2d
� p1=ad�1 ad

lðad þ 1Þ

� �ad�

� 2ad þ 1

ad þ 1
� p � 1

�
< 0

for all p 2 ð0; lad �, again invoking Lemma A.1.

This proves A1.

• Case A2: l 2 ð1;1Þ. Now the optimum has to
be computed over the interval ð0; 1�. Recall that
g�ð�Þ is concave on ð0; lad �, and g0�ð0Þ > 0 and

g0�ðladÞ < 0. Hence the optimum is reached at

pH ¼ 1 if g0�ð1ÞP 0, and in the interior of

ð0; lad � if g0�ð1Þ < 0. Denote

f�ðlÞ :¼ g0�ð1Þ ¼ l � 1þ 1

ad

ad
lðad þ 1Þ

� �ad�

� 2ad þ 1

ad þ 1
� 1

�
:

Now note that f�ð1Þ ¼ ðf ðadÞ � 1Þ=ad < 0

(apply Lemma A.1!), and f�ðlÞ ! 1 as
l ! 1. Applying Lemma A.1 again, together

with the fact that l > 1, we see that f�ð�Þ in-

creases:

f0�ðlÞ ¼ 1� l�ad�1 � ad
ad þ 1

� �ad

� 2ad þ 1

ad þ 1
> 0:

This immediately implies A2.

(B) Maximization over Rþ

The region Rþ is empty if l6 1; we therefore

concentrate on l > 1. We have that

pLðpHÞ ¼ max 1; bvðlÞp2H
� �

;

with
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bvðlÞ :¼
av

lðav þ 1Þ

� �av

:

With lv :¼ 1þ a�1
v , we consider two cases.

• Case B1: l 2 ð1; lvÞ. It is not hard to see that the
optimal pL equals 1. The maximizing pH should

be found from

max
lav=2<pH<lav

�ggþðpHÞ

with

�ggþðpÞ :¼ l
�

� ffiffiffi
pav

p �
p þ ffiffiffi

pav
p � l

1ffiffiffi
pav

p :

By Lemma A.2, �ggþð�Þ is concave on ðlav=2; lavÞ,
and �gg0þðlav=2Þ > 0. Hence, the maximum is at-

tained in lav if �gg0þðlavÞ > 0; otherwise it is at-

tained in the interior of the interval. Define

fþðlÞ :¼ �gg0þðlavÞ ¼ 1

av
l�avðlð þ 1Þ � lÞ:

First observe that fþð1Þ ¼ a�1
v > 0, and that

fþðlvÞ ¼ ðf ðavÞ � 1Þlv=av < 0 (Lemma A.1).

Elementary calculus shows that fþð�Þ decreases
on ½1; lvÞ is equivalent to
ð1� avÞl � av 6 lavþ1:

This last inequality follows from the fact that

there is equality at l ¼ 1, in conjunction with

the fact that the derivative of the right hand side

(i.e., ðav þ 1Þlav ) majorizes the derivative of the

left hand side (i.e., 1� av) for all l > 1. We

arrive at B1.

• Case B2: l 2 ðlv;1Þ. It turns out that

pLðpHÞ ¼
av

lðav þ 1Þ

� �av

p2H if pH 2 ½qþðlÞ;lav �;

with qþðlÞ :¼
lðav þ 1Þ

av

� �av=2

;

and pLðpHÞ ¼ 1 if pH 2 ½lav=2; qþðlÞ�. Define

gþð�Þ as in (9), but with ad replaced by av; the
concavity of gþð�Þ and g0þðlavÞ < 0 follow like in

Case A1. We have to solve

max max
lav=2<pH<qþðlÞ

�ggþðpHÞ; max
qþðlÞ<pH<lav

gþðpHÞ
� 	

:

From (i) the concavity of both functions,

(ii) �ggþðlav=2Þ > 0, (iii) g0þðlavÞ < 0, and (iv)

�gg0þðqþðlÞÞ ¼ g0þðqþðlÞÞ, we find that the optimal

pH lies in ðqþðlÞ; lavÞ if g0þðpHÞ > 0, whereas

pH 2 ðlav=2; qþðlÞÞ otherwise. Define

nþðlÞ :¼ g0þðqþðlÞÞ ¼ l � av þ 1

av

� �3=2 ffiffiffi
l

p

þ av
lðav þ 1Þ

� �ðav�1Þ=2

� 2av þ 1

av þ 1
� 1
av

:

We now prove that nþðlÞ ¼ 0 has a unique zero

in ðlv;1Þ. To this end, first observe that that

nþðlvÞ ¼ ðf ðavÞ � 1Þlv=av < 0 (due to Lemma

A.1) and nþðlÞ ! 1 as l ! 1. Also, using

Lemma A.1, it is straightforward to prove that

n00
þðlvÞ > 0.

If av > 1 the function n00
þð�Þ does not change sign

at all; so nþð�Þ is convex. Therefore concentrate on
av 6 1. In this case, n00

þð�Þ changes sign at

�llv :¼
av

av þ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2av þ 1

av þ 1

� �2

� ð1� avÞ2
av

s
:

Some calculus gives that verifying that �llv < lv

reduces to checking if

ð1� avÞ �
av

av þ 1

� �av

� 2av þ 1

av þ 1
< 1;

which holds due to Lemma A.1. We conclude that

nþð�Þ is convex on the domain ½lv;1Þ. Notice that
a function F ð�Þ, convex (or concave) on interval

½a; b�, has exactly one zero in this interval if

F ðaÞ � F ðbÞ < 0. We have proven B2.

(C) Maximization over R0

Again we first perform the optimization over pL
for given pH. It is straightforward to obtain that
the optimum is attained at

pLðpHÞ ¼ min 1; bdðlÞp
2ad=av
H

n o
:

Defining ld :¼ 1þ a�1
d , two cases need to be dis-

tinguished.

• Case C1: l6ld. It is not hard to verify that for

these l it holds that

ad
lðad þ 1Þ

� �ad

p2ad=avH 6 1 for all pH 2 ð1; lav �;
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so that the optimization reduces to

max
1<pH 6 lav

g0ðpHÞ;

where g0ð�Þ is defined as gð�Þ in (5). Using that

lH

� < 1 < l, and invoking Proposition 3.4, we

know that g0ð�Þ first increases and then de-

creases on ð0; lav �. In other words: a price
pH > 1 is optimal iff

f0ðlÞ :¼g00ð1Þ

¼l�1þ 1

av

ad
lðadþ1Þ

� �ad

�2adþ1

adþ1

�
�1

�
>0;

ðA:2Þ

otherwise the maximum is attained at pH ¼ 1:
For l ¼ 1, condition (A.2) is not met; this is

because of Lemma A.1. Notice that

f0ðldÞ ¼
1

ad

�
� 1

av

�
þ 1

av
� ad

ad þ 1

� �2ad

� 2ad þ 1

ad þ 1
> 0;

and f00ðlÞ > 0 for all l > 1. Hence, f0ð�Þ has a
unique root in ð1; ldÞ. This proves C1.

• Case C2: l 2 ðld;1Þ. For these l we have that

bdðlÞp
2ad=av
H 6 1; if and only if

pH 6 q0ðlÞ :¼
lðad þ 1Þ

ad

� �av=2

:

Notice that q0ðlÞ is smaller than lav (as

ld ¼ ðad þ 1Þ=ad < l). So we get the optimiza-

tion

max max
1<pH 6 q0ðlÞ

g0ðpHÞ; max
q0ðlÞ<pH 6lav

�gg0ðpHÞ
� 	

;

where �gg0ð�Þ ¼ �ggþð�Þ. Define
n0ðlÞ :¼ g00ðq0ðlÞÞ

¼ l � av þ 1

av
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðad þ 1Þ

ad

s

þ ad
lðad þ 1Þ

� �ðav�1Þ=2

� 2ad þ 1

ad þ 1
� 1
av

:

With an analysis that is analogous to Case B2,

we prove C2.

(D) Other utility curves

In this section we argue that the analysis remains

tractable for a broad class of functional forms.

First assume exponentially (rather than hyper-

bolically) decaying curves, i.e., curves of the type

udðEDÞ ¼ e�adðED�1Þ;

and uvð�Þ analogously. First consider the context of
Section 2. With p6 expðadÞ,

NdðpÞ ¼ k�1
d l

�
� ad

ad � log p

�
:

When maximizing kd � NdðpÞ � p, the maximizing

price is

pd ¼ exp ad

 
� ad þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2d þ 4lad

p
2l

!
;

pv is found analogously. It can be checked easily

that the analysis of Section 2 goes through.

Now consider the situation of Section 3, in

which voice has priority. Then

kdNdðpL; pHÞ ¼
av

av � log pH
� ad

av
� l � av � log pH

ad � log pL
:

It is not hard to see that the maximization over pL
(for given pH) can be done explicitly, but the

maximization over pH remains implicit. The same

holds for the open classes model of Section 4.
Notice that for the hyperbolic utility curves, as

used in this paper, we had just the same level of

�explicitness�. A similar conclusion can be drawn if

one of the users has a hyperbolic curve and the

other an exponential curve (where the parameters

are chosen such that the data utility-curve major-

izes the voice utility-curve iff the mean delay is

larger than 1).
In other words, it turns out that the analysis

with other �standard� functional forms is just as

tractable as with hyperbolic utility curves. The

major drawback of these alternative functional

forms, however, is that the resulting expressions

become less transparent.
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