
Towards Adaptive Web Sites: Conceptual Framework and

Case Study

Mike Perkowitz Oren Etzioni
Department of Computer Science and Engineering, Box 352350

University of Washington, Seattle, WA 98195
fmap, etzionig@cs.washington.edu
(206) 616-1845 Fax: (206) 543-2969

Abstract

The creation of a complex web site is a thorny problem in user interface design. In this
paper we explore the notion of adaptive web sites: sites that semi-automatically improve
their organization and presentation by learning from visitor access patterns. It is easy to
imagine and implement web sites that o�er shortcuts to popular pages. Are more sophisticated
adaptive web sites feasible? What degree of automation can we achieve?

To address the questions above, we describe the design space of adaptive web sites and
consider a case study: the problem of synthesizing new index pages that facilitate navigation
of a web site. We present the PageGather algorithm, which automatically identi�es candidate
link sets to include in index pages based on user access logs. We demonstrate experimentally
that PageGather outperforms the Apriori data mining algorithm on this task. In addition,
we compare PageGather's link sets to pre-existing, human-authored index pages.

Keywords: adaptive, clustering, data mining

1 Introduction and Motivation

Designing a rich web site so that it readily yields its information can be tricky. Unlike the
proverbial oyster that contains a single pearl, a web site often contains myriad facts, images, and
hyperlinks. Many di�erent visitors approach a popular web site | each with his or her own goals
and concerns. Consider, for example, the web site for a typical computer science department. The
site contains an amalgam of research project descriptions, course information, lists of graduating
students, pointers to industrial a�liates, and much more. Each nugget of information is of value
to someone who would like to access it readily. One might think that a well organized hierarchy
would solve this problem, but we've all had the experience of banging our heads against a web
site and crying out \it's got to be here somewhere...".

The problem of good web design is compounded by several factors. First, di�erent visitors
have distinct goals. Second, the same visitor may seek di�erent information at di�erent times.
Third, many sites outgrow their original design, accumulating links and pages in unlikely places.
Fourth, a site may be designed for a particular kind of use, but be used in many di�erent ways
in practice; the designer's a priori expectations may be violated. Too often web site designs are
fossils cast in HTML, while web navigation is dynamic, time-dependent, and idiosyncratic. In

1

[13], we challenged the AI community to address this problem by creating adaptive web sites:
sites that semi-automatically improve their organization and presentation by learning from visitor

access patterns.

Many web sites can be viewed as user interfaces to complex information stores. However, in
contrast to standard user interfaces, where data on user behavior has to be gathered in expensive
(and arti�cial) focus groups and usability labs, web server logs automatically record user behavior
at the site. We posit that adaptive web sites could become a valuable method of mining this data
with the goal of continually tuning the site to its user population's needs.

While adaptive web sites are a potentially valuable, their feasibility is unclear a priori: can
non-trivial adaptations be automated? will adaptive web sites run amok, yielding chaos rather
than improvement? what is an appropriate division of labor between the automated system and
the human webmaster? To investigate these issues empirically, we analyze the problem of index
page synthesis.1 We focus on one subproblem (generating candidate link sets to include in index
pages) as amenable to automation and describe the PageGather algorithm, which solves it.

The remainder of this paper is organized as follows. We next discuss the design space of adap-
tive web sites and present previous work in this area. We then present design desiderata which
motivate our own approach. In section 2, we de�ne the index page synthesis problem, the focus
of our case study. We then present PageGather, analyzing variants of PageGather and both data
mining and clustering algorithms as potential solutions. In section 3, we experimentally evaluate
variants of PageGather, and compare the performance of PageGather to that of Apriori, the clas-
sical data mining algorithm for the discovery of frequent sets [3]. We also compare PageGather's
output to pre-existing, human-authored index pages available at our experimental web site. We
conclude with a discussion of future work and a summary of our contributions.

1.1 Design Space

Adaptive web sites vary along a number of design axes.

� Types of adaptations. New pages may be created. Links may be added or removed,
highlighted or rearranged. Text, link labels, or formatting may be altered.

� Customization vs. Transformation. Customization is modifying a web site to suit the
needs of an individual user; customization necessitates creating a large number of versions
of the web site | one for each user. In contrast, transformation involves altering the site to
make navigation easier for a large set of users. For example, a university web site may be
reorganized to support one \view" for faculty members and a distinct view for students. In
addition, certain transformations may seek to improve the site for all visitors.

� Content-based vs. Access-based. A site that uses content-based adaptation organizes
and presents pages based on their content | what the pages say and what they are about.
Access-based adaptation uses the way past visitors have interacted with the site to guide
how information is structured. Naturally, content-based and access-based adaptations are
complementary and may be used together.

� Degree of automation. Excite and Yahoo's manually personalized home pages are a
simple example of customization; we are interested in more automatic adaptation techniques.
However, for feasibility, adaptive web sites are likely to be only partially automated.

We now survey previous work on adaptive web site using the vocabulary and distinctions
introduced above.

1An index page is a page consisting of links to a set of pages that cover a particular topic (e.g., electric guitars).

2

1.2 Previous Work

It is quite common for web sites to allow users to customize the site for themselves. Common
manual customizations include lists of favorite links, stock quotes of interest, and local weather
reports. Slightly automated customizations include records of previous interactions with the site
and references to pages that have changed since the previous visit. Some sites also allow users to
describe interests and will present information | news articles, for example | relevant to those
interests.

More sophisticated sites attempt path prediction: guessing where the user wants to go and
taking her there immediately (or at least providing a link). The WebWatcher [5]2 learns to predict
what links users will follow on a particular page as a function of their speci�ed interests. A link
that WebWatcher believes a particular user is likely to follow will be highlighted graphically and
duplicated at the top of the page when it is presented. Visitors to a site are asked, in broad
terms, what they are looking for. Before they depart, they are asked if they have found what they
wanted. WebWatcher takes an access-based approach, using the paths of people who indicated
success as examples of successful navigations. If, for example, many people who were looking for
\personal home pages" follow the \people" link, then WebWatcher will tend to highlight that link
for future visitors with the same goal. Note that, because WebWatcher groups people based on
their stated interests rather than customizing to each individual, it falls on the continuum between
pure customization and pure transformation.

A site may also try to customize to a user by trying to guess her general interests dynamically
as she browses. The AVANTI Project [7]3 focuses on dynamic customization based on users' needs
and tastes. As with the WebWatcher, AVANTI relies partly on users providing information about
themselves when they enter the site. Based on what it knows about the user, AVANTI attempts to
predict both the user's eventual goal and her likely next step. AVANTI will prominently present
links leading directly to pages it thinks a user will want to see. Additionally, AVANTI will highlight
links that accord with the user's interests.

Another form of customization is based on collaborative �ltering. In collaborative �ltering,
users rate objects (e.g. web pages or movies) based on how much they like them. Users that tend
to give similar ratings to similar objects are presumed to have similar tastes; when a user seeks
recommendations of new objects, the site suggests those objects that were highly rated by other
users with similar tastes. The site recommends objects based solely on other users' ratings or
accesses, ignoring the content of the objects themselves. A simple form of collaborative �ltering
is used by, for example, Amazon.com; the web page for a particular book may have links to other
books commonly purchased by people who bought this one. Fire
y4 uses a more individualized
form of collaborative �ltering in which members may rate hundreds of CDs or movies, building up
a very detailed personal pro�le; Fire
y then compares this pro�le with those of other members to
make new recommendations.

Footprints [23] takes an access-based transformation approach. Their motivating metaphor
is that of travelers creating footpaths in the grass over time. Visitors to a web site leave their
\footprints" behind, in the form of counts of how often each link is traversed; over time, \paths"
accumulate in the most heavily traveled areas. New visitors to the site can use these well-worn
paths as indicators of the most interesting pages to visit. Footprints are left automatically (and
anonymously), and any visitor to the site may see them; visitors need not provide any information
about themselves in order to take advantage of the system. Footprints provides essentially localized

2http://www.cs.cmu.edu/�webwatcher/
3http://zeus.gmd.de/projects/avanti.html
4http://www.firefly.com

3

information; the user sees only how often links between adjacent pages are traveled.
A web site's ability to adapt could be enhanced by providing it with meta-information: in-

formation about its content, structure, and organization. One way to provide meta-information
is to represent the site's content in a formal framework with precisely de�ned semantics, such as
a database or a semantic network. The use of meta-information to customize or optimize web
sites has been explored in a number of projects (see, for example, XML annotations [9], Apple's
Meta-Content Format, and other projects [6, 11]). One example of this approach is the STRUDEL
web-site management system [6] which attempts to separate the information available at a web
site from its graphical presentation. Instead of manipulating web sites at the level of pages and
links, web sites may be speci�ed using STRUDEL's view-de�nition language. With all of the site's
content so encoded, its presentation may be easily adapted.

A number of projects have explored client-side customization, in which a user has her own as-
sociated agent who learns about her interests and customizes her web experience accordingly. The
AiA project [4, 17] explores the customization of web page information by adding a \presentation
agent" who can direct the user's attention to topics of interest. The agent has a model of the
individual user's needs, preferences, and interests and uses this model to decide what information
to highlight and how to present it. In the AiA model, the presentation agent is on the client side,
but similar techniques could be applied to customized presentation by a web server as well. Letizia
[10] is a personal agent that learns a model of its user by observing her behavior. Letizia explores
the web ahead of the user (investigating links o� of the current page) and uses its user model to
recommend pages it thinks the user will enjoy. Other projects have investigated performing cus-
tomization at neither the client nor the server but as part of the network in between, particularly
by using transcoding proxies. Transend [8], for example, is a proxy server at the University of
California at Berkeley that performs image compression and allows each of thousands of users to
customize the degree of compression, the interface for image re�nement, and the web pages to
which compression is applied.

1.3 Our Approach

Our survey of other work in this area has led us to formulate �ve desiderata for an adaptive web
site.

1. Avoid creating work for visitors (e.g. �lling out questionnaires). Visitors to a site
are turned o� by extra work, especially if it has no clear reward, and may opt out rather
than participate. Furthermore, if the site cannot improve itself without feedback, it will fail
if users do not assist.

2. Make the web site easier to use for everyone, including �rst-time users, casual
users, etc. Customization can be genuinely useful for repeat visitors, but does not bene�t
�rst-time users. In addition, one user's customizations do not apply to other users; there
is no sharing or aggregation of information across multiple users. Transformation has the
potential to overcome both limitations.

3. Use web sites as they are, without presupposing the availability of meta-information
not currently available (e.g., XML annotations). Perhaps web sites of the future will
be heavily annotated with both semantic and structural meta-information. However, we
would like to make it possible to transform today's existing web sites into adaptive ones,
without making assumptions regarding the future of the web.

4

24hrlab-214.sfsu.edu - - [21/Nov/1996:00:01:05 -0800] "GET /home/jones/collectors.html HTTP/1.0" 200 13119

24hrlab-214.sfsu.edu - - [21/Nov/1996:00:01:06 -0800] "GET /home/jones/madewithmac.gif HTTP/1.0" 200 855

24hrlab-214.sfsu.edu - - [21/Nov/1996:00:01:06 -0800] "GET /home/jones/gustop2.gif HTTP/1.0" 200 25460

x67-122.ejack.umn.edu - - [21/Nov/1996:00:01:08 -0800] "GET /home/rich/aircrafts.html HTTP/1.0" 404 617

x67-122.ejack.umn.edu - - [21/Nov/1996:00:01:08 -0800] "GET /general/info.gif HTTP/1.0" 200 331

203.147.0.10 - - [21/Nov/1996:00:01:09 -0800] "GET /home/smith/kitty.html HTTP/1.0" 200 5160

24hrlab-214.sfsu.edu - - [21/Nov/1996:00:01:10 -0800] "GET /home/jones/thumbnails/awing-bo.gif HTTP/1.0" 200 5117

Figure 1: Typical user access logs, these from a computer science web site. Each entry corresponds to a
single request to the server and includes originating machine, time, and URL requested. Note the series
of accesses from each of two users (one from SFSU, one from UMN).

4. Protect the site's original design from destructive changes. Web designers put a
great deal of e�ort into designing web sites. While we may be able to assist them, we do not
want to replace them or undo their work.

5. Keep the human webmaster in control. Clearly, the human webmaster needs to remain
in control of the web site in the foreseeable future both to gain her trust in automatic adaptive
techniques and to avoid \disasters."

We took the above desiderata as constraints on our approach to creating adaptive web sites.
We use transformation rather than customization, both to avoid confronting visitors with question-
naires and to facilitate the sharing of site improvements for a wide range of visitors. We focus on
an access-based approach, as automatic understanding of free text is di�cult. We do not assume
any annotations on Web pages beyond HTML. For safety, we limit ourselves to nondestructive

transformations: changes to the site that leave existing structure intact. We may add links but
not remove them, create pages but not destroy them, add new structures but not scramble existing
ones. Finally, we restrict ourselves to generating candidate adaptations and presenting them to
the human webmaster | any non-trivial changes to the web site are under webmaster control.

The main source of information we rely on is the site's web server log, which records the
pages visited by a user at the site. Our underlying intuition is what we call the visit-coherence
assumption: the pages a user visits during one interaction with the site tend to be conceptually
related. We do not assume that all pages in a single visit are related. After all, the information
we glean from individual visits is noisy; for example, a visitor may pursue multiple distinct tasks
in a single visit. However, if a large number of visitors continue to visit and re-visit the same set
of pages, that provides strong evidence that the pages in the set are related. Thus, we accumulate
statistics over many visits by numerous visitors and search for overall trends.

It is not di�cult to devise a number of simple, non-destructive transformations that could
improve a site; we describe several in [14]. Examples include highlighting popular links, promoting

popular links to the top of a page or to the site's front page, and linking together pages that seem
to be related. We have implemented one such transformation: shortcutting, in which we attempt
to provide links on each page to visitors' eventual goals, thus skipping the in-between pages. As
reported in [13], we found a signi�cant number of visitors used these automatic shortcuts.

However, our long-term goal is to demonstrate that more fundamental adaptations are feasible.
An example of this is change in view, where a site could o�er an alternative organization of its
contents based on user access patterns. Consider, for example, the Music Machines web site,5

5http://machines.hyperreal.org

5

which has been our primary testbed, as it is maintained by one of the authors, and we have
full access to all documents and access logs. Music Machines is devoted to information about
various kinds of electronic musical instruments. Most of the data at the site is organized by the
manufacturer of the instrument and the particular model number. That is, there is a page for
the manufacturer Roland and, on that page, links to pages for each instrument Roland produces.
However, imagine a visitor to the site who is interested in a comprehensive overview of all the
keyboards available from various manufacturers. She would have to �rst visit the Roland page
and look at each of the Roland keyboards, then visit each of the other keyboard manufacturers
for its o�erings as well. Now, imagine if the site repeatedly observed this kind of behavior and
automatically created a new web page containing all the links to all the keyboards. Now our
visitor need only visit this new page rather than search for all the keyboards. This page represents
a change in view, from the former \manufacturer-centric" organization to one based on type of
instrument. If we can discover these user access patterns and create new web pages to facilitate
them, we should in theory be able to create new views of the site.

2 A Case Study: Index Page Synthesis

Is automatic change in view feasible in practice? As a �rst step, we investigate the automatic
synthesis of new index pages. Index pages are central to site organization. If we are able to
generate index pages that are valued and adopted by the human webmaster, we can begin to
extend and elaborate the kind of organizational changes suggested. In this section, we de�ne the
index page synthesis problem and present an algorithm | PageGather | that solves part of this
problem.

2.1 The Index Page Synthesis Problem

Page synthesis is the automatic creation of web pages. An index page is a page consisting of links
to a set of pages that cover a particular topic (e.g., electric guitars). Given this terminology we
de�ne the index page synthesis problem: given a web site and a visitor access log, create new
index pages containing collections of links to related but currently unlinked pages. An access log
is a document containing one entry for each page requested of the web server. Each request lists
at least the origin (IP address) of the request, the URL requested, and the time of the request.
Related but unlinked pages are pages that share a common topic but are not currently linked at
the site; two pages are considered linked if there exists a link from one to the other or if there
exists a page that links to both of them.

The problem of synthesizing a new index page can be decomposed into several subproblems.

1. What are the contents (i.e. hyperlinks) of the index page?

2. How are the hyperlinks on the page ordered?

3. How are the hyperlinks labeled?

4. What is the title of the page? Does it correspond to a coherent concept?

5. Is it appropriate to add the page to the site? If so, where?

In this paper, we focus on the �rst subproblem| generating the contents of the new web page. The
remaining subproblems are topics for future work. We note that several subproblems, particularly
the last one, are quite di�cult and will be solved in collaboration with the site's human webmaster.

6

Nevertheless, we show that the task of generating candidate index page contents can be automated
with some success using the PageGather algorithm described below.

2.2 The PageGather Algorithm

In this section, we introduce PageGather. Given a large access log, our task is to �nd collections of
pages that tend to co-occur in visits. Clustering (see [22, 16, 24]) is a natural technique to consider
for this task. In clustering, documents are represented in an N-dimensional space (for example, as
word vectors). Roughly, a cluster is a collection of documents close to each other and relatively
distant from other clusters. Standard clustering algorithms partition the documents into a set of
mutually exclusive clusters.

Cluster mining is a variation on traditional clustering that is well suited to our task. Instead of
attempting to partition the entire space of documents, we try to �nd a small number of high quality
clusters. Furthermore, whereas traditional clustering is concerned with placing each document in
exactly one cluster, cluster mining may place a single document in multiple overlapping clusters.
The relationship between traditional clustering and cluster mining is parallel to that between
classi�cation and data mining as described in [20]. Segal contrasts mining \nuggets" | �nding
high-accuracy rules that capture patterns in the data| with traditional classi�cation| classifying
all examples as positive or negative | and shows that traditional classi�cation algorithms do not
make the best mining algorithms.

The PageGather algorithm uses cluster mining to �nd collections of related pages at a web site,
relying on the visit-coherence assumption. In essence, PageGather takes a web server access log
as input and maps it into a form ready for clustering; it then applies cluster mining to the data
and produces candidate index-page contents as output. The algorithm has �ve basic steps:

1. Process the access log into visits.

2. Compute the co-occurrence frequencies between pages and create a similarity matrix.

3. Create the graph corresponding to the matrix, and �nd maximal cliques (or connected
components) in the graph.

4. Rank the clusters found, and choose which to output.

5. For each cluster, create a web page consisting of links to the documents in the cluster, and
present it to the webmaster for evaluation.

We discuss each step in turn.
1. Process the access log into visits. As de�ned above, a visit is an ordered sequence

of pages accessed by a single user in a single session. An access log, however, is a sequence of
page views, or requests made to the web server.6 Each request typically includes the time of the
request, the URL requested, and the machine from which the request originated. For our purposes,
however, we need to extract discrete visits from the log. We �rst assume that each originating
machine corresponds to a single visitor.7 A series of page views in a day's log from one visitor,8

6A web site is restricted to a collection of HTML documents residing at a single server | we are not yet able
to handle dynamically-generated pages or multiple servers.

7In fact, this is not necessarily the case. Many Internet service providers channel their users' HTTP requests
through a small number of gateway machines, and two users might simultaneously visit the site from the same
machine. Fortunately, such coincidences are too uncommon to a�ect the data signi�cantly; if necessary, however,
more accurate logs can be generated using cookies or visitor-tracking software such as WebThreads.

8We consider an entire day's page views to be one visit, even if a user made, for example, one morning visit
and one evening visit. This simpli�cation does not greatly a�ect the data; if necessary, however, the series of page
views could be divided at signi�cant time gaps.

7

Figure 2: (a) A candidate cluster to be presented to the webmaster for approval and naming. (b) How

the �nal page would appear at the site, properly named and formatted.

ordered by their time-stamps, corresponds to a single session for that visitor.
2. Compute the co-occurrence frequencies between pages and create a similarity

matrix. For each pair of pages p1 and p2, we compute P (p1jp2), the probability of a visitor
visiting p1 if she has already visited p2 and P (p2jp1), the probability of a visitor visiting p2 if she
has already visited p1. The co-occurrence frequency between p1 and p2 is the minimum of these
values.

We use the minimum of the two conditional probabilities to avoid mistaking an asymmetrical
relationship for a true case of similarity. For example, a popular page p1 might be on the most
common path to a more obscure page p2. In such a case P (p1jp2) will be high, perhaps leading
us to think the pages similar. However, P (p2jp1) could be quite low, as p1 is on the path to many
pages and p2 is relatively obscure.

As stated above, our goal is to �nd clusters of related but currently unlinked pages. Therefore,
we wish to avoid �nding clusters of pages that are already linked together. We prevent this by
setting the matrix cell for two pages to zero if they are already linked in the site.

We observed that the similarity matrix could be viewed as a graph, which enables us to
apply graph algorithms to the task of identifying collections of related pages. However, a graph
corresponding to the similarity matrix would be completely (or almost completely) connected. In
order to reduce noise, we apply a threshold and remove edges corresponding to low co-occurrence
frequency.

3. Create the graph corresponding to the matrix, and �nd maximal cliques (or
connected components) in the graph. We create a graph in which each page is a node
and each nonzero cell in the matrix is an arc. Next, we apply graph algorithms that e�ciently
extract connectivity information from the graph (e.g., the linear-time algorithm for identifying
connected components). The frequency information on the arcs is ignored in this step for the sake
of e�ciency. By creating a sparse graph, and using e�cient graph algorithms for cluster mining,
we can identify high quality clusters substantially faster than by relying on traditional clustering
methods [15]. We may extract two kinds of subgraphs, leading to two variants of the PageGather
algorithm.

8

Rank Topic Coherent? Useful?
1 Images of Korg keyboards yes somewhat
2 Images of Korg keyboards somewhat somewhat
3 Sequencers yes yes
4 Sequencers yes yes
5 Roland Instruments no no
6 Samplers yes yes
7 Instrument samples yes somewhat
8 Samplers yes yes
9 Instrument samples yes somewhat
10 Books, do-it-yourself info somewhat yes

Figure 3: Clusters found by PGCLIQUE with overlap reduction. Clusters are ordered as ranked by

PageGather. Topics are provided by the webmaster based on the cluster contents. All clusters are

subjectively rated by the webmaster for the following qualities: coherence is the degree to which all of

the cluster contents correspond to the apparent topic; usefulness rates whether the topic would be of

interest to the site's users. Note that, in spite of overlap reduction, multiple clusters with the same topic

are found. Korg and Roland are instrument manufacturers; keyboards, sequencers, and samplers are types

of instruments.

� PGCLIQUE �nds all maximal cliques in the graph. A clique is a subgraph in which every
pair of nodes has an edge between them; a maximal clique is not a subset of any larger
clique. For e�ciency, we bound the size of discovered cliques.9

� PGCC �nds all connected components | subgraphs in which every pair of pages has a path
of edges between them.

In step 2, we applied a threshold to the similarity matrix. When this threshold is high, the
graph will be sparse, and we will �nd few clusters, which will tend to be of small size and high
quality. When the threshold is lower, we will �nd more, larger clusters. Note that PGCLIQUE

and PGCC will generally require di�erent threshold settings; a sparse graph that contains a
number of connected components may be too sparse to contain any sizeable cliques. We tune the
threshold experimentally so as to �nd a su�cient number of clusters of the approximate desired
size; PGCLIQUE , however, generally �nds a small number of small clusters. Generally, we �nd
that PGCLIQUE performs better than PGCC and so is the variant we use. We compare these
variants experimentally in section 3.

4. Rank the clusters found, and choose which to output. Step (3) may �nd many
clusters, but we may wish to output only a few. For example, the site's webmaster might want to
see no more than a handful of clusters every week and decide which to turn into new index pages.
Accordingly, all clusters found are rated and sorted by averaging the co-occurrence frequency
between all pairs of documents in the cluster. We �nd that PGCLIQUE tends to discover many
similar clusters. Therefore, we have developed two ways of reducing the number of similar clusters
in the �nal results.

� Overlap reduction proceeds through the ranked cluster list and removes any cluster that
overlaps highly with a previously seen (i.e. better) cluster.

9Note that we place a maximum size on discovered clusters not only in the interest of performance but because
large clusters are not useful output | we cannot, practically speaking, create a new web page containing hundreds
of links.

9

� Merging walks the ranked list of clusters and, whenever a cluster has su�cient overlap with
a previously seen cluster, merges the two and continues.

Both of these approaches require an overlap measure; we use the size of the intersection between
two clusters divided by the size of their union. In both variants, the overlap threshold is a
parameter that has been tuned experimentally. Note that, as connected components never overlap,
neither reduction nor merging will have any e�ect on PGCC . Reduction and merging each have
advantages and disadvantages. In general, reduction preserves the coherence of clusters found
(as it makes no changes to cluster contents) but may miss pages that could be clustered together.
Merging, on the other hand, may combine all related pages together, but at the cost of reducing the
overall coherence of the clusters. By default, we use reduction in order to preserve the coherence
of our clusters. These two variants are compared to each other | as well as to the \raw" ranked
list | in section 3.

However we process the ranked list of clusters, we return a bounded number of results, and
apply a quality threshold { sometimes returning no results at all. The webmaster speci�es this
bound | e.g. \give me at most ten clusters above quality threshold X ...".

5. For each cluster found, create a web page consisting of links to the documents
in the cluster, and present it to the webmaster for evaluation. The PageGather algorithm
�nds candidate link sets and presents them to the webmaster as in �gure 2. The webmaster is
prompted to accept or reject the cluster, to name it, and remove any links she thinks inappropriate.
Links are labeled with the titles of the target pages and ordered alphabetically by those titles.
The webmaster is responsible for placing the new page at the site.

2.3 Time Complexity

What is the running time of the PageGather algorithm? We summarize here; a more complete
analysis is found in [15]. Let L be the number of page views in the log and N the number of pages
at the site. In step (1), we must group the page views by their originating machine. We do this
by sorting page views by origin and time, which requires O(LlogL) time. In step (2), we must
process the log and create a matrix of size O(N2), which requires O(L + N2) time. Note that
we implement our algorithm so that we can create the matrix from a collection of logs and use it
repeatedly to generate candidate clusters. As we bound the size of discovered clusters, step (3) is
polynomial in N .

2.4 Work Related to PageGather

PageGather addresses the problem of �nding sets of items based on their access patterns. Previous
work in both clustering and data mining can also be applied to this problem. As discussed above,
cluster mining is a variation on traditional clustering. PageGather uses a graph-based clustering
component which is specialized to cluster mining, but it is possible to adapt traditional clustering
algorithms to this problem. In [15] and follow-up work, we compared PageGather's clustering
component (both PGCLIQUE and PGCC variants) to two standard algorithms: K-means clustering
[18] and hierarchical agglomerative clustering (HAC)[22]. There are literally hundreds of clustering
algorithms and variations thereof. We chose K-means as it is particularly fast, and HAC as it is
widely used. We found that PageGather's clustering component was faster than both HAC and
K-means and found higher-quality clusters.

Frequent set algorithms are designed to �nd sets of similar items in large collections (see, for
example, [1, 2, 19, 21]). We therefore compare PageGather to the standard Apriori algorithm for
�nding frequent sets (see [3]). In a traditional frequent set problem, the data is a collection of

10

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

Candidate Link Sets

Av
er

ag
e

Vi
si

t P
er

ce
nt

ag
e

PG-CC PG-CLIQUE

Figure 4: The performance of PGCLIQUE and PGCC using raw ranked-cluster output with no overlap

reduction. Although PGCLIQUE apparently performs much better, its clusters are all variations on the

same basic set of pages.

market basket information. Each basket contains a set of items, and the goal is to �nd sets of
items that appear together in many baskets. In our problem domain, a user visit corresponds to
a market basket, and the set of pages visited by the user corresponds to the set of items in the
basket. In section 3, we compare the performance of PageGather to that of Apriori on our test
data.

3 Experimental Validation

In this section, we report on experiments designed to test the e�ectiveness of our approach. We
�rst compare the performance of several variants of our algorithm. We then compare PageGather
with the Apriori frequent set algorithm. Finally, we compare PageGather's candidate clusters with
human-authored index pages.

Our experiments draw on data collected from the Music Machines web site,10 a site devoted
to information about many kinds of electronic musical instruments. The site contains approxi-
mately 2500 distinct documents, including HTML pages, plain text, images, and audio samples.
Music machines receives approximately 10,000 hits per day from roughly 1200 distinct visitors. In
our experiments, the training data is a collection of access logs for six months; the test data is a
set of logs from a subsequent one-month period.11

We compare the algorithms in terms of the quality of the candidate index pages they produce.
Measuring cluster quality is a notoriously di�cult problem. To measure the quality of a cluster as
an index page candidate, we need some measure of whether the cluster captures a set of pages that
are viewed by users in the same visit. If so, then grouping them together on an index page would
save the user the trouble of traversing the site to �nd them. As an approximate measure we ask:
if a user visits any one page in the cluster, what percentage of pages in the cluster is she likely to
visit overall? More formally, let V be the set of user visits to the site and Vc be the set of v 2 V

10http://machines.hyperreal.org
11Data sets are publicly available from the authors.

11

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

Candidate Link Sets

Av
er

ag
e

Vi
si

t P
er

ce
nt

ag
e

PG-CC PG-CLIQUE (reduced)

Figure 5: The performance of PGCLIQUE and PGCC using overlap reduction. PGCLIQUE performs

much better on the top three clusters and generally better overall.

that include at least one page from cluster c. For a particular visit v 2 Vc, the number of pages
visited in c is v \ c. The average number of hits to a cluster, over all visits, is

P
v2Vc

v\c
jVcj

. Finally,

the average percentage is this average divided by the size of c:

P
v2Vc

v\c
jVcj

jcj . In each experiment,

each algorithm outputs a ranked list of clusters. In all graphs, these clusters are sorted by average
visit percentage for the sake of clarity.

As described in section 2.2, the two PageGather variants PGCLIQUE and PGCC di�er in how
clusters are found in the graph representation. PGCLIQUE �nds all maximal cliques; PGCC �nds
all connected components in the graph. In our �rst experiment, we compare these two variants of
the algorithm, shown in �gure 4. Note that the clusters found by PGCLIQUE apparently perform
much better than those found by PGCC . When we examine the clusters closely, however, we
�nd the top clusters found by PGCLIQUE to be very similar to each other | PGCLIQUE tends
to produce many slight variations on the same basic cluster. The reason for this is that there
may exist a well-connected set of pages that does not, however, form a clique. Many subsets,
however, are cliques, and the algorithm returns these many similar subsets as clusters. If we
decrease the co-occurrence threshold, allowing more pages to be connected by edges in our graph
representation, one such set of pages may become a clique. However, there will generally always
be some borderline sets that exhibit this behavior. This observation was the motivation for
introducing overlap reduction and merging as described in section 2.2. In �gure 5, we compare
PGCC with PGCLIQUE using overlap reduction. Note that PGCC is una�ected by the reduction
step, as connected components of a graph never overlap. We see that the two versions of the
algorithm now perform comparably. However, PGCLIQUE has a slight edge, and we will use it for
our remaining comparisons.

Earlier, we discussed three ways of processing the ranked list of clusters found by PageGather's
clustering component. We may simply return the raw ranked list, we may eliminate overlapping
clusters, or we may merge similar clusters together. We have already discussed why the raw list is
inadequate. In �gure 6, we compare the performance of overlap reduction and merging applied to
PGCLIQUE . We might expect the merged clusters to show lower quality scores, as this operation
brings together documents that were not associated by PageGather's clustering component, and

12

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

Candidate Link Sets

Av
er

ag
e

Vi
si

t P
er

ce
nt

ag
e

PG-CLIQUE (reduced) PG-CLIQUE (merged)

Figure 6: Comparing the performance of PGCLIQUE with overlap reduction to PGCLIQUE with clus-

ter merging. Reduction performs better on the �rst three clusters, but the two variants are otherwise

comparable.

this is apparent in the performance comparison. On the other hand, the best merged cluster
is about three times larger (containing 19 links) than the best from the reduced set (7 links).
The smaller cluster is a subset of the larger, which is arguably a more complete cluster; see the
discussion in section 4.

In section 2.4, we discussed how the Apriori frequent set algorithm can be applied to the
problem of index page synthesis. We apply Apriori to the collection of path data to �nd the most
frequently occurring sets of pages; the most frequently occurring sets are our candidate clusters
and are compared to the output of PGCLIQUE . We now compare the performance of Apriori with
PGCLIQUE (see �gure 7). Initially, we evaluated the raw output of Apriori. However, as with
the raw version of PGCLIQUE , the top clusters are all variations of each other. We therefore also
show the results of adding a reduction step to Apriori as well; surprisingly, of the thousands of
sets found by Apriori, only two prove to be su�ciently distinct. In either case, we observe that
PGCLIQUE 's clusters score much higher than Apriori's.

It is natural to ask how good these clusters really are, and how high an average visit percentage
is high enough. To attempt to answer these questions we look to the \ideal" case: index pages
created by a human webmaster. Music Machines contains many index pages of di�erent kinds.
Expecting all of the site's index pages to score signi�cantly better than PageGather's output, we
chose index pages pertaining to four representative topics: (1) instruments produced by a particu-
lar manufacturer (Roland); (2) documents pertaining to a particular instrument (the Roland Juno
keyboard); (3) all instruments of a particular type (drum machines); and (4) all �les of a particular
type (audio samples). The set of outgoing links on each page (excluding standard navigation links)
was treated as a \cluster" and evaluated on our test data. Figure 8 shows the comparison of these
clusters to the output of PGCLIQUE with overlap reduction. We believe there are two reasons
why PGCLIQUE 's clusters perform so much better than the existing human-authored index pages.
First, we believe that our cluster mining approach �nds genuine regularities in the access logs that
carry over from training data to test data. PageGather is geared toward �nding these regularities
and is apparently successful. a high proportion of links when there are so many on the page.

13

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

Candidate Link Sets

Av
er

ag
e

Vi
si

t P
er

ce
nt

ag
e

PageGather Apriori Apriori (reduced)

Figure 7: The performance of PGCLIQUE with overlap reduction compared with the Apriori algorithm,

both with and without overlap reduction. PGCLIQUE performs signi�cantly better than both variations.

Note that Apriori �nds only two distinct clusters when overlap reduction is applied.

Second, although creating index pages with high click-through rates is desirable, the webmaster
of a site has other considerations in mind. For example, a page titled \drum machines" should
be complete | that is, it should contain all drum machines at the site, not just those that often
co-occur in the logs. Similarly, such a page should be pure | it should not contain links to guitars,
whatever the statistical regularity. These considerations are both motivated by the expectations
of human visitors coming to the site, and are not accounted for by our measure. Therefore, while
high average visit percentages are promising, they do not tell the whole story.

4 Future Work

The limitations of our quality measure suggest a natural direction for future work. So far, we have
focused on �nding clusters of frequently co-occurring pages. While this approach can produce
useful index pages, it does not address issues of purity or completeness. For example, when
presented with a page titled \electric guitars," the typical user would expect the set of links
provided to be pure | containing only links to guitars | and complete | containing links to all
guitars at the site. Purity and completeness are analogous, respectively, to the criteria of precision
and recall from information retrieval. IR systems are often evaluated in terms of their precision
and recall with respect to a labeled data collection; human judges decide which objects match a
particular query, and the system is rated on how closely its results accord with the human judges.
Precision and recall may be a better metric for evaluating PageGather, but would require hand
labeling of many examples | for each cluster found, we would have to judge what topic the cluster
corresponds to and what set of pages actually belong in the cluster.

Instead, our goal is to extend our current approach to automatically identify topics and �nd
pure and complete sets of relevant pages. We plan to use the candidate link sets generated by
PageGather as a starting point, mapping them to the closest pure and complete topics. There
are two ways to make the notion of a \topic" available to PageGather. First, if we have an
extensional de�nition of each potential topic at the site as a set of links, then identifying the topic

14

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

Candidate Link Sets

Av
er

ag
e

Vi
si

t P
er

ce
nt

ag
e

PageGather Human-Authored

Figure 8: The performance of PGCLIQUE using overlap reduction as compared to the performance

of clusters based on human-authored index pages at the Music Machines web site. Clusters found by

PGCLIQUE perform signi�cantly better than the existing index pages.

closest to a PageGather-generated link set is straightforward. Alternatively, if we have a predicate
language for describing the di�erent pages at the site (in XML or a-la-STRUDEL [6]), then we can
apply concept learning techniques [12] to generate a description of the PageGather link set in that
language. We would view the PageGather links as positive examples of the target concept, and
links outside the set as negative examples, and apply a noise-tolerant symbolic learning technique
(such as decision trees) to output a description of the topic most closely matching the PageGather
link set.

This mapping from candidate link sets to topics is likely to decrease our statistical measure,
but we realize that the measure is only a rough approximation of \true" index page quality. We
plan to investigate alternative measures and also to carry out user studies (with both Web site
visitors and webmasters) to assess the impact of the suggested adaptations on users in practice.

Index pages also have at least two common uses: as a summary of information on a particular
topic (useful to a visitor wanting to get an overview of that topic) and as a directory of speci�c
resources (useful to a visitor with a speci�c goal). These di�erent uses have di�erent requirements,
which may con
ict. For example, for the �rst usage, a few of the most important links may be
su�cient | better to make sure all links are topical than to include something irrelevant. For
the second, a complete listing is essential, even if some of the included links are only marginally
relevant. We have focused on the �rst usage, but a good index should be able to support both.

Finally, our work thus far has focused on a single web site for convenience. We plan to test
our approach on additional web sites, including our department's web site, in the near future.

5 Conclusion

The work reported in this paper is part of our ongoing research e�ort to develop adaptive web
sites and increase their degree of automation. We list our main contributions below:

1. We motivated the notion of adaptive web sites and analyzed the design space for such sites,
locating previous work in that space.

15

2. To demonstrate the feasibility of non-trivial adaptations, we presented a case study in the
domain of synthesizing new index pages. We identi�ed a key subproblem that is amenable
to an automatic solution.

3. Next, we presented the fully-implemented PageGather algorithm for discovering candidate
index page contents based on visitor access patterns extracted from web server logs.

4. We experimentally compared PageGather's output with the frequent sets discovered by the
Apriori data mining algorithm and with human-authored index pages.

Finally, we identi�ed the generation of complete and pure index pages as a key next step in the
automation of index page synthesis. Index page synthesis itself is a step towards the long-term
goal of change in view: adaptive sites that automatically suggest alternative organizations of their
contents based on visitor access patterns.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets of Items in Large Databases.
In Proceedings of SIGMOD-93, pages 207{216, 1993.

[2] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Verkamo. Fast Discovery of Association Rules, pages
307{328. MIT Press, Cambridge, MA, 1996.

[3] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. In Proceedings of the 20th VLDB
Conference, 1994.

[4] E. Andr�e, W. Graf, J. M�uller, H.-J. Pro�tlich, T. Rist, and W. Wahlster. AiA: Adaptive Communication
Assistant for E�ective Infobahn Access. Document, DFKI, Saarbr�ucken, 1996.

[5] R. Armstrong, D. Freitag, T. Joachims, and T. Mitchell. Webwatcher: A learning apprentice for the world
wide web. In Working Notes of the AAAI Spring Symposium: Information Gathering from Heterogeneous,
Distributed Environments, pages 6{12, Stanford University, 1995. AAAI Press.

[6] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. System Demonstration - Strudel: A Web-site
Management System. In ACM SIGMOD Conference on Management of Data, 1997.

[7] J. Fink, A Kobsa, and A. Nill. User-oriented Adaptivity and Adaptability in the AVANTI Project. In Designing
for the Web: Empirical Studies, Microsoft Usability Group, Redmond (WA)., 1996.

[8] A. Fox, S. Gribble, Y. Chawathe, and E. Brewer. Adapting to Network and Client Variation Using Infrastruc-
tural Proxies: Lessons and Perspectives. IEEE Personal Communications, 5(4):10{19, 1998.

[9] R. Khare and A. Rifkin. XML: A Door to Automated Web Applications. IEEE Internet Computing, 1(4):78{
87, 1997.

[10] H. Lieberman. Letizia: An agent that assists web browsing. In Proceedings of the Fourteenth International
Joint Conference on Arti�cial Intelligence, pages 924{929, 1995.

[11] S. Luke, L. Spector, D. Rager, and J. Hendler. Ontology-based web agents. In Proc. First Intl. Conf.
Autonomous Agents, 1997.

[12] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[13] M. Perkowitz and O. Etzioni. Adaptive web sites: an AI challenge. In Proceedings of the Fifteenth International
Joint Conference on Arti�cial Intelligence, 1997.

[14] M. Perkowitz and O. Etzioni. Adaptive web sites: Automatically learning from user access patterns. In
Proceedings of the Sixth Int. WWW Conference, Santa Clara, CA, 1997.

[15] M. Perkowitz and O. Etzioni. Adaptive Web Sites: Automatically Synthesizing Web Pages. In Proceedings of
the Fifteenth National Conference on Arti�cial Intelligence, 1998.

[16] E. Rasmussen. Clustering algorithms. In W.B. Frakes and R. Baeza-Yates, editors, Information Retrieval,
pages 419{442. Prentice Hall, Eaglewood Cli�s, N.J., 1992.

[17] T. Rist, E. Andr�e, and J. M�uller. Adding Animated Presentation Agents to the Interface. In Proceedings of
the 1997 International Conference on Intelligent User Interfaces, pages 79{86, Orlando, Florida, 1997.

16

[18] J. Rocchio. Document Retrieval Systems | Optimization and Evaluation. PhD thesis, Harvard University,
1966.

[19] A. Savasere, E. Omiecinski, and S. Navathe. An E�cient Algorithm for Mining Association Rules in Large
Databases. In Proceedings of the 21st VLDB Conference, 1995.

[20] R. Segal. Data Mining as Massive Search. PhD thesis, University of Washington, 1996.
http://www.cs.washington.edu/homes/segal/brute.html.

[21] H. Toivonen. Sampling Large Databases for Association Rules. In Proceedings of the 22nd VLDB Conference,
pages 134{145, 1996.

[22] E.M. Voorhees. Implementing agglomerative hierarchical clustering algorithms for use in document retrieval.
Information Processing & Management, 22:465{476, 1986.

[23] A. Wexelblat and P. Maes. Footprints: History-rich web browsing. In Proc. Conf. Computer-Assisted Infor-
mation Retrieval (RIAO), pages 75{84, 1997.

[24] P. Willet. Recent trends in hierarchical document clustering: a critical review. Information Processing and
Management, 24:577{97, 1988.

Oren Etzioni is an Associate Professor in the Department of Computer Science and Engi-
neering at the University of Washington. He received his Ph.D. from Carnegie Mellon University
in 1991. After joining the University of Washington he launched the Internet Softbot project.
He received an NSF Young Investigator Award in 1993. His research interests include Soft-
ware Agents, Web Navigation and Search Technology, and Human-Computer Interaction. See
http://www.cs.washington.edu/homes/etzioni/.

Mike Perkowitz is a graduate student in computer science at the University of Washington.
He received his bachelor's degree in cognitive science from Brown University in 1993. In 1994, he re-
ceived a three-year NSF graduate fellowship. His research interests include adaptive web sites, ma-
chine learning, intelligent agents, and intelligent user interfaces. See http://www.cs.washington.edu/homes/map/.

17

