
Operational Semantics for MSC'96S. Mauw a and M.A. Reniers aaDepartment of Computing Science, Eindhoven University of Technology, P.O.Box 513, NL-5600 MB Eindhoven, The Netherlands.AbstractRecently, the ITU-standardised speci�cation language Message Sequence Chart hasbeen extended with constructs for more complete and structured speci�cations. Thenew version of the language is called MSC'96. Currently, research is performed onthe extension of the formal semantics towards a semantics for MSC'96.In this article we aim at explaining the basic ideas behind the formal semantics.We give formal de�nitions of parts of the language, but most features are explainedby informal examples and drawings.It takes several steps in order to follow the path from an MSC drawing to itsformal meaning. First, the drawing must be converted to a concrete textual repre-sentation. This conversion is already de�ned implicitly in Z.120. Next, this syntaxis transformed into a formal expression over some process algebra signature. MSCconstructs are replaced by appropriate process algebra operators. This transforma-tion is compositional. The operational behaviour of the process algebraic expressioncan be studied, or the expression can be interpreted into some mathematical modeland compared to the interpretation of some other MSC.Key words: Message Sequence Chart, operational semantics, composition,standardisation.1 IntroductionRecently, the speci�cation language Message Sequence Chart (MSC) [16],which is standardised by the International Telecommunication Union (ITU),has been extended with constructs for more complete and structured speci�-cations. The new version of the language is called MSC'96. Currently, researchis performed on the extension of the formal semantics towards a semantics forMSC'96.Ideally, the development of a language and its semantics should go hand inhand. There is little use in de�ning a fancy syntactic construction without aPreprint submitted to Elsevier Preprint 15 October 1997



precise understanding of its meaning. As was the case for the previous ver-sion of the MSC language, �rst the syntax and an incomplete and informalsemantics were developed, while the construction of a formal semantics wasdeferred until after the acceptance of the language by the ITU-bodies. It isobvious that the a posteriori construction of a formal semantics will revealmany places in which the informal language description is ambiguous, under-speci�ed, inconsistent or suboptimal. In [18] a number of such situations isdescribed.Nevertheless, there are also parts of MSC'96 that can be understood unam-biguously. Of course, these are the parts of MSC'96 which are already coveredby the old formal semantics. But, also the extension of the language with ex-plicit and implicit operators for composing MSCs can be understood clearly.Most operators have already been studied in detail.The purpose of this article is not to give a complete semantics de�nition ofMSC'96. For this, we refer to the (upcoming) revision of Annex B to recom-mendation Z.120. We only aim at explaining the basic ideas behind the formalsemantics. We give formal de�nitions of parts of the language, but most fea-tures are explained by informal examples and drawings. As the semantics arecurrently still under development, details may change. However, we expectthat the basic ideas of the chosen approach remain stable.The semantics proposed for standardisation are very much an extension ofthe previous formal semantics [22,15,20]. There are some di�erences, though.First, we have slightly changed the set of basic operators, such that it yieldsa smoother de�nition. Second, rather than giving a sound and complete pro-cess algebraic speci�cation by means of axioms, we provide for an operationalsemantics based on process algebra expressions, only. The main reason is thatwe expect that a complete axiomatisation of all constructs involved is notfeasible. This is mainly due to the extension towards in�nite behaviour. Theconsequence of using an operational semantics is that we do not longer havethe ability of equational reasoning. The equality of MSCs is now de�ned in amathematical model, rather than by axioms.Nevertheless, it is possible to de�ne a su�cient number of sound equationswhich only fail in covering a few constructs completely.Although an importanttopic for research, we think that an incomplete set of axioms should not bepart of the recommended semantics.It takes several steps in order to follow the path from an MSC drawing to itsformal meaning. First, the drawing must be converted to a concrete textualrepresentation. This conversion is already de�ned implicitly in Z.120. Next,this syntax is transformed into a formal expression over some process alge-bra signature. MSC constructs are replaced by appropriate process algebra2



operators. This transformation is compositional, in the sense that �rst thetransformation of simple constructs can be determined, while the transfor-mation of a complex construct is de�ned in terms of the transformations ofthe simple constructs. Finally, the operational behaviour of the process alge-braic expression can be studied, or the expression can be interpreted into somemathematical model and compared to the interpretation of some other MSC.In this article we focus on the de�nition of the process algebraic expressionsand their operational meanings. This article is structured as follows. In Sec-tion 2 we give a short overview of the MSC'96 language. We make a distinctionbetween events, constructs for ordering and constructs for design. In Section 3we explain process algebraic expressions and operators and we discuss thetransformation of an MSC into such an expression. In Section 4 we explainthe operational semantics of some of the process algebraic operators needed.2 MSC'96The previous version of the MSC language, MSC'93 [14], was developed to ex-press behavioural traces of distributed systems. It has primitives for denotingobjects (instances) and for describing the relative order of messages exchangedbetween these objects. Furthermore, it has some more speci�c features, suchas instance creation and timers. A speci�cation consists of a series of MSCs,each describing a scenario. So-called conditions were used to guide the userthrough a speci�cation.Experience gained over the past few years, in which the use of the languageincreased, has shown that the language MSC'93 lacks the means to structurelarger MSCs and to de�ne the relation between simple MSCs. Therefore, mostof the new features from MSC'96 deal with composition. Several important as-pects have not been covered in MSC'96. These are amongst others time, data,probabilities and more specialised operators such as interrupts and disrupts.These are subject to further research.In this section we give an overview of MSC'96, based on the viewpoint that allfeatures �t in one of the three categories: event, ordering, design. We use thesecategories because the constructs within such a category are treated similarlyin the de�nition of the semantics (see Section 3).It is assumed that the reader has (at least) a basic knowledge of the languageMSC'93. For a comprehensive treatment of the complete MSC'96 language werefer to [11]. An introduction to MSC'96 is [28].3



2.1 EventsAn event is the basic unit of observation. It models a part of the system'sbehaviour which is considered as one indivisible action. In MSC'96 we �nd thefollowing events: local actions, message events (i.e. sending a message, receivinga message, a lost message and a found message), creation and termination ofan instance and timer events (i.e. set, reset and time-out). The only new eventsare lost and found messages.2.2 OrderingAn MSC is used to express the relative ordering of the events contained. Themain source of order is the instance. In general, the events attached to aninstance axis are in a strict sequential order. This order can be relaxed bythe coregion construct. Events within a coregion may occur in any order. Abasic assumption of the semantics of MSC is the requirement that in an MSCthe sending of a message always precedes the corresponding reception. Thisordering is referred to as the message ordering. These three means to describeordering are already present in MSC'93.MSC'96 extends MSC'93 with the causal ordering construct. By means of anarrow with the arrowhead in the middle events can be ordered causally. Thisfeature allows for the description of ordering between events from di�erentinstances as well as the description of ordering on events from one instance.In combination with the coregion construct this makes it possible to expressarbitrary partial orders on the events in a coregion.2.3 DesignSeveral techniques have been introduced to support the modular design ofspeci�cations in a top-down or bottom-up manner. First, High-level MSCs(HMSC) [24] are used to indicate the relation between di�erent smaller MSCs.In an HMSC one can express parallelism, sequencing, alternatives and recur-sion. HMSCs are the synthesis of the roadmap approach [13] and the operatorapproach [10]. As such they replace the informal use of roadmaps for overviewspeci�cation.With MSC reference expressions one is able to abstract from the actual con-tents of an MSC. In an MSC, references to other MSCs may be included,combined by several operators. A substitution mechanism is included whichsupports the reuse of modular speci�cations. Furthermore, the interface be-4



msc D

p

alt

instance

reference

lost message

rq

l

k
s

a
m

m

o

X alt Y

n

gate binding

process
termination

coregion

g

action
local

creation
process

causal
ordering

expression
inline

message

Fig. 1. Some MSC features.tween an MSC reference and its environment may be de�ned by means ofgates.A similar construct is the inline expression. Operators are again used to relateseveral parts of an MSC. This is mainly intended to be used for small variationsof a scenario.In MSC reference expressions and inline expressions the following operatorsare at the disposal of the user: alternative (`alt'), sequential (`seq') and paral-lel composition (`par'), a family of loop operators (`loop'), and operators fordescribing optional behaviour (`opt') and exceptions (`exc').Finally, we have substructure references, which stem fromMSC'93. These allowone to aggregate the behaviour of a number of instances into one.The graphical syntax of some of the abovementioned constructs is illustratedin the MSC depicted in Fig. 1.3 TransformationThe �rst step in giving semantics to a language is the de�nition of a transfor-mation from that language to a mathematical domain. In case of the opera-5



i

m

j k
msc A

n pFig. 2. Example MSC.tional semantics for MSC we choose to transform MSCs into expressions overa signature that is introduced step by step in the remainder of this section. Asignature describes a collection of constants and operator names, over whichexpressions may be formed. In this article the transformation appears to bede�ned on the graphical representation of MSCs. This is actually not the case,the textual syntax of MSC'96 is the starting point for the transformation. Theone and only reason for this choice is that the graphical representation is byfar not precise enough for a mathematical treatment. However, for the purposeof explaining the transformation we will, in this article, act as if the graphicalsyntax is used.With the appearance of MSC'96 there are two main description styles forMSCs in the textual representation: the instance-oriented and the event-oriented description. With an instance-oriented description an MSC is givenby describing all its instances, whereas with the event-oriented description anMSC is given by listing all building blocks (events, coregions, MSC referencesand inline expressions) contained in such a way that per instance the order ofthe building blocks respects the order of these building blocks in the graphicalsyntax from top to bottom.The transformation presented here is de�ned on the event-oriented textualsyntax of MSC'96. This is su�cient as every MSC can be expressed with thisdescription style. Of course a formal de�nition of the transformation froman arbitrary textual description of an MSC to an event-oriented descriptionshould be provided. The choice for the event-oriented textual syntax is basedon the observation that every MSC can be composed of building blocks bymeans of vertical composition only. In principle there are several ways to de-compose an MSC into building blocks. It should be the case that di�erentvertical decompositions of the same MSC result in `equivalent' expressions.To illustrate the decomposition of an MSC into its building blocks considerthe MSC depicted in Fig. 2. The building blocks of this MSC are the messageoutput and input events. In Fig. 3 the vertical decomposition of this MSC isindicated by means of dashed lines separating the building blocks. Note thatwe �rst had to rearrange the drawing. In the event-oriented representation of6



i
msc A

j k

n

p

n

p

m

m

!m

!n

?n

!p

?p

?m

!p before ?p

!n before ?n

!m before ?m

Fig. 3. Example MSC with separated events.such an MSC the building blocks are already listed in a suitable order. Alsofor readability we duplicated the message identi�ers in such a way that onecan easily associate a message identi�er with an event. For the moment ignorethe annotations at the borders of the MSC in Fig. 3. They will be explainedlater.The transformation is such that events are mapped to constants and that foreach of the composition mechanisms o�ered by MSC'96 an operator is intro-duced into the signature to act as the semantical equivalent of the compositionmechanism.We describe the transformation for each of the classes used in the previoussection to introduce the language MSC'96. It is impossible to give a treatmentof the complete language MSC'96 in this article and, therefore, we focus on thecompositionality of the transformation and the explanation of the basic ideas.Examples are added to increase the understanding. The MSC from Fig. 2 isused as a running example to explain the transformation described in thissection.3.1 EventsAny of the previously discussed events is represented by a constant in thesignature. The set of all these constants is denoted by A and the constants arecalled atomic actions. Such an atomic action can have a number of argumentswhich give additional information such as the name of the event, the name ofthe instance it is attached to, etc. 7



i j

m

msc A

msc B
j k

n

i j k
msc AB

nmFig. 4. Vertical composition.For a local action with action name a which is attached to instance i we usethe atomic action action(i; a), the sending of a message m from instance i toinstance j is described by out(i; j;m) and the reception of this message byin(i; j;m).In the previously introduced example (see Fig. 2) all building blocks are events.On the left side of the MSC in Fig. 3 we indicate how these are representedin the semantics. Often, if no confusion can arise, we simply write !m and ?minstead of out(i; j;m) and in(i; j;m). Similarly, action(i; a) is represented by a.The reason for these shorthands is the readability of the expressions to follow.3.2 OrderingAs described in Section 2.2 there are four ordering mechanisms in the MSC'96language. The �rst of these, the ordering of events by placing them on aninstance, is captured semantically by the weak sequential composition operator(�). This operator corresponds to the vertical composition of building blocks. Iftwo building blocks are composed vertically the instances they have in commonare linked in such a way that the events from such a common instance in the�rst building block precede the events on that instance in the second buildingblock. A simple example of vertical composition is given in Fig. 4. The verticalcomposition of the MSCs A and B is denoted by A �B and it is `equivalent'with MSC AB. The vertical composition does not mean that all events fromMSC A must be executed before events of MSC B are executed. For examplethe sending of message n can occur before the reception of message m.The second way of ordering events is the coregion construct. In fact this con-struct is introduced to describe the absence of ordering. This means that theevents in a coregion can be executed in any order. Semantically, this absence8



of ordering is denoted by means of the parallel composition operator ( k ). Thisoperator corresponds to the horizontal composition of building blocks. If thebuilding blocks that are composed have instances in common the behavioursof these are interleaved. A simple example to illustrate the representation ofcoregions is the following. Suppose that we have a coregion with events e1,e2, e3 and e4 and suppose that these events are semantically represented bythe atomic actions a1, a2, a3 and a4. Then, semantically this coregion is rep-resented by the expression a1 k (a2 k (a3 k a4)).In order to describe the causal orderings and the message orderings we needmore machinery. For the message orderings we need to express that the mes-sage output precedes the message input. This can be achieved by using a stateoperator as was done in [22]. However, this approach does not generalise easilyfor the causal orderings. Therefore, we need a more general means to describeordering. This is achieved by attributing the operators for the composition ofbuilding blocks with a set of ordering requirements. Such an ordering require-ment is represented as e1 7! e2 and should be read as: event e1 must precedeevent e2.The attributed composition operators are called the generalised weak sequen-tial composition operator (�S) and the generalised parallel composition opera-tor ( k S). Usually we refer to these as vertical and horizontal composition. Theweak sequential composition operator and the parallel composition operatorare special cases of �S and k S where S = ?. Still, we prefer to denote �? by� and k? by k . Often, we omit the curly brackets from the set S and simplylist the ordering requirements separated by comma's. These attributes can beused to describe causal orderings, as well as message orderings. For a messagem the message ordering would then be represented by the pair !m 7!?m.For the running example this means that it is described by the vertical com-position of the building blocks and that at certain points additional orderingrequirements are attributed to the vertical composition operator. Note thatthe orderings imposed by the instances are taken care of by the vertical com-position operator on its own. After applying our transformation to MSC Afrom Fig. 3 the following expression results:!m �!m7!?m (!n �!n7!?n (?n � (!p �!p7!?p (?p�?m)))):This expression is obtained by considering the dashed lines in Fig. 3 one by onefrom top to bottom. With each dashed line an occurrence of �S is associated. Ifthis line is crossed by a message arrow this results in an ordering requirement.Of course every such arrow should be considered only once.9



3.3 DesignThe combination of building blocks is in MSC expressed explicitly by meansof operators (inline expressions, MSC reference expressions) or by means ofgraphical constructions that can be reduced to operators (HMSCs). From asemantical point of view the three ways to combine building blocks can bedescribed in one framework. In this article we do not consider substructurereferences. For a thorough treatment of those we refer to [23,15]. Also gatesand substitutions are not treated in this article. Gates are di�cult but nottroublesome and substitution should be trivial.Semantically, all we need for describing the composition mechanisms are thefollowing operators: delayed choice (�) for `alt', vertical composition (�S) for`seq', horizontal composition ( k S) for `par', several repetition operators tocapture the `loop' construct and recursion (for HMSC).The delayed choice [2] is an operator for describing alternative scenarios insuch a way that a choice between the alternatives is postponed for as long aspossible. For example if both alternatives can execute an event a, then afterthe execution of a there are still two alternatives. If, on the other hand, onlyone of the alternatives can execute event a, then after the execution of a onlyone alternative remains. This is the alternative that executed a. The verticaland horizontal composition operators have been introduced already in theprevious section. The constructs optional and exception (newly introduced inMSC'96) are easily captured as special cases of delayed choice and are thereforenot considered in this article. The loop operators are based on bounded andunbounded versions of the iteration operator de�ned in [5]. Also these are notconsidered in this article. For an initial treatment of recursion we refer to [24].We once more explain the transformation by means of an example. We startfrom the MSC given in Fig. 5. This example shows how to deal with complexbuilding blocks such as coregions and inline expressions.The �rst step is to make an alternative drawing in which a vertical compositionof the MSC into building blocks can easily be indicated. A possible result ofthis transformation is shown in Fig. 6.The next step is to associate an expression with the MSC as follows. First,with each of the building blocks an expression is associated. For the eventsthis expression is merely a single atomic action and for the coregion we obtain?n k ?o as explained in the previous section. For the inline expression �rst anexpression is given for each of the operands (two in this case): !m1�!m17!?m1?m1and !m2�!m27!?m2?m2. Then these are combined by means of the the operatorindicated in the inline expression. In this case this is the alternative compo-sition operator `alt' which is semantically represented by means of delayed10



m2

m1alt

msc D

i j l

n
p

a

k

Fig. 5. Example MSC D.
msc D

i j k l

!n !n before a
!n before ?n

!p before ?p
!p

?n || ?p

p n

X
alt m1

m2

a aFig. 6. Vertical decomposition of MSC D.choice �. The result is the expression(!m1�!m17!?m1?m1) � (!m2�!m27!?m2?m2):The expressions associated with the building blocks are also displayed in Fig. 6on the left of the MSC. The semantics of the inline expression is in the �gure11



abbreviated by X, which represents the above expression.Then, the ordering requirements between the building blocks must be deter-mined and taken into account. These are depicted in the �gure on the rightof the MSC. Note that in this step both the message orderings and the causalorderings are treated similarly. Finally, the expression representing the MSCis obtained as described before:!n �!n7!a;!n7!?n (!p �!p7!?p ((?n k ?p) � (X � a))):4 Operational semantics4.1 What is an operational semantics?In this section we introduce some terminology with respect to the mathemat-ical framework that is used to de�ne an operational semantics. Both termi-nology and notation are taken from [3]. The goal of an operational semanticsis, given an expression denoting a process in a certain state, to describe allpossible activities that can be performed by the process in that state and todescribe the state of the process after such an activity. In the previous sectionwe gave a transformation of an MSC into an expression. This expression rep-resents the initial state of the MSC. The activities that are considered for theoperational semantics of MSC'96 are the execution of an event and the termi-nation of the MSC. Also the states resulting after such activities are describedby means of expressions. If from a state s an event a can be performed and theresulting state is represented by the expression s0, then this is usually denotedby the ternary relation s a! s0. If in a given state s the process is capable ofterminating immediately and successfully, this is indicated by means of s#.The predicate �#� P is called the termination predicate as it indicates that aprocess has the possibility to terminate immediately and successfully. The setP denotes all expressions that can be built from the constants and operators inthe signature. If we assume that all events are represented by atomic actionsfrom the set A, the ternary relation � �! � � P � A � P is called thetransition relation. This predicate and these relations are de�ned by means ofdeduction rules (operational rules). A deduction rule is of the form HC where His a set of premises and C is the conclusion. Each individual premise and theconclusion are of the form s a! s0 or s# for arbitrary s; s0 2 P and a 2 A. Sucha deduction rule should be interpreted as follows: If all premises are true, theconclusion, by de�nition, also holds. A special kind of deduction rule appearsif the set of premises is empty (H = ?). Such a deduction rule is also called adeduction axiom and usually simply denoted by the conclusion C. An example12



of a deduction axiom is deduction axiom (At 1):a a! " :This deduction axiom expresses that a process that is in a state representedby the atomic action a can perform event a and thereby evolves into a staterepresented by the expression ". This expression " indicates a state in which noevents can be performed but in which it is possible to terminate successfullyand immediately. This is expressed by the deduction axiom (E 1):"# :These are the only rules for expressions a 2 A and ". The expression " is usedto denote an MSC without events.Clearly the process a cannot terminate and the process " cannot performevents. Note that these negative results are not explicitly de�ned. The follow-ing convention applies: If it is impossible to derive s#, then by de�nition nots#, which is denoted by s 6#. Similarly, if it is impossible to derive s a! s0,then by de�nition not s a! s0. This is usually denoted as s a9 s0. Such nega-tive results can also be used in the set of premises, and then these are callednegative premises. If we want to express that a process represented by the ex-pression s can perform a transition labelled with a and we are not interestedin the resulting state, this is denoted by s a!. Formally, it means that thereexists a state s0 such that s a! s0. Then s a9 should be read as there does notexists a state s0 such that s a! s0, or for all states s0 we have s a9 s0. Theseabbreviations extend to the relation � ����! � to be introduced in Section 4.4.4.2 Delayed choiceThe operational semantics associated with delayed choice by means of thededuction rules presented in Table 1 eminently illustrates the purposes of thisoperator. The deduction rules for a! clearly express that x � y can performan a-transition thereby resolving the choice if exactly one of its operands can,and in the case that both operands can perform an a-transition the choice isnot yet resolved.The deduction rules from Table 1 are taken from [2] where the delayed choiceoperator was introduced in the setting of bisimulation semantics as a meansfor composing MSCs. The deduction rules (DC 1) and (DC 2) express thatthe alternative composition of two processes has the option to terminate ifand only if at least one of the alternatives has this option. Thus, the processaction(i; a) � " has an option to terminate as the second alternative has thisoption. On the contrary the process action(i; a)�action(b; j) does not have an13



Table 1Deduction rules for delayed choice.x#x� y# (DC 1) y#x� y# (DC 2)x a! x0; y a9x� y a! x0 (DC 3) x a9; y a! y0x� y a! y0 (DC 4) x a! x0; y a! y0x� y a! x0 � y0 (DC 5)option to terminate as none of its alternatives can terminate. Please note thatif we speak of termination we mean immediate termination, not terminationafter the execution of one or more events. The deduction rules (DC 3) and(DC 4) express that, in the situation that exactly one of the alternatives canexecute an event a, the alternative composition can execute this event as welland that the execution of this event resolves the choice. Finally, deduction rule(DC 5) deals with the situation that both alternatives can execute an eventa. It states that, in that case, the alternative composition can execute a and,moreover, that there remain two alternatives.With the signature and deduction rules introduced so far it is hard to giveinteresting examples of how such an operational semantics can be exploited.But in order to already illustrate the machinery we give examples anyway.As explained before, the delayed choice only resolves a choice if it has to.For example, if we consider the process action(i; a) � action(i; b) making achoice between the alternatives cannot be avoided. Operationally this is seen asfollows: By the deduction axiom (At 1) we obtain action(i; a) action(i;a)! ". Sinceit is impossible to derive action(i; b) action(i;a)! we obtain action(i; b) action(i;a)9 .Combining these with the deduction rule (DC 3) we obtain action(i; a) �action(i; b) action(i;a)! " and the choice is resolved by the execution of action(i; a).In contrast, for the process represented by action(i; a) � action(i; a), we �rstobtain action(i; a) action(i;a)! ", by deduction axiom (At 1), and therefore wecannot obtain action(i; a) action(i;a)9 . Thus the deduction rule (DC 3) cannot beused this time. Instead the premises of deduction rule (DC 5) hold in this case.Thus we can conclude action(i; a)� action(i; a) action(i;a)! "� ". It is impossibleto tell which action(i; a) of the two alternatives was actually executed.14



Table 2Deduction rules for generalised parallel composition.S0 = S n fe1 7! e2 2 S j e1 = ag and �2(S) = fe2 j 9e1e1 7! e2 2 Sgx#; y#x kSy# (HC 1) x a! x0; y a9; a 62 �2(S)x kSy a! x0 k S0y (HC 2)x a! x0; y a! y0; a 62 �2(S)x kSy a! x0 k S0y � x k S0y0 (HC 3) x a9; y a! y0; a 62 �2(S)x kSy a! x k S0y0 (HC 4)4.3 Generalised parallel compositionThe generalised parallel composition operator is de�ned by the deduction rulesin Table 2. It is labelled by a set S of pairs of atomic actions. This set speci�esa number of ordering requirements on the execution of atomic actions. Beforewe explain the use of this set in more detail, we �rst explain the horizontalcomposition operator without considering this set. This turns out to be aspecial case, i.e., S = ?. Instead of k ? we often write k . This is in line withnotation used in the process algebra ACP [6,4,3,29].The horizontal composition of two processes is the interleaved execution of theevents of the processes while maintaining the ordering of events as speci�edby the processes in isolation. The horizontal composition operator used in thesetting of MSC, is a delayed version of the interleaving operators normallyused. If both the left-hand and right-hand side of the horizontal compositioncan perform the same event, it is not visible which of the two is actuallyexecuted. In other words a delayed choice is made between the two occurrences.In this aspect the horizontal composition operator used for the semantics ofMSC di�ers from the interleaving operators of ACP-style process algebras.Also the free merge operator (and weak sequencing operator) used in [24]does not make a delayed choice between alternatives.A simple example is the process action(i; a) k action(i; b). This process is capa-ble of performing an event action(i; a) and thereby it evolves into the process" k action(i; b). But it is also possible for this process to perform action(i; b) andthen the process action(i; a) k " remains. An example illustrating the delayednature of the horizontal composition operator is the process represented byaction(i; a) k action(i; a). It can perform the following sequence of transitions:15



action(i; a) k action(i; a) action(i;a)! " k action(i; a)� action(i; a) k "action(i;a)! " k "� " k "# :Next, the way the set S is used is explained. The set S contains pairs of eventse1 7! e2. Such a pair describes a requirement on the order in which events fromthe operands may be executed. In this particular case the pair should be readas: event e2 can only be executed after event e1 has been executed. This isprecisely what is expressed in the deduction rules. Also observe that the set Sis updated after the execution of every event. This update is explained later.Consider the process in(i; j;m) k out(i;j;m)7!in(i;j;m)out(i; j;m). If we do not con-sider the requirement out(i; j;m) 7! in(i; j;m) it would be possible to executethe events in(i; j;m) and out(i; j;m) in any order. However, the presence of therequirement blocks the execution of in(i; j;m) as long as out(i; j;m) has notbeen executed. Thus, the only possible sequence of transitions is:in(i; j;m) k out(i;j;m)7!in(i;j;m)out(i; j;m) out(i;j;m)! in(i; j;m) k " in(i;j;m)! " k "# :Next, we explain the deduction rules from Table 2 in more detail. Rule (HC1) expresses that x k Sy has the possibility to terminate if both x and y have.Rules (HC 2) up to (HC 4) de�ne which transitions the expression x k Sy isallowed to make. These rules have the premise a 62 �2(S). This means that theevent a is allowed to occur. Namely, set S contains pairs of events for which anordering is �xed. If, e.g., e1 7! e2 is in S, this means that e1 should occur beforee2. After execution of e1 the entry e1 7! e2 is removed from S. Therefore, onlyevents are blocked which occur at the right-hand side of an entry e1 7! e2 in S.These right-hand sides are selected by the operation �2(S). This also explainswhy the set S in the conclusions of the rules is transformed into S 0. Namely,if an a is executed, all requirements a 7! e2 are trivially ful�lled and may thusbe removed from the set S.Knowing this, we can make a distinction between three cases. First, x canexecute an a and y cannot ((HC 2)). In this case, x k Sy may perform thisa and evolve into x0 k S0y. The case that x cannot execute an a and y can issymmetrical ((HC 4)). Finally, if both x and y can execute an a ((HC 3)), weneed a delayed choice to express that execution of this a does not enforce achoice between x and y. The executed a may be either due to x or due to y.16



4.4 Generalised weak sequential compositionIn this section we introduce the generalised weak sequential composition op-erator �S. It can be thought of as the vertical composition of building blocks.The operator �, i.e., �?, is based on the weak sequential composition operatorof [27] and the interworking sequencing operator of [25]. It has a behaviourthat is similar to the behaviour of the horizontal composition operator, but ad-ditionally it maintains the ordering of events from instances that the buildingblocks have in common.In MSC every event is associated with an instance on which it is de�ned. In theoperational semantics this is incorporated by assuming a mapping ` : A! I,where I represents the set of all instance names, which associates with everyevent a 2 A the name of the instance it is de�ned on. This mapping is easilyde�ned on the atomic actions from the set A as these represent the events withthe instance to which the event is attached as one of the parameters. For exam-ple `(out(i; j;m)) = i, `(in(i; j;m)) = j and `(action(i; a)) = i. The mapping `is used extensively in the operational description of vertical composition.Besides the transition relation already present in the operational semantics wenow also introduce a relation � ����! � � P �A� P . This relation is calledthe permission relation. If s a���! s0 this means that in a situation where s isvertically composed with t (s � t) and t can perform event a (t a!), s allowsthe execution of a by t (s � t a!). If on the other hand s 6 a���! this means thatin the same situation the vertical composition of s and t cannot perform eventa from t.However, there is a complication with respect to alternatives. Suppose thatwe have an MSC that describes two alternatives: the �rst is the executionof local action a on instance i and the second alternative is the execution oflocal action b on instance j. Suppose furthermore that we wish to composethis MSC vertically with an MSC which can only execute local action c frominstance i. The expression representing this vertical composition is given by(action(i; a)� action(j; b)) � action(i; c):Let us try to �nd out which transitions can be performed in this case. Asbefore it is possible to perform the local action a or the local action b:(action(i; a)� action(j; b)) � action(i; c) action(i;a)! " � action(i; c) ;(action(i; a)� action(j; b)) � action(i; c) action(j;b)! " � action(i; c) :After this transition in both cases the choice has been made and clearly the17



Table 3Deduction rules for the permission relation." a���! " (E 2) `(a) 6= `(b)b a���! b (At 2) x a���! x0; y 6 a���!x� y a���! x0 (DC 6)x 6 a���!; y a���! y0x� y a���! y0 (DC 7) x a���! x0; y a���! y0x� y a���! x0 � y0 (DC 8)x a���! x0; y a���! y0x k Sy a���! x0 k Sy0 (HC 5) x a���! x0; y a���! y0x �S y a���! x0 �S y0 (VC 1)next transition that can be performed is the execution of local action c. How-ever, there is also the possibility that local action c appears even before thechoice has been made. But then we know that local action a cannot be exe-cuted, because it should precede local action c. Therefore, the state after theexecution of local action c, should not have the possibility to execute localaction a anymore:(action(i; a) � action(j; b)) � action(i; c) action(i;c)! action(j; b) � ":Suppose that we want to determine if an action a is allowed to precede aprocess x, i.e., we want to determine x a���!. Then we use the deduction rulesfrom Table 3 which are de�ned on the structure of the expressions. The emptyprocess can be preceded by event a; there is no reason not to allow a to beexecuted. This is expressed by deduction rule (E 2). Similarly, an event b canbe preceded by event a if and only if these events are de�ned on di�erentinstances (`(a) 6= `(b)), see deduction rule (At 2). The deduction rules (DC6), (DC 7) and (DC 8) express that an event a is allowed to precede a processconsisting of two alternatives if and only if at least one of the alternativesallows a to precede. For both the horizontal and the vertical compositionoperator the following holds. Event a can precede the composed process if andonly if it can precede both operands ((HC 5) and (VC 1)). Please note thatthe operational rules also deal with the resolution of choices.The operational rules for vertical composition in Table 4 are similar to theoperational rules for horizontal composition. The main di�erence is that anevent from the right operand can only be executed if the left operand allowsthe execution of that event. Also note that in case the left operand allows theexecution of an event a from the right operand it is possible that alternativesdisappear from the left operand. 18



Table 4Deduction rules for generalised weak sequential composition.S0 = S n fe1 7! e2 2 S j e1 = ag and �2(S) = fe2 j 9e1e1 7! e2 2 Sgx#; y#x �S y# (VC 2) x a! x0; y a9 _x 6 a���!; a 62 �2(S)x �S y a! x0 �S0 y (VC 3)x a! x0; x a���! x00; y a! y0; a 62 �2(S)x �S y a! x0 �S0 y � x00 �S0 y0 (VC 4)x a9; x a���! x0; y a! y0; a 62 �2(S)x �S y a! x0 �S0 y0 (VC 5)Deduction rule (VC 2) expresses that the vertical composition of two processescan terminate if each of them can terminate. The other deduction rules dealwith the possible transitions of the vertical composition of two processes. Asthe vertical composition operator deals with the ordering requirements in thesame way as the horizontal composition operator this aspect of the deductionrules is not explained again.In the case that x can perform event a (x a!) and either y cannot performevent a (y a9) or x does not allow the execution of event a by y (x 6 a���!), onlythe execution of event a by x can take place. This is expressed by deductionrule (VC 3).In the case that x can perform event a (x a!), y can perform event a (y a!)and x permits the execution of a by y, a delayed choice of the individualoccurrences of event a results. This is expressed by deduction rule (VC 4).In the case that x cannot perform event a (x a9), y can perform event a (y a!)and x permits the execution of a by y (x a���!), there is only the possibilitythat event a is executed due to y. This is expressed by deduction rule (VC 5).The only case that is not discussed yet is the case that x cannot execute a andeither x does not permit y to execute an event a or y cannot execute an eventa. In this case it is impossible to execute a at all. This is expressed implicitlyby the fact that there is no deduction rule for which the premises hold in thissituation.The operational rules for the vertical composition operator are illustrated bymeans of some examples. First, consider the MSCs from Fig. 7. The MSCs Aand B have no instances in common. Semantically, they are represented by19



i

m

msc A
j

msc B
k l

nFig. 7. Vertical composition with disjoint instances.
n

i

m

j
msc D msc E

j kFig. 8. Vertical composition with instances in common.the following expressions, denoted by A and B for easy reference:A= out(i; j;m) �out(i;j;m)7!in(i;j;m) in(i; j;m) ;B= out(k; l;n) �out(k;l;n)7!in(k;l;n) in(k; l;n) :The vertical composition of MSC A and MSC B is then denoted by A � B.From the deduction rules we obtain that this process can perform the followingtransitions:A �B out(i;j;m)! (" � in(i; j;m)) �B ;A �B out(k;l;n)! A � (" � in(k; l;n)) :The �rst possibility follows from the deduction rules as follows. First,A out(i;j;m)!" � in(i; j;m) and second B out(i;j;m)9 . The second possibility is obtained fromA out(k;l;n)���! A and B out(k;l;n)! " � in(k; l;n).An example in which the MSCs to be composed vertically have instances incommon is given in Fig. 8. The MSCs D and E are represented byD= out(i; j;m) �out(i;j;m)7!in(i;j;m) in(i; j;m) ;E = out(j; k;n) �out(j;k;n)7!in(j;k;n) in(j; k;n) :The vertical composition of the MSCs D and E is denoted by D � E. In thiscase the only initial transition isD�E out(i;j;m)! ("�in(i; j;m))�E. The executionof in(i; j;m) is blocked by the requirement that out(i; j;m) must be executed�rst, the execution of out(j; k;n) is blocked by the requirement that all events20



on the same instance, i.e., instance j from D, must be executed �rst (and thatis not the case) and the execution of in(j; k;n) is blocked by the requirementthat out(j; k;n) must be executed �rst. Note that there is actually only onesequence of transitions in this example:D � E out(i;j;m)! (" � in(i; j;m)) � Ein(i;j;m)! (" � ") � Eout(j;k;n)! (" � ") � (" � in(j; k;n))in(j;k;n)! (" � ") � (" � ")# :4.5 Use of operational semanticsBy means of the operational semantics a transition graph can be associatedwith every expression. Such a transition graph consists of nodes and arrowsbetween those. A node is labelled by an expression over the signature. Supposethat we are given a node s and suppose that we can derive s a! s0 for certaina and s0. Then the transition graph also contains a node labelled s0 and anarrow labelled with a from node s to node s0. This way the transition graphcan be built. The transition graph for an expression s has exactly one initialnode. This is the node labelled with s. This node is indicated by an incomingunconnected and unlabelled arrow. If for a node s we can derive s# then thisis indicated in the transition graph by labelling that node by an outgoingunconnected and unlabelled arrow.For example the transition graph associated with A � B, i.e., the verticalcomposition of the MSCs A and B from Fig. 7 is given in Fig. 9. Usually weomit the labels of the nodes.The operational semantics presented can be used to de�ne a notion of equiva-lence on processes. Examples thereof are trace equivalence, bisimulation equiv-alence and graph isomorphism. The intended equivalence for MSC'96 is bisim-ulation semantics. For a de�nition of this equivalence we refer to [26]. In thecase of MSC'96, where we only have deterministic processes, i.e., it is notpossible for a process to perform an a-transition to two states represented bydi�erent expressions, the notions of trace equivalence and bisimulation equiv-alence coincide [8].The reason to use bisimulation equivalence anyway is that we anticipate atan extension of the set of operators with an operator for non-deterministicchoice [4]. In the presence of non-deterministic choice, there is a di�erencebetween trace semantics and bisimulation semantics. The de�nition of the21



!m !n

?m ?n!m

!m

!n

!n ?n

?n

?m

?mFig. 9. Transition graph.operational semantics for MSC'96 is such that it can easily be extended withnon-deterministic choice.Another interesting topic related to operational semantics is the developmentof a simulator. With a simulator sequences of events can be generated atrandom or user-driven. The basic functionality of a simulator resembles thede�nition of an operational semantics. For Basic Message Sequence Charts,i.e., Message Sequence Charts with only instances, messages and local actions,in [21] the process algebra semantics of MSC'93 is used to de�ne a prototypesimulator.5 Summary and concluding remarksWe have explained the basics of the formal semantics of MSC'96 which arecurrently under development.The semantics of an MSC is derived in several steps. First, an MSC in graphicalrepresentation is translated into a textual form. This transformation is notdiscussed. Next, the textual representation is translated into a process algebraexpression. Finally a meaning is attached to such an expression.A major design issue was compositionality. An MSC is thought of as beingconstructed from a number of building blocks, each of which may also becompound constructs. The semantics of a construction is de�ned as the com-position of the semantics of its building blocks. At the lowest level there areonly events, which have a trivial interpretation as atomic actions. The order-ing of these events is taken care of by the operators for vertical and horizontalcomposition. Constructs for design in the large are interpreted as applications22



of several operators.We obtained an operational semantics, which consists of a description of the(possible) behaviour of an MSC. We did not provide for any process alge-braic axioms as presented in [22,23]. We expect a complete axiomatisation tobe infeasible. Nevertheless, an operational semantics as proposed here, servesseveral purposes. First, it unambiguously de�nes the meaning of an MSC byinterpreting an MSC in the mathematical model of transition graphs. Next,it allows for a good comparison to alternative semantics de�nitions of MSC,such as approaches based on Petri nets [9], B�uchi automata [17], process alge-bra [19,25], and partial orders [1]. Moreover, it enables a comparison to otherlanguages for the description of distributed systems, such as SDL [12] andLOTOS [7], which are also provided with an operational semantics. Finally,an operational semantics is useful for the development of a simulation tool.The semantics obtained is mostly an extension of the formal semantics ofMSC'93 in [15]. A major di�erence is that the state operator, used for en-forcing the message orderings, is replaced by the generalised weak sequentialcomposition operator. The reason is that the latter allows for a uniform treat-ment of the message orderings and causal orderings and corresponds closelyto the vertical composition of MSCs.AcknowledgementWe would like to thank the members of the MSC development group for theirinitiating work. Andr�e Engels is acknowledged for the fruitful discussions onsome technical matters.References[1] R. Alur, G.J. Holzmann, and D. Peled. An analyzer for Message SequenceCharts. Software - Concepts and Tools, 17(2):70{77, 1996.[2] J.C.M. Baeten and S. Mauw. Delayed choice: an operator for joining MessageSequence Charts. In D. Hogrefe and S. Leue, editors, Formal DescriptionTechniques VII, IFIP Transactions C, Proceedings 7th International Conferenceon Formal Description Techniques, pages 340{354. Chapman-Hall, 1994.[3] J.C.M. Baeten and C. Verhoef. Concrete process algebra. In S. Abramsky,Dov M. Gabbay, and T.S.E. Maibaum, editors, Semantic Modelling, volume 4of Handbook of Logic in Computer Science, pages 149{268. Oxford UniversityPress, 1995. 23



[4] J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of CambridgeTracts in Theoretical Computer Science. Cambridge University Press, 1990.[5] J.A. Bergstra, I. Bethke, and A. Ponse. Process algebra with iteration andnesting. The Computer Journal, 37(4):243{258, 1994.[6] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.Information and Control, 60(1/3):109{137, 1984.[7] T. Bolognesi and E. Brinksma. Introduction to the ISO speci�cation languageLOTOS. Computer Networks and ISDN Systems, 14(1):25{59, 1988.[8] J. Engelfriet. Determinacy ! (observation equivalence = trace equivalence).Theoretical Computer Science, 36(1):21{25, 1985.[9] J. Grabowski, P. Graubmann, and E. Rudolph. Towards a Petri net basedsemantics de�nition for Message Sequence Charts. In O. F�rgemand andA. Sarma, editors, SDL'93 - Using Objects, Proceedings of the Sixth SDLForum, pages 179{190, Darmstadt, 1993. Amsterdam, North-Holland.[10] �. Haugen. MSC structural concepts. Technical Report TD 9006, ITU-TExperts Meeting SG 10, Turin, 1994.[11] �. Haugen and Y. Lahav. MSC/SDL new features. Tutorials of the EighthSDL Forum, 1997.[12] ITU-T. ITU-T Recommendation Z.100: Speci�cation and Description Language(SDL). ITU-T, Geneva, 1988.[13] ITU-TS. ITU-TS Recommendation Z.100 Annex I: SDL MethodologyGuidelines. ITU-TS, Geneva, 1993.[14] ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC).ITU-TS, Geneva, September 1993.[15] ITU-TS. ITU-TS Recommendation Z.120 Annex B: Algebraic semantics ofMessage Sequence Charts. ITU-TS, Geneva, April 1995.[16] ITU-TS. ITU-TS Draft Recommendation Z.120: Message Sequence Chart(MSC96). ITU-TS, Geneva, 1996.[17] P.B. Ladkin and S. Leue. Interpreting message ow graphs. Formal Aspects ofComputing, 7(5):473{509, 1995.[18] S. Loidl, E. Rudolph, and U. Rinkel. MSC'96 and beyond - a critical look. InA. Cavalli and A. Sarma, editors, SDL'97: Time for Testing - SDL, MSC andTrends, Proceedings of the Eighth SDL Forum, pages 213{227, Evry, France,1997. Elsevier Science Publishers.[19] J. de Man. Towards a formal semantics of Message Sequence Charts. InO. F�rgemand and A. Sarma, editors, SDL'93 : Using Objects, Proceedingsof the Sixth SDL Forum, pages 157{165, Darmstadt, 1993. Amsterdam, North-Holland. 24



[20] S. Mauw. The formalization of Message Sequence Charts. Computer Networksand ISDN Systems, 28(12):1643{1657, 1996. Special issue on SDL and MSC,guest editor �. Haugen.[21] S. Mauw and E.A. van der Meulen. Generating tools for Message SequenceCharts. In R. Br�k and A. Sarma, editors, SDL'95 with MSC in CASE,Proceedings of the Seventh SDL Forum, pages 51{62, Oslo, 1995. Amsterdam,North-Holland.[22] S. Mauw and M.A. Reniers. An algebraic semantics of Basic Message SequenceCharts. The Computer Journal, 37(4):269{277, 1994.[23] S. Mauw and M.A. Reniers. An algebraic semantics of Message SequenceCharts. Technical Report CSN 94/23, Eindhoven University of Technology,Department of Computing Science, Eindhoven, 1994.[24] S. Mauw and M.A. Reniers. High-Level Message Sequence Charts. In A. Cavalliand A. Sarma, editors, SDL'97: Time for Testing - SDL, MSC and Trends,Proceedings of the Eighth SDL Forum, pages 291{306, Evry, France, 1997.Elsevier Science Publishers.[25] S. Mauw, M. van Wijk, and T. Winter. A formal semantics of synchronousInterworkings. In O. F�rgemand and A. Sarma, editors, SDL'93 - UsingObjects, Proceedings of the Sixth SDL Forum, pages 167{178, Darmstadt, 1993.Amsterdam, North-Holland.[26] D.M.R. Park. Concurrency and automata on in�nite sequences. In P. Deussen,editor, Theoretical Computer Science, volume 104 of Lecture Notes in ComputerScience, pages 167{183. Springer-Verlag, 1981. Proceedings of the Fifth GI-Conference, Karlsruhe, West Germany.[27] A. Rensink and H. Wehrheim. Weak sequential composition in process algebras.In B. Jonsson and J. Parrow, editors, CONCUR'94: Concurrency Theory,volume 836 of Lecture Notes in Computer Science, pages 226{241, Uppsala,1994. Springer-Verlag.[28] E. Rudolph, J. Grabowski, and P. Graubmann. Tutorial on MessageSequence Charts (MSC'96). Tutorials of the First joint InternationalConference on Formal Description Techniques for Distributed Systems andCommunication Protocols, and Protocol Speci�cation, Testing, and Veri�cation(FORTE/PSTV'96), 1996.[29] J.L.M. Vrancken. The algebra of communicating processes with empty step.Theoretical Computer Science, 177(2):287{328, 1997.
25


