Operational Semantics for MSC’96

S. Mauw ® and M.A. Reniers?®

a Department of Computing Science, Findhoven University of Technology, P.O.
Box 513, NL-5600 MB Findhoven, The Netherlands.

Abstract

Recently, the ITU-standardised specification language Message Sequence Chart has
been extended with constructs for more complete and structured specifications. The
new version of the language is called MSC’96. Currently, research is performed on
the extension of the formal semantics towards a semantics for MSC’96.

In this article we aim at explaining the basic ideas behind the formal semantics.
We give formal definitions of parts of the language, but most features are explained
by informal examples and drawings.

It takes several steps in order to follow the path from an MSC drawing to its
formal meaning. First, the drawing must be converted to a concrete textual repre-
sentation. This conversion is already defined implicitly in 7.120. Next, this syntax
is transformed into a formal expression over some process algebra signature. MSC
constructs are replaced by appropriate process algebra operators. This transforma-
tion is compositional. The operational behaviour of the process algebraic expression
can be studied, or the expression can be interpreted into some mathematical model
and compared to the interpretation of some other MSC.

Key words: Message Sequence Chart, operational semantics, composition,
standardisation.

1 Introduction

Recently, the specification language Message Sequence Chart (MSC) [16],
which is standardised by the International Telecommunication Union (ITU),
has been extended with constructs for more complete and structured specifi-
cations. The new version of the language is called MSC’96. Currently, research
is performed on the extension of the formal semantics towards a semantics for

MSC96.

Ideally, the development of a language and its semantics should go hand in
hand. There is little use in defining a fancy syntactic construction without a

Preprint submitted to Elsevier Preprint 15 October 1997

precise understanding of its meaning. As was the case for the previous ver-
sion of the MSC language, first the syntax and an incomplete and informal
semantics were developed, while the construction of a formal semantics was
deferred until after the acceptance of the language by the ITU-bodies. It is
obvious that the a posteriori construction of a formal semantics will reveal
many places in which the informal language description is ambiguous, under-
specified, inconsistent or suboptimal. In [18] a number of such situations is

described.

Nevertheless, there are also parts of MSC’96 that can be understood unam-
biguously. Of course, these are the parts of MSC’96 which are already covered
by the old formal semantics. But, also the extension of the language with ex-
plicit and implicit operators for composing MSCs can be understood clearly.
Most operators have already been studied in detail.

The purpose of this article is not to give a complete semantics definition of
MSC’96. For this, we refer to the (upcoming) revision of Annex B to recom-
mendation 7.120. We only aim at explaining the basic ideas behind the formal
semantics. We give formal definitions of parts of the language, but most fea-
tures are explained by informal examples and drawings. As the semantics are
currently still under development, details may change. However, we expect
that the basic ideas of the chosen approach remain stable.

The semantics proposed for standardisation are very much an extension of
the previous formal semantics [22,15,20]. There are some differences, though.
First, we have slightly changed the set of basic operators, such that it yields
a smoother definition. Second, rather than giving a sound and complete pro-
cess algebraic specification by means of axioms, we provide for an operational
semantics based on process algebra expressions, only. The main reason is that
we expect that a complete axiomatisation of all constructs involved is not
feasible. This is mainly due to the extension towards infinite behaviour. The
consequence of using an operational semantics is that we do not longer have
the ability of equational reasoning. The equality of MSCs is now defined in a
mathematical model, rather than by axioms.

Nevertheless, it is possible to define a sufficient number of sound equations
which only fail in covering a few constructs completely. Although an important
topic for research, we think that an incomplete set of axioms should not be
part of the recommended semantics.

It takes several steps in order to follow the path from an MSC drawing to its
formal meaning. First, the drawing must be converted to a concrete textual
representation. This conversion is already defined implicitly in 7.120. Next,
this syntax is transformed into a formal expression over some process alge-
bra signature. MSC constructs are replaced by appropriate process algebra

operators. This transformation is compositional, in the sense that first the
transformation of simple constructs can be determined, while the transfor-
mation of a complex construct is defined in terms of the transformations of
the simple constructs. Finally, the operational behaviour of the process alge-
braic expression can be studied, or the expression can be interpreted into some
mathematical model and compared to the interpretation of some other MSC.

In this article we focus on the definition of the process algebraic expressions
and their operational meanings. This article is structured as follows. In Sec-
tion 2 we give a short overview of the MSC’96 language. We make a distinction
between events, constructs for ordering and constructs for design. In Section 3
we explain process algebraic expressions and operators and we discuss the
transformation of an MSC into such an expression. In Section 4 we explain
the operational semantics of some of the process algebraic operators needed.

2 MSC’96

The previous version of the MSC language, MSC’93 [14], was developed to ex-
press behavioural traces of distributed systems. It has primitives for denoting
objects (instances) and for describing the relative order of messages exchanged
between these objects. Furthermore, it has some more specific features, such
as instance creation and timers. A specification consists of a series of MSCs,
each describing a scenario. So-called conditions were used to guide the user
through a specification.

Experience gained over the past few years, in which the use of the language
increased, has shown that the language MSC’93 lacks the means to structure
larger MSCs and to define the relation between simple MSCs. Therefore, most
of the new features from MSC’96 deal with composition. Several important as-
pects have not been covered in MSC’96. These are amongst others time, data,
probabilities and more specialised operators such as interrupts and disrupts.
These are subject to further research.

In this section we give an overview of MSC’96, based on the viewpoint that all
features fit in one of the three categories: event, ordering, design. We use these
categories because the constructs within such a category are treated similarly
in the definition of the semantics (see Section 3).

It is assumed that the reader has (at least) a basic knowledge of the language
MSC’93. For a comprehensive treatment of the complete MSC’96 language we
refer to [11]. An introduction to MSC’96 is [28].

2.1 FEvenis

An event is the basic unit of observation. It models a part of the system’s
behaviour which is considered as one indivisible action. In MSC’96 we find the
following events: local actions, message events (i.e. sending a message, receiving
a message, a lost message and a found message), creation and termination of
an instance and timer events (i.e. set, reset and time-out). The only new events
are lost and found messages.

2.2 Ordering

An MSC is used to express the relative ordering of the events contained. The
main source of order is the instance. In general, the events attached to an
instance axis are in a strict sequential order. This order can be relaxed by
the coregion construct. Events within a coregion may occur in any order. A
basic assumption of the semantics of MSC is the requirement that in an MSC
the sending of a message always precedes the corresponding reception. This
ordering is referred to as the message ordering. These three means to describe
ordering are already present in MSC’93.

MSC’96 extends MSC’93 with the causal ordering construct. By means of an
arrow with the arrowhead in the middle events can be ordered causally. This
feature allows for the description of ordering between events from different
instances as well as the description of ordering on events from one instance.
In combination with the coregion construct this makes it possible to express
arbitrary partial orders on the events in a coregion.

2.3 Design

Several techniques have been introduced to support the modular design of
specifications in a top-down or bottom-up manner. First, High-level MSCs
(HMSC) [24] are used to indicate the relation between different smaller MSCs.
In an HMSC one can express parallelism, sequencing, alternatives and recur-
sion. HMSCs are the synthesis of the roadmap approach [13] and the operator
approach [10]. As such they replace the informal use of roadmaps for overview
specification.

With MSC' reference expressions one is able to abstract from the actual con-
tents of an MSC. In an MSC, references to other MSCs may be included,
combined by several operators. A substitution mechanism is included which
supports the reuse of modular specifications. Furthermore, the interface be-

gate binding

instance
msc D
p q r process
\ ‘ | ‘ | [| creation
reference [X atyY jg_k, s
I
message R —
J— n causal
——————————— .
o] | ordering
=
local
a
ED N action
inline T T T T J< process
expression | O termination
I I
lost message coregion

Fig. 1. Some MSC features.

tween an MSC reference and its environment may be defined by means of
gates.

A similar construct is the inline expression. Operators are again used to relate
several parts of an MSC. This is mainly intended to be used for small variations
of a scenario.

In MSC reference expressions and inline expressions the following operators
are at the disposal of the user: alternative (‘alt’), sequential (‘seq’) and paral-
lel composition (‘par’), a family of loop operators (‘loop’), and operators for
describing optional behaviour (‘opt’) and exceptions (‘exc’).

Finally, we have substructure references, which stem from MSC’93. These allow
one to aggregate the behaviour of a number of instances into one.

The graphical syntax of some of the abovementioned constructs is illustrated

in the MSC depicted in Fig. 1.

3 Transformation

The first step in giving semantics to a language is the definition of a transfor-
mation from that language to a mathematical domain. In case of the opera-

|

Fig. 2. Example MSC.

tional semantics for MSC we choose to transform MSCs into expressions over
a signature that is introduced step by step in the remainder of this section. A
signature describes a collection of constants and operator names, over which
expressions may be formed. In this article the transformation appears to be
defined on the graphical representation of MSCs. This is actually not the case,
the textual syntax of MSC’96 is the starting point for the transformation. The
one and only reason for this choice is that the graphical representation is by
far not precise enough for a mathematical treatment. However, for the purpose
of explaining the transformation we will, in this article, act as if the graphical
syntax is used.

With the appearance of MSC’96 there are two main description styles for
MSCs in the textual representation: the instance-oriented and the event-
oriented description. With an instance-oriented description an MSC is given
by describing all its instances, whereas with the event-oriented description an
MSC is given by listing all building blocks (events, coregions, MSC references
and inline expressions) contained in such a way that per instance the order of
the building blocks respects the order of these building blocks in the graphical
syntax from top to bottom.

The transformation presented here is defined on the event-oriented textual
syntax of MSC’96. This is sufficient as every MSC can be expressed with this
description style. Of course a formal definition of the transformation from
an arbitrary textual description of an MSC to an event-oriented description
should be provided. The choice for the event-oriented textual syntax is based
on the observation that every MSC can be composed of building blocks by
means of vertical composition only. In principle there are several ways to de-
compose an MSC into building blocks. It should be the case that different
vertical decompositions of the same MSC result in ‘equivalent’ expressions.

To illustrate the decomposition of an MSC into its building blocks consider
the MSC depicted in Fig. 2. The building blocks of this MSC are the message
output and input events. In Fig. 3 the vertical decomposition of this MSC is
indicated by means of dashed lines separating the building blocks. Note that
we first had to rearrange the drawing. In the event-oriented representation of

msc A
i i k
\ | | |
I'm
- T Im before ?m
In
I T In before ?n
al
'p
R T Ip before ?p
P
m

Fig. 3. Example MSC with separated events.

such an MSC the building blocks are already listed in a suitable order. Also
for readability we duplicated the message identifiers in such a way that one
can easily associate a message identifier with an event. For the moment ignore
the annotations at the borders of the MSC in Fig. 3. They will be explained
later.

The transformation is such that events are mapped to constants and that for
each of the composition mechanisms offered by MSC’96 an operator is intro-
duced into the signature to act as the semantical equivalent of the composition
mechanism.

We describe the transformation for each of the classes used in the previous
section to introduce the language MSC’96. It is impossible to give a treatment
of the complete language MSC’96 in this article and, therefore, we focus on the
compositionality of the transformation and the explanation of the basic ideas.
Examples are added to increase the understanding. The MSC from Fig. 2 is
used as a running example to explain the transformation described in this
section.

3.1 FEvenis

Any of the previously discussed events is represented by a constant in the
signature. The set of all these constants is denoted by A and the constants are
called atomic actions. Such an atomic action can have a number of arguments
which give additional information such as the name of the event, the name of
the instance it is attached to, etc.

msc A
[j
\ | |

m -
I

msc AB

msc B i | k
j K \ | \‘ | |
\ A\n\ | m - n
I I I

Fig. 4. Vertical composition.

For a local action with action name @ which is attached to instance ¢ we use
the atomic action action(i, a), the sending of a message m from instance ¢ to
instance j is described by out(i,j, m) and the reception of this message by

inli j, m).

In the previously introduced example (see Fig. 2) all building blocks are events.
On the left side of the MSC in Fig. 3 we indicate how these are represented
in the semantics. Often, if no confusion can arise, we simply write !m and 7m
instead of out(i,j, m) and in(4, j, m). Similarly, action(i, a) is represented by a.
The reason for these shorthands is the readability of the expressions to follow.

3.2 Ordering

As described in Section 2.2 there are four ordering mechanisms in the MSC’96
language. The first of these, the ordering of events by placing them on an
instance, is captured semantically by the weak sequential composition operator
(o). This operator corresponds to the vertical composition of building blocks. If
two building blocks are composed vertically the instances they have in common
are linked in such a way that the events from such a common instance in the
first building block precede the events on that instance in the second building
block. A simple example of vertical composition is given in Fig. 4. The vertical
composition of the MSCs A and B is denoted by A o B and it is ‘equivalent’
with MSC AB. The vertical composition does not mean that all events from
MSC A must be executed before events of MSC B are executed. For example
the sending of message n can occur before the reception of message m.

The second way of ordering events is the coregion construct. In fact this con-
struct is introduced to describe the absence of ordering. This means that the
events in a coregion can be executed in any order. Semantically, this absence

of ordering is denoted by means of the parallel composition operator (||). This
operator corresponds to the horizontal composition of building blocks. If the
building blocks that are composed have instances in common the behaviours
of these are interleaved. A simple example to illustrate the representation of
coregions is the following. Suppose that we have a coregion with events ey,
€2, €3 and ¢4 and suppose that these events are semantically represented by
the atomic actions ay, ay, az and ay. Then, semantically this coregion is rep-
resented by the expression aq || (az || (a3]| a4)).

In order to describe the causal orderings and the message orderings we need
more machinery. For the message orderings we need to express that the mes-
sage output precedes the message input. This can be achieved by using a state
operator as was done in [22]. However, this approach does not generalise easily
for the causal orderings. Therefore, we need a more general means to describe
ordering. This is achieved by attributing the operators for the composition of
building blocks with a set of ordering requirements. Such an ordering require-
ment is represented as e; — ¢3 and should be read as: event e; must precede
event es.

The attributed composition operators are called the generalised weak sequen-
tial composition operator (o) and the generalised parallel composition opera-
tor (|| S). Usually we refer to these as vertical and horizontal composition. The
weak sequential composition operator and the parallel composition operator
are special cases of 0® and || % where S = @. Still, we prefer to denote 0o? by
oand || by ||. Often, we omit the curly brackets from the set S and simply
list the ordering requirements separated by comma’s. These attributes can be
used to describe causal orderings, as well as message orderings. For a message
m the message ordering would then be represented by the pair !'m —7m.

For the running example this means that it is described by the vertical com-
position of the building blocks and that at certain points additional ordering
requirements are attributed to the vertical composition operator. Note that
the orderings imposed by the instances are taken care of by the vertical com-
position operator on its own. After applying our transformation to MSC A
from Fig. 3 the following expression results:

b o™ (In o™= (70 (Ip 0P (7po?m)))).

This expression is obtained by considering the dashed lines in Fig. 3 one by one
from top to bottom. With each dashed line an occurrence of 0” is associated. If
this line is crossed by a message arrow this results in an ordering requirement.
Of course every such arrow should be considered only once.

3.3 Design

The combination of building blocks is in MSC expressed explicitly by means
of operators (inline expressions, MSC reference expressions) or by means of
graphical constructions that can be reduced to operators (HMSCs). From a
semantical point of view the three ways to combine building blocks can be
described in one framework. In this article we do not consider substructure
references. For a thorough treatment of those we refer to [23,15]. Also gates
and substitutions are not treated in this article. Gates are difficult but not
troublesome and substitution should be trivial.

Semantically, all we need for describing the composition mechanisms are the
following operators: delayed choice (F) for ‘alt’, vertical composition (o) for
‘seq’, horizontal composition (|| S) for ‘par’, several repetition operators to
capture the ‘loop’ construct and recursion (for HMSC).

The delayed choice [2] is an operator for describing alternative scenarios in
such a way that a choice between the alternatives is postponed for as long as
possible. For example if both alternatives can execute an event a, then after
the execution of a there are still two alternatives. If, on the other hand, only
one of the alternatives can execute event a, then after the execution of a only
one alternative remains. This is the alternative that executed a. The vertical
and horizontal composition operators have been introduced already in the
previous section. The constructs optional and exception (newly introduced in
MSC’96) are easily captured as special cases of delayed choice and are therefore
not considered in this article. The loop operators are based on bounded and
unbounded versions of the iteration operator defined in [5]. Also these are not
considered in this article. For an initial treatment of recursion we refer to [24].

We once more explain the transformation by means of an example. We start
from the MSC given in Fig. 5. This example shows how to deal with complex
building blocks such as coregions and inline expressions.

The first step is to make an alternative drawing in which a vertical composition
of the MSC into building blocks can easily be indicated. A possible result of
this transformation is shown in Fig. 6.

The next step is to associate an expression with the MSC as follows. First,
with each of the building blocks an expression is associated. For the events
this expression is merely a single atomic action and for the coregion we obtain
n || 7o as explained in the previous section. For the inline expression first an
expression is given for each of the operands (two in this case): lm 1o 1=,
and 'm20"#="22m2. Then these are combined by means of the the operator
indicated in the inline expression. In this case this is the alternative compo-
sition operator ‘alt’ which is semantically represented by means of delayed

10

i J k |
\ | | | |
n
|
|
—pN
|
at ||l ml
a
Am2

Fig. 5. Example MSC D.

msc D
i j k I
\ | | | |
n In before a
i e “r--r - -r - In before 7n
-—4-F-—-F—--F—-- Ipbefore?
n
|
” B oy |
X | L_o__d______] _
- m2
a a
I I N ﬁ

Fig. 6. Vertical decomposition of MSC D.

choice F. The result is the expression

(Im1o™ =™ 1) F (Im20™2 ™2, 2).

The expressions associated with the building blocks are also displayed in Fig. 6
on the left of the MSC. The semantics of the inline expression is in the figure

11

abbreviated by X, which represents the above expression.

Then, the ordering requirements between the building blocks must be deter-
mined and taken into account. These are depicted in the figure on the right
of the MSC. Note that in this step both the message orderings and the causal
orderings are treated similarly. Finally, the expression representing the MSC
is obtained as described before:

In o ain—Tn (Ip o'Pp ((?n]| 7p) o (X 0a))).

4 Operational semantics

4.1 What is an operational semantics?

In this section we introduce some terminology with respect to the mathemat-
ical framework that is used to define an operational semantics. Both termi-
nology and notation are taken from [3]. The goal of an operational semantics
is, given an expression denoting a process in a certain state, to describe all
possible activities that can be performed by the process in that state and to
describe the state of the process after such an activity. In the previous section
we gave a transformation of an MSC into an expression. This expression rep-
resents the initial state of the MSC. The activities that are considered for the
operational semantics of MSC’96 are the execution of an event and the termi-
nation of the MSC. Also the states resulting after such activities are described
by means of expressions. If from a state s an event a can be performed and the
resulting state is represented by the expression s’, then this is usually denoted
by the ternary relation s = s’. If in a given state s the process is capable of
terminating immediately and successfully, this is indicated by means of s|.

The predicate —|C P is called the termination predicate as it indicates that a
process has the possibility to terminate immediately and successfully. The set
P denotes all expressions that can be built from the constants and operators in
the signature. If we assume that all events are represented by atomic actions
from the set A, the ternary relation — — — C P x A x P is called the
transition relation. This predicate and these relations are defined by means of
deduction rules (operational rules). A deduction rule is of the form % where H
is a set of premises and C' is the conclusion. Each individual premise and the
conclusion are of the form s % s’ or s| for arbitrary s, s’ € P and a € A. Such
a deduction rule should be interpreted as follows: If all premises are true, the
conclusion, by definition, also holds. A special kind of deduction rule appears
if the set of premises is empty (H = @). Such a deduction rule is also called a
deduction axiom and usually simply denoted by the conclusion C'. An example

12

of a deduction axiom is deduction axiom (At 1):

a
a — &.

This deduction axiom expresses that a process that is in a state represented
by the atomic action a can perform event a and thereby evolves into a state
represented by the expression ¢. This expression ¢ indicates a state in which no
events can be performed but in which it is possible to terminate successfully
and immediately. This is expressed by the deduction axiom (E 1):

el .

These are the only rules for expressions a € A and ¢. The expression ¢ is used
to denote an MSC without events.

Clearly the process a cannot terminate and the process ¢ cannot perform
events. Note that these negative results are not explicitly defined. The follow-
ing convention applies: If it is impossible to derive s|, then by definition not
s, which is denoted by s J. Similarly, if it is impossible to derive s % s,
then by definition not s % s’. This is usually denoted as s - s’. Such nega-
tive results can also be used in the set of premises, and then these are called
negative premises. If we want to express that a process represented by the ex-
pression s can perform a transition labelled with @ and we are not interested
in the resulting state, this is denoted by s . Formally, it means that there
exists a state s’ such that s % s’. Then s - should be read as there does not
exists a state s’ such that s % s, or for all states s’ we have s - s’. These

abbreviations extend to the relation — ---— — to be introduced in Section 4.4.

4.2 Delayed choice

The operational semantics associated with delayed choice by means of the
deduction rules presented in Table 1 eminently illustrates the purposes of this
operator. The deduction rules for % clearly express that * Ty can perform
an a-transition thereby resolving the choice if exactly one of its operands can,
and in the case that both operands can perform an a-transition the choice is
not yet resolved.

The deduction rules from Table 1 are taken from [2] where the delayed choice
operator was introduced in the setting of bisimulation semantics as a means
for composing MSCs. The deduction rules (DC 1) and (DC 2) express that
the alternative composition of two processes has the option to terminate if
and only if at least one of the alternatives has this option. Thus, the process
action(i, a) F € has an option to terminate as the second alternative has this
option. On the contrary the process action(i, a) F action(b, j) does not have an

13

Table 1
Deduction rules for delayed choice.

"L pe) 1 ne g
v Fyl v Fyl
a / a a a 1] a / a /
DO y) S (e) (e 5)
rFy—a rFy—y rFy—2' Fy

option to terminate as none of its alternatives can terminate. Please note that
if we speak of termination we mean immediate termination, not termination
after the execution of one or more events. The deduction rules (DC 3) and
(DC 4) express that, in the situation that exactly one of the alternatives can
execute an event a, the alternative composition can execute this event as well
and that the execution of this event resolves the choice. Finally, deduction rule
(DC 5) deals with the situation that both alternatives can execute an event
a. It states that, in that case, the alternative composition can execute a and,
moreover, that there remain two alternatives.

With the signature and deduction rules introduced so far it is hard to give
interesting examples of how such an operational semantics can be exploited.
But in order to already illustrate the machinery we give examples anyway.

As explained before, the delayed choice only resolves a choice if it has to.
For example, if we consider the process action(i, a) F action(i,b) making a
choice between the alternatives cannot be avoided. Operationally this is seen as

)5. Since
action(1,a)
) A

follows: By the deduction axiom (At 1) we obtain action(i, a) action(ba
it is impossible to derive action(i, b) wion(h0) e obtain action(i, b
Combining these with the deduction rule (DC 3) we obtain action(i,a) F
action(i, b) #2759 - and the choice is resolved by the execution of action(i, a).
In contrast, for the process represented by action(i, a) F action(i, a), we first

action(1,a)
) —

obtain action(i, a e, by deduction axiom (At 1), and therefore we

cannot obtain action(i, a)) Thus the deduction rule (DC 3) cannot be

used this time. Instead the premises of deduction rule (DC 5) hold in this case.

Thus we can conclude action(i, a) F action(i, a) aetion(ine) Fe. It is impossible

to tell which action(i, a) of the two alternatives was actually executed.

14

Table 2
Deduction rules for generalised parallel composition.

S'=S5\{er—ex€ 5| e =a}and m2(9) = {ez | Ic,e1 — €2 € 5}

xlvsyl (HC 1) L i} $/7y lva € 7T-2(‘9)
2|7yl

ST (HC 2)
e

xix’,yiy’,aQﬂ'Q(S) xlv@/i}ylvagﬂ-?(*g)

5 (HC 3)
Y

(HC 4)

e Py L Ty F o o7y Lo ||y

4.3 Generalised parallel composition

The generalised parallel composition operator is defined by the deduction rules
in Table 2. It is labelled by a set S of pairs of atomic actions. This set specifies
a number of ordering requirements on the execution of atomic actions. Before
we explain the use of this set in more detail, we first explain the horizontal
composition operator without considering this set. This turns out to be a
special case, i.e., S = @. Instead of || we often write ||. This is in line with
notation used in the process algebra ACP [6,4,3,29].

The horizontal composition of two processes is the interleaved execution of the
events of the processes while maintaining the ordering of events as specified
by the processes in isolation. The horizontal composition operator used in the
setting of MSC, is a delayed version of the interleaving operators normally
used. If both the left-hand and right-hand side of the horizontal composition
can perform the same event, it is not visible which of the two is actually
executed. In other words a delayed choice is made between the two occurrences.
In this aspect the horizontal composition operator used for the semantics of
MSC differs from the interleaving operators of ACP-style process algebras.
Also the free merge operator (and weak sequencing operator) used in [24]
does not make a delayed choice between alternatives.

A simple example is the process action(i, a) || action(i, b). This process is capa-
ble of performing an event action(i, a) and thereby it evolves into the process
e || action(i, b). But it is also possible for this process to perform action(i, b) and
then the process action(i, a) || ¢ remains. An example illustrating the delayed
nature of the horizontal composition operator is the process represented by
action(i, a) || action(i, a). It can perform the following sequence of transitions:

15

action(i,a
) =

action(i, a) || action(i, a e || action(i, a) F action(i, a)|| e

action(i,a
—

)5H5Z|25H5l .

Next, the way the set S is used is explained. The set S contains pairs of events
e1 — €ey. Such a pair describes a requirement on the order in which events from
the operands may be executed. In this particular case the pair should be read
as: event e; can only be executed after event e¢; has been executed. This is
precisely what is expressed in the deduction rules. Also observe that the set S
is updated after the execution of every event. This update is explained later.

Consider the process in(i,j, m) || OUt(i’j’m)Hin(i’j’m)out(i, J,m). If we do not con-

sider the requirement out(i, j, m) — in(4,j, m) it would be possible to execute
the events in(i, j, m) and out(i, j, m) in any order. However, the presence of the
requirement blocks the execution of in(4,j, m) as long as out(i,j, m) has not
been executed. Thus, the only possible sequence of transitions is:

in(d,j,m

) H out(4,j,mYin(i,j,m)) OM(L"Z””) m(i,j, m) H e M) c H el .

in(i,j, m out(i, j, m

Next, we explain the deduction rules from Table 2 in more detail. Rule (HC
1) expresses that a || 9y has the possibility to terminate if both 2 and y have.
Rules (HC 2) up to (HC 4) define which transitions the expression x || Sy is
allowed to make. These rules have the premise a € 75(.5). This means that the
event a is allowed to occur. Namely, set S contains pairs of events for which an
ordering is fixed. If, e.g., e; — €5 isin S, this means that e; should occur before
e2. After execution of ¢; the entry e; — ¢y is removed from S. Therefore, only
events are blocked which occur at the right-hand side of an entry e; +— ey in 5.
These right-hand sides are selected by the operation m3(S). This also explains
why the set S in the conclusions of the rules is transformed into S’. Namely,
if an «a is executed, all requirements a — e, are trivially fulfilled and may thus
be removed from the set 5.

Knowing this, we can make a distinction between three cases. First, = can
execute an @ and y cannot ((HC 2)). In this case, z || Sy may perform this
a and evolve into 2/ || s y. The case that = cannot execute an a and y can is
symmetrical ((HC 4)). Finally, if both « and y can execute an a ((HC 3)), we
need a delayed choice to express that execution of this @ does not enforce a
choice between © and y. The executed a may be either due to x or due to y.

16

4.4 Generalised weak sequential composition

In this section we introduce the generalised weak sequential composition op-
erator o°. It can be thought of as the vertical composition of building blocks.
The operator o, i.e., 02, is based on the weak sequential composition operator
of [27] and the interworking sequencing operator of [25]. It has a behaviour
that is similar to the behaviour of the horizontal composition operator, but ad-
ditionally it maintains the ordering of events from instances that the building
blocks have in common.

In MSC every event is associated with an instance on which it is defined. In the
operational semantics this is incorporated by assuming a mapping ¢ : A — 1,
where [represents the set of all instance names, which associates with every
event @ € A the name of the instance it is defined on. This mapping is easily
defined on the atomic actions from the set A as these represent the events with
the instance to which the event is attached as one of the parameters. For exam-
ple {(out(i, j,m)) = ¢, {(in(i,j,m)) = j and ((action(i, a)) = ¢. The mapping ¢
is used extensively in the operational description of vertical composition.

Besides the transition relation already present in the operational semantics we

now also introduce a relation — ---— — C P x A x P. This relation is called
the permission relation. If s = s’ this means that in a situation where s is
vertically composed with ¢ (s ot) and ¢ can perform event a (¢), s allows
the execution of a by ¢ (s ot -3). If on the other hand s -/~ this means that
in the same situation the vertical composition of s and ¢ cannot perform event
a from t.

However, there is a complication with respect to alternatives. Suppose that
we have an MSC that describes two alternatives: the first is the execution
of local action a on instance ¢ and the second alternative is the execution of
local action b on instance j. Suppose furthermore that we wish to compose
this MSC vertically with an MSC which can only execute local action ¢ from
instance :. The expression representing this vertical composition is given by

(action(i, a) F action(j, b)) o action(i, ¢).

Let us try to find out which transitions can be performed in this case. As
before it is possible to perform the local action a or the local action b:

action(1,a)
) =

(action(i, a) F action(j, b)) o action(i, c e o action(i, c),

action(s,b)
) =

(action(i, a) F action(j, b)) o action(i, c e o action(i, c).

After this transition in both cases the choice has been made and clearly the

17

Table 3

Deduction rules for the permission relation.

. ¢ b Sy A
B P R ok L) P VP S St Y Kt g 1Y
. -a ---a / ---a / ---a /
TFy =y e Fy-—a Fy

a 7 a 7 a 7 a 7
$_>$7y_>y/ C $—>$7y—>y/

S e ATENA) S e A
|7y =27y zo Yy -—2x' 0y

VC 1)

next transition that can be performed is the execution of local action ¢. How-
ever, there is also the possibility that local action ¢ appears even before the
choice has been made. But then we know that local action a cannot be exe-
cuted, because it should precede local action ¢. Therefore, the state after the
execution of local action ¢, should not have the possibility to execute local
action a anymore:

action(i,c)

(action(i, a) F action(j, b)) o action(i,c) —— " action(j,b) o e.

Suppose that we want to determine if an action a is allowed to precede a
process z, i.e., we want to determine z ---—. Then we use the deduction rules
from Table 3 which are defined on the structure of the expressions. The empty
process can be preceded by event «; there is no reason not to allow a to be
executed. This is expressed by deduction rule (E 2). Similarly, an event b can
be preceded by event a if and only if these events are defined on different
instances (((a) # ((b)), see deduction rule (At 2). The deduction rules (DC
6), (DC 7) and (DC 8) express that an event a is allowed to precede a process
consisting of two alternatives if and only if at least one of the alternatives
allows a to precede. For both the horizontal and the vertical composition
operator the following holds. Fvent a can precede the composed process if and
only if it can precede both operands ((HC 5) and (VC 1)). Please note that
the operational rules also deal with the resolution of choices.

The operational rules for vertical composition in Table 4 are similar to the
operational rules for horizontal composition. The main difference is that an
event from the right operand can only be executed if the left operand allows
the execution of that event. Also note that in case the left operand allows the
execution of an event a from the right operand it is possible that alternatives
disappear from the left operand.

18

Table 4
Deduction rules for generalised weak sequential composition.

S"=95\{er—ex € 5| e =a} and m2(5) = {ex | Ic,e1 — €2 € 5}

x|,y v aly B Ve a @ ()
— s (VC 2) T g (VC 3)
yl roy—a'o”y
ximc’,x---a—>x”,yi>y’,a€7r2(5)
n .S (VC 4)

!
zoy Lo yFaody

T TSN ey Sy a ¢ m2(9)

)
xosyi)xlos y/

(VC 5)

Deduction rule (VC 2) expresses that the vertical composition of two processes
can terminate if each of them can terminate. The other deduction rules deal
with the possible transitions of the vertical composition of two processes. As
the vertical composition operator deals with the ordering requirements in the
same way as the horizontal composition operator this aspect of the deduction
rules is not explained again.

In the case that a can perform event a (v %) and either y cannot perform

event a (y) or x does not allow the execution of event a by y (= -/-a—>), only
the execution of event a by & can take place. This is expressed by deduction

rule (VC 3).

In the case that x can perform event a (z %), y can perform event a (y)
and x permits the execution of a by y, a delayed choice of the individual
occurrences of event a results. This is expressed by deduction rule (VC 4).

In the case that cannot perform event a (x), y can perform event a (y)
and x permits the execution of a by y (« ---a—>), there is only the possibility
that event a is executed due to y. This is expressed by deduction rule (VC 5).

The only case that is not discussed yet is the case that & cannot execute a and
either x does not permit y to execute an event a or y cannot execute an event
a. In this case it is impossible to execute a at all. This is expressed implicitly
by the fact that there is no deduction rule for which the premises hold in this
situation.

The operational rules for the vertical composition operator are illustrated by

means of some examples. First, consider the MSCs from Fig. 7. The MSCs A
and B have no instances in common. Semantically, they are represented by

19

Fig. 7. Vertical composition with disjoint instances.

msc D msc E

i i i k
\ \m\ — | \ \n\ — |
I I

Fig. 8. Vertical composition with instances in common.

the following expressions, denoted by A and B for easy reference:

A= out(i,j, m) o 2 utigym)—in(ijm) in(i, 4, m),

B = out(k, I, n) o°vtbLm=in(kln) (k1)

The vertical composition of MSC A and MSC B is then denoted by A o B.
From the deduction rules we obtain that this process can perform the following
transitions:

out(1,5,m)

Ao B (o in(ij,m)) o B,

out(k,l,n)

AoB =7 Ao (coin(k, [l n)).

The first possibility follows from the deduction rules as follows. First, A puiligym)
e o in(4,j,m) and second B 4™ The second possibility is obtained from

A out(kl1n) A and B "B 2 in(k, 1, n).

An example in which the MSCs to be composed vertically have instances in
common is given in Fig. 8. The MSCs D and E are represented by

D = out(i,j,m) o outlid;m)ein(ij,m) in(1, j, m),

FE = out(j, k,n) 0 2tk m)—in(jkin) in(j, k,n).

The vertical composition of the MSCs D and E is denoted by D o E. In this
case the only initial transition is Do K puiligm) (eoin(i,j, m))oE. The execution

of in(i,j, m) is blocked by the requirement that out(i, j, m) must be executed
first, the execution of out(j, k, n) is blocked by the requirement that all events

20

on the same instance, i.e., instance j from D, must be executed first (and that
is not the case) and the execution of in(j, k, n) is blocked by the requirement
that out(j, k, n) must be executed first. Note that there is actually only one
sequence of transitions in this example:

505) (e oin(j,k,n))

505) (coe)l .

4.5 Use of operational semantics

By means of the operational semantics a transition graph can be associated
with every expression. Such a transition graph consists of nodes and arrows
between those. A node is labelled by an expression over the signature. Suppose
that we are given a node s and suppose that we can derive s % s’ for certain
a and s’. Then the transition graph also contains a node labelled s’ and an
arrow labelled with a from node s to node s’. This way the transition graph
can be built. The transition graph for an expression s has exactly one initial
node. This is the node labelled with s. This node is indicated by an incoming
unconnected and unlabelled arrow. If for a node s we can derive s| then this
is indicated in the transition graph by labelling that node by an outgoing
unconnected and unlabelled arrow.

For example the transition graph associated with A o B, i.e., the vertical
composition of the MSCs A and B from Fig. 7 is given in Fig. 9. Usually we
omit the labels of the nodes.

The operational semantics presented can be used to define a notion of equiva-
lence on processes. Examples thereof are trace equivalence, bisimulation equiv-
alence and graph isomorphism. The intended equivalence for MSC’96 is bisim-
ulation semantics. For a definition of this equivalence we refer to [26]. In the
case of MSC’96, where we only have deterministic processes, i.e., it is not
possible for a process to perform an a-transition to two states represented by
different expressions, the notions of trace equivalence and bisimulation equiv-
alence coincide [8].

The reason to use bisimulation equivalence anyway is that we anticipate at
an extension of the set of operators with an operator for non-deterministic
choice [4]. In the presence of non-deterministic choice, there is a difference
between trace semantics and bisimulation semantics. The definition of the

21

Fig. 9. Transition graph.

operational semantics for MSC’96 is such that it can easily be extended with
non-deterministic choice.

Another interesting topic related to operational semantics is the development
of a simulator. With a simulator sequences of events can be generated at
random or user-driven. The basic functionality of a simulator resembles the
definition of an operational semantics. For Basic Message Sequence Charts,
i.e., Message Sequence Charts with only instances, messages and local actions,
in [21] the process algebra semantics of MSC’93 is used to define a prototype
simulator.

5 Summary and concluding remarks

We have explained the basics of the formal semantics of MSC’96 which are
currently under development.

The semantics of an MSC is derived in several steps. First, an MSC in graphical
representation is translated into a textual form. This transformation is not
discussed. Next, the textual representation is translated into a process algebra
expression. Finally a meaning is attached to such an expression.

A major design issue was compositionality. An MSC is thought of as being
constructed from a number of building blocks, each of which may also be
compound constructs. The semantics of a construction is defined as the com-
position of the semantics of its building blocks. At the lowest level there are
only events, which have a trivial interpretation as atomic actions. The order-
ing of these events is taken care of by the operators for vertical and horizontal
composition. Constructs for design in the large are interpreted as applications

22

of several operators.

We obtained an operational semantics, which consists of a description of the
(possible) behaviour of an MSC. We did not provide for any process alge-
braic axioms as presented in [22,23]. We expect a complete axiomatisation to
be infeasible. Nevertheless, an operational semantics as proposed here, serves
several purposes. First, it unambiguously defines the meaning of an MSC by
interpreting an MSC in the mathematical model of transition graphs. Next,
it allows for a good comparison to alternative semantics definitions of MSC,
such as approaches based on Petri nets [9], Blichi automata [17], process alge-
bra [19,25], and partial orders [1]. Moreover, it enables a comparison to other
languages for the description of distributed systems, such as SDL [12] and
LOTOS [7], which are also provided with an operational semantics. Finally,
an operational semantics is useful for the development of a simulation tool.

The semantics obtained is mostly an extension of the formal semantics of
MSC’93 in [15]. A major difference is that the state operator, used for en-
forcing the message orderings, is replaced by the generalised weak sequential
composition operator. The reason is that the latter allows for a uniform treat-
ment of the message orderings and causal orderings and corresponds closely
to the vertical composition of MSCs.

Acknowledgement

We would like to thank the members of the MSC development group for their
initiating work. André Engels is acknowledged for the fruitful discussions on
some technical matters.

References

[1] R. Alur, G.J. Holzmann, and D. Peled. An analyzer for Message Sequence
Charts. Software - Concepts and Tools, 17(2):70-77, 1996.

[2] J.C.M. Baeten and S. Mauw. Delayed choice: an operator for joining Message
Sequence Charts. In D. Hogrefe and S. Leue, editors, Formal Description
Techniques VII, IFIP Transactions C, Proceedings 7!" International Conference
on Formal Description Techniques, pages 340-354. Chapman-Hall, 1994.

[3] J.C.M. Baeten and C. Verhoef. Concrete process algebra. In S. Abramsky,
Dov M. Gabbay, and T.S5.E. Maibaum, editors, Semantic Modelling, volume 4
of Handbook of Logic in Computer Science, pages 149-268. Oxford University
Press, 1995.

23

[4] J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1990.

[6] J.A. Bergstra, I. Bethke, and A. Ponse. Process algebra with iteration and
nesting. The Computer Journal, 37(4):243-258, 1994.

[6] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Control, 60(1/3):109-137, 1984.

[7] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language
LOTOS. Computer Networks and ISDN Systems, 14(1):25-59, 1988.

[8] J. Engelfriet. Determinacy — (observation equivalence = trace equivalence).
Theoretical Computer Science, 36(1):21-25, 1985.

[9] J. Grabowski, P. Graubmann, and E. Rudolph. Towards a Petri net based
semantics definition for Message Sequence Charts. In O. Faergemand and
A. Sarma, editors, SDL’93 - Using Objects, Proceedings of the Sixth SDL
Forum, pages 179-190, Darmstadt, 1993. Amsterdam, North-Holland.

[10] @. Haugen. MSC structural concepts. Technical Report TD 9006, ITU-T
Experts Meeting SG 10, Turin, 1994.

[11] ©. Haugen and Y. Lahav. MSC/SDL new features. Tutorials of the Eighth
SDL Forum, 1997.

[12) ITU-T. ITU-T Recommendation Z.100: Specification and Description Language
(SDL). ITU-T, Geneva, 1988.

[13] ITU-TS. ITU-TS Recommendation Z.100 Annex I: SDL Methodology
Guidelines. ITU-TS, Geneva, 1993.

[14] ITU-TS. ITU-TS Recommendation 7.120: Message Sequence Chart (MSC).
ITU-TS, Geneva, September 1993.

[15) ITU-TS. [ITU-TS Recommendation Z.120 Annex B: Algebraic semantics of
Message Sequence Charts. ITU-TS, Geneva, April 1995.

[16] ITU-TS. [ITU-TS Draft Recommendation 7.120: Message Sequence Chart
(MSC96). ITU-TS, Geneva, 1996.

[17] P.B. Ladkin and S. Leue. Interpreting message flow graphs. Formal Aspects of
Computing, 7(5):473-509, 1995.

[18] S. Loidl, E. Rudolph, and U. Rinkel. MSC’96 and beyond - a critical look. In
A. Cavalli and A. Sarma, editors, SDL’97: Time for Testing - SDL, MSC and
Trends, Proceedings of the Fighth SDL Forum, pages 213-227, Evry, France,
1997. Elsevier Science Publishers.

[19] J. de Man. Towards a formal semantics of Message Sequence Charts. In
O. Faergemand and A. Sarma, editors, SDL’93 : Using Objects, Proceedings
of the Sixth SDL Forum, pages 157-165, Darmstadt, 1993. Amsterdam, North-
Holland.

24

[20] S. Mauw. The formalization of Message Sequence Charts. Computer Networks
and ISDN Systems, 28(12):1643-1657, 1996. Special issue on SDL and MSC,
guest editor (). Haugen.

[21] S. Mauw and E.A. van der Meulen. Generating tools for Message Sequence
Charts. In R. Brazek and A. Sarma, editors, SDL’95 with MSC in CASF,
Proceedings of the Seventh SDL Forum, pages 51-62, Oslo, 1995. Amsterdam,
North-Holland.

[22] S. Mauw and M.A. Reniers. An algebraic semantics of Basic Message Sequence
Charts. The Computer Journal, 37(4):269-277, 1994.

[23] S. Mauw and M.A. Reniers. An algebraic semantics of Message Sequence
Charts. Technical Report CSN 94/23, Eindhoven University of Technology,
Department of Computing Science, Eindhoven, 1994.

[24] S. Mauw and M.A. Reniers. High-Level Message Sequence Charts. In A. Cavalli
and A. Sarma, editors, SDL’97: Time for Testing - SDL, MSC and Trends,
Proceedings of the Eighth SDI Forum, pages 291-306, Evry, France, 1997.
Elsevier Science Publishers.

[25] S. Mauw, M. van Wijk, and T. Winter. A formal semantics of synchronous
Interworkings. In O. Feergemand and A. Sarma, editors, SDL’93 - Using
Objects, Proceedings of the Sixth SDL Forum, pages 167-178, Darmstadt, 1993.
Amsterdam, North-Holland.

[26] D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Theoretical Computer Science, volume 104 of Lecture Notes in Computer
Science, pages 167-183. Springer-Verlag, 1981. Proceedings of the Fifth GI-
Conference, Karlsruhe, West Germany.

[27] A. Rensink and H. Wehrheim. Weak sequential composition in process algebras.
In B. Jonsson and J. Parrow, editors, CONCUR’9): Concurrency Theory,
volume 836 of Lecture Notes in Computer Science, pages 226-241, Uppsala,
1994. Springer-Verlag.

[28] E. Rudolph, J. Grabowski, and P. Graubmann. Tutorial on Message
Sequence Charts (MSC’96). Tutorials of the First joint International
Conference on Formal Description Techniques for Distributed Systems and
Communication Protocols, and Protocol Specification, Testing, and Verification

(FORTE/PSTV’96), 1996.

[29] J.L.M. Vrancken. The algebra of communicating processes with empty step.
Theoretical Computer Science, 177(2):287-328, 1997.

25

