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Abstract

This paper investigates handover and fresh call blocking probabilities for subscribers moving along a road in a traffic

jam passing through consecutive cells of a wireless network. It is observed and theoretically motivated that the hand-

over blocking probabilities show a sharp peak in the initial part of a traffic jam roughly at the moment when the traffic

jam starts covering a new cell. The theoretical motivation relates handover blocking probabilities to blocking proba-

bilities in the M/D/C/C queue with time-varying arrival rates. We provide a numerically efficient recursion for these

blocking probabilities.
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1. Introduction

Current trends in designing and building wire-

less communications networks include linear

wireless networks dedicated to cover calls gener-

ated by subscribers traveling along a highway [2].

Such networks can be seen as one-dimensional

networks with base stations placed at equal dis-
tance, and with equal capacity. Moreover, as the

linear network is dedicated to covering traffic

along the highway only, the network will consist of

small cells with typical length 1000–2000 m. Ob-

viously, this road covering network must be ca-

pable of handling peaks in the load such as

occurring during rush hours when a traffic jam

(hot spot) is moving along the road. During rush
hours, especially in a traffic jam, traffic will move

along the road at considerably reduced speed, in

the order of 20–40 km/h. At this speed, it will take

a subscriber roughly 3 min to travel along a cell,

and the increase in traffic density that marks the

beginning of a hot spot will be relatively sharp
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compared to the length of the cell. In view of the

above, below we will focus our attention on a

linear network (or tandem network) with equal

cells along which a traffic jam with a density of

almost block-shape travels at constant speed.

In a hot spot, a large number of subscribers
might almost simultaneously require a handover

between adjacent cells. Moreover, due to the na-

ture of a traffic jam, a subscriber located in a group

of cars is very likely to stay within that same group

of cars for a long period of time while traveling

along multiple cells, so that also its next handover

attempt will occur at the same instant as those

attempts of the other members of the group. This
may lead to a serious degradation of the quality

of service (QoS), expressed in terms of fresh call

and handover blocking probabilities with typical

threshold values of 1% and 0.5%, respectively, see

[7]. In fact, when the traffic is dense, it may become

likely for a call to terminate due to dropping, that

is, for some groups of cars the probability that a

call is prematurely interrupted due to handover
blocking exceeds well beyond the threshold values,

and may approach the probability that the call

completes due to the end of the conversation.

Below we will focus our attention on handover

blocking probabilities for subscribers at different

locations in a hot spot. As is often the case, these

handover blocking probabilities cannot be ob-

tained in closed form from a mathematical model
taking into account both mobility and telecom-

munications aspects. Therefore, we have per-

formed a series of dynamic simulations to

investigate these blocking probabilities. It is ob-

served that a subscriber traveling at roughly the cell-

length behind the start of a traffic jam suffers from a

considerable increase in handover blocking proba-

bilities at each handover attempt.

To explain this observation, notice that the load

of the telecommunications network is proportional

to the density of subscribers. As a consequence,

the number of handovers per time unit is propor-

tional to this density, too. Therefore, when a traffic

jam first enters an empty cell, all handovers will be

successful. When the traffic jam slowly migrates

into the cell, more and more handovers will be
blocked. Only when the first part of the traffic jam

migrates into the next cell, a substantial share of

capacity is released, so subsequent handover at-

tempts will become more successful. From a

mathematical perspective, a discretized version of

this intuitive justification can be captured in a re-

cursion that indeed closely describes the qualita-

tive behaviour of handover blocking in a traffic
jam. Reducing the discretization step, handover

blocking probabilities for a traffic jam moving at

constant speed turn out to coincide with fresh call

blocking probabilities in an Erlang loss queue with

deterministic service requirements, a model that

provides an adequate quantitative description of

handover blocking probabilities in our wireless

network of interest. Unfortunately, analytical re-
sults for the resulting Erlang loss queue with de-

terministic service requirements and time-varying

arrival rate are not available. Therefore, we have

also performed a series of dynamic simulations to

quantify blocking probabilities as function of time.

In addition, we have compared these exact results

with existing approximations such as the pointwise

stationary approximation (PSA), and the modified
offered load approximation (MOL), see [3], that

use the functional form of the equilibrium distri-

bution, but with the time-dependent offered load

obtained from analysis of a network with unlim-

ited capacity (hence no blocking occurs). These

commonly used approximations turn out to be

fairly inaccurate for the model under consider-

ation.
Our study focuses on handover blocking prob-

abilities for hot spots traveling along homoge-

neous linear networks, i.e., networks with cells of

equal length with equal capacity. For a traffic jam

with a constant density of subscribers (homoge-

neous traffic), our results also describe handover

blocking probabilities for the traffic jam entering a

cell with reduced capacity, e.g., due to frequency
failure, or due to the cell being larger. Also in this

case, the load arriving to this deviating cell suffers

a shock comparable with that of a hot spot, and

the handover blocking probabilities for subscribers

entering the deviating cell will show a sharp peak

that may be well beyond the design standards of

the wireless network. Our results clearly indicate

that the best design for road covering cellular net-

works is that with identical cells, e.g., equal length

cells with equal capacity.
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Here is the organisation of this note. Section 2

contains our model, and the simulation study ex-

hibiting the observed sharp peak in handover

blocking probabilities. A mathematical simplifi-

cation, based on a discretized version of the trav-

eling hot spot, that provides intuition for the
observed phenomenon is the topic of Section 3.

This section also provides the results for the ap-

proximation of handover blocking via the Erlang

loss queue with time-varying arrival rates. Section

4 provides a discussion of (the impact of) our re-

sults and completes this note.

2. Model and main observation

In this section, we describe the wireless network

that has been simulated and the results obtained
from that. The simulation results ask for an ex-

planation, which will be the topic of the rest of the

paper.

The wireless network that we consider is linear

and covered by equal cells of length L with ca-

pacity C per cell, say. To avoid boundary effects,

the network is assumed to cover the entire real line

R, and cells are assumed to be non-overlapping.
Along the network a hot spot of increased sub-

scriber density is traveling at constant speed v. To
isolate the effect of handover blocking for the

traveling hot spot, the density of subscribers is

assumed zero before the hot spot. Moreover, as

the hot spot has to model a traffic jam, the density

of subscribers inside the hot spot is assumed to

increase sharply at the beginning of the hot spot,
and then to remain fixed until the end of the hot

spot, see Fig. 1 for an illustration of our model,

and see [5] for a detailed description of fluid

models for road traffic, and [10] for a model in-

corporating the teletraffic load into this fluid

model.

We assume that calls are generated uniformly

over the hot spot, proportional to the density of
subscribers, an assumption that is justified since

the number of subscribers will considerably exceed

the number of subscribers making a call. Fur-

thermore, assume that the lengths of all calls

generated have generic distribution S, with mean s.
Apart from s and S, also the speed v of the traffic

jam and the length L of the cells are important. It
is convenient to express the call duration in cell

length units. So a call duration of s means that,

given the speed v (not specified) and the cell length

L, a car travels s=ðL=vÞ cells during the call. By the

nature of our problem, for a traffic jam traveling

along a highway, the mean call length will be in the

order of the time a subscriber requires to travel

along a cell, i.e., s is of the same order as ðL=vÞ.
Typical values of s we consider are 0:2L=v, L=v and
2L=v. For example for a speed of v ¼ 30 km/h, and

cell length L ¼ 2:5 km, a call of 5 min travels ex-

actly one cell length, so s ¼ L=v.
Below, for deterministic and exponentially dis-

tributed call lengths, graphs for fresh call and

handover blocking probabilities are presented for

a block shaped traffic jam, modeled as a constant
fresh call arrival rate k over the cells, see Fig. 1.

For all experiments, the capacity of each cell is

C ¼ 21, and where relevant, we have taken v ¼ 30

km/h, and L ¼ 2:5 km. Blocking probabilities are

depicted with respect to the position of the calls in

the traffic jam. To this end, the traffic jam is di-

vided into segments, labelled 1; 2; 3; . . ., starting

from the head of the traffic jam, and such that 10
segments cover a cell, i.e. a segment has length

0:1L, see Fig. 1. The graphs show the blocking

probabilities per segment for various values of the

fresh call arrival rate k, where k is normalised to

correspond to the fresh call arrival rate in a cell

that is completely covered by the traffic jam: in the

example of Fig. 1, where a segment has length

0:1L, k ¼ 0:25 corresponds to an arrival rate of

Fig. 1. Road divided into cells of equal length; block shaped

traffic jam with speed v.
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0.025 calls per second per segment, resulting in an

arrival rate of 0.25 calls per second in cell )1 that

is covered by 10 segments, and an arrival rate

0.075 calls per second in cell 0 since cell 0 is cov-

ered by the first 3 segments of the traffic jam, only.

For our results, we assume that the traffic jam
has been travelling along the road for a substantial

amount of time, such that blocking probabilities

become stationary with respect to the location in

the traffic jam. (It turns out, however, that sta-

tionarity is already obtained when the traffic jam

has passed 2–3 cells.) Thus, the handover blocking

probabilities depicted in Fig. 2 (indicated with �)
should be interpreted as the handover blocking
probabilities experienced by subscribers in a seg-

ment each time the segment enters a new cell. The

fresh call blocking probability (indicated with j)

should be interpreted as the probability that a

fresh call of a subscriber in a segment is blocked.

The results of Fig. 2 are obtained from a termi-

nating discrete event simulation, where results are

obtained with at least 95% confidence and 10%
relative precision. Confidence intervals are not

reported in the graphs, the irregular pattern of e.g.

the left most graphs reveal part of the uncertainty

in our simulation results.

The first series of graphs, Fig. 2a, considers the

situation of deterministic call lengths with

s ¼ 0:2L=v ¼ 60 s, i.e., each call lasts exactly 20%

of the cell length. Arrival rates are k ¼ 0:25/s,
k ¼ 0:50/s, and k ¼ 0:75/s. For a non-moving

traffic jam, in a cell completely covered by the

traffic jam, this would result in loads 15, 30, and 45

Erlangs, resulting in fresh call blocking probabili-

ties 3.15%, 35.2%, and 55.0%, respectively (readily

obtained from the Erlang loss formula). The sec-

ond and third series of graphs (Fig. 2b and c, re-

spectively) consider deterministic calls of length
s ¼ L=v s, and s ¼ 2L=v s, respectively, where the

arrival rates are scaled such that the load remains

unchanged. The fourth series of graphs (Fig. 2d)

reconsiders the case of Fig. 2b, but with negative

exponentially distributed call lengths. Notice that

all graphs, irrespective of the loads, the call

lengths, and the distribution of these call lengths,

show qualitatively the same behaviour.
As can be observed from these graphs, fresh call

blocking (indicated with j) behaves according to

intuition: in the initial part of the traffic jam fresh

call blocking probabilities are lower as the corre-

sponding segments often reside in an empty cell.

From segment 10 onwards, the fresh call blocking

probabilities attain values close to their equilib-

rium values of 3.15%, 35.2%, and 55.0%. The
realised values in the graphs are slightly lower as a

fraction of the load is cancelled due to handover

blocking.

The handover blocking probabilities (indicated

with �) show a remarkable peak in segment 10. At

first sight, this may seem an anomaly in our sim-

ulation study. However, a more detailed investi-

gation of the system reveals that this peak can be
intuitively justified via the following argument.

The load of the telecommunications network is

proportional to the density of subscribers, so that

the number of handovers per time unit is propor-

tional to this density, too. When a traffic jam first

enters an empty cell, all handovers will be suc-

cessful. When the traffic jam slowly migrates into

the cell, more and more handovers will be blocked.
Only when the first part of the traffic jam migrates

into the next cell, a substantial share of capacity is

released, so subsequent handover attempts will

become more successful. Notice that a second

(smaller) peak in the handover blocking proba-

bilities occurs at roughly 2L behind the start of the

traffic jam for networks suffering a high load in the

traffic jam. The intuition behind this peak follows
the lines of that for the first peak. An additional

effect occurs for s ¼ 2L=v. Here subscribers trav-

elling at 2L behind the initial part of the traffic jam

will perform two handovers, and can therefore be

blocked in both attempts. The combined effect

results in a increased peak at 2L.
From a mathematical perspective, a discretized

version of this intuitive justification is captured in
a recursion in Section 3.1.

Remark 2.1 (Design of a road covering network).
The peak in the handover blocking probabilities

reported in Fig. 2 is caused by a sharp increase in

the teletraffic load coinciding with the initial phase

of a hot spot. A similar situation occurs when a

traffic jam with constant subscriber density (ho-
mogeneous traffic) travels along a road with

identical cells (same length L and capacity C).
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Fig. 2. Fresh call blocking ðjÞ, handover blocking probability ð�Þ for segment numbers 1–40 (see Fig. 1 for labelling of segments): (a)

deterministic call length, s ¼ 0:2L=v; (b) deterministic call length, s ¼ L=v; (c) deterministic call length, s ¼ 2L=v and (d) exponential

call length, s ¼ L=v.
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Upon entering a cell with reduced capacity e.g. due

to failure of a frequency assigned to that cell

(lower C) or due to the cell being longer (larger L).
In such cases, the teletraffic load of the deviating

cell shows a sharp increase with resulting peak in
the handover blocking probabilities. The simula-

tion results clearly indicate that the best design for

road covering cellular networks is that with iden-

tical cells.

3. Mathematical model

Below, we first present a formal discretized de-

scription of the traffic jam, in which subscribers

simultaneously move along the road in discrete

steps. Then, in Section 3.2, we show that handover

blocking for calls in a traffic jam can be conve-

niently modelled as fresh call blocking in an Er-

lang loss queue. In Section 3.3, we investigate the

influence of the discretization step size, and in
Section 3.4 we study the relation between the peak

in the handover blocking probabilities and the

shape of the initial phase of the traffic jam.

3.1. Recursion

We will consider one initially empty cell. In

order to understand this process, the cell is split

into d sub-cells, also called service locations, in-

dexed j, j ¼ 1; . . . ; d. These service locations share
an amount of C servers that can be used at each of

the service locations. We assume that customers
arriving from the outside enter the cell at location

1, and move along the locations in upwards di-

rection (location 2, etc.). Customers leave the cell

upon completion at location d. A customer arriv-

ing to location 1 is accepted for service if a server is

available, otherwise the customer is rejected, and

cleared from the system.

The correspondence between this model and the
model of Section 2 is as follows. Arrivals at loca-

tion 1 are to be seen as handover attempts to cell 0.

When the traffic jam moves along the road, one

after the other the segments of the traffic jam enter

cell 0 (see Fig. 1), and calls in the segments make a

handover attempt. Segments reside in cell 0 for

d ¼ 10 time steps until departure to cell 1. In the

simple model of the present section, there are no

fresh calls generated and calls are not terminated

in this cell. This might seem not very realistic, but

as we will argue later, a stationary model with

fresh calls and call termination will have similar

performance characteristics, see Remark 3.5.
Let Xn denote the number of customers arriving

to service location 1 in the time interval ðn� 1; n�,
n ¼ 1; 2; . . . (we will also say at time n). We assume

that the Xn are non-negative.

Remark 3.1. In our model, we include the case

that Xn is non-stationary to model a non-homo-

geneous load of calls over the traffic jam. This
seems more realistic as more fresh calls are likely

to be accepted in the initial part of the traffic jam

as this part more often resides in an empty cell.

For short calls this effect will not be substantial. In

our numerical and theoretical results below we will

restrict ourselves to the stationary case. As will

become clear from our results, this stationary case

explains the nature of the curves of Fig. 2, where
fresh call arrivals throughout the traffic jam, and

call completions are taken into account (also see

Fig. 3).

Let Yn denote the total number of busy servers

at time n, due to arrivals in ð0; n�. Let Zn denote the

number of servers granted to the customers ar-

riving in the time interval ðn� 1; n�. From the de-
scription of the system, we know that a customer

who is accepted in location 1 will always have a

server available at subsequent service locations. As

a consequence, the number of servers Zn granted at
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Fig. 3. Blocking probabilities fn for C ¼ 21, d ¼ 10, and a
ranging from 1.5 to 3.0.
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time n is released at time d þ n. The r.v.�s Yn and Zn

satisfy a number of recursions. We will distinguish

the cases n6 d and n > d.
Case n6 d. We have

Yn ¼ minfYn�1 þ Xn;Cg;
Zn ¼ Yn � Yn�1; n6 d;

ð1Þ

where Y0 
 0, or equivalently, for Yn,

Yn ¼ minfX1 þ � � � þ Xn;Cg; n6 d:

Case n > d. For n > d the recursions are more

complicated because now we have departures from

the cell:

Yn ¼ minfYn�1 � Zn�d þ Xn;Cg;
Zn ¼ Yn � Yn�1 þ Zn�d ; n > d:

ð2Þ

From the recursions (1), (2) it is clear that

Yn ¼ Zn þ Zn�1 þ � � � þ Zn�dþ1; nP 1 ð3Þ
and

Zn ¼ minfXn;C � Zn�dþ1 � � � � � Zn�1g; nP 1;

ð4Þ
where Zn :¼ 0, for n6 0.

We are interested in fn, the fraction of the ar-
riving customers that is blocked at time n, that is
defined as

fn ¼ 1� EZn

EXn
; n ¼ 1; 2; . . . ð5Þ

For the model of Section 2, fn corresponds to the

handover blocking probability for subscribers in

the nth segment of the traffic jam.

Example 3.2. Let the Xn be iid Poisson distributed
with mean a, so that

Pn
k¼1 Xk is Poisson distributed

with mean an. Then for n6 d

PðYn ¼ kÞ ¼
ðanÞk
k! e�an; k < C;P1
j¼C

ðanÞj
j! e�an; k ¼ C;

(
ð6Þ

so that EZn and fn can be obtained in explicit form.

A comparison of blocking probabilities is pos-

sible using the stochastic order relation, X P stY ,
that implies that EX P EY (cf. [9] for a list of
properties). For stationary fXngnP 1, for n6 d we

see from (4), that Zn is stochastically decreasing so

that fn is increasing. For n ¼ d þ 1, however, the

situation becomes more complicated. Using (4),

Zdþ1 ¼ minfXdþ1;C � Z2 � � � � � Zdg;
Zd ¼ minfXd ;C � Z1 � � � � � Zd�1g
and Zi P stZiþ1, i ¼ 1; . . . ; d � 1, a term by

term comparison of C � Z2 � � � � � Zd and C�
Z1 � � � � � Zd�1 and invoking the stationarity of

fXngnP 1, implies that Zdþ1 is stochastically larger

than Zd . Obviously, Zdþ1 is stochastically smaller
than Z1 ¼ minfX1;Cg. These observations are

formalized in the following lemma.

Lemma 3.3. Assume that fXngnP 1 is stationary.
Then Zn is decreasing, for n ¼ 1; . . . ; d, and

fn P fn�1; n ¼ 2; . . . ; d:

Furthermore, Zdþ1 P stZd , and Z1 P stZdþ1,
therefore

f1 6 fdþ1 6 fd :

So the blocking probabilities show a peak at
n ¼ d.

The ordering of Zdþ2 and Zdþ1 depends on the

distribution of Xn. To see this, consider a simple

example with C ¼ 1, d ¼ 3, and PðXn ¼ 1Þ ¼
p ¼ 1� PðXn ¼ 0Þ ¼ 1� q. We are now interested

in a comparison of PðZ4 ¼ 1Þ and PðZ5 ¼ 1Þ. To
this end, one easily verifies that

PðZ1 ¼ 1Þ ¼ p; PðZ2 ¼ 1Þ ¼ qp; PðZ3 ¼ 1Þ ¼ q2p;

PðZ4 ¼ 1Þ ¼ pðpþ q3Þ; PðZ5 ¼ 1Þ ¼ pðq4þ 2qpÞ

and it follows that PðZ4 ¼ 1ÞPPðZ5 ¼ 1Þ iff

pP ð3�
ffiffiffi
5

p
Þ=2 � 0:38, i.e., for larger values of the

arrival rates we have that fdþ1 6 fdþ2. Similarly, for

larger values of the arrival rates we also obtain
that EZdþ1 P EZd�1.

In general, it seems that for larger values of the

arrival rates, i.e., for larger values of EXn, we will

have EZdþ1 P EZdþ2. The argument for the order-

ing of subsequent r.v.�s Znþdþ1 and Znþd strongly

depends on the value of n and on the value of

the arrival rates, as can also be seen from Fig. 2.

Thus, it seems that larger values of the arrival rates
result in a sharper peak for the blocking proba-

bilities.
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Especially for heavily loaded systems, a second

peak may occur at n ¼ 2d that has the same in-

tuitive explanation as the peak at n ¼ d. This

second peak will be smaller, as it is caused by the

truncated process of the first d intervals, that is,

the capacity used by arrivals in interval d þ j is
Xdþj truncated to Zj. Fig. 3 presents results of a

numerical investigation of the blocking probabili-

ties fn in the setting of Example 3.2, i.e., under the

assumption that Xn is Poisson distributed with

mean a for varying load a ¼ 1:5; 2:0; 2:5, and 3.0.

Remark 3.4 (Interpretation of blocking probabili-
ties). The blocking probabilities fn, defined in (5),
capture handover blocking probabilities for the

model of Section 2. To see this, assume the traffic

jam has been traveling along the road for a time-

period long enough for the distribution of the

number of calls in the segments to be stationary,

that is each time segment n enters a cell, the dis-

tribution of the number of calls in the segment is

Xn. Then, clearly, fn captures handover blocking
probabilities of segment n. Convergence of the

distribution of the number of calls in segment n
upon handover to its stationary version Xn occurs

reasonably fast. In the setting of the graphs of Fig.

2, with s in the order of time a call travels through

a cell, convergence in our simulation study was

reached within three cells.

Remark 3.5 (Call termination and fresh call arriv-
als). The model of (1), (2) considers calls arriving

to the system to service location 1, only. These

calls correspond to handovers in the system of

Section 2 (see Remark 3.4). Moreover, these calls

do not terminate (except through blocking) and

travel �for ever� along the sub-cells. In the network

of Section 2, calls are terminated and fresh calls
are generated throughout the traffic jam, i.e., there

is an additional arrival rate of fresh calls in all

segments, and in all segments calls may terminate

due to call completion. We may also take these

processes into account in the process of (1) and (2).

To this end, consider a traffic jam that has been

travelling �for ever� until our �special� initially
empty cell is reached. Then, in each segment the

distribution of the number of calls will be in its

stationary regime. Assume that the number of

subscribers substantially exceeds the number of

calls in the segments, so that we may model the

additional fresh call arrival process as a Poisson

process at rate m, say, and let An be the r.v. for the

number of non-blocked fresh call arrivals per time
unit in segment n. Thus, after one time unit the

number of calls in segment n has increased to

Zn ¼ Xn þ An. In addition, in each segment a frac-

tion p, say, of the calls will be completed. (Here,

for simplicity of the argument, we assume geo-

metrically distributed call lengths with mean 1=p.)
Clearly, conditional on Zn ¼ k, the distribution of

the number of completed calls in this segment after
one time unit, Bn, is binomial ðk; pÞ. Once the

traffic jam has reached its stationary regime, the

effects of An and Bn will cancel.

Notice that for small blocking probabilities, Zn

closely resembles Xn, i.e., Zn is close to Poisson. In

that case, Zn � Bn is a thinning of a Poisson process

that is also Poisson, with rate ð1� pÞa. For

m þ ð1� pÞa ¼ a we indeed obtain that An � Bn. In
the general case, for a traffic jam that has been

moving along a road until the stationary regime

has been reached, we will have that the distribu-

tion of the number of calls in the segment is such

that thinning with probability p, and adding a

Poisson ðmÞ number of fresh calls will not change

the distribution. Although the argument above is

not rigorous, observing the graphs of Figs. 2 and 3
indeed shows that qualitatively the model of (1),

(2), that ignores fresh calls, provides an adequate

description of handover blocking in a traffic jam.

Remark 3.6 (Layered networks). Layered net-

works consisting of macrocells with under-lying

microcells arise naturally as design option for road

covering networks to increase capacity. Typically,
to the network of existing macrocells with capacity

C a layer of smaller microcells with capacity c is

added. Layered networks of this form fit into the

framework described above. To see this, consider a

tandem of d service locations, indexed j,
j ¼ 1; . . . ; d. Let service location j be assigned c
servers for private use, and let service locations j,
j ¼ 1; . . . ; d, share an additional amount of C
servers that can be used at each of the service

locations. Assume that customers arrive from the
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outside to location 1, and move along the locations

in upwards direction. Customers leave the system

upon completion at location d. A customer arriv-

ing to location j is accepted for service when a

server (either from the private pool of c servers, or
from the shared pool of C servers) is available at

location j, otherwise the customer is rejected, and

cleared from the system. Let eXXn denote the number

of customers arriving to service location 1 in

the time interval ðn� 1; n�, n ¼ 1; 2; . . .. With

Xn :¼ ½eXXn � c�þ the number of servers of the pool

of C servers requested be these customers we arrive

at the model of (1), (2), where Yn is the total
number of occupied servers from the shared pool,

and blocking probabilities can be computed from

(5).

3.2. Erlang loss queue with deterministic service

The analysis in the previous section provides in

fact an algorithmic description of the load and
blocking probabilities for the discretized Erlang

loss queue M jDjCjC with Poisson arrivals at rate

aðtÞ depending on the time t and deterministic

service, that starts initially empty. To see this, let

the service time D be divided into dðDÞ time steps

D, such that D ¼ D=dðDÞ. Let Yn denote the num-

ber of calls in the queue at time nD, Y0 ¼ 0, and let

Xn denote the number of calls arriving in
ððn� 1ÞD; nD�. Ignoring higher order terms, we

scale upon the rate at which aðtÞ changes: we as-

sume that Xn is Poisson distributed with rate aðnÞD
for all n.

Arrivals occur throughout the interval

ððn� 1ÞD; nD�, but all departures occurring in that

interval are deducted at the beginning of the in-

terval, which is commonly referred to as departures
before arrivals, or late arrivals. As a result an ac-

cepted call stays in the system a little bit shorter

than its service requirement D. As a consequence,

for n6 dðDÞ calls are accepted only if Yn�1 þ
Xn 6C. Otherwise, only Zn ¼ C � Yn�1 of these

calls can be accepted. These calls will depart from

the system upon completion of their service re-

quirement D, that occurs at time step nþ dðDÞ.
For nP dðDÞ first the completed calls are re-

moved, and all fresh calls are accepted only if

Yn�1 � Zn�dðDÞ þ Xn 6C. Otherwise, only Zn ¼ C�

Yn�1 þ Zn�dðDÞ of these calls can be accepted. The

number of calls in the system at time step n then

satisfies the recursion

Yn ¼ minfYn�1 þ Xn;Cg; 16 n6 dðDÞ; ð7Þ

Yn ¼ minfYn�1 � Zn�dðDÞ þ Xn;Cg; n > dðDÞ:
ð8Þ

Moreover, observe that Zn ¼ Yn�Yn�1þZn�dðDÞ.

Let Zn be the random vector

Zn ¼ ðZn; . . . ; Z1Þ; 16 n6 dðDÞ; ð9Þ

Zn ¼ ðZn; . . . ; Zn�dðDÞþ1Þ; n > dðDÞ; ð10Þ

then Zn records the number of calls in the queue at
time step n, as well as the received amount of

service of these calls (in slots). To see this, notice

that for n6 dðDÞ at time step n, the number of calls

Zn have just arrived, and therefore have received

an amount of service hD, with 06 h < 1, whereas

the number of calls Z1 arrived in time interval

ð0;D� and have therefore already received the

amount of service ðn� 1ÞD þ hD. Therefore, Zn

provides a complete description of the state of the

Markov chain that records the number of calls

including the remaining service requirement. For

D ! 0, thus dðDÞ ! 1, we arrive at the random

vector Zn that records the density of calls together

with the remaining service requirement at time n of
the continuous time M jDjCjC queue.

3.3. Influence of discretization

The recursion (7) and (8), or equivalently, the

recursion (1) and (2), provides a method for

analysing instantaneous blocking probabilities in

an M jDjCjC queue with time-varying arrival rates.

This recursion is particularly appealing, since

blocking probabilities seem to approach those of
the M jDjCjC queue from below as is stated in the

following conjecture, and illustrated in Fig. 4.

Before introducing the conjecture, let us first in-

troduce some notation. Let D ! 0 along the se-

quence D ¼ D0=2k, k ¼ 0; 1; 2; . . ., for D0 ¼ D=d,
where d is the initial number of time steps for

k ¼ 0, i.e., we will double the number of time steps

in D when k ! k þ 1, and for k ¼ 0 we have the
situation of the beginning of the subsection. Let
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XnðkÞ denote the number of arrivals and ZnðkÞ be

the number of accepted arrivals in ððn� 1ÞD0=
2k; nD0=2k�, k ¼ 1; 2; . . . Let fnðkÞ ¼ 1� EZnðkÞ=
EXnðkÞ the approximate instantaneous blocking

probability that is accumulated over the interval

ððn� 1ÞD0=2k; nD0=2k�. The instantaneous blocking

probability f ðtÞ at time t is then approximated as
f ðtÞ � fdtd2k=DeðkÞ.

Conjecture 3.7. Let fnðkÞ ¼ 1� EZnðkÞ=EXnðkÞ be
the blocking probability obtained from (7) and (8)
with time steps D ¼ D0=2k. Then fnðkÞ6 f2nðk þ 1Þ,
and f ðtÞ ¼ limk!1 fdtd2k=DeðkÞ.

For the system starting in equilibrium, the or-
dering of blocking probabilities is straight for-

ward, since in our recursion calls depart at the

beginning of the interval, and therefore stay in

the system shorter. As a consequence, the load of

the queue is smaller. Clearly, the load is increasing

with k. Therefore blocking probabilities increase

with k, since the Erlang loss formula is a strictly

increasing function of the load.
For the system with time-varying arrival rates,

for t6D the ordering of blocking probabilities can

readily be demonstrated. Let YnðkÞ be the number

of calls in the queue at time nD0=2k, k ¼ 1; 2; . . .
Then

YnðkÞ ¼ minfYn�1ðkÞ þ XnðkÞ;Cg; 16 n6 2k�1d;

ð11Þ

YnðkÞ ¼ minfYn�1ðkÞ � Zn�dðkÞ þ XnðkÞ;Cg;
n > 2k�1d: ð12Þ

Notice that for k ¼ 1; 2; . . . ;

XnðkÞ ¼ X2n�1ðk þ 1Þ þ X2nðk þ 1Þ; nP 1; ð13Þ

ZnðkÞ ¼ Z2n�1ðk þ 1Þ þ Z2nðk þ 1Þ; 16 n6 2k�1d;

ð14Þ

YnðkÞ ¼ Y2nðk þ 1Þ; 16 n6 2k�1d: ð15Þ

We have assumed that fXnðkÞgn is iid for all k,
which is possible due to the Poisson arrival pro-

cess. From Lemma 3.3, we further obtain that

ZnðkÞ6 stZn�1ðkÞ for 16 n6 2k�1d and for all k.
This immediately implies that

f2nðk þ 1Þ ¼ 1� EZ2nðk þ 1Þ
EX2nðk þ 1Þ

¼ 1� 2EZ2nðk þ 1Þ
EXnðkÞ

P 1� EZnðkÞ
EXnðkÞ

¼ fnðkÞ; 16 n6 2k�1d;

ð16Þ

where we have used (13) in the second equality,

and (14) and Z2nðk þ 1Þ6 stZ2n�1ðk þ 1Þ in the last

inequality.

The argument above cannot be continued for

t > D, because the ordering of the Z2nþjðk þ 1Þ
cannot be determined, see the comments following

Lemma 3.3.

3.4. Influence of the shape of the traffic jam

This section investigates blocking probabilities

for the M=D=C=C queue for three arrival rate

functions aðtÞ that model the initial phase of traffic

jams. All traffic jams have initial density 0, and

then either abruptly or smoothly the arrival rate

increases to a constant arrival rate a per stretch of
road of unit length (segment).

The first series of graphs, Fig. 5a, considers a

block shaped traffic jam, where the traffic mass

reaches its maximum abruptly at t ¼ 0. Then

Xi ¼ 0 for segments in front of the traffic jam, and

Xi is Poisson ðaDÞ for all i inside the traffic jam,

and therefore Xi is homogeneous inside the traffic

jam. The resulting arrival rate aðtÞ, for D ! 0, to
the system has a block shape:
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Fig. 4. Convergence of blocking probabilities fiðkÞ for a ¼ 2.
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aðtÞ ¼ 0; t < 0;
a; tP 0:

�
Clearly, these results coincide with those of

Section 2.

The results of Fig. 5b, and c show blocking

probabilities for traffic jams with a more smooth
initial phase resulting in a similar (but smaller)

peak in the blocking probabilities. Fig. 5b depicts

blocking probabilities for a triangular initial phase
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of the traffic jam, such that the density of traffic

increases linearly from 0 to a over the length of a

cell, i.e., Xi is Poisson ðiaD=DÞ for i ¼ 1; . . . ; dðDÞ,
and Xi is Poisson ðaDÞ for iP dðDÞ þ 1. The re-

sulting arrival rate aðtÞ, for D ! 0, to the system is

aðtÞ ¼
0; t6 0;
ða=DÞt; 0 < t6D;
a; tPD:

8<: ð17Þ

Fig. 5c depicts blocking probabilities for a

traffic jam that increases linearly over two cells: the

density of traffic increases linearly from 0 to a over

the length of two cells, i.e., Xi is Poisson ðiaD=2DÞ
for i ¼ 1; . . . ; 2dðDÞ, and Xi is Poisson ðaDÞ for

iP 2dðDÞ þ 1. The resulting arrival rate aðtÞ, for
D ! 0, to the system is

aðtÞ ¼
0; t6 0;
ða=2DÞt; 06 t6 2D;
a; tP 2D:

8<: ð18Þ

The situations of Fig. 5b and c, when translated

to the setting of road covering networks, are less

natural than that of Fig. 5a, since they smoothen

the initial fase of a traffic jam over 2–5 km, which

does not correspond to behaviour of real traffic

jams (see e.g. [6]). Also in the setting of frequency

defects, the situation of Fig. 5b and c is not nat-

ural, as these correspond to gradually starting
defects. From a theoretical point of view, however,

these situations are of interest as they relate the

sharpness of the peak to the shock in the density of

subscribers. Moreover, these graphs illustrate that

the peak in blocking probabilities is not due to

differentiability problems of aðtÞ, but is completely

due to the steepness of the arrival rate curve. It is

interesting to observe that the peaks in the
blocking probabilities in Fig. 5b and c occur well

beyond i ¼ d, corresponding to t ¼ D, which is

natural, since the initial phase of the traffic jam

does hardly contribute to the load of the system. A

precise prediction of the value for i at which the

peak occurs is difficult. Observe that the peak is

closer to t ¼ D for denser traffic, and that for

denser traffic multiple peaks emerge.
As an aside, we have compared our results with

approximate results for blocking probabilities in

Erlang loss queues. In particular, we have inves-

tigated the modified offered load approximation

(MOL), and the pointwise stationary approxima-

tion (PSA) that are commonly used in the analysis

of transient blocking probabilities, see [3] for a

detailed description of these approximations, and

see [4] for error bounds of the MOL approxima-

tion. For our system, the approximate instanta-
neous blocking probabilities obtained from MOL

or PSA are PðMðtÞ ¼ CÞ, with MðtÞ the number of

calls in the system at time t, and

PðMðtÞ ¼ kÞ ¼ qðtÞk

k!

XC
j¼0

qðtÞj

j!

,
; k ¼ 0; . . . ;C;

ð19Þ
the time-dependent distribution of an infinite ser-

ver queue truncated to C, where the (offered) load
qðtÞ is obtained as

qðtÞ ¼
R t
t�D aðsÞds for MOL;

aðtÞD for PSA;

�
ð20Þ

see [3] for a motivation of these expressions.
Computation of these (offered) loads yields, for

Fig. 5a

qMOLðtÞ ¼
R t
0
ads ¼ at for t6D;R t

t�D ads ¼ aD for tPD;

(
ð21Þ

qPSAðtÞ ¼ aD; tP 0; ð22Þ
for Fig. 5b

qMOLðtÞ

¼

1
2
ða=DÞt2; t6D;

1
2
ða=DÞ½D2�ðt�DÞ2�þaðt�DÞ; D6 t62D;

aD; tP2D;

8><>:
ð23Þ

qPSAðtÞ ¼
at; t6D;
aD; tPD;

�
ð24Þ

and for Fig. 5c

qMOLðtÞ

¼

1
2
ða=2DÞt2; t6D;

1
2
ða=2DÞ½t2�ðt�DÞ2�; D6t62D;

1
2
ða=2DÞ½ð2DÞ2�ðt�DÞ2�þaðt�2DÞ; 2D6t63D;

aD; tP3D;

8>>><>>>:
ð25Þ
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qPSAðtÞ ¼
ða=2Þt; t6 2D;
aD; tP 2D:

�
ð26Þ

As can be seen from Fig. 5, MOL outperforms

PSA, but MOL completely ignores the peak in the

blocking probabilities occurring at t ¼ D. In fact,

MOL reaches equilibrium as soon as aðtÞ becomes
constant, i.e., at t ¼ D in the situation of Fig. 5a,

where the effect of the shock for the blocking

probabilities may have influence for multiple cells.

Therefore, one has to be careful when dimension-

ing capacity of wireless networks based on these

approximations.

4. Concluding remarks

With the number of subscribers rapidly increas-

ing, efficient allocation of capacity to mobile sub-
scribers of wireless networks calls for road covering

networks. Dimensioning (e.g. capacity allocation)

for such networks is typically carried out assuming

a (homogeneous) stationary load over the cells. For

networks with load not distributed homogeneously

over the cells of the network, however, the cellular

nature might not be beneficial: as large bodies of

mobile subscribers (hot spots) migrate through the
cells of the network, large numbers of calls almost

simultaneously transfer between cells, and have to

handover from resources of the originating base

station to resources of the destination base station.

Handover blocking is considered to have a more

dramatic effect on the quality of service than fresh

call blocking. Hence, there is a trade-off between

increasing capacity (decreasing cell sizes) resulting
in lower fresh call blocking, and increasing cell sizes

resulting in lower handover blocking, and adequate

tools must be developed to analyse such blocking

probabilities.

An often used approach towards analysis of

blocking probabilities is to assume that the network

operation is as if the network is in statistical equi-

librium; tools for numerical evaluation of blocking
probabilities are then provided in e.g. [1,8]. As-

suming that the network parameters are changing

slowly over time, the modified offered load ap-

proximation, or pointwise stationary approxima-

tion, that use the functional form of the equilibrium

distribution, but with the time-dependent offered

load obtained from analysis of a network with un-

limited capacity (hence no blocking occurs) then

enable using the tools of [1,8], and often provide an

adequate approximation of transient blocking

probabilities [3]. When the network parameters

show a drastic deviation from equilibrium behav-
iour, however, such methods may not be adequate.

This occurs e.g. when a traffic jam is moving along a

road in a wireless network, where the number of

subscribers in a traffic jam is considerably larger

than that number outside the traffic jam, and

blocking probabilities may show behaviour not

consistent with results obtained from (approxima-

tions based on) equilibrium analysis.
This paper has provided a detailed analysis of

blocking probabilities for subscribers in a traffic

jam travelling along consecutive cells of a wireless

network. Via a discrete event simulation, sharp

peaks have been observed in the handover block-

ing probabilities when a traffic jam starts covering

a new cell. This peak is most prominent when the

traffic jam has a constant density of subscribers.
Via a discretization of the travelling hot spot, a

recursion is obtained that adequately captures the

handover blocking probabilities. Moreover, this

recursion indicates that handover blocking coin-

cides with blocking probabilities in the M=D=C=C
queue, the Erlang loss queue with constant service

times. Thus, handover blocking of a travelling hot

spot can be modelled and analysed via the tran-
sient behaviour of the M=D=C=C queue. A similar

peak occurs when homogeneous traffic enters a cell

with smaller capacity. The main conclusions from

this study are that

• a subscriber travelling at roughly the cell-length

behind the start of a traffic jam suffers from a

considerable increase in handover blocking
probability at each handover attempt;

• the best design for road covering cellular net-

works is that with identical cells.
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