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Reinforcing Reachable Routes 
 

Muthukumar Thirunavukkarasu 
 

Abstract 
 
Reachability routing is a newly emerging paradigm in networking, where the goal is to 
determine all paths between a sender and a receiver. It is becoming relevant with the 
changing dynamics of the Internet and the emergence of low-bandwidth wireless/ad hoc 
networks. This thesis presents the case for reinforcement learning (RL) as the framework 
of choice to realize reachability routing, within the confines of the current Internet 
backbone infrastructure. The setting of the reinforcement learning problem offers several 
advantages, including loop resolution, multi-path forwarding capability, cost-sensitive 
routing, and minimizing state overhead, while maintaining the incremental spirit of the 
current backbone routing algorithms. We present the design and implementation of a new 
reachability algorithm that uses a model-based approach to achieve cost-sensitive multi-
path forwarding. Performance assessment of the algorithm in various troublesome 
topologies shows consistently superior performance over classical reinforcement learning 
algorithms. Evaluations of the algorithm based on different criteria on many types of 
randomly generated networks as well as realistic topologies are presented. 
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Chapter 1. Introduction 
  

With the continuing growth and dynamism of large-scale networks, the need for 
alternate routing algorithms is becoming increasingly important. The emergence of low-
bandwidth adhoc mobile networks requires routing algorithms that can distribute data 
traffic across multiple paths and quickly adapt to changing conditions. 

 
Routing protocols construct tables at each node that specify for each destination the 

next-hop to use for data packet forwarding. A minimal requirement is that the computed 
routing tables be free of loops when the network is stable. In dynamic environments, a 
more stringent requirement is that the routing tables be loop-free not only when the 
network is stable but at every instant since loops, even if temporary, can rapidly degrade 
performance. 

 
The effectiveness of a routing protocol directly impacts both the end-to-end 

throughput and end-to-end delay. Current network routing protocols are primarily 
concerned with deriving shortest-cost routes between a source and destination, i.e. they 
are tailored towards single-path routing. Recently, there has been an increased emphasis 
on multi-path routing, where routers maintain multiple distinct paths of arbitrary costs 
between a source and destination. 

 
Multi-path routing presents several advantages over single-path routing. First, a 

multi-path routing protocol is capable of meeting multiple performance objectives – 
maximizing throughput, minimizing delay, bounding delay variation, and minimizing 
packet loss. Second, from a scalability perspective, it makes effective use of graph 
structure of a network (as opposed to single-path routing which superimposes a logical 
routing tree upon the network topology). Third, multi-path routing protocols are more 
tolerant of network failures. Finally multi-path routing algorithms are less susceptible to 
route oscillations, which enables the use of high-variance cost metrics that are better 
congestion indicators, whereas current single-path routing algorithms face route 
oscillations since they switch routes as a step function. 

 
While multi-path routing is a desirable goal, the current Internet routing framework 

cannot be easily extended to support it. One solution is to develop a new multi-path 
routing framework, which necessitates changes to the Internet’s networking protocol (IP). 
The main problem here stems from deployability concerns. The approach in this thesis is 
to study multipath routing within the confines of the current Internet protocol, which 
leads to interesting design decisions. 

 
Multi-path routing can be qualified by the state maintained at each router and the 

routing granularity. For instance, a routing algorithm can maintain multiple, distinct, 
shortest-cost routing tables, where each routing table is based on a different cost metric. 
We refer to this as multi-metric, multi-path routing approach. The second approach is to 
allow multiple network paths between a source and destination based on a single cost 
metric. This means that routers may use sub-optimal paths; wherein the router could send 
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data on multiple paths to maximize network throughput. We refer to this as single-metric, 
multi-path routing approach. 

 
Multi-path routing algorithms can also be distinguished by the routing granularity 

into coarse grain, connection-oriented or fine-grain, connectionless approaches. The 
former adopts a path-per-connection view wherein all packets belonging to the same 
connection follow the same path. However, different connections between the source and 
destination hosts may follow different paths. In contrast, connectionless networks have 
no mechanism to associate packets to any higher-level notion of a connection; hence they 
use the fine-grained approach. For true multi-path forwarding, the routing algorithm 
should forward packets between a source-destination pair along multiple paths, which 
may not be necessarily the shortest-cost paths. The focus of this thesis is on such fine 
grain multi-path routing algorithms within a single-metric domain. 
 

1.1 Problem Statement 
 

One way to achieve multi-path routing is to extend single-path routing protocols. This 
extension is non-trivial for two reasons. First, we need mechanisms to incorporate state 
corresponding to multiple paths into the routing table. More importantly, we need new 
loop avoidance algorithms: current shortest-path routing algorithms use their optimality 
metric to implicitly eliminate loops. This assumption is untenable for multi-path routing 
in a single-metric domain. Resolving these issues typically requires routers to maintain 
routing state proportional to the number of paths in the network. 

 
In this thesis, we approach multi-path routing from the terminal perspective of 

reachability routing. The goal of reachability routing is to determine all paths between a 
sender and a receiver, without the above mentioned state or consistency maintenance 
overhead. While basic reachability routing is primarily concerned with determining 
multiple paths through the network, practical implementations are also interested in 
determining the relative quality of these paths, a form we call cost-dependent reachability 
routing. In this thesis, we propose that reachability routing can be achieved by exploiting 
the underlying semantics of probabilistic routing algorithms and present the case for 
reinforcement learning (RL) as the framework of choice to realize reachability routing. In 
particular, by employing the probabilistic nature of RL algorithms, we can guarantee that 
the likelihood of a packet getting trapped in a loop is zero, although there is a non-zero 
probability of entering a loop. 
 

1.2 Organization   
 
The rest of this thesis is organized as follows. Chapter 2 gives background into the 

goals and approaches of various routing algorithms. It also gives a classification of 
various well known routing algorithms. In Chapter 3 we will present a new model-based 
routing algorithm based on RL and its implementation; Chapter 4 presents evaluation 
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results. Chapter 5 concludes with a summary of contributions and directions for future 
research in the area. 
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Chapter 2. Background 
 

This chapter gives an introduction to the various routing algorithms that are currently 
used in the Internet. We will present the goals of a routing algorithm and the various 
approaches to routing. We also give an overview of Reinforcement Learning (RL) [23], 
the strategies involved in a RL framework and how they can be applied to routing. We 
assume that the reader has a basic understanding of networking terminology such as: 
router, link, port, packet, domain, sub network, and routing algorithm. 

 

2.1 Goals of a Routing Algorithm 
 

The goals of a routing algorithm [31] are Optimality, Simplicity and Low Overhead, 
Stability and Robustness, Scalability, Convergence, and Flexibility. 

 
Optimality of the algorithm can be defined as the ability of the algorithm to employ 

the best route from among the set of available routes to the destination. The metrics 
employed influence the optimality of the algorithm. Achieving optimality is easy with a 
static network but becomes an issue of concern in a dynamic network.  

 
Simplicity is a desirable criterion in the design of a routing algorithm. In other words, 

the routing algorithm must offer its functionality efficiently, with a minimum of software 
and utilization overhead. Simplicity is particularly important when the software 
implementing the routing algorithm must run on a computer with limited physical 
resources. 

 
Robustness describes the ability of the algorithm to be resistant to failures. This might 

require the algorithm to change routes in case of link failures and node failures. Today’s 
best routing algorithms are often those that have withstood the test of time and that have 
proven stable under a variety of network conditions. 

 
Scalability can be defined as the ability to increase the number of participants in the 

network without concomitant increase in routing overhead. This is the reason for making 
the routing model of the Internet to be a multi-layered hierarchical one, rather than a flat 
one. 

 
Convergence is the process of agreement, by all routers, on optimal routes. In 

transient network conditions routes can become unavailable, and hence routers must 
distribute routing update messages that permeate networks, stimulating recalculation of 
optimal routes, and eventually causing all routers to agree on these routes. Routing 
algorithms that converge slowly can result in routing loops or network outages. 

 
Flexibility of the algorithm implies the ability of the algorithm to adapt to changes in 

the network. Routing algorithms can be programmed to adapt to changes in network 
bandwidth, router queue size, and network delay, among other variables. 
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Our discussion implicitly assumes the algorithm to be a correct one. Correctness is an 
axiom that need not be explicitly mentioned.  

 
Routing algorithms can be classified on the basis of the desirable outputs expected 

from them. Some of the desired outputs are: 
 
Loop free paths: Achieving loop free paths is very essential in routing, as a looped 

path could indefinitely cause the packets to keep circulating within the network without 
reaching the destination, resulting in bandwidth wastage and processing overhead at the 
various intermediate nodes. 

 
Multi-path Routing: Achieving multiple paths from source to destination can lead to 

effective usage of the network resources and also enable load balancing between multiple 
paths. 

 
Reachability: Given a connected graph (network), the routing algorithm should find at 

least one path from any source to every other destination in the network. In one sense, 
reachability can mean to achieve all possible paths and in the other sense it may just 
mean to guarantee that there exists a path from every source to every other destination.  

 

2.2 Various Approaches to Routing 
 
There are various approaches to routing [31] and below we give a brief overview of 

these approaches and compare them. 
 

2.2.1 Static versus Dynamic 
 

Static routing algorithms are table mappings established by the network administrator 
before commencing routing. They cannot react to changes in the network, and are 
considered unsuitable for today’s large, constantly changing networks.  

 
Dynamic routing algorithms adjust to changing network circumstances by analyzing 

incoming routing update messages. On determining that a network change has occurred, 
the routing algorithm recalculates routes and sends out update messages which stimulate 
other routers in the network to change their routing tables accordingly. 

 

2.2.2 Flat versus Hierarchical 
 

Flat routing protocols distribute/receive information as needed to/from any router that 
can be reached. The goal is to discover the best route to a destination and no effort is 
made to organize the network. In short, flat routing protocols consider all routers to be 
situated on a flat space. 
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Hierarchical routing protocols group routers together, by function, into a hierarchy. 
Logical groups of nodes are created and are called domains, autonomous systems, or 
areas. These groups generally mimic the organization of most companies and therefore 
support their traffic pattern well. Two types of routers can be distinguished in a 
hierarchical routing scenario: access routers which route traffic within the domain and 
backbone routers which handle traffic across domains. 

 

2.2.3 Host-intelligent versus Router-intelligent 
 

Host-intelligent routing algorithms assume that the source end node will determine 
the entire route. This is usually referred to as source routing. In effect, the routers merely 
act as store-and-forward devices that forward packets until the data reaches its 
destination; since these algorithms do not consider the effects of network changes, they 
can be very data unreliable. 

 
Router-intelligent algorithms assume that the hosts are ignorant of the routes. It is the 

routers themselves that determine the paths for data to be transmitted on. They calculate 
the best routes after having received appropriate updates on the status of the network; 
these algorithms are thus more robust and less sensitive to network changes. 

 

2.2.4 Intra-domain versus Inter-domain 
 

Intra-domain routing protocols handle the routing within a domain or autonomous 
system (AS). The administrator determines the routing policy to be enforced in the AS.  

 
Inter-domain routing protocols handle routing across domains. These routing 

protocols are mostly implemented in the border routers of the AS. 
 

2.2.5 Single-path versus Multi-path 
 

Single-path routing protocols determine the various routes and select a single best 
route based on certain metrics to each destination.  

 
Multi-path routing protocols learn routes and can select more than one route to each 

destination. They can provide substantially better throughput and reliability when 
compared to single-path routing protocols. As they are not just interested in finding the 
single best path to every destination, they have a much higher overhead compared to 
single-path routing protocols. 

 
 

2.2.6 Deterministic versus Probabilistic  
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Deterministic routing algorithms associate, for every destination in the routing table, 
an outgoing interface identifier and a cost associated with choosing that interface.  

 
Probabilistic routing algorithms associate, for every destination in the routing table, 

all outgoing interfaces and associated use probabilities. The probabilities are typically 
designed to reflect the router’s sense of optimality; thus an interface with higher 
probability than another lies on a better path to the given destination. These probabilities 
must be set to ensure that, when marginalized across all interfaces, the probability is one. 

 

2.2.7 Constructive versus Destructive  
 

Constructive routing algorithms begin with an empty set of routes and incrementally 
add routes till they reach the final routing table. Intuitively, a constructive algorithm 
treats routes as ‘guilty until proven innocent’ [24]. 

 
Destructive routing algorithms begin by assuming that all possible paths in the 

network are valid, i.e. they treat the network as a fully connected graph. Intuitively, a 
destructive algorithm treats routes as ‘innocent until proven guilty’ [24]. 

 
 
In the subsequent sections, we will discuss some of the popular routing algorithms 

currently used on the Internet and classify them on the basis of the various dichotomies 
established above.  

 

2.3 Distance Vector Routing Algorithm (RIP) 
 

Distance-vector routing algorithms build their routing tables using an iterative 
computation of the distributed Bellman-Ford algorithm. The most common manifestation 
of the distance-vector algorithm on the Internet is the Routing Information Protocol 
(RIP) [11][13].  

 
Every router maintains a routing database, which contains only the best known path 

costs to each destination router in the AS. As the name implies, every router forwards its 
current routing table to all of its immediate neighbors, as a vector of distances to all 
nodes in the network from itself [18]. Neighbors receiving the routing table check for 
every destination in the received table, to see if it can reach the destination using a better 
path (lower cost) through the router that advertised. If the received routing table entry has 
a better cost, the target router replaces its path cost and corresponding outgoing interface 
with the information received, and propagates the new information.  The algorithm 
stabilizes when every router in the system has indirectly received routing tables from 
every other router in the AS.  

 
At the end of the first iteration, each router knows the current best path costs to all 

routers within 1 hop from itself – a graph with a diameter of 2. With every passing 
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iteration, the diameter of the graph known to a router increases by 1. The algorithm 
finally stabilizes when each router has expanded its horizon to the diameter of the 
network. Count-to-infinity and looping [18], due to transient network conditions, are 
potential problems in distance-vector algorithms.  

 

2.4 Link State Routing Algorithm (OSPF) 
 

Based on Dijkstra’s shortest path algorithm, link-state routing algorithms avoid 
problems such as count-to-infinity and looping in the distance-vector approach by 
constructing a minimal spanning tree over the topology of the network. Link-state routing 
algorithms are characterized by a global information collection phase, where each router 
broadcasts its local connectivity to every other router in the network. Every router 
independently assimilates the topology information to build a complete map of the 
network, which is then used to construct routing tables. The most common manifestation 
of link-state algorithms is the Open Shortest Path First (OSPF) routing protocol 
[15][16], developed by IETF for TCP/IP networks.  

 
Each node broadcasts a link-state packet, which contains the information about its 

neighbors, the interfaces associated with that node, and the metric associated with the 
interfaces. After such broadcasts have flooded through the network, every router running 
the link-state algorithm constructs a map of the network topology and computes the cost 
of each link of the network. Using that topology, each router then constructs a shortest 
path tree to all other routers in the autonomous system. From the tree, a router determines 
the outgoing interface for each destination and stores this information in its routing table.  

 
Link-state algorithms are generally dynamic in nature, as the routers exchange 

information whenever there is a change in the topology or link costs and recompute 
shortest path trees to ensure consistency with the current state of the network. 

 

2.5 Path Vector Routing Algorithms (BGP, IDRP) 
 

In path vector routing algorithms, a node advertises paths to the destination instead of 
just the metric to that destination. Like distance-vector algorithms, every node advertises 
a vector with update information to its neighbors. Unlike distance-vector algorithms, the 
vector not only contains the metric of the path but also the path, a sequence of nodes, 
which lead to the destination. 

  
The Border Gateway Protocol (BGP) and the Inter-Domain Routing Protocol 

(IDRP) are two common implementations of path vector routing algorithms. The main 
reason for advertising the path to the destination, rather than just the metric, is to prevent 
loops from occurring in the system. Upon receiving the update from a neighbor, a node 
can just parse the list of nodes in the path to check if the node itself is present in the path 
already. The occurrence indicates a loop and the node discards such paths. 
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 Unlike link-state and distance-vector algorithms, path vector algorithms are generally 
used between autonomous systems i.e., operating at the scope of backbone networks. 
Also, the requirement to satisfy policies imposed by local domains in the Internet is 
possible with the path vector approach, since only those paths that satisfy all the policies 
and constraints imposed by all the domains along the path need to be chosen. 

 

2.6 MP-Scout 
 

MP-Scout [6] is a distributed routing algorithm based on backward learning to 
determine loop-free multi-paths. The algorithm periodically floods scout packets that 
explore paths to a destination in reverse. MP-Scout extends on SP-Scout (Single path 
routing algorithm) to provide multipath routing capability.  

 
In SP-Scout, a node R sends out one scout [R, CR] in every Broadcast Interval (BI) to 

all its neighbors where CR is initially set to 0. Node P upon receiving from some node Q, 
the scout [R, CR’] updates the cost of the scout to CR’’ where CR’’ = CR’ + cost (P->Q). If 
this is the first ever scout originating from R received by P, P forwards the scout to every 
other neighbor except Q. During the same BI, P might receive more scouts originating 
from R through other neighbors. From these scouts, it finds the cheapest cost to reach R 
but does not forward the scout as it has already forwarded one scout in the same interval. 
The neighbor from whom P received the cheapest cost is marked as the designated 
neighbor for the destination R. In the next interval, node P does not send out a scout from 
R until it has received a scout from the designated neighbor. If no scout came from the 
designated neighbor in the previous BI (due to node/link failure), P sends out the first 
scout it receives from R and re-determines its designated neighbor. SP-Scout 
distinguishes between BIs by associating a sequence number with each scout.  

 
To extend SP-Scout as a MP-Scout, the scouts have a Multipath ID associated with 

them. The routers perform a prefix matching on the ID to determine the loops and all 
paths leading into loops are eliminated. Routed packets also have the ID in them and the 
routers route the packets accordingly. MP-Scout introduces two types of thresholds; a 
threshold on the number of paths that a router can store for a destination and a data 
threshold, where P discards scouts advertising costs to a destination that are greater than 
the data threshold of the minimal cost known thus far to the destination. 

 

2.7 MDVA 
 

In this and subsequent sections, we discuss three multipath routing protocols: 
Multipath Distance Vector Algorithm (MDVA), Multipath Partial Dissemination 
Algorithm (MPDA), and MPATH, all part of the dissertation of Vutukury  [30]. The 
following table [26] lists out the common notations used in the algorithms. 

 
N Set of nodes in the network 
Ni Set of neighbors of node i 
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Si
j Next-hop choices at i for destination j a subset of Ni 

SGj Routing graph implied by the Si
j of destination j 

Di
j Distance of node i to j as known to i 

Ii
k Cost of link (i, k) 

Di
jk Distance of node k to j as reported by k to i 

FDi
j Feasible distance is an estimate of Di

j 
RDi

j Distance to j reported by node I to its neighbors 
SDi

j Best distance to j through Si
j 

WNi
j Set of neighbors that are waiting for replies 

statei
j State maintained by node i for node j (ACTIVE or PASSIVE) 

 

Table 2-1 Common notations used in MDVA, MPDA, and MPATH algorithms 
(Taken from [26]). 

 
All three algorithms make use of loop-free invariants (LFI) [27] to ensure loop 

freedom at every instance. The LFI conditions capture all previous loop-free conditions 
in a unified manner that simplifies protocol design and correctness proofs. They are given 
by: 

 
FDi

j(t)  ≤  Dk
ji(t) k ∈  Ni 

 

Si
j(t)  =  { k | Di

jk(t) < FDi
j(t) } 

 
These conditions state that, for each destination j, a node i can choose a successor 

whose distance to j, as known to i, is less than the distance of node i to node j that is 
known to its neighbors. The LFI conditions should be valid at any instance of time t 
(dynamic state of the network), hence FDi

j, Si
j, and Di

jk are represented as functions of t. 
 

The Multipath Distance Vector Algorithm [26] solves the count-to-infinity problem 
and computes multipaths to destinations. Circular computation of distances that occur in 
a Distributed Bellman-Ford (DBF) algorithm can be prevented if distance information is 
propagated along a Directed Acyclic Graph (DAG) rooted at a destination. Given a DAG, 
each node computes its distance using distances reported by “downstream” nodes and 
reports its distance to “upstream” nodes. This method called diffusing computation was 
suggested by Dijkstra et al [9] to ensure termination of distributed computation; a 
diffusion computation always terminates due to the acyclic ordering of the nodes. MDVA 
uses the DBF algorithm to compute Di

j, and therefore SGj (DAG), while propagating 
distances along the SGj to prevent the count-to-infinity problem.  

  
Each node maintains a main table that stores Di

j, Si
j, FDi

j, RDi
j, SDi

j and WNi
j. Each 

node also maintains a neighbor table for each neighbor k that contains Di
jk. The link table 

stores the cost Ii
k of adjacent link to each neighbor k. Since MDVA is a constructive 

algorithm, the nodes initialize all the distances to null. 
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Nodes executing MDVA exchange messages of the form [type, j, d], where d is the 
distance of the node sending the message to destination j and type is UPDATE, QUERY 
or RESULT. A node updates its distance vectors with the arrival of any message, the 
change of cost of an adjacent link, or a change in status (up/down) of an adjacent link. 
When an adjacent link becomes available, the node sends an UPDATE message to all the 
destinations j over the link. When the adjacent link (i, m) fails, the neighbor table 
associated with m is cleared and the cost of the link is set to infinity.  

 
In MDVA, a node can be in ACTIVE or PASSIVE state with respect to a destination j 

and is represented by statei
j. Initially, all nodes are in PASSIVE state, and as long as link 

costs decrease, MDVA works identically to DBF and nodes will remain in PASSIVE 
state. However, if the distance to a destination increases, a diffusing computation [9] 
(ACTIVE state) is initiated by sending QUERY messages to all the neighbors with the 
best distance SDi

j through Si
j waiting for the neighbors to reply. When all the RESULT 

messages are received, the node can ensure that the neighbors have incorporated the 
distances that the node reported, and safely transits to PASSIVE state. 

 

2.8 MPDA 
 

Multipath Partial Dissemination Algorithm (MPDA) [27] is an extension of the PDA  
[30] algorithm, which is a shortest path routing algorithm in its own right. By 
incorporating loop free invariants into PDA, we obtain MPDA. PDA, a link state 
algorithm propagates enough link-state information in the network such that each router 
has sufficient information to compute shortest paths to all destinations.  

 
Each router i running the PDA maintains: a main topology table; which stores the 

characteristics of each link known to router i, a neighbor topology table; which stores the 
link state information communicated by the router’s neighbors, a distance table; which 
stores the distances from the router to each destination and also the distances from every 
neighbor to each destination, a routing table; which stores for each destination j the 
successor set Si

j and feasible distance FDi
j, and finally a link table which stores the cost 

of the adjacent link to each neighbor. The routers exchange link state update (LSU)  [30] 
messages which contain information indicating addition, deletion, or change in cost of a 
link in the router’s main topology table. On receiving a LSU from a neighbor or when 
there is a change in an adjacent link, the router constructs a shortest path tree based on the 
information received and reports the differences between successive trees to its 
neighbors. Conflicts in reported link information are resolved by choosing the link which 
reports a lower cost to a destination. 

 
Similar to MDVA, the router is either in PASSIVE or in ACTIVE state. Initially the 

router is in PASSIVE state and when it receives an event that affects a change in 
topology, the router sends those changes to its neighbors, changing from PASSIVE to 
ACTIVE state, and waits for ACKs from its neighbors. In MPDA, all the neighbors 
acknowledge each LSU sent by a router before it sends the next LSU. During the 
ACTIVE phase, no update of the main topology table takes place while updates of the 
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neighbor topology table and link table are allowed. When all the ACKs are received, the 
router transits from ACTIVE to PASSIVE state and updates its main topology table; and 
if there is a change, it immediately goes into ACTIVE state and sends out LSU to all its 
neighbors. 

 

2.9 MPATH 
 

MPATH [28][29] makes use of distance-vectors combined with the identity of the 
second-to-last node, also called predecessor node that is just before the destination node 
on the shortest path. It provides multiple paths of unequal cost to each destination that are 
free of loops at every instant – in steady state as well as during network transitions. It 
uses a synchronization mechanism that spans only one hop, making it more scalable than 
routing algorithms based on diffusing computations spanning multiple hops.  

 
The basic approach consists of nodes first computing shortest distances to 

destinations and then using the distances along with loop-free invariants to obtain a loop-
free routing graph for each destination. The goal of MPATH is to maintain the routing 
graph denoted by the link set SGj, in presence of changing link costs, such that it is a 
directed acyclic graph at every instant. The key idea is to generalize the shortest-path 
trees to shortest-multipaths. To build shortest multipaths, a node stores costs of links on 
its shortest path tree and a copy of each neighbor’s shortest path tree. The nodes in 
MPATH exchange distances to destinations along with the addresses of the predecessor 
node on the shortest path to a destination. MPATH translates this information to link 
costs and internally works with links rather than distances, and when changes to 
topologies have to be reported, the internally represented topology is translated back to 
distances and predecessors. 

 

2.10 Q-routing 
 

Q-routing [4], one of the first Reinforcement learning (RL) algorithms for routing, is 
an online asynchronous relaxation of the Bellman-Ford algorithm used in distance-vector 
protocols. Reinforcement learning [12] is a branch of machine learning that is 
increasingly finding use in many important applications, including routing. Here, 
populating routing tables is viewed as a problem of learning the entries; we hence use the 
term learning in this thesis synonymously with the task of determining routing table 
entries. The salient feature of RL algorithms is the probabilistic nature of their routing 
table entries, making them suitable for either single-path or multi-path routing. 

 
Any RL problem is defined by a set of states, a set of allowable actions at each state, 

rewards for transitions between states, and a value function that describes the objective of 
the RL problem. In our problem of multi-path routing, the states are the routers and an 
action denotes the choice of the outgoing link. The environment supplies the rewards and 
the value function describes the goal imposed on RL algorithm. In our case, rewards 
could be set to reflect the quality of the link (e.g. cost) and the value function typically 
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tries to maximize or minimize an objective function (e.g. minimize cumulative sum of 
link costs when following a path). 

 
In Q-routing, every router x maintains a measure Qx (d, is) that reflects a metric for 

delivering a packet intended for destination d via interface is. A deterministic routing 
policy is followed and the packet is routed along 

argmaxk Qx (d, ik) 
 

i.e. to choose the interface with the highest Q value for destination d, among all the k 
interfaces. 
 

The operation of the routing algorithm is as follows. All the Q entries are initialized 
to some small values. Given a packet, a router x deterministically forwards the packet to 
the next best router y, determined from the Q value. Upon receiving this packet, y 
immediately provides x an estimate of its best Q (to reach the destination). x then updates 
its Q-values to incorporate the new information. The following routing update is 
presented in [4]: 

 
Qx (d, is) = Qx (d, is) + η {(maxk Qy (d, ik) + ζ) - Qx (d, is)} 

 
where ζ accounts for the time spent by the packet in x’s queue and also the transmission 
time from x to y. η is called learning rate or a step-size and is a standard fixture in 
iterative improvement algorithms [3]. It is typically set to produce a step-size schedule 
that satisfies the stochastic approximation convergence conditions [2]. 
 

Q-routing is not guaranteed to converge to the shortest path. In fact, as Subramanian 
et al. [22] point out, the algorithm will switch to using a different interface only when the 
one with the current highest Q metric experiences a decrease. An improvement (e.g., 
shorter delay) in an interface that doesn’t have the highest Q metric will usually go 
unnoticed. Another problem with the Q-routing algorithm is that the routing overhead is 
proportional to the number of data packets. 

 

2.11 ANTS 
 

In the previous section we gave a brief peek into RL but to more completely model 
routing as a RL problem, we need strategies for a) gathering information about the 
environment, b) deriving routing tables by credit assignment, and possibly c) building 
models of relevant aspects of the environment.  

 
Learning in RL is based on trial-and-error and organized in terms of episodes [12]. 

An episode consists of a packet finding its way from an originating source to its intended 
destination. Routing table probabilities are initialized to small random values, thus 
enabling them to begin routing immediately except that most of the routing decisions will 
not be optimal or even desirable. To improve the quality of the routing decision, a router 
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can ‘try out’ different links to see if they produce good routes, a mode of operation called 
exploration. Information learnt during exploration can be used to drive future routing 
decisions. Such a mode is called exploitation. Both exploration and exploitation are 
necessary for effective routing. 

 
To overcome the problems of selective reinforcement of Q-routing, wherein 

exploration only happens along the currently exploited path, Subramanian et al. [22] 
propose the separation of data collection aspects from the packet routing functionality. In 
their ant based algorithms, messages called ants are used to probe the network and 
provide reinforcements for the update equations. Here ants perform the role of gathering 
information about the network. The parameters of interest in the case of ants are the rate 
of generation of ants, the choice of their destinations, and the routing policy used for ants. 

 
RL algorithms perform iterative stochastic approximations and the rate of ant 

generation affects their convergence properties [8]. The second parameter of interest is 
the choice of the ant destinations. From the perspective of multi-path routing, we would 
like to choose destinations that will provide the most useful reinforcement updates; hence 
a uniform distribution policy assures good exploration. Finally, the policy used to route 
ants affects the paths that are selectively reinforced by the RL algorithm. As our goal is to 
discover all possible paths, the policy used to route ants should be independent of that of 
the data traffic. If we do not separate the policies, then we would end up with the same 
problem of selective reinforcement as Q-routing. 

 
In the context of RL framework, effective credit assignment strategies rely on the 

expressiveness of the information carried by the ants. The central idea behind credit 
assignment is to determine the relative quality of a route and apportioning blame. In the 
case of routing, credit assignment creates a ‘push-pull’ effect. Since the link probabilities 
have to sum to one, positively reinforcing a link (push) results in negative reinforcements 
(pull) for other links. 

 
In the simplest form of credit assignment, ants carry information about the ingress 

router and path cost as determined by the network’s cost metrics. At the destination, this 
information can be used to derive reinforcement for the link along which the ant arrived 
[22](backward learning). Another strategy is to reinforce the link in the forward direction 
by sending an ant to a destination and bouncing it back to the source [8] (forward 
learning). Subramanian et al. [22] adapt the former approach. Ants proceed from 
randomly chosen sources to destinations independent of the data traffic. Each ant 
contains the source where it was released, its intended destination, and the cost c 
experienced thus far. Upon receiving an ant, a router updates its probability to the ant 
source (not the destination), along the interface by which the ant arrived. This is a form of 
backward learning and is a trick to minimize ant traffic. 

 
Specifically, when an ant from source s to destination d arrives along interface ik to 

router r, r first updates c (the cost accumulated by the ant thus far) to include the cost of 
traveling interface ik in reverse. r then updates its entry for s by slightly nudging the 
probability up for interface ik (and correspondingly decreasing the probabilities for other 
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interfaces). The amount of the nudge is a function of the cost c accumulated by the ant. It 
then routes the ant to its desired destination d. In particular, the probability pk for 
interface ik is updated as: 
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p  and f(c) is a non-decreasing function of c. 

 
Two types of ants, namely regular ants and uniform ants, are supported to handle the 

routing aspect of the ants. Regular ants are forwarded probabilistically according to the 
routing tables, which ensure that the routing tables converge deterministically to the 
shortest paths in the network. Regular ants treat the probabilities in the routing tables as 
merely an intermediate stage towards learning a deterministic routing table. They are 
good exploiters and are beneficial for convergence in static environments. In uniform 
ants, the ant forwarding probability is a uniform distribution, wherein all links have equal 
probability of being chosen. This ensures a continued mode of exploration and helps keep 
track of dynamic environments. In such a case, the routing tables do not converge to a 
deterministic answer; rather, the probabilities are partitioned according to the costs. The 
constant state of exploration maintained by the uniform ants ensures a true multi-path 
forwarding capability. 

 

2.12 AntNet 
 

The AntNet system of Di Caro and Dorigo [8] is a very sophisticated reinforcement-
learning framework which is adept at handling dynamic routing conditions. Like the 
algorithms of Subramanian et al., this system uses ants to probe the network and 
sufficient exploration is built in to prevent convergence to non-optimal tables in many 
situations. It is a model-based system, where every router maintains a model of the local 
traffic experience which is adaptively refined and utilized to score ant travel times. 

 
Update rules are very carefully designed and implemented in AntNet to ensure proper 

credit assignment. For instance, the costs accumulated by ants are not used to update the 
link probabilities in reverse. Instead, a so-called backward ant is generated that travels 
the followed path in reverse and updates the link probabilities in the correct, forward 
direction. This overcomes the assumption of link cost symmetry made by both the ant 
algorithms in the previous section. Also, any ants encountering cycles in their paths are 
discarded and are not used to update the routing tables. 

 
 Table 2-2 summarizes the various routing algorithms studied in this chapter. 
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Table 2-2 Summary of the routing algorithms studied, along the various 
dichotomies established in this chapter. 
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Chapter 3.  Using RL for Model-Based Routing 
 

In this chapter we discuss how we model the problem of multipath routing as an 
instance of distributed model-based reinforcement learning. We will give an overview of 
the data structures used, the operation of the algorithm, and the design decisions involved 
at the various stages.  

 

3.1 Motivation 
 

The primary design objective is to achieve cost-sensitive multi-path forwarding while 
at the same time, eliminating the entry of loops ‘as much as possible’. We have made a 
series of improvements to the uniform ants algorithm proposed by Subramanian et al 
[22], culminating in a novel model-based routing algorithm. 

  
Let us begin by observing that uniform ants are natural multi-path routers; according 

to Proposition 2 in Subramanian et al. [22], the probability of choosing an interface is 
aligned in inverse proportion to cost ratios. The reader might be tempted to conclude that 
uniform ants support reachability routing; however consider the three ‘velcro’ topologies 
of Figure 3.1. These topologies have the same underlying graph structure but differ in the 
costs associated with the main branch paths (the direct path from 0 to 19, and the path 
through nodes 1, 7, and 13). Uniform ants explore all available interfaces with equal 
probability; while this makes them naturally suitable for multi-path routing, it also creates 
a tendency to reinforce paths that have the least amount of decision making. To see why, 
recall that the goodness of an interface is inversely proportional to a non-decreasing 
function of the cost of the path along that interface. The cost is not simply the cost of the 
shortest path along the interface, but is itself assessed by the ants during their exploration; 
hence the routing probability for choosing a particular interface is implicitly dependent 
on the number of ways in which a costly path can be encountered along the considered 
interface. The presence of loops along an interface means that there are greater 
opportunities for costly paths to be encountered (causing the interface to be reinforced 
negatively) or for the ants to loop back to their source (causing their absorption, and 
again, no positive reinforcement along the interface). The basic problem can be 
summarized by saying that ‘interfaces that provide an inordinate number of options 
involving loops will not be reinforced, even if there exists high-quality loop-free sub-
paths along those interfaces.’ Mathematically, this is a race between the negative 
reinforcements due to many loops (and hence absorptions), and positive reinforcements 
due to one (or few) short or cheap paths. As a result, the interface with the fewer 
possibilities for decision making wins, irrespective of the path cost. Hence in the 
topologies shown in Figure 3.1, uniform ants will reinforce along: the costliest path (left), 
among one of many cheapest paths (center) and the cheapest path (right). Notice that 
using regular ants to prevent this incessant multiplication of probabilities is not 
acceptable, as we will be giving up the multi-path forwarding capability of uniform ants. 
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Ideally, we want our ants to have selective amnesia, behaving as uniform ants when it 
is important to have multipath forwarding and morphing into regular ants when we do not 
want loops overshadowing the existence of a cheap, loop-free path. We present a model-
based approach that achieves this effect by maintaining a statistics table independent of 
the routing table. The basic idea is to make routers recognize that they constitute the 
fulcrum of a loop with respect to a larger path context. For instance, in Figure 3.1, nodes 
1, 7, and 13 form fulcrums of loops, which should not play a role in multi-path 
forwarding from, say, node 0 to node 19. The statistics table keeps track, for every router 
(node) and destination, the number of ants generated by it and that returned (without 
reaching its intended destination). Using this statistic, for instance, node 1 can reason that 
all ants meant for destination 19 returned to it, when sent along the interface leading to 
node 2. This information can be used to reduce the scope of multi-path forwarding, on a 
per-destination basis. The statistics table serves as a discriminant function for the choices 
indicated by the routing table, while the routing table reflects the reinforcement provided 
by the uniform ants. 

 
 

 
Figure 3.1 Velcro topologies with different cost ratios. 

 

3.2 ANT Structure and Data Structure Design 
 

In this section, we will give an overview of the ANT structure [22] and the data 
structures used for the routing and the statistics table at every node. 
 

3.2.1 ANT Structure 
 

Ants are small packets used to explore the network and gather information about the 
network. Periodically every source s generates, to every other destination d, ants of the 
form [s, d, c, oi], where c is the cost associated with the ant and oi is the outgoing 
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interface from the source router. When the ants are created the cost c is initialized to 0. 
All the intermediate routers along the path from the source to destination increment the 
cost c to reflect the cost in reverse (when a message traverses a link from node a to node 
b, c is incremented by the cost of the link from b to a). When the ant reaches the 
destination d, the cost c is the end-to-end cost of sending a message from source s to 
destination d. Note the intermediate nodes along the path do not update that oi. 
 

3.2.2 Routing Table Structure 
 

Routing table at every node is a two-dimensional array of the probabilities of using 
various interfaces to reach destinations. ri[j][k], maintained at node i, is the probability 
with which the interface k of node i is chosen to reach destination j. Initially the 
probabilities for all destinations are distributed equally across all the interfaces. This is 
inline with the destructive property of RL routing algorithms wherein all interfaces are 
"innocent until proven guilty". 
 

3.2.3 Statistics Table Structure 
 

Statistics table is also a two dimensional structure like the routing table but every 
node has two statistics tables: sent_stat_tablei[j][k], corresponds to count of ants sent 
along interface k to destination j originating from node i, and recd_stat_tablei[j][k] is the 
number of ants sent along the interface k which returned to the source i. There are two 
reasons for maintaining the statistics of the ants at the source node only and not at the 
intermediate nodes.  

 
The first reason is to allow for scalability of the network. If every intermediate node n 

along the path of an ant from source i to destination j increments its statistics table 
sent_stat_tablen[j][m] when it forwards the ant along the interface m, it will necessitate 
the ant to have a provision to save the outgoing interface for each node along its path, so 
that the node will be able to identify if the ant loops back to itself. Accommodating such 
a structure in large topologies can result in unbounded growth of the ant's size.  

 
Second, the ants are not forwarded when they reach the destination or the source. By 

updating the statistics table only at the source nodes, if the ant doesn't loop back to itself, 
the source node can safely assume that it has reached the destination (Under 100% 
reliability conditions that no packets are dropped); whereas the intermediate nodes have 
no way of determining whether the ant reached the destination successfully, or looped 
back to the source node itself. 
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3.3 Overview of the Algorithm 
 

begin: 
 Uncontrolled Exploration 
 Controlled Exploration 
end. 
  
Exploration (Uncontrolled/Controlled) 
  
begin: 
 
 for every node in the topology 
 begin: 
  GenerateAnt;    /* Periodically Generate Ant */ 
  SelectInterface;  /* (Uncontrolled/Controlled) */ 
  UpdateModel; 

ForwardAnt; 
 end. 
   
 On receiving an ant 
 begin: 
 
  if the receiving node is the source of the ant 
  begin: 
   UpdateModel; 
   DestroyAnt; 
  end. 
 
  if the receiving node is neither the source nor the destination 

begin: 
   UpdateRouteTable; 
   SelectInterface; /* (Uncontrolled/Controlled) */ 

 ForwardAnt; 
  end. 
 
  if the receiving node is the intended destination of the ant 
  begin: 
   UpdateRouteTable; 
   DestroyAnt; 
  end. 
 
 end.   /* End of receive ant procedure */ 
 
end. /*End of algorithm */ 
 

Table 3-1 Model-based routing algorithm. 
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3.4 Description of the Algorithm 
 

The algorithm consists of two stages -- Uncontrolled Exploration and Controlled 
Exploration. In both forms of exploration, every node generates ants periodically 
destined for every other node in the topology. The algorithm uses uncontrolled 
exploration to collect information about the topology and uses that information to build a 
model to control future exploration at the nodes. The information collected during the 
controlled exploration is used to update the model, as well. The two forms of exploration 
work almost identically except for the SelectInterface method. Below we will give a brief 
description of the various methods mentioned above. 
 

3.4.1 GenerateAnt 
 

 Every node in the topology periodically generates ants to every other node in the 
topology. This method ensures that the choice of the destination node for each ant at each 
node is uniformly distributed, so that the number of ants generated to the various 
destinations is nearly equal. The generated ant is of the form [s, d, 0, undefined], where s 
is the source node generating the ant and d is the intended destination. The initial cost c 
associated with the ant is set to 0. As SelectInterface is the method that determines the 
output interface, the output interface is undefined when the ant is created. 
 

3.4.2 SelectInterface 
 

 This method differentiates between the two forms of exploration mentioned above: 
 
Uncontrolled Exploration: Here the choice of the outgoing interface at every node 

along the path from the source to destination is unbiased, i.e. every interface at that node 
has equal probability of being chosen as the outgoing interface. The node generating the 
ant chooses one interface from its interfaces and forwards the ant along that interface. If 
an intermediate node (not the intended destination node) receives an ant along the 
interface ‘A’ and has interfaces other than ‘A’, it forwards the ant on some interface other 
than ‘A’. If it does not have any other interface then it sends-back along the interface ‘A’ 
itself. 

 
Controlled Exploration: Here the choice of outgoing interface is controlled by a 

factor called the threshold factor (τ). The threshold factor not only affects the multipath 
capabilities of the routing algorithm, but also its correctness with respect to the routing of 
packets (measured by the percentage of packets successfully reaching their intended 
destinations) and its loop-free capabilities. A discussion on the effect of the threshold 
factor on various topologies is deferred to Chapter 5. Formally, the τ factor works in the 
following manner: 

 
A node ‘i’ (source or intermediate), when it needs to forward the ant intended for 

destination ‘j’,  finds the ratio of recd_stat_tablei[j][k] to sent_stat_tablei[j][k] for each of 
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its interfaces ‘k’. All those interfaces whose ratios are less than the threshold τ are 
eligible for selection as a forwarding interface. The selection policy is to choose among 
the eligible interfaces equiprobably. 

 
There are three special cases to be handled in the case of controlled exploration: 
 
Case 1: When an ant arrives at a leaf node, i.e. there are no other interfaces other than 

the incoming interface, and if it is not the intended destination then the node ‘sends-back’ 
the ant along the same interface.  

 
Case 2: When all the interfaces at the intermediate node are ineligible, i.e. their 

statistic table ratios are above the threshold τ, then the node ‘sends-back’ the ant along 
the interface it originally received the ant from. 

 
Case 3: When all the interfaces at the source node are ineligible then the source node 

uses the uncontrolled exploration selection policy to break the deadlock. This case is a 
very rare occurrence and occurs only when τ is set to a very low value.  

 
Once the outgoing interface is selected the next step is to forward the ant along the 

chosen interface (ForwardAnt). In the case of source node, before calling the 
ForwardAnt, UpdateModel is called to update the statistics table. 
 

3.4.3 UpdateModel 
 

 The source node calls this method (the node generating the ant) only on two 
occasions: 

 
When the node generates the ant [i, j, c, k], it increments its statistic table entry 

sent_stat_tablei[j][k] by 1 to indicate that interface k was chosen by i to forward the ant 
intended for destination j. 

 
When the ant [i, j, c, k] loops back to the source node, the statistic table entry 

recd_stat_tablei[j][k] is incremented by 1 to indicate that the choice of interface k to route 
the ant intended to destination j resulted in a loop. 
 

3.4.4 ForwardAnt 
 

 As indicated by its name, this method is used to forward the ants from the current 
node to the next node along the interface chosen by the SelectInterface method. 

 

3.4.5 DestroyAnt 
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When the ant reaches the intended destination or loops back to its source itself, the 
ant is not forwarded further and the node absorbs the ant. 

 

3.4.6 UpdateRouteTable 
When any node t (intermediate or the intended destination) other than the source 

node, receives an ant [i, j, c, k] on interface l from node y, it updates the cost c by adding 
the cost of traversing the interface l in reverse, and then updates its routing table entries 
for node i as follows: 
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3.5 Qualitative characteristics of model-based routing algorithm 
 

The model-based routing algorithm presented above discards all useless loops. 
Consider the ‘velcro’ topologies shown in Figure 3.1, say for instance, when node 1 
sends out a packet intended for a destination other than those nodes in the loop pivoted at 
1, either on interface leading to node 2 or node 6, will result in the packet returning to 
node 1. From the statistics table, node 1 will learn that those interfaces are useless for 
forwarding packets to certain destinations and hence avoid them in the future. By 
discarding all the useless loops, this algorithm overcomes the problem of uniform ants 
algorithm wherein only the path with the least decision-making is reinforced.  

 
The threshold factor τ influences the reinforcement of the various paths of a topology. 

At very high values of τ, the algorithm tends towards behaving like uniform ants while 
continuing to avoid all the useless loops. For instance a τ value of 1 means that an 
interface where all but one packet sent on it came back can still be selected as an 
outgoing interface. But this setting still avoids all the interfaces that lead to useless loops, 
as all packets sent along them must have come back to the sender. At very high τ values, 
certain packets may encounter one or more loops along their path that is unavoidable. At 
very low values of τ, the nodes have a limited selection of interfaces to choose from due 
to the stringent criteria, which will affect our goal of multi-path routing, but will greatly 
decrease the probability of encountering a loop. The choice of τ factor determines the 
multipath, correctness, and loop-avoidance capabilities of our algorithm. τ can either be 
set to a fixed value (for the network, or on a per-router or per-router-per-destination 
basis) or can be adaptively refined to optimize model-based routing for various criteria. 
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Chapter 4.  Evaluation of Model-Based Routing 
 

This chapter is concerned with the evaluation of model-based routing for achieving 
reachability goals. We will first give an overview of the simulator which was used to 
implement the routing algorithm and also discuss the topologies used to test the routing 
algorithm. The evaluation, presented next, is multi-pronged and considers the following 
issues: 
 

1. How does model-based routing algorithm perform on synthetic topologies that 
require significant decision making for resolving optimal path costs? (Section 4.3) 
 

2. How quickly does the model-based algorithm converge to self-consistent routing 
probabilities along opposite directions of a network path? (Section 4.4) 
 

3. Can model-based routing be used to mimic shortest-path routing? (Section 4.5.1) 
 

4. What is the tradeoff between multipath forwarding capability and the potential for 
loops, as a function of network topology and algorithmic driver parameters? (Section 
4.5.2) 
 

5. What is the distribution of loop frequency in realistic topologies? (Section 4.6) 
 

6. Does model-based routing converge to achieve cost-sensitive forwarding of data 
packets? (Section 4.7) 
 

4.1 Experimental Setup 
 

To measure the performance of our cost-sensitive reachability routing algorithm, we 
coded a detailed discrete event simulator in C, which simulates a standard point-to-point 
topology based network. The simulated network is modeled as a set of nodes 
interconnected over point-to-point links, with an associated cost. The discrete event 
simulator was derived from work done in [25], and has been used in several networking 
courses to model routing algorithms. 

 
The simulator runs at a resolution of 1 µs and an integer value defined at the 

initialization of the simulation determines the duration of the simulation. In our case, the 
simulation runs were set to INT_MAX (2147483647 as defined in <limits.h>). As it is a 
discrete event simulator, every action takes place after the expiry of a timer and the 
simulator is programmed to run in uncontrolled exploration mode for the first one eighth 
of the time and in controlled exploration mode for the remaining time. Each node 
generated an ant every 10000 µs. For the purpose of this thesis, we programmed the link 
layer of the simulator to be reliable i.e. it does not introduce any errors or drop packets. 
 

4.2 Topologies 
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An utility provided along with the simulator [25], which given the number of nodes in 
the network and number of interfaces per node, generates four different interconnected 
topologies for the network namely: tree, fully connected mesh, arbitrary graph, and loop 
topologies. The tree and arbitrary graph topologies were used to generate various 
topologies for the simulations. 

 
Using the manual topology generator provided along with the simulator [25], 

complex topologies like the ‘velcro’ (explained in next section) and ‘dumbbell’ 
topologies were created. These topologies have some intrinsic characteristics helpful in 
bringing out the effectiveness of our algorithm. 

 
A mesh topology generator was written in C, which given the number of rows and 

columns in the mesh, will generate a perfect mesh topology wherein all the interior nodes 
will be of degree 4 and all the boundary nodes will be of degree 2 or 3. 

 
Finally, BRITE, the Boston university Representative Internet Topology gEnerator 

[14], was used to generate large Internet scale topologies. It provides a wide variety of 
generation models, as well as the ability to easily extend such a set by combining existing 
models or adding new ones. We used the Router Waxman Flat Router-level model, which 
is governed by a power law, to generate the topologies. A program in C was written to 
convert the topology format generated by the BRITE to the format required by our 
simulator. Topologies with sizes ranging from 20 to 200 nodes were generated using 
BRITE. 

 
In the subsequent sections, we present the simulation results from our implementation 

that clearly shows the performance benefits of our approach. First, we validate the model 
based routing algorithm using synthetic topologies such as the velcro topologies. We also 
present a subtle modification to the algorithm, avoiding sub path reinforcement, which 
will result in better performance on certain types of topologies. Second, we quantify the 
convergence of our routing algorithm by measuring the correlation of path costs and hop 
counts between all packets sent to and originating from the nodes under consideration. In 
our case, the nodes under consideration were those with the maximum and minimum 
degree. Third, we study data traffic across the network based on converged routing tables 
and introduce a new factor called the reachability factor (ϕ) that controls the choice of 
the outgoing interfaces. We investigate the effect of the threshold factor (τ; refer to the 
previous chapter) and the reachability factor (ϕ) on various topologies with the help of an 
operating curve aimed at helping network administrators in choosing the ideal threshold 
and reachability factors for his network. We also show that by making the nodes always 
choose the interface with the highest probability for the intended destination, our model-
based routing algorithm behaves in the same way as any other single-path deterministic 
routing algorithm i.e., it provides loop-free shortest-paths with guaranteed delivery for all 
packets. Finally, we show that even though the goal of every multi-path routing algorithm 
is to avoid loops, our model-based routing algorithm does not guarantee a complete 
elimination of loops. Nevertheless our algorithm guarantees that a packet will eventually 
exit the loop and reach its intended destination. We study the distribution of loops 
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encountered by packets and show that a vast majority of packets encounter only a small 
number of loops, or none at all. 

 

4.3 Validation of Model Based Routing (Velcro Topologies) 
  

In this section, we focus on topologies modeled after the velcro graph for two 
reasons. First, these topologies embody the most difficult situations that can be 
encountered by a reachability routing algorithm. Second, it is very hard for deterministic 
algorithms to achieve true multi-path routing on such topologies without encountering a 
combinatorial explosion in state. Finally, existing RL approaches to multi-path routing 
perform poorly on these topologies, thus discriminating the benefits of our approach. It 
should be stressed that our approach is generalized and works for a wide variety of 
topologies, presenting the greatest benefits in topologies that involve significant decision 
making. 

 
In Figure 4.1, the two paths (path with and without potential loops) from node 0 to 

node 19 have a 1:25 cost ratio in favor of the path with potential loops, while in Figure 
4.2 the cost ratio is 1: 2.5. As the results show, both graphs demonstrate a marked change 
in the routing probabilities at switchover time (1/8 of the simulation time shown as 0.13 
on the ‘normalized time’ axis). The effect in Figure 4.1 is to further drive the 
probabilities away from each other, from the uniform ants estimate of 55% versus 45% to 
the model-based assessment of 96% versus 4%. The latter percentages very nearly reflect 
the cost ratio of 1:25. 
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Figure 4.1 Velcro topology with cost ratio 1:25 & results of model-based routing. 
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Figure 4.2 clearly demonstrates the effectiveness of our model-based approach for 

cost-sensitive reachability routing. Recall from our earlier discussion that the uniform 
ants approach chooses the higher cost path without loops since it involves fewer 
decisions. In our model-based approach, node 0 begins by assigning a probability of 0.5 
to each of the two links leading to node 19. Initially, the uniform ants approach tends to 
reinforce the higher cost loop-free path. After our model goes into effect, we observe a 
dramatic flip in the routing probabilities, which then converges to the ratio of the path 
costs. 
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Figure 4.2 Velcro topology with cost ratio 1:2.5 & results of model-based routing. 
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Figure 4.3 Velcro topology with cost ratio 2:1 & results of model-based routing. 
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Figure 4.4 Velcro topology with cost ratio 1:1 & results of model-based routing. 
In Figure 4.3, the two paths from node 0 to 19 have a 2:1 cost ratio, if the loops in the 

left path are avoided. As the corresponding graph shows, the uniform ants initially prefer 
the loop-free path by a ratio of 3:1. When the model is employed, this ratio gets 
moderated to 2:1, which more accurately reflects the cost ratios of the two paths. 

 
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.13 0.25 0.38 0.5 0.63 0.75 0.88 1

Simulation Time (Normalized)

In
te

rf
ac

e 
R

ou
tin

g 
Pr

ob
ab

ili
tie

s

Path w/ potential loops
Path w/o loops (40)
Path w/o loops (80)

Figure 4.5 Velcro topology with 3 paths between nodes 0 and 19. 
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Figure 4.4 shows a topology similar to what we have considered so far, except that 

both the path with potential loops and loop-free paths have the same cost. As the results 
show, use of the statistics table causes both probabilities to converge to near equal values. 
Figure 4.5 drives home the point by introducing a third path between nodes 0 and 19 and 
our model-based approach once again learns to apportion equal probability among the 
loopy and the middle paths. As indicated by the costs, we obtain a 2:2:1 ratio of choosing 
among all three paths. 

 
Finally, Figure 4.6 shows the operation of our algorithm on a topology where there 

are loops involving the fulcrums, in addition to loops rooted at the fulcrums. This is an 
example where we want loop resolution at one level, while retaining some element of the 
loops at another level (to achieve multi-path routing). All arrows in Fig. 16 depict 
interface probabilities for routing to destination node 19, from various nodes. Different 
colors indicate different choices of starting nodes and the thickness of arrows indicate 
greater probabilities along those interfaces. To understand the results, let us look at node 
1 which has two paths of equal cost (and equal hops) to the destination. Nevertheless, the 
steady state routing probabilities reflect a preference to use the interface leading to node 7 
over the one leading to node 13. This is because our algorithm tends to choose paths that 
have higher probability of reaching the destination, factoring all the possibilities for 
entering loops and absorption. As a simple recurrence calculation will show, node 7 is 
better than node 13 in terms of probability of reaching 19. 

 
 

 
Figure 4.6 Results of model-based routing superimposed on velcro topology. 

 

29  
 



4.3.1 Caveats 
 

The basic ants algorithm given in [22] reinforces all sub-paths along the path taken by 
an ant, and this can cause some nodes to experience greater reinforcements simply 
because they present interfaces to more destinations than other nodes. 

 
Since model-based routing builds upon this algorithm, we inherit this property. For 

some topologies, this might cause slow convergence or a convergence that is not in 
accordance with the cost ratios. One solution to this problem is to conduct the 
reinforcement updates at a node only if that node was the intended destination of the ant. 
Arguably this goes against classical reinforcement learning algorithms but this 
consideration is echoed by many other researchers as important for practical deployment. 
For instance [8] offers a different perspective on such ‘selective’ sub-path reinforcement.  

 
To test this idea, the model based routing algorithm was modified to prevent sub-path 

reinforcement from taking place. A ‘dumbbell’ topology (Figure 4.7), where the direct 
path from node 5 to node 4 is costlier than the round about path, was the test topology. 
Using sub-path reinforcement (see Figure 4.8) does not capture the desired effect, 
whereas avoiding subpath (see Figure 4.9) learns the correct apportionment of 
probabilities. 

 

 
 

Figure 4.7 A ‘dumbbell’ shaped topology.

 
However since we do not have a priori knowledge of the topology, we continue to 

employ sub-path reinforcement for the remainder of this thesis. This caveat must 
however be kept in mind. 
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Figure 4.8 Routing table probabilities for 
node 5 to destination 2 with sub-path 

reinforcement. 
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Figure 4.9 Routing table probabilities for 
node 5 to destination 2 with no sub-path 

reinforcement. 
 

4.4 Convergence of model-based routing algorithm 
 

To assess convergence characteristics, we employ linear correlation metrics. The 
Pearson Product-Moment Correlation Coefficient (r), or correlation coefficient for short, 
is a measure of the degree of linear relationship between two variables, usually labeled X 
and Y. While in regression the emphasis is on predicting one variable from the other, in 
correlation the emphasis is on the degree to which a linear model may describe the 
relationship between two variables. In regression the interest is directional, one variable 
is predicted and the other is the predictor; in correlation the interest is non-directional, 
and the relationship is the critical aspect [21]. 

 
The range of the correlation coefficient (r) is between –1 and 1. A positive correlation 

coefficient means that as the value of one variable increases, the value of the other 
variable increases; as one decreases the other decreases. A negative correlation 
coefficient indicates that as one variable increases, the other decreases, and vice-versa. 

 
The correlation coefficient is the slope of the regression line when both the X and Y 

variables have been converted to z-scores.  The z-scores are calculated as follows: 
 

YandXofSDSandSYandXofMeanYandXwhere
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If n is the number of elements in X and Y, then the correlation coefficient ® is: 
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The following two experiments were performed on 12 different BRITE [14] 

topologies with the number of nodes ranging from 20 to 100. In both the experiments, the 
nodes of interest were the minimum and maximum degree nodes. The first experiment 
dealt with the costs associated with the transmission of packets across the network while 
the second dealt with the hop count associated with the packets. Below we explain the 
experiments in detail.  

 

4.4.1 Path Costs 
 

In this experiment, we measure the average end-to-end path costs of the packets 
originating from and destined to the node under consideration. At the end of the 
simulation, we obtain two vectors, one with the average end-to-end path costs for packets 
from the node of interest to every other node in the topology and another with average 
end-to-end costs from every other node to the node of interest. Using the method 
mentioned in the previous section, we found the correlation coefficient between these two 
vectors. The average correlation for the minimum degree node across all topologies was 
found to be 0.996, with a standard deviation of 0.0026. Similarly, for the maximum 
degree nodes the average correlation was found to be 0.98, with a standard deviation of 
0.012. For every topology, the minimum degree node has a higher correlation than the 
maximum degree node, which is due to the fact that the maximum degree node has more 
choice of interfaces to choose from, to the various destinations. Assuming symmetry of 
link costs, a high correlation indicates that by using our model-based routing algorithm 
the nodes exhibit consistency in learning similar paths to every other node in the 
topology.  

 
From Figure 4.10 it can be seen that the end-to-end path cost correlation associated 

with the maximum degree node starts at a very low value (0.7) and as the simulation 
progresses with more and more ants exploring the network, the correlation value 
stabilizes to a value of 0.96 confirming the convergence of our model-based routing 
algorithm. 

 

4.4.2 Hop Count 
 

This experiment is very similar to the previous one except that instead of measuring 
the end-to-end path costs, we determined the average hop count for all packets 
originating from or destined to the node under consideration. In this case a high 
correlation indicates that the packets follow paths with nearly equal hop-counts in both 
directions. The average correlation for the minimum degree node was found to be 0.996 
with a standard deviation of 0.0016 while for the maximum degree node it was found to 
be 0.981 with a standard deviation 0.012. 
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Figure 4.10 Convergence of end-to-end path cost correlation for a 60-node BRITE 

topology. 

 

4.5 Packet Routing based on model based routing and uniform 
ants routing 

 
In this set of experiments, a new application was written on top of the simulator to 

route packets based on the routing table learnt by ants exploring the network. Initially, we 
ran the model-based routing algorithm on the given topology to obtain a stabilized 
routing table. Next, we ran the application with the routing table and ϕ (reachability 
factor) as parameters and collected various statistics. Below we will discuss in detail the 
application, the reachability factor (ϕ), the statistics collected, and analysis of the 
statistics obtained from both model-based and uniform ants routing. 

 
The functioning of the application is similar to the one described in Chapter 3 [Table 

3-1] except that there is no update of the routing table. The routing table is pre-initialized 
to that obtained from the model-based routing simulation and remains constant 
throughout. By not updating the routing table based on the packets arriving at every node 
we are just exploiting the model and not exploring the network further. 

 
  The reachability factor ϕ controls the degree of freedom every node has in choosing 

the outgoing interface. At every node the outgoing interfaces were ordered in descending 
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order of their probabilities for every destination. When a node n needs to route a packet 
intended for destination d, it picks the top ϕ interfaces for that destination d and uses their 
scaled up probabilities for selecting the outgoing interface. For a better understanding of 
the reachability factor, consider the following example. Say a node M has 4 interfaces A, 
B, C, and D with associated probabilities 0.4, 0.2, 0.15, 0.15 for destination N; then a ϕ 
value of 2 will allow the node M to choose from interfaces A and B with probabilities 
(0.4)/(0.4 + 0.2) and (0.2)/(0.4 + 0.2) respectively i.e. node M will choose interface A 
66.67% of the time and interface 33.33% of the time to route the packet intended for 
destination N.  

 
The statistics collected include the number of loops encountered by the packets along 

their paths, the number of packets encountering loops, the multipath capability of the 
packets, and the percentage of packets successfully reaching their intended destination. 
To determine the number of loops encountered by the packets, every packet has a stack 
associated with it. Every node, before forwarding a packet, checks to see if its id already 
exists in the stack. If its id is present in the stack, it increments the loop counter of the 
packet by 1 and pops the contents of the stack up to its id else pushes its id onto the stack 
and then forwards the packet. At the end of the simulation we have statistics on the 
number of packets encountering loops (loop percentage) and the total number of loops 
encountered by all the packets. Every packet also has a multipath flag associated with it 
that is set if any node along the path taken by the packet has more than one outgoing 
interface to choose from. This is used to determine the percentage of packets that could 
have potentially taken more than one path to reach their intended destination (multipath 
percentage). Finally, we determine the success percentage as the percentage of packets 
successfully reaching their intended destination. 

 

4.5.1 Reachability factor ϕ =1 
 
In our first set of experiments ϕ was set to 1 so that the nodes always choose the best 

outgoing interface (interface with the highest probability) for every packet. As every 
packet deterministically chooses the best interface at every node, the multipath 
percentage is zero. A ϕ value of 1 also results in the avoidance of loops and a one 
hundred percent success percentage as all the packets reach their intended destination. 
According to proposition 2 of Subramanian et al [22], the probability of choosing an 
interface is inversely proportional to the cost ratios (under the assumption of loop free 
paths), keep in mind that this proposition applies even for our modified model-based 
algorithm as all the avoidable loops are avoided and also we have shown from Section 
4.3 that the probabilities are inversely proportional to the path costs. By choosing the 
interface with the highest probability, i.e. the interface that advertised a lower cost path to 
that destination, at every node we have achieved deterministic shortest path routing while 
still using the underlying probabilistic routing table. The following set of simulations 
were done on 20 to 100 node BRITE topologies with uniform cost distribution so that 
with ϕ = 1 the path taken by all the packets will not only correspond to the shortest path 
in terms of cost but also in terms of the number of hops. By sending packets across the 
network and keeping track of their hop count, we ascertained the shortest path length 
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between every source-destination pair. At the end of the simulations, the average shortest 
path length for the topologies were calculated and compared with the theoretical shortest 
path lengths. We then attempt to fit this empirical data onto parameterized formaulas. 

 
Below we discuss the derivation of average shortest-path lengths for exponentially 

distributed graphs based on [17]. The Router Waxman model of BRITE uses an 
exponentially distributed generation function to create the topologies. According to [17], 
the generating function G0(x) should be normalized such that G0(1) = 1. 

 
We use the following generating function [17] for our derivation: 
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According to [17], the average shortest path length is given by  
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From this equation we derived the value of κ to be  
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Based on the above derivations, a least square fit was conducted on the simulation 

results, which returns both κ and the square of the correlation coefficient with values 
ranging of 0 and 1, indicating bad or good fit respectively. In our case, the fit returned a 
value of 0.986551, which indicates that the best fit line summarizes the data very well as 
shown in Figure 4.11. 
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Figure 4.11 Least square fit between the theoretical and actual shortest path length. 
 

4.5.2 Reachability factor ϕ = maximum degree 
 

By setting the reachability factor ϕ to the maximum degree of the topology, every 
node will be allowed to choose among all its interfaces to be the outgoing interfaces 
(based on the probability associated with it for the intended destination). The simulations 
were run on the following topologies: 20 to 200 node BRITE topologies, 10X4 & 8X5 
mesh topologies and the velcro topologies described in 4.3. Operating curves between 
percentage of packets encountering loops and percentage of those with multipath 
capabilities were plotted for various topologies at different values of threshold factor (τ).  

 
 As opposed to ϕ = 1, ϕ = maximum degree results in multi-path forwarding of the 

packets and also some proportion of packets entering into loops. All the packets reached 
their intended destinations except for those that looped back to their source resulting in a 
high success percentage. To overcome the drop in success percentage, the packets were 
forwarded even when they looped back to the source and counting this episode as just 
another loop encountered along the path. With this modification all the packets 
successfully reached their intended destinations but with a linear increase in the 
percentage of loops (to account for all those packets that were earlier absorbed by their 
source). All packets had a TTL of 255 and none of them were dropped due to reaching 
the TTL limit. Below we present the operating curves for various topologies under both 
the cases: 1) absorption of packets at their source and 2) no absorption of packets. The 
next several pages summarize these operating curves for all the topologies, before 
making observations. 
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Figure 4.12 Operating curve for a 20 node BRITE topology with source absorption. 

Each point is labeled with its τ value and success percentage. 

 
Figure 4.13 Operating curve for a 20 node BRITE topology with no source 

absorption. Each point is labeled with its τ value. 
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Figure 4.14 Operating curve for a 40 node BRITE topology with source absorption. 

Each point is labeled with its τ value and success percentage. 

 
Figure 4.15 Operating curve for a 40 node BRITE topology with no source 

absorption. Each point is labeled with its τ value. 
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Figure 4.16 Operating curve for a 60 node BRITE topology with source absorption. 

Each point is labeled with its τ value and success percentage. 

 
Figure 4.17 Operating curve for a 60 node BRITE topology with no source 

absorption. Each point is labeled with its τ value. 
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Figure 4.18 Operating curve for a 200 node BRITE topology with source absorption. 

Each point is labeled with its τ value and success percentage. 

 
Figure 4.19 Operating curve for a 200 node BRITE topology with no source 

absorption. Each point is labeled with its τ value. 
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Figure 4.20 Operating curve for an 8X5 mesh topology with source absorption. Each 

point is labeled with its τ value and success percentage. 

 
Figure 4.21 Operating curve for an 8X5 mesh topology with no source absorption. 

Each point is labeled with its τ value. 
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Figure 4.22 Operating curve for a 10X4 mesh topology with source absorption. Each 

point is labeled with its τ value and success percentage. 

 
Figure 4.23 Operating curve for a 10X4 mesh topology with no source absorption. 

Each point is labeled with its τ value. 
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Figure 4.24 Operating curve for a velcro topology of Figure 4.1 with source 

absorption. Each point is labeled with its τ value and success percentage. 

 
Figure 4.25 Operating curve for a velcro topology of Figure 4.1 with no source 

absorption. Each point is labeled with its τ value. 
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Figure 4.26 Operating curve for a velcro topology of Figure 4.5 with source 

absorption. Each point is labeled with its τ value and success percentage. 

 
Figure 4.27 Operating curve for a velcro topology of Figure 4.5 with no source 

absorption. Each point is labeled with its τ value. 
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Figure 4.28 Operating curve for a velcro topology of Figure 4.6 with source 

absorption. Each point is labeled with its τ value and success percentage. 

 
Figure 4.29 Operating curve for a velcro topology of Figure 4.6 with no source 

absorption. Each point is labeled with its τ value. 

45  
 



4.5.2.1 Observations 
 

Let us take Figure 4.12 and study it closely. As threshold factor (τ) increases, we see 
that we go from a region with (no loops, 20% multipath) to (5% loops, 100% multipath). 
It is heartening to note that the curve first increases in the direction of accommodating 
multipath before introducing loops, rather than the other way around. 

 
Second, notice that different portions of the graph are labeled/colored differently.  

Every operating curve is marked using two colors, a dotted red line and a solid blue line, 
to distinguish a region where the model is completely in force from one where it is not. 
As explained in Chapter 3, at very low values of the threshold factor (τ), when all the 
interfaces at an intermediate node are ineligible, i.e. their statistic table ratios are above 
the threshold τ, then the node ‘sends-back’ the ant along the interface it originally 
received the ant from resulting in an increased percentage of packets entering into loops. 
Similarly at very low values of τ, when all the interfaces at the source node are ineligible 
then the source node uses the uncontrolled exploration selection policy to break the 
deadlock. As Figure 4.12 shows, around a τ value of 0.4, the model comes into force in 
that all routing decisions are based on learning rather than defaults. 

 
On comparing Figure 4.12 with Figure 4.13 (the latter of which does not have source 

absorption), we notice that the difference in the percentage of success of packets reaching 
their destination with and without source absorption is reflected in the difference of 
percentage of packets encountering loops with and without source absorption. 
 

The BRITE topologies (Figure 4.12 to Figure 4.19) also exhibit another interesting 
behavior. As the number of nodes in the topology increases, the minimum multipath 
percentage also increases. This is due to the fact that at very low threshold values, the 
model-based routing algorithm routes a large number of packets deterministically in 
smaller topologies. 
 

The shape of the operating curve greatly depends on the intrinsic graph theoretic 
property of the topologies. The reader can observe from the figures that each class 
(BRITE, mesh and velcro) of topologies generates its own specific shape of operating 
curves.  Figure 4.28 and Figure 4.29 have their operating curve very similar to the 
operating curve generated by the mesh topologies as the topology in Figure 4.6 can be 
viewed as a triangulated mesh topology. 

 
The reader should observe that all the operating curves at τ = 1 exhibits the behavior 

of the uniform ants algorithm [22]. This is due to the fact that all the interfaces at every 
node are eligible to be the outgoing interface for the intended destination which conforms 
to the selection policy of uniform ants algorithm. 
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4.6 Distribution of loop frequency 
 

Finally, we show that even though the presence of loops is unavoidable, the number 
of packets that encountered ‘k’ loops along their paths to their respective destinations 
exponentially decays with increase in ‘k’, i.e. the majority of the packets encounter 
between 0 to 2 loops, suggesting a power law. Below we show the plot between loop 
distribution and packet frequency for an 8X5 mesh and a 40-node BRITE topology. Due 
to the cyclic nature of the mesh, certain packets encounter as many as 20 loops before 
they reach their intended destination. 
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Figure 4.30 Distribution of loops encountered by packets in an 8X5 mesh. Notice the 

logarithmic scale of the y-axis. 
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Figure 4.31 Distribution of loops encountered by packets in a 40-node BRITE 

topology. Notice the logarithmic scale of the y-axis. 

 

4.7 Verification of cost-sensitive routing in BRITE topologies 
 

The goal of this experiment was to perform a large-scale validation of the cost-
sensitivity properties of our reachability routing algorithm. First, all the paths taken by 
various packets at ϕ = maximum degree were enumerated. To achieve this, every packet 
had a stack associated with it that kept track of the nodes visited by it en route to its 
destination. At the destination, the paths taken by the packets from each source were 
ranked in increasing order of their costs. The destination nodes only kept track of unique 
paths from each source and also maintained the frequency associated with each path. The 
purpose of this instrumentation was to ensure that the frequency of costs, as measured 
through pursued paths, mirrored the distribution of traffic along these paths. 

 
At the end of the simulation, the summation of frequency over the top [x-9%, x%] of 

the paths for every source-destination pair was determined, for x ∈  [10,20 ... 100]. Figure 
4.32 and Figure 4.33 clearly show the cost-sensitive routing of our model-based 
algorithm and also that sub-path reinforcement has no effect on BRITE topologies. (The 
experiments were performed on 60-node BRITE topologies). 
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Figure 4.32 Traffic distribution in 60-node BRITE with sub-path reinforcement. 
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Figure 4.33 Traffic distribution in 60-node BRITE with no sub-path reinforcement. 
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In the second part of the experiment, the paths of four source-destination pairs were 
enumerated and graphs were plotted between path costs (cumulative) and percentage of 
traffic along those paths. The four source-destination pairs of interest were: (i) largest 
degree node and second largest degree node (Figure 4.34 and Figure 4.35), (ii) largest 
degree node and smallest degree node (Figure 4.36 and Figure 4.37), (iii) smallest degree 
node and largest degree node (Figure 4.38 and Figure 4.39), and (iv) smallest degree 
node and second smallest degree node (Figure 4.40 and Figure 4.41). All these graphs 
also reiterated the cost sensitive nature of our model-based routing algorithm. 
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Figure 4.34 Traffic distribution from largest degree 
to second largest degree nodes in BRITE topology 

(sub-path reinforcement). 
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Figure 4.35 Traffic distribution from largest degree 
to second largest degree nodes in BRITE topology 

(no sub-path reinforcement). 
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Figure 4.36 Traffic distribution from largest degree 
to smallest degree nodes in BRITE topology (sub-

path reinforcement). 
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Figure 4.37 Traffic distribution from largest degree to 
smallest degree nodes in BRITE topology (no sub-path 

reinforcement). 
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Figure 4.38 Traffic distribution from smallest 
degree to largest degree nodes in BRITE topology 

(sub-path reinforcement). 
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Figure 4.39 Traffic distribution from smallest degree 
to largest degree nodes in BRITE topology (no sub-

path reinforcement). 
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Figure 4.40 Traffic distribution from smallest 
degree to second smallest degree nodes in BRITE 

topology (sub-path reinforcement). 
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Figure 4.41 Traffic distribution from smallest degree 
to second smallest degree nodes in BRITE topology 

(no sub-path reinforcement). 

 

51  
 



Chapter 5.  Conclusion and Future Work 
 

In this thesis, we have argued for the reinforcement learning approach to achieve 
reachability routing, where the goal of the routing algorithm is to efficiently distribute 
traffic among all paths leading to a destination. We also presented a new model-based RL 
algorithm, which achieves true cost-sensitive reachability routing, even in network 
topologies that pose problems to both deterministic routing as well as classical RL 
formulations. The evaluation results clearly indicate that our approach achieves true 
multi-path routing, with traffic distributed among the multiple paths in inverse proportion 
to their costs. By helping maintain the incremental spirit of current backbone routing 
algorithms, this approach has the potential to form the basis of the next generation of 
routing protocols, enabling a fluid and robust backbone routing framework. 

 

5.1 Future Work 
 

We now present four possible directions for future work. 
 
• Adaptive configuration of the threshold factor (τ) 
 

The threshold factor (τ) is currently set to a fixed value for all the nodes in the 
topology. From the operating curve, the network administrator determines the optimal 
value of τ at which the routing yields high success and multipath percentage while 
keeping the percentage of packets entering into loops low. As part of the future work, we 
can determine the τ value dynamically based on available information and periodically 
adjust its value to obtain the optimal routing requirements. The τ value could be 
dynamically adapted on a per-node basis or on per-source-destination-pair basis at every 
node. 

 
• Instructive Feedback 
 

Our RL algorithm works primarily using evaluative feedback from neighboring 
routers. It would be interesting to extend the framework to accommodate instructive 
feedback. But to provide instructive feedback, a router must have sufficient 
discriminating capability to perform credit assignment. It is typically of the case that any 
resulting instruction will be of the ‘negative’ kind i.e., ‘for destination X, do not use 
interface iy'. How such negative instructions can co-exist with positive reinforcements is 
an important research issue, not only for our application domain, but also the larger field 
of reinforcement learning. 

 
• Modeling topologies with hierarchical addressing 
 
Currently the algorithm assumes all topologies to be flat such that all nodes in the 
topology are numbered from 1 to n. By supporting hierarchical addressing of the nodes, 
the model built at every node could be at a sub network basis instead of being at a per 
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node basis, i.e. a node could collect statistics for a group of nodes as a single entity and 
build its model accordingly. Such an approach encourages problem decomposition and 
enables scaling up to large network sizes. 
 
• Reverse engineering routing protocols 
 

The model-based reinforcement learning algorithm presented here promises to serve 
as an abstraction of reachability routing algorithms in general. One idea for further 
research is to automatically mine the model by analyzing implemented routing 
algorithms’ behavior, rather than incrementally learning it from scratch, as we have done 
here. In other words, we can seek to ‘imitate’ the functioning of another algorithm by 
suitably configuring our model. This problem has its roots in inverse reinforcement 
learning, where we are aiming to ‘recover’ an algorithm from observed (optimal) 
behavior. The first steps toward such reverse engineering have been recently taken [19]. 
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