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ABSTRACT

This paper presents an overview on image fusion techniques using multiresolution decompositions. The aim is
two-fold: (%) to reframe the multiresolution-based fusion methodology into a common formalism and, within
this framework, (2¢) to develop a new region-based approach which combines aspects of both object and
pixel-level fusion. To this end, we first present a general framework which encompasses most of the existing
multiresolution-based fusion schemes and provides freedom to create new ones. Then, we extend this framework
to allow a region-based fusion approach. The basic idea is to make a multiresolution segmentation based on
all different input images and to use this segmentation to guide the fusion process. Performance assessment is
also addressed and future directions and open problems are discussed as well.
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1 Introduction

In this section, we introduce the concept of image fusion. We discuss the motivation for fusion and
its benefits, and the various issues that need to be addressed when designing a fusion scheme. We
also give some application examples and review some of the most important fusion techniques used
in practice.

1.1 Problem statement: Needs for image fusion

Extraordinary advances in sensor technology, microelectronics and communications have brought a
need for processing techniques that can effectively combine information from different sources into a
single composite for interpretation. In image-based application fields, image fusion! has emerged as a
promising research area.

Image fusion provides the means to integrate multiple images into a composite image that is more
suitable for the purposes of human visual perception and computer-processing tasks such as segmenta-
tion, feature extraction and target recognition. For example, the fusion of visual and infrared images
in an airborne sensor can aid pilots navigate in poor weather conditions, and the fusion of computer
tomography and magnetic resonance images may facilitate medical diagnosis.

1.2 Concepts of image fusion

According to the International Society of Information Fusion (ISIF),

“information fusion encompasses the theory, techniques and tools conceived and employed
for exploiting the synergy in the information acquired from multiple sources such that the
resulting decision or action is in some sense better than would be possible if any of these
sources were used individually without such synergy exploitation.”

ITerminologies such as fusion, integration or merging, are often used interchangeably in the literature.
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The first part of the definition points out the importance of the architecture and of the mathematical
tools in information fusion systems; the second part emphasizes the importance of fusion goals and
performance in relation with the application considered. Note that this definition covers different
methodologies in information fusion. Of these, image fusion is just a particular one.

In this paper we are concerned with the fusion of visual information. Indeed, as many sources
produce images, image processing has become one of the most important domains for fusion. Image
fusion can be broadly defined as the process of combining multiple input images into a smaller col-
lection of images, usually a single one, which contains the ‘relevant’ information from the inputs, in
order to enable a good understanding of the scene, not only in terms of position and geometry, but
more importantly, in terms of semantic interpretation. In this context, the word ‘relevant’ should
be considered in the sense of ‘relevant with respect the task the fused images will be subject to’, in
most cases high level tasks such as interpretation or classification. In the sequel, we will refer to this
‘relevant’ information as salient information. The images to be combined will be referred to as input
or source images, and the resultant combined image (or images) as fused image.

The actual fusion process can take place at different levels of information representation. A common
categorization is to distinguish between pixel, feature and symbol level [55,72], although indeed these
levels can be combined themselves [19,29,55]. Image fusion at pixel level means fusion at the lowest
processing level referring to the merging of measured physical parameters [23,106]. It generates a
fused image in which each pixel is determined from a set of pixels in the various sources. Fusion at
feature level requires first the extraction (e.g., by segmentation procedures) of the features contained
in the various input sources [8,25]. Those features can be identified by characteristics such as size,
shape, contrast and texture [59]. The fusion is thus based on those extracted features and enables
the detection of useful features with higher confidence. Fusion at symbol level allows the information
to be effectively combined at the highest level of abstraction [24,41]. The input images are usually
processed individually for information extraction and classification. This results in a number of
symbolic representations which are then fused according to decision rules which reinforce common
interpretation and resolve differences. The choice of the appropriate level depends on many different
factors such as data sources, application and available tools. At the same time, the selection of
the fusion level determines the necessary pre-processing involved. For instance, fusing data at pixel
level requires co-registered images at subpixel accuracy because the existing fusion methods are very
sensitive to misregistration.

Currently, it seems that most image fusion applications employ pixel-based methods. The advantage
of pixel fusion is that the images used contain the original information. Furthermore, the algorithms
are rather easy to implement and time efficient. As we observed before, an important pre-processing
step in pixel-fusion methods is image registration, which ensures that the information from each
source is referring to the same physical structures in the real world. Throughout this paper, it will be
assumed that all source images have been registered. Comprehensive reviews on image registration

can be found in [9,50,94,103].

1.3 Objectives, requirements and challenges of pixel-based image fusion

It is the aim of image fusion to integrate complementary and redundant information from multiple
images to create a composite that contains a ‘better’ description of the scene than any of the individual
source images.processing task applied following fusion. By integrating information, image fusion can
reduce dimensionality. This results in a more efficient storage and faster interpretation of the output.
By using redundant information, image fusion may improve accuracy as well as reliability, and by
using complementary information, image fusion may improve interpretation capabilities with respect
to subsequent tasks. This leads to more accurate data, increased utility and robust performance.

Considering the objectives of image fusion and its potential advantages, some generic requirements
can be imposed [79]:

e The fusion algorithm should not discard any salient information contained in the input images.

e The fusion algorithm should not introduce any artifacts or inconsistencies which can distract or
mislead a human observer or any subsequent image processing steps.

e The fusion algorithm must be reliable, robust and have, as much as possible, the capability to
tolerate imperfections such as noise or misregistrations.
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Clearly, a choice of which information is salient has to be made. Here again, the knowledge about the
input data and the application plays a crucial role. However, a fusion approach which is independent
of the modalities of the inputs and produces a fused image which appears natural is highly desirable.

The requirements listed above are often very difficult to achieve and even more difficult to assess.
The problem of evaluating image fusion methods lies in the variety of different application requirements
and the lack of a clearly defined ground-truth. The topic of performance evaluation will be discussed
in Section 5 in more detail.

To illustrate some of the challenges we have to face when developing a fusion algorithm, consider
the registered source images Fig. 1(a) and Fig. 1(b) depicting the same scene. While in the visual
image (Fig. 1(a)) it is hard to distinguish the person in camouflage from the background, this person is
clearly observable in the infrared (IR) image (Fig. 1(b)). In contrast, the easily discernible background
in the visual image, such as the fence, is nearly imperceptible in the IR image. How to combine both
images in a unique composite which represents the overall scene better than any of the two individual
images? We sum up explicitly some of the difficulties that we encounter:

e Complementary information: some image features? appear in one source but not in the other,
e.g., the man in Fig. 1(b) or the fence in Fig. 1(a).

e Common but contrast reversal information: there are various objects and regions that occur in
both images but with opposite contrast, e.g., part of the roof of the house or the bushes at the
left lower corner. Thus, the direct approach of adding and averaging the source images is not
satisfactory.

e Disparity between sensors: input images come from different types of sensors which have different
dynamic range and different resolution. Moreover, they may not be equally reliable. If possible,
such disparities have to be taken into account when comparing the content of the information
in the images.

This is, by no means, an exhaustive list of problems that could arise. Moreover, we should also be
aware of the inherent difficulties present in any image acquisition and analysis task: presence of noise,
sensor calibration or hardware limitations, to name a few.

1.4 Application fields

Image fusion is widely recognized as a valuable tool for improving overall system performance in image-
based application areas such as defense surveillance, remote sensing, medical imaging and computer
vision. We describe some application fields in more detail:

Defense systems

Historically, this seems to be the first application area. It covers subareas such as detection, identi-
fication and tracking of targets [3,7,92], mine detection [63,64], tactical situation assessment [80,99],
and person authentication [65].

Fig. 2 illustrates how information from visible and IR wavelength images can improve situational
awareness in a typical pilotage scene. Note that the IR image (Fig. 2(b)) contains much of the road
network details while the visual image (Fig. 2(a)) provides horizon information and additional building
and vegetation details. Note also that the light spots appear only in the visual image and are here
perceived as small dark blobs. Of different nature is the glare effect on the IR image. This is due
to common scanner interference and is usually perceived as a ripple effect. The resulting composite
image in Fig. 2(c) contains the most salient information from each sensor.

Geoscience

This field concerns the earth study with satellite and aerial images (remote sensing) [72]. The
main problem is the interpretation and classification of images [21,49,102]. The fused image allows
the detection of roads, airports, mountainous areas, etc. In remote sensing applications, there is
often a difference in spatial or wavelength resolution between the images produced by the different
sensors. A typical example is the merging of a high-resolution SPOT Panchromatic image with Landsat

2Image features are patterns in the image that arise due to objects and materials in the scene, environmental factors
and the sensing process.
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Figure 1: Ezample of source images to be fused: (a) visual image; (b) infrared image. These images
are courtesy of Alex Toet, from TNO Human Factors Institute, The Netherlands.
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Figure 2: Fusion of visual and IR images: (a) visual image; (b) IR image; (c) fused image. The
fused image has been obtained by a multiresolution-based fusion strategy (Section 3). Here, a discrete
wavelet transform (2 levels, Daubechies (2,2)) and a mazimum selection rule were employed.

Figure 3: Fusion of multispectral images: (a) image from band 1; (b) image from band 2; (c) fused
image. The fused image has been obtained by a multiresolution-based fusion strategy (Section 3). In
this case, a shift-invariant discrete wavelet transform (2 levels, Daubechies (2,2)) and a mazimum
selection rule were employed.

Thematic Mapper multispectral images. The Landsat spectral bands allow for the classification of
objects and areas in the scene, while the high spatial resolution resolution SPOT band locates more
precisely the observed objects. One major challenge is to preserve the higher spatial resolution of the
SPOT band (or from the available set of sources in the general case) without destroying the spectral
information content provided by the Landsat bands (or by the lower resolution sources in the general
case) [20,75,76].

Fig. 3 exemplifies the fusion of two bands of a multispectral scanner. Band 1 penetrates water
and is useful for mapping along coastal areas, for soil-vegetation differentiation and for distinguishing
forest types. In Fig. 3(a), buildings, roads and different agricultural zones are clearly discernible.
Band 2 is more convenient for highlighting green vegetation and for detecting water-land interfaces.
In Fig. 3(b), the bay is sharply delineated. The combined image (Fig. 3(c)) contributes to a better
understanding of the objects observed and allows a more accurate identification.

Medical imaging

The fusion of multimodal images can be very useful for clinical applications such as diagnosis,
modeling of the human body or treatment planning [39,61,62,103,110]. The next example illustrates
the usage of fusion in radiotherapy and skull surgery. Here, the information provided by magnetic
resonance imaging (MRI) and X-ray computed tomography (CT) is complementary. Normal and
pathological soft tissues are better visualized by MRI (Fig. 4(a)), while the structure of tissue bone is
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(a) ()

Figure 4: Fusion of MRI and CT images: (a) MRI image; (b) CT image; (c) fused image. The
fused image has been obtained by a multiresolution-based fusion strategy (Section 3). In this case, a
morphological pyramid (2 levels, opening-closing and closing-opening filters) and a mazimum selection
rule were employed.

Figure 5: Fusion of out-of-focus images: (a) image with focus on the right; (b) image with focus on
the left; (c) fused image. The fused image has been obtained by a multiresolution-based fusion strategy
(Section 8). Here, a Laplacian pyramid (3 levels) and a mazimum selection rule were employed.

better visualized by CT (Fig. 4(b)). The fused image, depicted in Fig. 4(c), not only provides salient
information from both images simultaneously, but also the relative position of the soft tissue with
respect to the bone structure. This can be useful for physicians in medical diagnosis.

Robotics and industrial engineering

Here, fusion is commonly used to identify the environment in which the robot or intelligent system
evolves [1,15]. It is also employed for navigation in order to avoid collisions and keep track of the
trajectory [42,67]. Image fusion is also employed in industry, for example, for the monitoring of
factories or production lines [54], or for quality and defect inspection of products [77].

Fig. 5 shows how fusion can be used to extend the effective depth of field® of a vision system. Due
to the limited depth of field of optical lenses, it is often not possible to get an image with all objects in
focus. One way to overcome this problem is to take several recordings with different focus points and
combine them into a single composite which contains the focused regions of all input images. This
could be useful, for example, in digital camera design or in industrial inspection applications where
the need to visualize objects at very short distances complicates the preservation of the depth of field.

3The depth of field is the range of distance from a camera that is acceptably sharp in the image obtained by that
camera.
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1.5 Fusion techniques

There are various techniques for image fusion, even at the pixel level [72]. The selection of the
appropriate one depends strongly on the type of application. Here, we outline some of the most
commonly used techniques in pixel-level fusion. We have grouped them into four major categories;
however, this is a rather loose classification since these categories do overlap in various ways.

Weighted combination

A simple approach for fusion consists of synthesizing the fused image by averaging corresponding
pixels of the image sources. An ‘optimal’ weighting can be determined, for example, by a principal
component analysis of the correlation or covariance matrix of the sources [78]. The weightings for
each input are obtained from the eigenvector corresponding to the largest eigenvalue. Variations of
this method and other arithmetic signal combinations are numerous [5,48].

Color space fusion

Image fusion by color transformations takes advantage of the possibility of representing data in
different color channels. The simplest technique is to map the data from a sensor to a particular color
channel. Many different band combinations and color spaces can be applied [101,107]. The challenge
is to generate an intuitive meaningful color fused image. Moreover, pseudocolor mappings can help
identify sensor-specific details in a fused image display. That is, the use of color can be used to identify
which sensor gave rise to the features appearing in the fused image [101]. The benefits of false-color
imagery relative to monochromatic and unfused imagery in tasks such as detection and localization
of targets have been studied in [100].

Optimization approach

In this approach, the methods are based on an a priori model of the real scene and the fusion task
is expressed as an optimization problem. In Bayesian optimization, the goal is to find the fused image
which maximizes the a posteriori probability. Some examples of probabilistic fusion schemes can be
found in [41,84]. In the Markov random field approach, the input images are modeled as Markov
random fields to define a cost function which describes the fusion goal [4]. A global optimization
strategy such as simulated annealing is employed to minimize this cost function.

Biologically-based approaches

One of the most popular instances of fusion in a biological system is the visual system of the
rattlesnakes [69]. These vipers possess organs which are sensitive to thermal radiation. The IR signals
provided by these organs are combined by bimodal neurons with the visual information obtained from
the eyes. Inspired by this real-life example, several researchers have used neural networks to model
multisensor image fusion [31,107].

Another biologically-inspired fusion method is the approach based on multiresolution (MR) de-
compositions [2,14,16,23,51,97,114]. It is motivated by the fact that the human visual system is
primarily sensitive to local contrast changes, i.e. edges, and MR decompositions provide a convenient
spatial-scale localization of these local changes. The basic strategy of a generic MR fusion scheme is
to use specific fusion rules to construct a combined MR representation from the MR representations of
the different input sources. The fused image is then obtained by performing the inverse decomposition
process.

Henceforth, we confine our discussion to multiresolution image fusion approaches. In particular, we
focus on pixel and feature-level MR fusion schemes where the output is a single fused image which is
constructed primarily for display on a computer monitor.

The rest of the report is organized as follows. In Section 2 we review the basics of MR decomposition
theory. In Section 3 we present a general framework for pixel-based MR fusion. Within this framework,
we describe some of the existing schemes in literature and show fused image examples of existing as
well as new fusion schemes. In Section 4 we extend the previous framework and propose a region-based
MR fusion strategy. We illustrate different ways of using the region information and present some
experimental results using the region approach. In Section 5 we briefly discuss the topic of performance
assessment. Finally, in Section 6, we present conclusions and suggest directions for further work.

It is to be noted that the fusion framework in Section 3 has been partially inspired by the MR
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fusion methodology proposed by Zhang and Blum in [114]. The authors proposed also a region-based
fusion algorithm [113]. Our approach, however, is different from theirs in several aspects.

2 Multiresolution decomposition schemes: an overview

A multiresolution decomposition scheme decomposes the signal being analyzed into several compo-
nents, each of which captures information present at a given scale. The notion of resolution (or scale)
relates to the size of the details that can be represented. These concepts are very useful in image
processing for various reasons: (i) real-world objects usually consist of structures at different scales;
(7i) there is strong evidence that the human visual system processes information in a multiresolu-
tion fashion; (i4) multiresolution methods lend themselves to effective designs of reduced-complexity
algorithms.

In the following, we discuss in more detail the general concept of a decomposition system with
perfect reconstruction and we explain how concatenation of such systems can lead to multiresolu-
tion decompositions. While there exists several types of multiresolution decompositions, we mainly
concentrate on two well-known special classes: pyramids and wavelets. These are studied within the
axiomatic framework proposed by Heijmans and Goutsias in [35, 38].

2.1 Decomposition systems with perfect reconstruction

When analyzing a signal, it is often useful to decompose it into different parts. Those parts can then
be analyzed separately which may facilitate subsequent processing tasks. Of particular interest is the
case where the signal is decomposed in such a way that no information is removed and the original
signal can exactly be recovered (perfect reconstruction) from its constituting parts.

The idea of a decomposition system with perfect reconstruction is to obtain a more convenient
representation (analysis) of the signal such that no information is lost, i.e., the signal can be recovered
through some reconstruction process (synthesis). Fig. 6 depicts a general scheme for the decomposition
of an input signal z(°) € V; into two components (z"),y(1)) € Vi x W;. Here, () and y(*) can be
interpreted as the approzimation and detail signals of (), respectively. In other words, z(!) is a sort
of ‘simplification’ of (%), inheriting many of its properties, whereas y!) is a kind of ‘refinement’ that
contains the information that has been discarded in the simplification process.

(1) (1)
" T Y A
Synthesis
Analysis qu o wT | Analysis
Vo
2(0) Q) 2(0)

Figure 6: A signal decomposition scheme with perfect reconstruction.

The operators 9T: Vo — Vi, w': Vo — Wy are called analysis operators and the operator W+:
Vi X W1 — Vj is called the synthesis operator. The assumption that no information is lost by the
decomposition is expressed by the requirement that ¥+ is the left inverse of T = (T, w), i.e.,

ot (¢¢(m(0))7wr($<o>)> — 2@ for 2@ e V.

This condition will be referred to as the perfect reconstruction condition.

There are several ways of decomposing signals. Which one is appropriate depends on the application
and the signal to be analyzed. We can adapt the decomposition to the signal being decomposed by
selecting the appropriate analysis and synthesis operators.
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In various signal and image applications, the decomposition z(?) — (a:(l), y(l)) is only a first step
toward an analysis of (°). Subsequent steps comprise a decomposition of z(!) into z(® and y®, of
@ into £ and y®, and so forth. By concatenating several systems of the form depicted in Fig. 6
we obtain a multilevel decomposition system. If the higher levels are obtained by means of some spatial
filtering (e.g., linear or morphological) of the lower level signals, possibly followed by a sampling step,
then we call the system a multiresolution or multiscale decomposition scheme.

To formalize this procedure, assume that there exists a sequence of signal spaces Vi, k > 0, and
detail spaces Wy, k > 1. At each level k& > 0 we have two analysis operators, 1/1,1: Vi — Vi1 and
w,l: Vi — Wi41, and a synthesis operator \I/t: Vg1 X Wi41 — Vi, satisfying the perfect reconstruction
condition:

Wt(¢ﬂx%wﬂm0::m, for z € V. (2.1)

A given input signal z(°) € V; can be decomposed by the recursive scheme
20 {y(l),x(l),} N {y(l),y(2),x(2)} SN {y(l)’ L ’y(K—l),y(K)’x(K)}, (2.2)
where
(k+1) = T (%))
x x
{ f k=0,1,... K—1. (2.3)
yktl) = wk(x(k))
Here, z(**1) is an approximation of z(¥), but can also be regarded as a ‘k-+1-th order’ coarse approxi-
mation of the original signal z(*). In contrast, the detail signal y**1) contains information about z*)
that is not present in the simplified component z(++1),

Note that, because of the perfect reconstruction condition, the original signal z(°) can be perfectly
reconstructed from z(5) and y™,y®, ..., y5) by means of the backward recursion:

e®) = ol (gD B = K1, K—-2,...,0. (2.4)

Fig. 7 illustrates the analysis and synthesis schemes for the particular case where K =3.

—T z(z) 2 j_ l'(z)
! 127 —
1) (1)
X X
2 e v
W b (1) e _ 4

Figure 7: A 3-level decomposition system: analysis and synthesis.

2.2 The pyramid transform

The pyramid transform is characterized by the assumption that
\Ijt(wvy) = %t(w) + Y, for z € Vk+1 » Y € Wk+1 ) (25)

where W1 C Vi and ¢t: Vi+1 — Vi. The perfect reconstruction condition in (2.1) can be reformu-
lated as

¢t¢£(m) + wl(m) =z, forzeV.
Thus, w,l(m) =z — wtwl(m) is the error of the synthesis operator w,i’ when reconstructing = from the
approximation wg(m‘) In this case, the recursive analysis scheme in (2.2) is given by

{ 2B+ — ¢Z(ﬂ?(k))

. k=0,1,... , K1, (2.6)
YD) = (k) b (p(4D))
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and the synthesis step in (2.4) is
®) = gl (D) kD = K1 K2, ,0. (2.7)
We refer to the decomposition process
2O s {yD KD g (K) (K

by means of (2.6) as the pyramid transform of 29 and to the process of synthesizing z(°) by means
of (2.7) as the inverse pyramid transform. A block diagram illustrating the pyramid transform and
its inverse is shown in Fig. 8.

Wl ot

(k) Py B z®

Analysis Synthesis

Figure 8: Pyramid transform (analysis) and its inverse (synthesis).

We call the sequence
(@ 20 2}

the approrimation pyramid. For the particular case in which the analysis operators ¢Z are linear, we
also refer to it as the low-pass pyramid. Likewise, we call the sequence

{yM,y@ .y B}

the detail pyramid, and refer to it as the high-pass pyramid for the linear case.

The axiomatic pyramid approach described above encompasses several existing pyramid techniques.
As an explicit example, we derive the well-known Laplacian pyramid introduced by Burt and Adelson
in [12].

2.1 Example (Laplacian or Burt-Adelson pyramid). Let us consider that all spaces Vj, are iden-

tical, namely ¢2(Z), the space of real-valued sequences (... ,z(—1),z(0),z(1),...) with > 2 lz(n)| <

n=-—oo
0o. Consider also that at every level k the same analysis and synthesis operators o1, ¢* are used. In
particular, let us choose 9" as a linear filter followed by a dyadic downsampling, i.e.,

o0

¥ @)n) = (hxa)2n) = 3 h(Da(2n 1)

l=—00

and 9t as a dyadic upsampling followed by a linear filter, i.e.,
YHa)(n) = (hx2)(n) = Y h(l)a(n—20).
l=—o0

Here, Z denotes the upsampling of z, i.e., Z(2n) = z(n) and z(2n + 1) = 0 for every n € Z, and
h, h € (?(Z) are convolution kernels corresponding respectively to a smoothing and an interpolation
filter. In [12] some design criteria are proposed for these filters. A particular solution is

h(0) = % h(n) =0 for other n,

h(0) =1 h(n) =0 for other n.

DO = | =
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Or equivalently,

Burt and Adelson called the sequence {;c(k)}, k=0,...,K, of approximation signals the Gaussian
pyramid and the sequence {y("’)}7 k=1,..., K, of detail signals the Laplacian pyramid. Fig. 9 shows
an example of the Gaussian (left) and Laplacian (right) pyramids involving sampling. The bottom
or zero level of the Gaussian pyramid is equal to the original image z(*) which is depicted at the
bottom left of Fig. 9. This is blurred (low-pass filtered) and subsampled to obtain the next level
W, which is then filtered and subsampled in the same way to obtain z(?). Further repetitions of
this filtering/subsampling procedure generate the remaining levels of the pyramid. As a low-pass
filter, an approximation to a Gaussian filter is often used (hence the name Gaussian pyramid). The
Laplacian pyramid can then be derived by interpolating each level £ > 0 of the Gaussian pyramid and
subtracting it from its predecessor. The resulting pyramid is depicted on the right part of Fig. 9. Now,
each level contains only those image features lost from one level to the next, and therefore contains
only details within a restricted range of sizes.

Obviously, the choice of different analysis and synthesis operators results in different kinds of pyra-
mids. In particular, nonlinear pyramids have attracted a great deal of attention. A well-known
example is the morphological pyramid [35,96], where the analysis and synthesis operators are based
on morphological operators such as erosions, dilations, openings and closings [83,87]. Another in-
stance of nonlinear pyramids is the ratio-of-low-pass pyramid [95]. Here, the ratio (rather than the
standard difference) of the successive low-pass filtered signals is computed. In fact, the operator ‘+’
used in (2.5) can be replaced by any invertible operation (see [35] for details).

Observe that a signal representation obtained by means of a pyramid transform (i.e., detail signals
along with the coarsest approximation) is overcomplete in the sense that it produces more samples
than the original signal. This is a direct consequence of the fact that the detail signal y*) ‘lives’ at
the same resolution? level as z(*~1).

2.3 The wavelet transform

This section describes another interesting family of decomposition systems, the wavelet decomposition.
Again we follow the exposition by Heijmans and Goutsias [38] and adopt their notation.

A general wavelet decomposition has the structure depicted in Fig. 6, but in addition to the perfect
reconstruction condition (2.1), i.e.,

Ut (¢l(z),w'(z)) =2, forzelj, (2.8)

it satisfies the additional constraints
P (TH(z,y)) =2z, forzeVi,yeW; (2.9)
w’ (‘Ili(a:,y)) =y, forzeVy,yeW, (2.10)

which guarantee that the decomposition is non-redundant. Note that (2.8)-(2.10) imply that the anal-

ysis operator ¥T = (7, w") and the synthesis operator U+ are inverses of each other. Concatenation

of a series of analysis steps yields a multiresolution decomposition called the wavelet transform.
Often, e.g. in the linear case, the synthesis operator Wt is of the special form

\Ili(x,y):z/;i(:v)—i—wi(y), zeVi,yeW;. (2.11)

In this case, we speak of an uncoupled wavelet decomposition and conditions (2.8)-(2.10) become

Pl (e) +whwl(z) = =, zeVg (2.12)
Yl (zbi(:v) + wi(y)) x, ze€Vi,yeW (2.13)
w' (PH(z) + wt(y)) y, we€Vi,yeW;. (2.14)

4Here, the term ‘resolution’ refers to the size of the signal.
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Figure 9: Ezample of a Gaussian (left) and a Laplacian (right) pyramid. For the Gaussian pyramid
(from bottom to top) images 2O 2 2@ and 23 are depicted. For the Laplacian (from bottom to
top) images yD, y@ and y® are shown. The coarse approzimation image ©®) in combination with
the deta?l)images yD, y@ 4B provide an alternative (but redundant) representation of the original
image (0,
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We refer to 1)+ as the signal synthesis operator, and to w' as the detail synthesis operator. Fig. 10
diagrams the corresponding synthesis part of an uncoupled wavelet decomposition for the multilevel
case where K =3.

z® —>{4}
& e E
y®) @ 2 @
y® — i 2"

Figure 10: Synthesis scheme of a 3-level uncoupled wavelet decomposition system.

It was explained by Heijmans and Goutsias [38] how existing linear wavelets or filter banks can
fit into this abstract wavelet scheme. As a way of illustration, we consider a one-dimensional dyadic
biorthogonal wavelet transform. This can be implemented as a two-channel perfect reconstruction
filter bank as depicted in Fig. 11. Here, the input signal z(¥) is decomposed into an approximation

(k) — H—z®
Analysis Synthesis

Figure 11: Biorthogonal wavelet transform with low-pass and high-pass analysis filters hy, gi., respec-
tively, and low-pass and high-pass synthesis filters hy, g, respectively.

signal z**t1) and a detail signal y**1) by filtering with hj and g, respectively, and downsampling.

Thus, a one-dimensional discrete wavelet transform (DWT) is given by
2™ (n) = (b x 2®)(2n),  y**D(n) = (g0 x 2®)(20).

Synthesis is achieved by upsampling signals z(*t1) and y(*+1) filtering with hy, and gk, respectively,
and adding the respective outputs. Thus, the inverse DWT is given by

2®(n) = (i D) (n) + (i + 7))

For perfect reconstruction, the analysis and synthesis filters need to satisfy specific constraints known
as biorthogonality conditions [56,104]:

> hhEo-0= 3 ala@o-1) = dn) .15
[=—o0 I=—0o0
> g2a-0 = 3 Glhza-1) - o, .10

l [e%S) l

— 00

One can easily establish the relation between these conditions and (2.12)-(2.14). Note, however, that
the expressions in (2.12)-(2.14) (and more general (2.8)-(2.10)) are formulated in operator terms, and
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do not require any sort of linearity assumption or inner product. This allows a broad class of nonlinear
wavelet decomposition schemes [28, 30,32, 36-38].

Under some additional conditions on the filters, the linear wavelet transform described above is
orthonormal. Orthonormality implies that the energy of the signal is preserved under transformation.
If these conditions are met, the synthesis filters are a reflected version of the analysis filters, and the
high-pass filters are modulated versions of the low-pass filters, namely,

hip(n) = hx(—n), gr(n) =gx(-n), gr(n)=(-1)"hxg(M —n)

where M is an integer delay. Such filters are often known as quadrature mirror filters (QMF), conjugate
quadrature filters or power-complementary filters.

One drawback of the (discrete) wavelet transform and, to a lesser extent, also for the pyramid
transform, is that it generally yields a shift-variant signal representation. This means that a simple
shift of the input signal may lead to complete different transform coeflicients. The lack of translation
invariance can be avoided if the outputs of the filter banks are not decimated. The resulting undec-
imated wavelet transform [56] yields a redundant MR representation where the approximation and
detail signals have all the same size as the original signal.

Most wavelet and pyramid transforms have been designed in the one-dimensional case. By successive
application of such one-dimensional transforms on the rows and the columns (or vice versa) of an image,
one obtains a so-called separable two-dimensional transform. This construction is illustrated in Fig. 12
for the wavelet transform. At each level k, the input #(*) is decomposed into a coarse approximation
z*+1) and three detail signals y*+t1) = {y*+(.|1), y*+1(-]2),y*+D(.3)}, corresponding to the
horizontal, vertical and diagonal directions. Fig. 13 shows a 2-level wavelet decomposition computed

Columns

Rows @H 2 (k+1)
e ®
D>yt ()
@—)y(k'f‘l)(.‘Q)

@_> y+D(.|3)

{9}~ 9)

Figure 12: Separable two-dimensional wavelet transform.

in this way.

Non-separable transforms can also be constructed [38,46,86]. Although they provide decompositions
with more general properties, they have been used less often in image applications due to the lack of
general tools for their design.

2.4 Other multiresolution decompositions

In the previous sections we have focused on pyramids and wavelets because they are quite standard.
However, there are many alternatives; for example, the wavelet packet representation introduced by
Coifman and Wickerhauser [108], the local basis decompositions [56] or the multiwavelet construc-
tion [34,89]. We briefly discuss some of these decompositions.

2.4.1 Wavelet packets

With a straightforward generalization of the two-channel filter bank presented in Section 2.3, we can
obtain an even sparser representation of a signal. Instead of dividing only the approximation spaces
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Figure 13: Ezample of a 2-level discrete wavelet transform. In the upper-left quarter, the second level
is displayed. Starting from the top left and going clockwise: approximation, vertical, diagonal and
horizontal detail images. The upper-right, bottom-right and bottom-left quarters show respectively the
vertical, diagonal and horizontal first-level details.

V/V2 V/V2 V;
V/ 1\W2 V/ 1\W271 V/ 1
0\ 0\ _ Wap 0\ _ Wa

Wi Wy Wy

W23 W22

(a) (b) (c)

Figure 14: Ezamples of tree-structure filter banks of depth 2: (a) only low-pass is split (standard
wavelet); (b) full tree; (c) only high-pass is split.

Vi to derive the approximation and detail spaces Vi1 and Wy, we divide the detail spaces as well.
The recursive splitting of spaces can be represented in a binary tree as illustrated in Fig. 14.

At each node of the tree, we have the option to split or not. This allows the construction of an
arbitrary dyadic tree structure. Each structure is associated with a function basis known as a wavelet
packet basis. One possibility is the logarithmic tree, with low-pass iterations only (see Fig. 14(a)). In
fact, the standard wavelet basis is an example of a wavelet packet basis of V4, obtained by choosing
such a logarithmic binary tree. Here, the frequency axis is decomposed in dyadic intervals whose
sizes have an exponential growth as shown in the time-frequency plane® of Fig. 15. When the scale
decreases, the frequency support of the wavelet is shifted toward high frequencies. The time resolution
increases but the frequency resolution decreases. Thus, standard wavelet bases are suited for signals
where high-frequency components have shorter duration than low-frequency components.

One can also construct wavelet packets corresponding with bases that have a better frequency
resolution. They generalize the fixed dyadic construction of Fig. 15 by decomposing the frequency
axis in intervals of varying sizes (see the tiling example of Fig. 16).

Clearly, an arbitrary tree-structure filter bank offers a very flexible frequency signal decomposition.

5In the time-frequency plane, a decomposition basis function is symbolically represented by a rectangle which indi-
cates the time and frequency domains where the energy of this basis is concentrated.
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frequency

time

Figure 15: Time-frequency plane of a standard wavelet basis. The frequency axis is decomposed in
increasing dyadic intervals.

frequency

time

Figure 16: A wavelet packet divides the frequency axis in separate intervals of varying sizes. A tiling
is obtained by translating in time the wavelet packet basis covering each frequency interval.

Given a signal (or class of signals) and a fixed set of filters, we can obtain the ‘best’ (according to
some criterion) tree decomposition. The best wavelet packet basis algorithm described in [108] is often
used to select a ‘best’ basis that minimizes a concave cost function.

From Fig. 16, we can see that wavelet packet bases are particularly well adapted to decompose
signals that have different behavior in different frequency intervals. A best wavelet basis can thus be
interpreted as a ‘best’ frequency segmentation. Note, however, that time-frequency tiles at a particular
frequency have the same resolution. Thus, if the signal has properties that vary in time, it would be
more appropriate to decompose the signal in a block basis that segments the time axis instead of the
frequency axis. The local bases described next are examples of such a basis.

2.4.2 Local basis

A local basis divides the time axis into intervals of varying sizes as illustrated in Fig. 17. Of particular
interest are the cosine bases [56], which are obtained by designing smooth windows that cover each
time interval and multiplying them by cosine functions of different frequencies.

Similarly to wavelet packets, a local cosine tree can be constructed by recursively dividing spaces
built with local cosine bases. As in the wavelet packet case, this offers the possibility of choosing a
‘best’ basis for a given signal. A best local cosine basis adapts the time segmentation to the variations
of the signal time-frequency structures. In comparison with wavelet packets, we gain time adaptation
but we lose frequency flexibility (since the frequency axis is being split with constant bandwidth).

Note that wavelet packets and local cosines are dual families of bases. Wavelet packets segment the
frequency axis and are uniformly translated in time whereas local cosines divide the time axis and
are uniformly translated in frequency. By combining the two dual concepts one can obtain arbitrary
tilings of the time-frequency plane.



2. Multiresolution decomposition schemes: an overview 17

frequency

time

Figure 17: A local basis divides the time axis in separate intervals of varying sizes. A tiling is obtained
by translating in frequency the local basis covering each time interval.

2.4.3 Multiwavelets

Multiwavelet decompositions offer more design flexibility by introducing (at each level) several anal-
ysis and synthesis operators. Multiwavelets have some advantages over scalar wavelets in relation to
properties which are known to be important in signal processing such as short support, orthogonality,
symmetry, and vanishing moments. A scalar wavelet, except for the Haar system, cannot posses all
these properties at the same time [26]. In contrast, a multiwavelet system can simultaneously pro-
vide perfect reconstruction, orthogonality, linear-phase symmetry and a high order of approximation
(vanishing moments) [88]. The main drawback, however, is that they are implemented with more
complicated filter banks than the standard wavelet transforms.

The standard wavelet transform is a scalar transform: it uses one analysis operator wk for the
computation of the approximation signal z(*t1), and one analysis operator wk for the computation
of the detail signal y**t1). A multiwavelet transform generalizes the scalar wavelet transform: the
approximation signal z(¥t1) is generated by M analysis operators 1/)£ = (%1,1, . ,w;M) and the
detail signal y**1) by M analysis operators w£ = (wgvl, - ,w,tvM).

In the same way that the scalar wavelet transform may be obtained by iterating a two-channel
filter bank on its low-pass output (see Section 2.3), a multiwavelet transform can be obtained by a
matrix-valued filter bank with ‘coefficients’ that are M x M matrices. Each input sample z(n) is a
vector with M components The resulting two-channel M x M matrix filter bank operates on M input
data streams, filtering them into 2M output streams.

Let us illustrate this for M = 2. We start with a signal #(°) which is pre-processed (e.g, by repeating
each sample) to produce the sequences l‘go) and xéo)
the low-pass branch of the multiwavelet filter bank:

( n © (2n —1)
() - Z o ().

where each ‘coefficient’ h(l) is a 2 x 2 matrix. Analogously, the details are computed with the high-pass
branch of the multiwavelet filter bank:

i)\ | o 2\ (2n 1)
<y§”<n> ‘l;oog(l) 2 2n—1))

This one-level decomposition is shown in Fig. 18. Full multiwavelet decomposition of the signal z(?) is

. Their coarse approximation is computed with

obtained by iterative filtering of the approximation coefficients =*)(n) = (wgk)(n), wgk)(n))T (where
T denotes transpose). The original signal can be reconstructed from the multiwavelet coefficients by
means of the synthesis equation:

oo oo

z® = 3" hWz* D (n-20)+ > g1)y*(n—21).
I=—o00 l=—00

Here, 2+ — (x§k+1) $(k+1))T, y(k+1) _ (y(k+1) y(k+1))T

, Ty 1 Y and ﬁ, g are the synthesis multifilters.
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xgo) :Cgl)
n 202

xgo) Q)gl)

zt” yi"
7 =02

zy” ys"

Figure 18: Multiwavelet analysis filter bank with M = 2. An input (9 is vectorized into x©(® =
(:cgo),xéo))T. Each row of the multifilter h (and the same applies to g) is a combination of two

ordinary filters, one operating on :Ugo) and other operating on mgo)_

As in the scalar case, the filters need to satisfy the biorthogonality conditions:

> h(Mh@n-1)= Y ghg2n-1) = §n)l (2.17)
l=—oc0 l=—00
> h(gn-1)= > Glh(@@n-1) = O. (2.18)
l=—o0 l=—0o0

Here, |, O denote the 2 x 2 identity and null matrices respectively.

Note that we have M times as many filters as in the classical wavelet case. One input signal x
produces 2M outputs from the analysis bank. This means that the signal z has to be ‘vectorized’ so
that M input streams (z1, ... ,za) go together. The most obvious way to get M inputs from a given
signal is to repeat the signal so that M identical streams go into the multifilter bank. This produces
an overcomplete representation. A different way is to pre-process the given scalar signal so that if
the data enters at rate r, pre-processing yields M streams at rate r/M for input to the multifilter,
which then produces 2M output streams (M for the approximation and M for the detail), each at
rate r/2M. In either case, the pre-processing should be reversible so that after the synthesis step,
post-processing can recover the original signal x.

2.4.4 Steerable pyramid

The steerable pyramid is an overcomplete, linear, multiresolution and multiorientation image decom-
position where the analysis and synthesis operators are (in the simplest case) derivative operators
with different supports and orientations. The associated filters are such that the resulting transform
is self-inverting (i.e., the synthesis filters are just a reflected version of the analysis filters) and, more-
over, it is translation and rotation invariant. In the following, we briefly describe the construction
and implementation of the steerable pyramid; a more detailed account can be found in [86].

The steerable pyramid transform is implemented as a filter bank consisting of polar-separable filters.
For simplicity, we consider the filters in the frequency domain. Thus, a filter A(n,m) in the spatial
domain is expressed as H(u,v) in the frequency domain, where u and v are the frequency variables

o0 o0
corresponding to the two spatial directions. More precisely, H(u,v) = >, Y. h(n,m)e tune=ivm,
n=o00 m=00
For future convenience, we define w = (u,v) and H*(u) = H(—u).

The frequency tiling of a one-level steerable pyramid decomposition is shown in Fig. 19 for the case
of two orientation bands (i.e., P = 2). The corresponding diagram for this decomposition is depicted
in Fig. 20. The filters B, p = 1,2, are oriented band-pass filters, H; is a narrowband low-pass filter,
G is a non-oriented high-pass filter and Hj is a low-pass filter.

As illustrated in Fig. 19, the band-pass filters together act as a circular symmetric band-pass filter.
The low-pass filter H; passes the low-frequency components that fall inside the central core of that
circular filter, while the high-pass filter G passes the high frequency information that falls outside.
In this way, the entire signal, regardless of its frequency, is passed to one of the output channels.

The system diagram for the steerable pyramid (both analysis and synthesis) is depicted in Fig. 21.
Initially, the image is separated by the pre-processing filters Hy and Gg into a low and a high-pass
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Figure 19: Frequency tiling after 1-level decomposition of a steerable pyramid transform with P = 2.
The frequency plane has been decomposed into a low-pass band (after filtering by Hy), two oriented
band-pass components (after filtering by Bp, p = 1,2), and a high-pass band (after filtering by Gy ).
The depicted squared region corresponds to the frequency range [—m,w| x [—m,].

[ B | yW (1)
20 E3 y M (-[2)
@ ey

Figure 20: First level of a steerable transform with P = 2.

subbands. We denote the high-pass signal by z(!). The low-pass branch is then divided into a set
of P oriented detail images and one approximation image. The detail images y"(-|p), p=1,..., P,
are obtained using the band-pass filters By,... , Bp; while the approximation signal (1) is obtained
using a low-pass filter H; followed by a dyadic downsampling. The process of splitting into P details
and one approximation is iterated on the approximation image (thus, filters Hy and G are not used
in the successive levels).

In order to ensure that the transform is invertible as well as jointly invariant in orientation and posi-
tion, the filters must satisfy specific radial (scale) and angular (orientation) frequency constraints [85].
The radial frequency constraints are:

1. Band limiting to prevent aliasing in the subsampling operation:
Hy(u)=0 for ||ul| > /2,
where ||u|| = Vu? + v2.

2. Flat system response to avoid amplitude distortion:

| Ho(w)* (| H(u)|* + i By(u)]?) +|Go(u)|* = 1. (2.19)
3. Recursion. The low-pass branch of the system must be unaffected by the iteration process:

| Hy(w)/2)|” (| Hi(w) +Z By(w)|?) = |Hi(u/2)[”. (2.20)

A sufficient condition for (2.20) to hold is that the decomposition/reconstruction filter bank has
unitary gain for low frequencies:

Hi(w)* + 3 [By(w)|” =
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In this case, (2.19) implies that the pre and post-processing steps must also have a unitary gain, that
is,

2 2

|H0(u)| + ‘Go(u)| =1.

Typically, Ho(u) = H;(u/2), so that the initial low-pass shape is the same as that used within the
iteration. Thus, during the iteration H;(w/2) plays the role of the initialization filter Hy(u).

The angular constraint on the band-pass filters B, requires these filters to form a steerable ba-
sis® [86]. In the simple case where the basis functions of the decomposition are directional derivative
operators, the angular constraint can be expressed as

By(u) = B(u)(—icos(6 —6,)) ",

where i = /-1, 6 = arctan(v/u), 6, = 71'% forp=1,...,P, and

P 1/2
B(u) = <Z |Bp(u)|2> .

The pyramid can be designed to produce any number of orientation bands P, resulting in an
overcomplete transform by a factor of 4P/3. The overcompleteness limits its efficiency but increases
its applicability for many image processing tasks such as orientation and phase analysis, texture
synthesis and noise removal.

y M (-]1)
2 — v (2) O 2O

y (| P) Bp ér)
] 1@

Analysis Synthesis

Figure 21: Steerable transform (analysis) and its inverse (synthesis).

2.4.5 Gradient pyramid

A gradient pyramid [11] is obtained by applying a gradient operator to each level of the Gaussian
pyramid {z(®)}, k = 0,... , K. Each image z(* is filtered by a set of four oriented gradient filters 9p>
p=1,...,4. The resulting filtered subbands correspond to the detail images

y(k+1)('|p) =9p *x(k) ) b= 17 7P7

representing the horizontal, vertical and the two diagonals directions. To reconstruct the original
image from this gradient decomposition, a Laplacian pyramid is constructed as intermediate result.
First, a (derivative) synthesis filter g, is applied to y**Y(-|p), p = 1,...,4. A Laplacian pyramid
{y(Lk+1)}, can then be obtained by summing up, at each level, the filtered resulting images, i.e.,

4
ot =3 g, xy B (p)

p=1
6A set of filters forms a steerable basis if they are rotated versions of each other and a version of the filters at any
orientation may be synthesized as a linear combination of the basis filters. The simplest example of a steerable basis is
a set of P directional derivatives of order P — 1.
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Fig. 22 illustrates one level of the gradient pyramid transform. Here, h is the low-pass filter used to
construct the Gaussian pyramid {m(k)}, k=0,...,K, andﬁ its corresponding synthesis filter. In [11],
the filter A it is assumed to be of the form h = hx h with h being a 3 x 3 binomial filter. Then, it can
be shown that perfect reconstruction is possible by taking

gp = (1+h) xd, and gp = —<d

where d,, p =1,... ,4 are the derivative filters:

0 = (11> b= (1-1)

~1 0 0 -1
ds = <0 1> ds = (1 0>'

Analysis Synthesis

Figure 22: Gradient pyramid transform (analysis) and its inverse (synthesis).

2.5 Lifting

In this subsection, we describe a general and flexible technique to modify a given decomposition
system into another one, possibly with some improved characteristics. This technique, called lifting,
was developed by Sweldens in the context of wavelets [27,90,91]. The formulation we give here is based
on the standard lifting approach proposed by Sweldens (see [38] for a more abstract formulation).

A general lifting scheme starts with an invertible transform of the input signal z(®) € V; into two
parts, the approzimation signal ) € V;, and the detail signal y) € W,. In general, this partition
is the outcome of a particular wavelet transform. The most simple case is the one where the domain
of the signal is subdivided into two disjoint subsets. In the one-dimensional case, this subdivision
often comprises the even and odd samples, e.g., z(V)(n) = z(¥)(2n), yV)(n) = 2(°)(2n 4 1). This latter
decomposition, known in signal processing as polyphase decomposition, is sometimes called the lazy
wavelet transform.

Two types of lifting schemes can be distinguished: prediction lifting and update lifting. We treat
both cases separately.

Prediction lifting
The detail signal y(!) is predicted using information contained in the approximation signal z(*) and

is replaced by the prediction error
YD =y _ P(x(l)) ,

where P : Vi — W represents the prediction operator. The prediction error y’) becomes the new
detail signal. Clearly, the original signal 2(®) can be reconstructed from z(*) and ') by

2@ = Pz y V) = g (x<1)7y/(1> n p(w(l))> ,
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Update lifting
The approximation signal z(!) is updated using information contained in the detail signal y(!):

2® = 20 4 (M),

Here U : Wi — Vj represents the update operator. Generally, the update operator is chosen in such
a way that the resulting signal z'(!) satisfies a certain constraint. For example, one might require
that the mapping z(®) — 2/(1) preserves a given signal attribute such as the average or some local
maximum. As before, the original signal can be easily reconstructed from z') and y(:

2O = Th(@M, M) = T @D — g™,y ).

Thus, an existing decomposition system with perfect reconstruction can be modified by an arbi-
trary prediction or update lifting step. Perfect reconstruction is guaranteed by the very structure
of this scheme and does not require any particular assumptions on the lifting operators P and U.
Moreover, the operators ‘+’ and ‘—’ used in the above expressions, can be replaced by any pair of
invertible operators. This flexibility has challenged researchers to develop various nonlinear wavelet
transforms [18, 33, 71], including morphological ones [38].

Fig. 23 illustrates a prediction-update lifting scheme. At analysis, the prediction operator P acting
on z is used to modify y, resulting in a new detail signal y’'. Subsequently, the update operator U
acting on ¢ is used to modify z, yielding a new approximation signal x’. At synthesis, the signals =
and y are reconstructed by reversing the lifting steps.

Figure 23: Classical lifting scheme.

Obviously, we can concatenate any number and type of lifting steps in order to modify a given
decomposition system. In practice, these lifting steps are chosen in such a way that the resulting
decomposition is an ‘improvement’ of the original one. Here, the word ‘improvement’ can have various
meanings. For example, the lifted wavelet may have more vanishing moments than the original
one, or it may be better able to decorrelate the signals within a given class, etc. In the context of
linear wavelets, it has been shown that any system using finite impulse response (FIR) filters can be
decomposed into elementary lifting steps [27].

2.6 Multiresolution decompositions and their application to image pro-
cessing

MR decompositions are particularly useful in image and video processing and in computer vision. We
conclude this section by giving some examples of image applications that can benefit from the use of
MR transforms.

Compression

MR decompositions allow for efficient representation capturing the essence of the image with only
a small set of significant coefficients. This is based on the fact that most images have correlation both
in space and frequency. Thus, the new representations are sparse in the sense that most detail images
contain few significant pixels (little significant detail) and therefore they can be represented with a
small number of bits. Moreover, because the human visual system tends to be more sensitive to errors
in low-frequency image components than in high-frequency ones, detail images at higher levels can
be omitted and still one can obtain a good approximation of the original image. In this way, we can
achieve high compression ratios without noticeable degradation.
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Coarse-fine search techniques

Suppose we need to locate a large complex pattern within an image. Rather than attempting to
convolve the whole pattern with the image, one may perform an approximate search by convolving
a reduced-resolution pattern with a reduced-resolution version of the image. This serves to roughly
locate possible occurrences of the target pattern with a minimum of computational effort. Next,
higher-resolution copies of the pattern and image are used to refine the position estimates. Compu-
tation is kept to a minimum by restricting the search to neighborhoods of the points identified at the
coarser resolution.

Image enhancement

Image enhancement is another area where MR decompositions can be used to reduce random noise
in a degraded image while sharpening details of the image itself. This application is based on the
fact that images and noise possess rather distinct properties in the transform domain. The detail
coefficients in each level of the MR representation are passed through some kind of thresholding
function where small values (which are likely to include most of the noise) are set to zero, while larger
values (which include prominent image features) are retained. The final enhanced image is obtained
by reconstructing the levels of the processed MR representation.

Image fusion

Since the essential goal of fusion is to preserve image features from the sources, a plausible approach
is to transform the images into representations that decompose the images into relevant features such
as edges, and perform fusion in this domain. A MR representation facilitates this type of analysis
because it decomposes an image into different scales while preserving locality in space. Fusion using
MR decompositions will be described comprehensively in Section 3.

2.7 Notation

Before continuing with the next section, we fix some notation and expressions for MR image decom-
positions. Given an input image z(®) and analysis and synthesis operators which satisfy (2.1) for
k=0,..., K —1, we can represent z(*) as a sequence of detail images at all levels along with the
coarsest approximation image. Henceforth, the MR decomposition of an image z(?) is denoted by y
and it is assumed to be of the form:

y={y",y®,. ..y 20} (2.21)

Here (%) represents the approximation image at the highest level (lowest resolution) of the MR
structure, while images y(k), k=1,..., K, represent the detail images at level k. The detail at level
k will, in general, comprise various frequency or orientation bands, depending on the type of MR
transform that has been used. We assume henceforth that y*) is composed of P detail images, i.e.,
y® = {y®(1),... .y (|P)}.

Let I\ and Ilgk)(p) denote the domain of z(*) and y(*)(-|p) respectively. We use the vector coordi-
nate . = (n,m) to index the location of the coefficient. Then, (*)(n), where n € I;Ek), represents the
approximation coefficient at location n within level k. Similarly, y*)(n|p), where n € Iék)(p), repre-
sents the detail coefficient at location nm within level k£ and band p. Note that I,(gk) is not necessarily
equal to I@Sk)(p). In the pyramid case, for example, y(¥) represents a detail image of the same size as
(=1 while in the standard wavelet transform 3*)(:|p) is a detail image of the same dimensions as
z(¥). Note also that in most cases I?Sk)(p) does not depend on p.

For convenience, we will sometimes denote the approximation image z(*) by y(k)(-|0). In this way,
we can use the general expression of y(*)(-|p) to refer both to the detail images (for p =1,... , P) and
the approximation image (for p = 0). If no confusion is possible, we will use the shorthand notation
() to denote (n|p); e.g., we will write y¥)(-) rather than y®) (n|p).

3 The general pixel-based MR fusion scheme

The basic idea underlying the MR-based image fusion approach is to perform a MR transform on each
source image and, following some specific fusion rules, construct a composite MR representation from
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these inputs. The fused image is obtained by applying the inverse transform on this composite MR
representation. This process is illustrated in Fig. 24.

TA—~ ¥ —>YAa

Combination ‘
. F -1 s oFp
Algorithm ‘ Y v
rp—~ ¥ +—>YB
Source Multiresolution Composite Multiresolution Fused
Images Representations Representation Image

Figure 24: Multiresolution tmage fusion scheme. Left: multiresolution transform U of the sources;
middle: combination in the transform domain; right: inverse multiresolution transform ¥~1 of the
composite representation.

At the MR decomposition (analysis) stage, the data is transformed into a convenient representation
which, besides scale or resolution, may also involve orientation or wavelength or some other physical
parameters. At the combination stage, the actual fusion of the (transformed) data takes place. This
involves identifying the salient information and transferring it into the fused image. This process, i.e.,
the way to combine the data, is governed by a number of rules called the fusion rules. The result is
a composite MR representation from which the output fused image is obtained by application of the
inverse MR transform (synthesis).

In the literature one finds several variants of the MR fusion scheme. In what follows, we present
a general framework which encompasses most of them. Section 3.1 describes the various modules
the framework consists of, while Section 3.2 discusses some of the possible alternatives for their con-
struction. Within the framework, some of the existing algorithms proposed in literature are reviewed
in Section 3.3. Examples of such schemes as well as other implementation alternatives are given
in Section 3.4.

3.1 The general framework

In Fig. 25 we show a more detailed version of the fusion scheme of Fig. 24, in which the combination
algorithm has been specified. In our framework, the combination algorithm consists of four modules:
the activity and match measures extract information from the MR decompositions yg, which is then
used by the decision and combination map to compute the MR decomposition yp of the fused image.
Below, we give a short description of each of the building blocks. Note, however, that some of them,
such as the ‘match block’ are optional. Furthermore, the routines comprised by the various blocks
can be chosen in a variety of ways (see Section 3.2).

MR analysis (V)

This block computes a MR decomposition of the input sources. We assume that the same type of
transform ¥ is applied to all sources xg, S € S, where S is the index set of source images. Thus,
for every input xg we obtain its MR representation ys = ¥(zg), with ys having the form defined
n (2.21). That is,

K
= {505 0y,
where ys ( |0) corresponds to the approximation image at the coarsest level K and y = {y(k)( )},

p=1,..., P, to the detail images at level k.

Activity level measure

The degree to which each coefficient in ys is salient (i.e, of interest for a task at hand) will be
expressed by the so-called activity level. The activity function block associates to every band image
yék)(-|p) an activity level agc)(-|p), which reflects the local activity of the image. Broadly speaking,

the activity level agc)(n|p) of a sample n will be high if the average energy (or some other measure)
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Figure 25: Generic pizel-based MR fusion scheme with two input sources x4 and xpg, and one output
fused image xp.

of ygk)(|p) is high in the vicinity of m. Thus, one may consider that the activity level results from
some sort of energy calculation over a local neighborhood of coefficients.

Match measure

This measure is supposed to quantify the degree of ‘similarity’ between the sources. More precisely,
the match value mﬂ%(-) reflects the resemblance between the inputs yff)(-) and ygc)(-).

By analyzing the match measure, one can determine where the sources differ and to which extent,
and use this information to combine them in an appropriate way. For example, if the match measure
at a given position is low (i.e, the sources are distinctly different at that position), the coefficient from
the source decomposition with the highest activity level is taken as the composite coefficient. On the
other hand, if the match value is high (i.e., the sources are similar at that position), the coefficients
from the different sources are averaged to yield the composite coefficient.

Deciston map

This block is the core of the combination algorithm. Its output governs the actual combination of
the coefficients of the MR decompositions of the various sources.

For each level k, orientation band p and sample position n, the decision process assigns a value
§ = d® (n|p) which is then used for the computation of the composite y%k)(n|p) (see combination map
below). Most often, the decision is computed independently at each level, band and position. However,
one may also take into account spatial, inter- and intra-scale dependencies between the samples, thus
exploiting the idea that coefficients in the composite should not be computed independently. For
instance, one may require neighboring coefficients in the same level and/or orientation to take the
same decision.

Combination map
This module describes the actual combination of the transform coefficients of the sources. For
each level k, orientation band p and sample position n, the combination map yields the composite

coefficient y%c) (n|p). For simplicity, consider two sources and assume that every composite coefficient is
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‘assembled’ from the source coefficients at the corresponding level, band and position. More precisely,
k k k
y () = c® (40,5 (),d® () | (3.1)

where C®) : R3 — R is the combination map at level k.

MR synthesis (¥1)
Finally, the fused image is obtained by applying the inverse transformation on the composite MR
decomposition yp:

vr =¥ (yF), (3.2)

where ¥~ is the inverse MR transform. Strictly speaking, ¥ ! needs only to be the left inverse of ¥
restricted to the source images domain, i.e., ¥ 'W(zg) = xg for all S € S.

3.2 Choosing the building blocks

From the previous description, one can see that the parameters and functions comprised by the
different blocks can be chosen in several ways. In the following, we discuss some of these alternatives.
For convenience in the exposition, we have grouped the MR analysis and synthesis blocks, and have
left for the end the discussion of the decision map.

3.2.1 MR analysis and synthesis

As we have seen in Section 2, the MR representation ys comprises information at different scales. High
levels contain coarse scale information while low levels contain finer details. Such a representation is
suitable for image fusion, not only because it enables one to consider and fuse image features separately
at different scales, but also because it produces large coefficients near edges, thus revealing salient
information [60].

A large part of research on MR, image fusion has focused on choosing an appropriate representation
which facilitates the selection and combination of salient features. Basically, the issues to be addressed
are the specific type of MR decomposition (pyramid, wavelet, linear, morphological, ...) and the
number of decomposition levels.

In Section 2 we have presented a comprehensive discussion of various MR decompositions schemes,
in particular pyramids and wavelets, as well as methods for their construction. Some aspects to take
into account when choosing between different types of decompositions are:

e Invariance: do we need shift or rotation invariance?

e Redundancy: is it advantageous to have an overcomplete representation?

e Discrimination of structures: are we interested in a specific scale or orientation?
e Sensitivity to noise: how robust is the transform?

Suppose we choose linear wavelets. Even in this case we still have a lot of freedom in the choice of
the specific filters which implement the wavelet transform. Some aspects we may consider are:

e Frequency characteristic of the basis function: low-pass or band-pass, maxima and minima
location, etc.

e Regularity: smoothness is important in order to avoid discontinuities in the filtered image.

e Symmetry: typically, linear phase is desirable (to avoid phase distortion in the reconstruction),
which implies the use of biorthogonal filters in order to obtain regular symmetrical FIR filters.

e Edge behavior: for example, antisymmetric filters give higher signal-to-noise ratios near edges.
e Filter length: this concerns a trade-off between processing speed and good spatial localization.

These considerations are in fact common to all applications that make use of MR representations.
Focusing on image fusion and studying the existing literature, we draw the following conclusions:
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e For image fusion purposes with no data compression objectives, the role of non-redundant rep-
resentations is uncertain. In general, sampling causes a deterioration in the quality of the fused
image by introducing heavier blocking effects than would have obtained by using decompositions
without sampling.

e Shift and rotation-invariance properties are often required. For many applications, the fusion
result should not depend on the location or orientation of the objects in the input sources.
Shift and rotation dependency are especially undesirable considering misregistration problems
or when used for image sequence fusion.

e In linear approaches, the specific filter used has little influence on the fusion result; shorter filters
lead to slightly sharper fusion results.

Another parameter which will influence performance is the number of decomposition levels. To
perform a consistent fusion of objects at arbitrary scales, the decomposition over a large number of
scales may appear necessary. However, using more decomposition levels does not necessarily produce
better results. Increasing the analysis depth may produce low-resolution bands where neighboring
features overlap. This gives rise to discontinuities in the composite representation and thus, introduces
distortions, such as blocking effects or ‘ringing’ artifacts, into the fused image. The required analysis
depth is primarily related to the spatial extent of the relevant objects in the source images. In general,
it is not possible to compute the optimal analysis depth, but as a rule of thumb, the larger the objects
of interest are, the higher the number of decompositions levels should be.

3.2.2 Activity level measure

The meaning of ‘saliency’ (and thus the computation of the ‘activity level’) depends on the nature
of the source images as well as on the particular fusion application. For example, when combining
images having different foci, a desirable activity level measure would provide a quantitative value that
increases when features are better in focus. In this case, a suitable measure is one that put emphasis
on contrast differences. Since contrast information is partially captured in the decomposition by the
magnitude of high-frequency components (details), a good choice is the absolute value of the detail
coefficients or some other function that operates on their amplitude, e.g.,

aPnp)= Y w®(Anp) |y (n+Anp)|",  yeRy, (3.3)
AneW() (p)

where W(*)(p) is a finite window at level k and orientation p, and w(*)(-|p) are the window’s weights.
Generally, based on the fact that the human visual system is primarily sensitive to local contrast
changes (i.e., edges), most fusion algorithms compute the activity level as some sort of energy cal-
culation. In the simplest case, the activity level is just the absolute value of the coefficient, that
is,

k k
ag() = |v57 ). (3.4)
Alternatively, the contrast of the component with its neighbors, e.g.,
(k)
k ys (n/p)
ag’ (nlp) = JS lm :
> w®(Anlp)|ys” (n + An|p)|

Anew(k) (p)

or some other linear or nonlinear criteria can provide that measure. For instance, to reduce the
influence of impulsive noise, one may consider

k . 2
afg )(n\p) = median , ey () <|yk(.g )(n + An|p)|) .

In practice, the window W(k)(p) over which the function operates is small, typically including only
the sample itself (sample-based operation), or a 3 by 3, or 5 by 5 window centered on the sample
(area-based operation). However, other size and shape templates have also been used. Increasing the
size of the neighborhood from the simple sample-based case, adds robustness to the fusion system
as it provides a smooth activity level function. However, larger templates cause problems at lower
resolution levels when their size exceeds the size of the most salient features.
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3.2.3 Match measure

The match or similarity between the transform coefficients of the source images is usually expressed in
terms of a local correlation measure. Alternatively, the relative amplitude of the coefficients or some
other criteria can be used. In the following expression, the match value between yff) () and ygc)(-) is
defined as a normalized correlation averaged over a neighborhood of the samples:

2 3 w(k)(An|p)yff)(n + An|p)ygc)(n + Anlp)
Anew(k) (p)

2 2
> w®(Anlp)(jy (n+ Anlp)| + vy (n + Anlp)|)
AnewW(k) (p)

k
m$y(nlp) =

; (3.5)

where W) (p) is the window at level k and orientation p, and w(*)(-|p) its corresponding weights.

3.2.4 Combination map
A simple choice for C*) is a linear mapping, e.g.,

C(k)(yla Y2,0) = wa(0)yr +wg(d)y2, (3.6)

where the weights w4 (), wp(d) depend on the decision parameter §.

Nonlinear mappings are another option. Some well-known nonlinear mapping techniques are mul-
tidimensional scaling [47], Sammon’s mapping [81] and self-organizing maps [43]. These mappings
techniques have been regularly used for visualization of high-dimensional data sets [58].

In this paper, we restrict ourselves to linear combination maps as in (3.6), yet with possibly more
than two input sources. Thus, the composite coefficients ygf) (+) are obtained by an additive or weighted
combination:

y () =3 ws(d® () (). (3.7)

Ses

For the particular case where only one of the coefficients yék)() has a weight distinct from zero,

that is, only one of the sources contributes to the composite, we talk about selective combination or
combination by selection.

3.2.5 Decision map

The construction of the decision map is a key point because its output d¥) governs the combination
map C®) and therefore, it is the decision map that actually determines the combination of the various
MR decompositions yg or, in another words, the construction of the composite yp.

In our case, where we assume a weighted combination such as in (3.7), the decision map controls the
values of the weights to be assigned to each of the source coefficients. Indeed, specifying the decision
§ = d®(.) is in practice equivalent to specifying the weights wg(8). For this reason, very often
the combination and decision maps are ‘grouped’ together by expressing the composite coeflicients
in terms of the parameters or functions the decision is based on. The problem of ‘how to compute
d®)(.)" is translated to the problem of ‘how to compute wg(d*)(-))’. A natural approach is to assign
to each coefficient a weight that depends increasingly on the activity level. In general, the resulting
weighted average (performed by the combination map) leads to a stabilization of the fusion result, but
it introduces the problem of contrast reduction in case of opposite contrast in different source images.
This can be avoided by using a selective rule where the most salient component, i.e., the one with
largest activity level, is chosen for the composite. In this case, after the combination map we get

ygc)() = yj(fl)() with M = argmaxsecs (agk)(-)> . (3.8)

In other words, the decision process ‘decides’ that the most salient coefficient (among the various
yék)(-), S € 8) is the best choice for the composite coefficient ygc)(-), and ‘tells’ the combination

process to select it, i.e,

o , (k).
ws(d¥) () = 1 if S = argmaxgics (as, ( )) (3.9)
0 otherwise.
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This selective combination is also known in the literature as a ‘choose maz’ selection process or
mazimum selection rule. For the case of two input sources, (3.8) can be written as

Ry ap Ry, (k) (.
yW() = y“k () ifea’() > a5() (3.10)
y}(3 ) (-) otherwise.

The selective combination strategy works well under the assumption that at each image location, only
one of the source images provides the most useful information. This assumption is sometimes not
valid, and a weighted combination may appear a better option. Alternatively, a match measure can
be used to decide how to combine the coefficients. For instance,

k . k k k
v () if m$()<T and of() > af ()
k . k k k
y () = L () if miih() ST and of() < o ()
(k) (. (k).
va () +up () ;yB () otherwise;

for some threshold T'. Thus, at sample locations where the source images are distinctly different, the
combination process selects the most salient component, while at sample locations where they are
similar, the process averages the source components. In this manner, averaging reduces noise and
provides stability where source images contain similar information, whereas selection retains salient
information and reduce artifacts due to opposite contrast.

In the examples presented so far, the decision is taken for each coefficient, without reference to the
others. This may degrade the fusion result since there is the possibility of feature cancellation when
the inverse transform is applied to obtain the fused image. Having into account the spatial, inter- and
intra-scale dependencies between the coefficients may provide a partial solution to this problem. Note
that by construction, each coefficient of a MR decomposition has a set of ‘family-related’ components
in other orientation bands and other levels: they represent the same (or nearby) spatial location
in the original image. It seems reasonable then to consider all (or a set of) these coefficients when
determining the composite MR representation. A simple instance is

0 (lp) vy (nlp) it Y527 ol (nlp') > 577 ol (nlp)
Yp \Np) =
ygc)(n|p) otherwise ,

where intra-scale dependencies are used. In this particular example, the decision is made globally for
a group of samples: for all bands p, all samples in the same level k and position n are assigned the
same decision.

Another possibility is to exploit spatial redundancy between neighboring samples. One may assume
that spatially close samples are likely to belong to the same image feature and thus, they should be
computed in the same way. An illustrative example is the consistency verification method proposed
by Li et al. [51]. This method consists in applying a majority filter to a preliminary decision map

d™ (-|p). Tt is then the filtered decision map which determines the combination of the images yfgk) (:|p).

For example, if according to the preliminary decision map d*)(-|p), the composite ygf) (+) should come
from yI(f), while the majority of the surrounding composite coefficients should come from ygc), the

decision d®)(.) is changed so that the composite coefficient yl(mk)() comes from ygc).

This kind of decision methods attempt to exploit the fact that significant image features tend
to be stable with respect to variations in space, scale and orientation. Thus, when comparing the
corresponding image features in multiple source images, considering the dependencies of the transform

coefficients may provide a more robust fusion strategy.

3.2.6 Combination of approximation images vs. combination of detail images

Because of their different physical meaning, the approximation and detail images are usually treated

by the combination algorithm through different procedures.

For the detail images yék), a general observation is that relevant perceptual information relates to

the ‘edge’ information that is present in each of the detail coefficients yék) (+). Detail coefficients having
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large absolute values correspond to sharp intensity changes and hence to salient features in the image
such as edges, lines and region boundaries.

The nature of the approximation coefficients, however, is different. The approximation image

K ( |0) is a coarse representation of the original image zs and may have inherited some of its
propertles such as the mean intensity or texture information. Thus, coefficients ys (n|0) with high
magnitudes do not necessarily imply salient features. In this case, an activity level al g ( |0) based, for
example, on entropy, variance or texture criteria, may be a better alternative than an activity level
based on energy such as in (3.3).

In many approaches, the composite approximation coefficients of the highest decomposition level,
representing the mean intensity, are taken to be a weighted average of the approximation of the
sources:

> 4§ (n)0)
Y (n)0) = 25— 5] : (3.11)

where |S] is the number of sources. The logic behind this combination relies on the assumptions that
the sources zg are contaminated by additive Gaussian noise and that, provided that K is high enough,
the relevant features have already been captured by the details y ( |p). Thus, the approximation
images y ( |0) of the various sources contain mostly noise and averaging them reduces the variance
of the noise while ensuring that an appropriate mean intensity is maintained.

A popular way to construct the composite yp is to use (3.11) for the approximation coefficients
and the selective combination in (3.8) for the detail coefficients. For the simple case where afgk)(-) =

|yék)(-)\, and we have two input sources, we can express the combination algorithm as

() (nl0) + v (n[0)
2
k . k
() v (nlp) it [y (mlp)] > |y (mlp)
(nlp) = " 513)
(k) .
yg (n|p) otherwise.

) (n)0)

(3.12)

Note that other factors may be incorporated for the fusion rules. In particular, if some prior
knowledge is available, all the fusion blocks can use such information to improve fusion performance.
For instance, when combining the source coefficients, the weights assigned to them may depend not
only on the activity level and match measure, but may also reflect some a-priori knowledge of a specific
type, giving preference to certain levels k, spatial positions n or some input sources.

Finally, we want to remark that the decision on which techniques to use is very much driven by the
application. At the same time, the characteristics of the resultant fused image depend strongly on the
applied pre-processing and the chosen fusion techniques. The different options we have presented are
neither exhaustive nor mutually exclusive and they should just be considered as practically important
examples.

3.3 Overview of some existing fusion schemes

In the literature one finds several MR fusion approaches which fit into our general scheme. In this
section, we review some of them. The reader may also get an impression of the evolution of MR-based
schemes during the past fifteen years.

The first MR image fusion approach proposed in the literature is due to Burt [10]. His implemen-

tation used a Laplacian pyramid and a sample-based maximum selection rule with a(sk) ()= |yg€) ()]
Thus, each composite coefficient y( )() is obtained by

)y = ya' () [0 0)] > [v50)]

91(9 ) (-) otherwise.

Toet [95, 98] presented a similar algorithm but using the ratio-of-low-pass pyramid. His approach
is motivated by the fact that the human visual system is based on contrast, and therefore, a fusion
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technique which selects the highest local luminance contrast is likely to provide better details to
a human observer. Another variation of this scheme is obtained by replacing the linear filters by
morphological ones [61,96].

Burt and Kolczynski [14] proposed to use a gradient pyramid (hence P = 4) together with a

combination algorithm that is based on an activity level and a match measure. In particular, they

define the activity level of ygc) () as a local energy measure:

k k 2
Pmp)= Y P (n+ Anlp)|?, (3.14)
AneW®) (p)

and the match between yilk)(-) and yj(gk)(-) as

23 Anew® (p) v (n + Anlp)y® (n + Anlp)
k k
) (nlp) + a%y’ (nlp)

with W(®)(p) being either a 1 by 1, 3 by 3, or 5 by 5 window centered on the origin. The combination
process is the weighted average

y W () = wa(d® )y P () +wp (@ ()yW (),

where the weights are determined by the decision process for each level k, band p and position n as
wa (d(k)(.)) =1—wg (d(k)(.)) = d®)(.), with

k
m'yy(nlp) =

, (3.15)

1 if mffj)g(-) < T and aff)(-) > ag)(-)
0 if mffj)g(-) < T and aff)(-) < ag)(-)
d(k)(') Y1 1-mEL)N e (K) (k) (k) (3.16)
s +3(=F282) ifmyg()>Tand ay’(-) >ap (-)
1—m k) (. ) k k k
Lo 3R iEm{R() > T and af() < ()

1-T

for some threshold T. Observe that in case of a poor match (no similarity between the inputs), the
source coefficient having the largest activity level will yield the composite value; while otherwise, a
weighted sum of the sources coeflicients will be used. Because of this, the fusion is said to be performed
by combination of selection and averaging. The authors claim that this approach provides a partial
solution to the problem of combining components that have opposite contrast, since such components
are combined by selection. In addition, the use of area-based (vs. sampled-based) operations and the
gradient pyramid provide greater stability in noise, compared to the Laplacian pyramid-based fusion.

Ranchin and Wald [74] presented one of the first wavelet-based fusion systems. This approach is
also used by Li et al. in [51]. Their implementation considers the maximum absolute value within a
window as the activity level measure associated with the sample centered in the window:

agc)(n|p) = MAXA peW (k) (p) (‘yék) (n+ An|p)|) .

For each position in the transform domain, a simple maximum selection rule is used to determine which
of the inputs is likely to contain the most useful information. This results in a preliminary decision
map which indicates, at each position, which source should be used in the combination map. This
decision map is then subject to a consistency verification. In particular, they apply a majority filter
in order to remove possible wrong selection decisions caused by impulsive noise. The authors claim
that their scheme performs better than the Laplacian pyramid-based fusion due to the compactness,
directional selectivity and orthogonality of the wavelet transform.

Wilson et al. [109] used a DWT fusion method and a perceptual-based weighting based on the
frequency response of the human visual system. Indeed, their activity level measure is computed as
a weighted sum of the Fourier transform coefficients of the wavelet decomposition, with the weights
determined by the contrast sensitivity”. They define a perceptual distance between the sources as

ay’ () —ay'()
a) () +ai ()

"The contrast sensitivity is defined as the reciprocal of the threshold contrast required for a given spatial frequency
to be perceived.

k
Diia() =

’
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and use it together with the activity level to determine the weights of the wavelet coefficients from
each source. Observe that this perceptual distance is directly related to the matching measure: the

smaller the perceptual distance, the higher the matching measure. The final weighting is given by
wa(d® () =1—wp(d® () =d¥) (), with:

1 if D¥)L() > T and o (-) > al¥ ()
d®) () =40 if D¥)() > T and o (-) < al¥()

()
S HDUR() T,
for some threshold 7T'. In the experimental results presented by the authors, the fused images obtained
with their method are visually better than the ones obtained by fusion techniques based on the gradient
pyramid or the ratio-of-low-pass pyramid.

Koren et al. [44] used a steerable wavelet transform for the MR decomposition. They advocate
their choice because of the shift-invariance and no-aliasing properties this transform offers. For each
frequency band, the activity level is a local oriented energy. Only the components corresponding to the
frequency band whose activity level is the largest are included for reconstruction (maximum selection
rule). Liu et al. [53] take a completely different point of view. They also used a steerable pyramid
but rather than using it to fuse the source images, they fuse the various bands of this decomposition
by means of a Laplacian pyramid.

In [79], Rockinger considered an approach based on a shift-invariant extension of the DWT. The
detail coefficients are combined by a maximum selection rule, while the coarse approximation coeffi-
cients are merged by averaging. Due to the shift-invariance representation, the proposed method is
particularly useful for image sequence fusion, where a composite image sequence has to be built from
various input image sequences. The author shows that the shift-invariant fusion method outperforms
other MR fusion methods with respect to temporal stability® and consistency®.

Zhang and Blum [114] compared different MR-based image fusion approaches within a generic MR
fusion methodology. As we mentioned before, our framework has been inspired by their work.

Pu and Ni [73] proposed a contrast-based image fusion method using the wavelet transform. They
measure the activity level as the absolute value of what they call directive contrast:

(k) Z/gk)(n|p)
ag (n\P):W p=1...,P,
Yys (1

and use a maximum selection rule as the combination method of the wavelet coefficients. They also
proposed an alternative approach where the combination process is performed on the directive contrast
itself. The fused image can be then reconstructed by reversing the computation of the directive contrast
to obtain a composite MR decomposition, and finally applying the inverse wavelet transform.

Li and Wang [52] examined the application of discrete multiwavelet transforms to multisensor image
fusion. The composite coefficients are obtained through a sample-based maximum selection rule, and
the fused image is obtained by taking the corresponding discrete multiwavelet reconstruction of the
composite coefficients. The authors showed experimental results where their fusion scheme performs
better than those based on comparable scalar wavelet transforms.

Another MR technique is proposed by Scheunders in [82] where the fusion consists of retaining the
modulus maxima [57] of the wavelet coefficients from the different bands and combining them. Noise
reduction can be applied during the fusion process by removing noise-related modulus maxima. In
the experiments presented, the proposed method outperforms other wavelet-based fusion techniques.

Mukhopadhyay and Chanda [66] presented a fusion scheme using multiscale morphology. In par-
ticular, they employ two MR top-hat transforms [83,87] for extracting bright and dark details from
the sources. For each source xg, they derive two MR structures ys; and ys 4, by applying the bright
and dark top-hat transforms respectively. A sample-based maximum selection rule on all yg yields
a ‘bright composite’ ypp. Likewise, the same selection rule on all ys 4 produces a ‘dark composite’

8A fused image sequence is temporal stable if the graylevel changes in the fused sequence is only caused by the
graylevel changes in the input sequences.

9A fused image sequence is temporal consistent if the graylevel changes occurring in the input sequences is present
in the fused sequence without any delay or contrast change.
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yr,a- In both cases, the activity measure of each sample is taken to be its amplitude. Finally, the two
composite MR representations are combined by subtracting the ‘dark’ details ygc()i from the ‘bright’

ones ygcl), and summing up all the entries. The ‘dark’ and ‘bright’ approximations are averaged and

added to the detail to obtain an output fused image xp.

3.4 Experimental results

Fig. 2-Fig. 5, in Section 1, are examples of fused imaged obtained by choosing different alternatives
in the fusion blocks. Here, we give a few more examples. Some of them correspond to well-known
fusion schemes which have also been discussed in Section 3.3, while others correspond to ‘new’ fusion
schemes. In this latter case, the purpose is not to outperform the already existing approaches but to
give an idea of the flexibility and freedom our framework offers.

In all cases, we have used the sources shown in Fig. 1. They correspond to visual (Fig. 1(a)) and
infrared (Fig. 1(b)) image modalities. The images are each 360 x 270 pixels and for displaying purposes
the gray values of the pixels have been scaled between 0 and 255 (histogram stretching). Unless
otherwise stated, three levels of decomposition (i.e., K =3) have been used for the MR decomposition
of the sources.

3.4.1 Existing schemes

Fig. 26 shows some examples of fused images obtained by some of the fusion algorithms which exist
in the literature.

The first row of Fig. 26 corresponds to the special case where K =0 and thus, no MR decomposition
is done. Fig. 26(a) is the result of a pixel-by-pixel average of the sources, while Fig. 26(b) is a weighted
average where the weights have been determined by a principal component analysis (PCA).

In Fig. 26(c) we have used Burt’s method [10]: a Laplacian pyramid decomposition and the combi-
nation algorithm specified in (3.12)- (3.13). The same combination algorithm but using a ratio-of-low
pass pyramid for the decomposition (Toet’s method [95]) yields the result in Fig. 26(d).

Fig. 26(e) illustrates the fusion algorithm proposed by Burt and Kolczynski in [14]. The activity
level, match measure and weights are computed as in (3.15)-(3.16), with a 3 x 3 window centered on
the origin and a threshold 7" = 0.85.

Fig. 26(f) shows the fused image obtained by the fusion scheme proposed by Li et al. in [51]. We
have used a Daubechies orthogonal wavelet of order 2 to implement the DWT, and a 3 x 3 window
for the consistency check.

3.4.2 Other schemes

We mainly concentrate on the different choices of MR decompositions and use conventional fusion
rules such as the ones described in Section 3.3.

In Fig. 27(a) a steerable pyramid with P =4 is used for the decomposition of the sources. The
combination algorithm is the same as the one proposed by Burt and Kolczynski [14] and defined in
(3.15)-(3.16), with a 3 x 3 window centered on the origin and a threshold 7' = 0.85. Fig. 27(b) has also
been obtained with the same combination algorithm but performing, in addition, consistency check,
and using a translation invariant Haar wavelet for the MR representation of the sources.

For the remaining examples, the simple combination algorithm specified in (3.12)-(3.13) is used.
That is, the detail coefficients are sample-based selected by a maximum selection rule while the
approximation coefficients are averaged.

Fig. 27(c)-Fig. 27(d) are examples of fused images where a median pyramid is employed for the MR
decomposition. In Fig. 27(c), however, the ratio of the median filtered approximations instead of the
standard difference has been used.

In Fig. 27(e)-Fig. 27(f), the lifting scheme is used to perform the MR decomposition on a quincunx
lattice. Fig. 27(e) shows the fused image obtained with the max-lifting scheme'® [38], while Fig. 27(f)
depicts the result obtained with a lifting scheme where the prediction and update operators are Neville
filters [45] of order 2.

10The max-lifting scheme is based on morphological operators. A major characteristic of this scheme is that it
preserves local maxima.
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Figure 26: Ezamples of fused images by some existing methods: (a) average; (b) weighted average by
PCA; (c) Burt’s method; (d) Toet’s method; (e) Burt and Kolczynski’s method; (f) Li et al.’s method.
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(e)

Figure 27: Examples of fused images by ‘new’ methods: (a) steerable pyramid with Burt and Kolczyn-
ski’s combination algorithm; (b) undecimated DWT with Burt and Kolczynski’s combination algorithm
and consistency check. For (c)-(f), it has been used the combination algorithm in (3.12)-(3.13), and
the following MR decompositions: (c) median pyramid; (d) ratio-of-median pyramid ; (e) maz-lifting
wavelet scheme (in quincunz lattice); (f) linear lifting with Neville filters wavelet scheme (in quincunz
lattice).
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4 A region-based MR image fusion algorithm

In this section, we introduce a new region-based approach to MR fusion, which combines aspects of
feature and pixel-level fusion. The basic idea is to make a segmentation based on all different source
images and to use this segmentation to guide the combination process.

4.1 Motivation

The algorithms based on MR techniques that we have discussed in the previous sections are mainly
pixel-based approaches where each individual coefficient of the MR, decomposition (or possibly the
coefficients in a small fixed window) is treated more or less independently. However, for most, if not
all, image fusion applications, it seems more meaningful to combine objects rather than pixels. For
example, assuming the input images depicted in Fig. 1, a fused image containing objects such as the
house, the bushes, the hills, etc., as well as the person from the IR source and the fence from the visual
source, would represent a rather accurate description of the underlying scene. Therefore, when fusing
the images, it is reasonable to consider the pixels which constitute these objects as single entities
instead of using the standard approach of combining the pixels without reference to the object they
belong to. As an intermediate step from pixel-based toward object-based fusion schemes, one might
consider region-based approaches. Such approaches have the additional advantage that the fusion
process becomes more robust and avoids some of the well-known problems in pixel-level fusion such
as blurring effects and high sensitivity to noise and misregistration.

4.2 The overall scheme
4.2.1 Introduction

Our region-based fusion scheme (see Fig. 28) extends the pixel-based fusion approach discussed in Sec-
tion 3 (see Fig. 25). Indeed, it includes all the blocks described before. The major difference between
the two schemes consists hereof that the region-based scheme also contains a segmentation module
which uses all sources zg as input and returns a single MR segmentation R (i.e., a partition of the
underlying image domains into regions) as output. Thus, we use MR decompositions to represent
the input images at different scales and, additionally, we introduce a multiresolution/multimodal!
(MR/MM) segmentation to partition the image domain at these scales. The activity level and match
measures are computed for every region in the decomposed input images. These measures may cor-
respond to low-level as well as intermediate-level structures. Furthermore, the MR segmentation R
allows us to impose data-dependent consistency constraints based on spatial as well as inter- and
intra-scale dependencies. All this information, i.e, the measures and the consistency constraints, is
integrated to yield a decision map d which governs the combination of the coefficients of the trans-
formed sources. This combination results in a MR decomposition yr, and by MR synthesis we obtain
a fused image zp.

The main functional blocks of this fusion strategy are depicted in Fig. 28. Since we already discussed
most of them in Section 3, we concentrate on the segmentation module and its interaction with the
other modules.

4.2.2 MR/MM Segmentation

This block uses the various source images as input and returns a single MR segmentation
R={RW R? .. RE}

as output. Here R(¥) represents a segmentation at level k, i.e., a partitioning of the domain at level
k.

Loosely speaking, R provides a MR representation of the various regions of the underlying scene.
This representation will guide the other blocks of the fusion process; hence instead of working at pixel-
level, they will take into consideration the regions inferred by the segmentation. From an intuitive
point of view, we can regard these regions constituent parts of the objects in the overall scene.

1 Here, the adjective multimodal means that there are more than one input image to be segmented.
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Figure 28: Generic region-based MR fusion scheme with two input sources x4 and xp, and one output
fused image xp.

In our image fusion problem, the segmentation is merely a preparation step toward the actual fusion.
In fact, we are not interested in the actual segmentation of the images, but rather in having a rough
partition of the underlying scene. Therefore, the segmentation process does not need to be extremely
accurate. For our purposes, we have developed a MR /MM segmentation algorithm based on the linked
pyramid [13]. We describe our segmentation algorithm in Section 4.3. Obviously, other segmentation
methods can be used. We require, however, that the sampling structure in R is the same as in yg, so
that each partition R(*) corresponds to a partition of the detail ys ( Ip).

4.2.3 Combination algorithm

Since the building blocks of the combination algorithm in the region-based approach are essentially
the same as in the pixel case, the combination algorithms discussed in Section 3 can be easily extended
to the region-based approach. For example, we can define the activity level of each region R € R(*)

in 5§ (-|p) by

D (Blp) = Y ad (nlp) (4.1)
|R‘ ner

where |R| is the area of region R. Similarly, we can define the match measure of each region R € R(*)
in the image bands y ( |p) and y ( |p) by

mAB (Rlp) = \R| Z m (4.2)
neR
Given these measures, the decision map can be constructed in several ways as discussed in Section 3.2.5,

with the only difference that agk)(R|p) mﬂ%(R|p) are used instead of a ( Ip), mAB( |p). For
instance, a combination algorithm based on a maximum selection rule (see (3 10) for the pixel-based
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case) would read:

(k) if o®) (k)
ygc)(n|p) = {yA (nlp) i ay"(Rlp) > a5 (Rlp) for all mn € R. (4.3)

yg) (n|p) otherwise

As in the pixel-based scheme, once the decision map is constructed, the mapping performed by the
combination process is determined for all coefficients, and the synthesis process yields the fused image
Tp.

Note that for the particular case in which each region corresponds to a single point n, the region-
based approach reduces to a pixel-based approach. Thus, the region-based MR fusion scheme extends
and generalizes the pixel-based approach and offers a general framework for MR-based image fusion
which encompasses most of the existing MR fusion algorithms.

4.3 MR/MM segmentation based on pyramid linking

In this section, we present a MR/MM segmentation algorithm based on pyramid linking. We first
review the basics of the conventional pyramid linking segmentation method. Then, we modify and
extend this method for the segmentation of multimodal input images.

4.3.1 The linked pyramid

The linked pyramid structure was first described by Burt et al. [13] (subsequent related work can
be found in [6,17,40,68,105]). It consists of a number of levels with the bottom level containing
the full-resolution image and each successive higher level being a filtered /subsampled version derived
from the level below it (see Section 2.2). The various levels of the pyramid are ‘linked’ by means of
so-called child-parent relations (see Fig. 29) between their samples (pixels); such child-parent links
are established during an iterative processing procedure to be described below.

A conventional linked pyramid is constructed as follows. First, an approximation pyramid is pro-
duced by low-pass filtering and sampling. Then, child-parent relations are established by linking each
pixel in a level (called child) to one of the pixels in the next higher level (called parent) which is closest
in gray value or in another pixel attribute. The attribute values of the parents are then updated using
the values of their children. The process of linking and updating is repeated until convergence (which
always occurs [13]). Finally (or during the linking process), some pixels are labeled as roots. In the
simplest case, only the pixels in the top level of the pyramid are roots. A root and the pixels which
(directly or via other links) are connected with the root induce a tree in the pyramid. The leaves of
each tree correspond to pixels in the full-resolution image which define a segment or region. Thus, the
linked pyramid provides a framework for an iterative process of image segmentation. For example,
in Fig. 29, pixel T is a root which represents in the bottom level a segment composed of pixels a, b,
c and d.

Top level ®

B I
NN

Bottom level

Figure 29: A diagram illustrating linking relationships. E.g., pizel A is the parent of children a, b and
¢, and it is also the child of pixel T.

There are a lot of variations on the scheme: in the way the initial pyramid is built, in the manner
pixels are linked to each other, in determining when pixels should be declared as roots, in the size of
the neighborhood in which children can look for a parent to link to, in the attribute that is being used
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(e.g., gray value, edge, local texture), etc. As a result, a general pyramid linking method is hard to
define, and most research has focused on specific problems or aspects.

Here, we want to address two major problems, namely the enforcement of connectivity in the seg-
mented regions and the root labeling. The first problem arises from the fact that standard algorithms
do not guarantee connectivity. Pixels which are adjacent in some higher level do not necessarily rep-
resent adjacent regions in the lower levels. This can cause the creation of disconnected regions at the
bottom level. To avoid such anomalies, one can use the connectivity preservation criteria proposed by
Nacken in [68]. The second problem concerns root characterization. In Burt’s original approach, only
the pixels at the top level are defined as roots, and therefore, the number of segments (which equals
the number of roots) is fixed. Posterior approaches avoid such a prior choice and define the roots as
those pixels which are not ‘strongly’ enough linked to a parent [40,105]. Now, the problem is reduced
to a definition of link strength and the determination of a root labeling threshold.

4.3.2 MR segmentation algorithm using linking

Our basic algorithm follows the classical “50% overlapping 4 x 4” structure [13]. This means that
each parent is derived from the pixels in the 4 x 4 neighborhood immediately below it, and this
neighborhood overlaps 50% of that of its 4 neighbors. Thus, each pixel has 16 candidate children and
each child up to 4 candidate parents. The bottom of the pyramid corresponds to level zero and, for
simplicity, is assumed to be of size N x N with N a power of 2. The maximum height of the pyramidal
structure is considered to be Ky = loga N — 1.

At each level k, the pixels are indexed by the vector n = (n,m), where n,m =0, ..., 2% — 1. We
denote by C(n) the set of candidate children of pixel n at level k > 0; that is,

C(n) = {(n’,m’)|n’ €{2n—1,2n,2n+1,2n+2}, m’ € {2m —1,2m,2m + 1,2m+2}}.

Similarly, we denote by P(n) the set of candidate parents of pixel n at level k < Kj:

P(m) = {(w,mn' € {[5(n 1), L5n), L+ DI}, m € {L50m = D], Lym], 5 (m+ 1]} },

where |-| denotes the integer part of the enclosed value. The set of pixels to which the pixel n is
connected at the bottom level is called receptive field.

To each pixel we associate one or more variables representing the attributes on which the segmen-
tation will be based. In this study, we assign to each pixel n at level k its grayscale value w(k)(n),
and the area A*)(n) of its receptive field.

Consider an input image z = z(°). Our pyramid segmentation algorithm consists of three steps.

1. Initialization
We associate to each pixel n in level zero the gray value (%) (n) of the original image, and to each
pixel n in level k > 0 a gray value 2(*) computed from the average of the gray values of its candidate

children: L
x(k)(n)zﬁ Z x(kfl)(nr)‘
n’eC(n)

2. Linking
(a) Pixel linking and root labeling.

For each child, a suitable parent is sought among the candidate parents: it is linked to its most
‘similar’ parent or it becomes a root (see below). Here, ‘similarity’ is based on geometrical and
grayscale proximity. A distance measure between the child and each of its four candidate parents
is computed. The link is established with the parent that minimizes that distance. It might
occur that more than one candidate parent minimizes the distance measure. In this case we
arbitrary choose among the minimal candidates. A simple choice for the distance measure is the
difference in grayscale. Examples of other distances can be found in [68,105].

In our approach, we perform the root labeling within the linking step. That is, when linking to
a parent, if the distance measure is above some threshold, the link is not established and the
pixel is labeled as a root (thus, it is not considered to be a child any more). We refer to [40,105]
for other alternatives.
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(b) Updating of area A*) and gray values z(*).
The attributes of each parent are recomputed using only the children that are linked to him:

A(k+1) (n) _ Z A(k) (nl)
n’eC(n)

> W (n)AB (n)
(k+1) _ n’eC(n)
o (n) A1) () ’

where A(®)(n) =1 for all n in level zero.

(c) Iteration of (a) and (b) until convergence.

3. Segmentation

The actual segmentation is obtained by using the tree structure of the created links. In each level k,
all pixels that are connected to a common root are classified as a single region segment R. In this
way, at each level k, we obtain a segmented image R*) which contains the different regions R at this
level.

4.3.3 MR/MM segmentation algorithm using linking

So far we have discussed how to obtain a MR segmentation from a single input. We now turn to
consider a simultaneous MR and MM segmentation in which from various input images a unique
segmented output is derived.

The segmentation method presented in the last subsection can be easily extended for the case where
we have several input images zg, S € S. In this case, the initialization step is performed as before
for each image and, in the linking step, in order to measure the similarity between a child n and each
candidate parent n’ € P(n), we use the distance measure given by the expression

1/2

(Z (2 (n) - wé"’“><n'>)2) : (4.4)

Ses

As in the scalar case, the candidate ' which minimizes this distance is selected to become the parent
unless the distance is above some threshold, in which case n is labeled as a root. Using the new
links, the gray values are updated for each S € S, and the process of linking and updating is iterated
until convergence. After the linking step, although the gray values of the various inputs S € S will in
general differ, the linking structure (child-parent relations) is the same. Thus, we have a single linked
pyramid structure and we can apply the same segmentation step as before.

We summarize the basic steps of our MR/MM segmentation in the following algorithm.

Algorithm
1. For each input S € S

— Construct an approximation pyramid {:cgc)}.
2. For each level k < Ky

— While not convergent,

* For each child n at level k, look for the parent n’ € P(n) which minimizes (4.4). If
this distance is above some threshold, 7 is set as a root, otherwise it is linked to n'.

s For each parent m at level k + 1, update A**1)(n) and wgcﬂ)(n) for all S € S.
3. For each level k

— All pixels n at level k connected to a common root (or being themselves a root) are classified
as a single region segment R (at level k).
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The segmentation is based on the approximation pyramids (computed from the grayscale values of
the pixels) of the different input sources zg, which are all treated equally. Obviously this is a very
naive approach since different sources may present different amplitude ranges and may not be equally
reliable. Thus, prior to segmentation, one might pre-process the input images so that they are com-
parable in their attributes. As an alternative one can choose to modify the distance measure in (4.4)

and use, for instance,

,\ 172

k k

(3 s (st
Ses

where s is a normalization factor which may depend on several factors such as the dynamic range,
noise estimation, entropy, etc.

Additionally, the segmentation algorithm can be improved by the use of connectivity preservation
criteria, adaptive windows and probabilistic linking [68,105].

Note that, by construction, the MR segmentation R obtained with our algorithm has a pyramidal
structure where the bottom level is at full resolution (same size as zg) and each successive coarser level
is 1/4 of its predecessor. However, this might not be true for the MR decompositions yg obtained
with the MR analysis block. Note also that the levels from the above MR segmentation R range
from zero to Kj;, whereas the levels from the MR decompositions ys go from one to K. In practice,
K is smaller than Kj;, so we assume henceforth that KX < Kj;. In addition, we also assume the
same lattice structure. Since we require all decompositions to have the same sampling structure, the
MR /MM segmentation module should associate to each level k£ and band p in yg, the segmentation
level k" such that the domain of 3*)(-|p), i.e. Iék) (p), has the same dimensions as R(*"). For instance,
if ys corresponds to a Laplacian decomposition, then k¥’ = k — 1, for k = 1,..., K; while if yg
corresponds to a DWT, then k' =k fork=1,... ,K andallp=1,...,3.

We assume that these associations are performed inside the MR/MM segmentation module so

that we get the output R = {R(W,... , R} which has the same sampling structure as yg =
ws, O

4.4 Case studies

In this section, we present some experimental results obtained with one of the simplest implementations
of the region-based fusion approach.

We consider two input sources 4 and . For their MR decomposition, we use a Laplacian pyramid
(thus, we only have a single orientation band, i.e, P = 1). We employ the MR/MM segmentation
algorithm discussed in Section 4.3. In the combination algorithm, we do not use a matching measure
and define the activity level of each region R € R(*) as in (4.1), with agc)(n|p) = \yék)(n|p)\ The
combination process is performed as in (3.6), with w4(6) = ¢ and wp(d) = 1 —§. In the decision
process, each component of d is obtained by the following simple decision rules:

e For p =0,
1
6 = d) (n)0) = 3 for all no .
e Forp=1,
— for each level k and for each region R € R(*) :

1 if dP(R1) > oW (RI1)
0 otherwise

for all n € R.

5:$WMD={

Note that according to this algorithm, the composite approximation image y%K)(-|0) is the pixel-wise

average of the approximation images ng) (-]0) and therefore, the region information RK) is neglected.

The composite detail images yl(wk), however, are constructed by a selective combination as in (4.3).
We have tested our algorithm on several pairs of images. Three examples are given here to illustrate

the fusion process described above. In all cases, we have chosen K =3 and, when displaying the images,

the gray values of the pixels have been scaled between 0 and 255 (histogram stretching). The input
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sources x4 and xp are displayed, respectively, on the left and right top of the corresponding figure.
For the decision maps, pixels with § = 0,1 are displayed in black and white, respectively. Thus,

according to our algorithm, coefficients corresponding to ‘white zones’ are selected from ygc), while

coefficients corresponding to ‘black zones’ are selected from yg).

Fig. 30 shows the fusion of a visible and an IR wavelength images. The first level of the resulting
segmentation and decision map are shown in the middle row. The corresponding second levels are
displayed on the bottom left. It is interesting to note that, according to d?), although most of the
background is selected from the visual image y( ) the region corresponding to the person is selected

from the IR image y( ). The fused i image is depicted at the bottom right of Fig. 30.

Fig. 31 shows the fusion of images with different focus points. The segmentation and decision for
the first level are displayed in the second row of Fig. 31. Note that since the digit ‘8’ is connected to
a particular region located within the left clock, the binary decision map d*) points out, wrongly, to
take the ‘8’ from yg) instead from yg). The same happens in level £ = 2 (not displayed here). For
this particular example, we also show the corresponding fused output we would have obtained using a
pixel-based MR fusion algorithm with the same fusion rules as in the region-based algorithm. We also
illustrate how we can improve the region-based fused image by filtering the decision map. Here, we
have filtered both decision maps d(!), d(®) with a morphological alternating filter: an opening followed
by a closing [83,87]. The filtered d(!) is shown at the bottom left of Fig. 31. One can see that small
white and black regions have been removed and that the boundaries of the non-removed regions have
been smoothed. The fused image obtained with the filtered decision maps is shown at the bottom
right of Fig. 31.

Fig. 32 shows the fusion of MRI and CT images. In this last example, we illustrate the combination
of the approximation coefficients using an activity level based on a local variance (see below). More
precisely, we perform the selective combination in (4.3) for both detail and approximation coefficients
but using different activity level measures. For the details, ag (R|1) is defined as before, while for
the approximation we consider

K)(R|0) =

" Z( (n]0) — 75 (R|O)>

neER

where ys R\O |R\ Zys (n|0).
neR
We also show (Fig. 32, bottom left) the corresponding fused output we would have obtained using

(¢) the decision rules used in the previous experiments (i.e., the selective combination only for the
details and pixel-wise average for the approximation); (i) a pixel-based MR fusion algorithm with
the same fusion rules as in (7).

4.5 Discussion

From the experiments presented, we can see that, despite the crudeness of the current implementation,
the visual performance is surprisingly good. This suggests that the region-based approach proposed
here can at least be competitive with (but more likely outperform) other MR fusion techniques.

Further investigations are necessary for the fine-tuning of parameters as well as for the proper
selection of the different ingredients of the scheme. Toward this end, performance assessment criteria
will be developed to evaluate and demonstrate the capacities of the new fusion technique, as well as
to compare its performance with others MR fusion schemes. Test will be carried out based both on
objective and subjective criteria.

5 Performance assessment

Performance measures are essential to determine the possible benefits of fusion as well as to compare
results obtained with different algorithms. Furthermore, they are necessary in order to obtain an
optimal setting of parameters for a specific fusion algorithm.

In most cases, image fusion is only a preparatory step to some specific task such as human monitor-
ing, and thus the performance of the fusion algorithm has to be measured in terms of improvement of



5. Performance assessment 43

Figure 30: Ezample 1. Top: visual (left) and IR (right) test images; middle: 1st level of segmentation (left)
and decision map (right); bottom: 2nd level of segmentation (left) and decision map (central), and fused image
(right).
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Figure 31: Ezample 2. Top: multi-focus test images; second row: 1st level of segmentation (left) and decision
map (right); third row: fused images with pizel-based (left) and region-based (right) approach; bottom: filtered
decision map (left) and corresponding fused image.
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Figure 32: Ezample 3. Top: MRI (left) and CT (right) test images; second row: 1st level of segmentation
(left) and decision map (right); third row: 2nd and 3rd level of segmentation (left) and decision map (central),
and fused image (right); bottom: pizel-based (left) and region-based (right) fused images with pizel-wise average
combination for K = 3.
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the subsequent tasks. For example, in classification tasks, a common evaluation measure is the ratio
of the correct number and the total number of classifications. This requires that the ‘true’ correct
classifications are known. In experimental setups, however, the availability of a ground-truth is not
guaranteed.

In this paper, we do not consider task-specific evaluation methods. Instead, we focus on general
performance measures which can be applied independently of the task. In this sense, we consider an
image fusion technique to be successful to the extent that it creates a composite that retains salient
information from the sources while minimizing the number of artifacts or the amount of distortion
that could interfere with interpretation.

In many applications, the ultimate user or interpreter of the fused image is a human. Consequently,
the human perception of the fused image is of paramount importance and therefore, fusion results
are mostly evaluated visually [80,99,100]. This involves human observers to judge the quality of
the resulting fused images. Since the ‘human quality measure’ depends highly on phsychovisual
factors, these subjective tests are difficult to reproduce and verify, as well as time consuming and
expensive. Hence, although it cannot be denied that subjective tests are important in characterizing
fusion performance, objective performance metrics appear as a valuable complementary method. But
how can a subjective impression like image quality be quantified? This problem is usually solved by
associating quality with the deviation of the experimental fused image from the ‘ideal’ fused image.
Then, another problem arises, namely, how to define the ‘ideal’ fused image. A less usual approach is
to design performance measures which, without assuming knowledge of a ground-truth, can be used
for quality assessment of the fused image. These performances measures quantify the degree to which
the fused image is ‘related’ to the input sources.

The work by Li et al. [51] is an example where out-of-focus image fusion is evaluated by comparison
of the fused image with an ‘ideal’ composite created by a manual ‘cut and paste’ process. Indeed,
various fusion algorithms presented in literature have been evaluated by constructing some kind of
ideal fused image and using it as a reference for comparing with the experimental fused results. Mean
squared error based metrics are widely used for these comparisons, and despite their well-known
limitations, they can be helpful if used carefully. An example of such metrics is the root mean square
error (RMSE):

M

m=

N 1/2
1 2
RMSE = (W 7;1 ] ('TR(nv m) - Q)F(TL, m)) ) ) (51)

where g is the ideal reference, xr the obtained fused image, and M, N are the dimensions of the
images.

Information-theory related metrics [22] such as mutual information have also been proposed for
fusion evaluation [106,112]. Given two images zr and g we define their mutual information as

L L hR F(’LL,’U)

I(zg;zr) = ZZthF(u,v) log, m , (5.2)

u=1v=1

where hg, hp are the normalized graylevel histograms of zr, zF respectively, hg, r is the joint graylevel
histogram of xg and xp, and L is the number of bins.

Let xR, zp correspond to the reference and fused images respectively; I(zg;zr) indicates how
much information the fused image xr conveys about the reference zz. Thus, the higher the mutual
information between zr and xg, the more likely xr resembles the ideal zg.

Some authors [70, 93] have also proposed some objective quality measures based on perceptual
criteria where the human visual system is taken into account. These measures are more elaborate and
computationally intensive, but fit better with empirical subjective tests.

In [112], Zhang compares different MR image fusion approaches by standard evaluation measures
such as RMSE and mutual information. He also proposes some new techniques for blindly (without
a reference) estimating the quality of a noisy and blurred image, and suggests that such quality
measures may be used to guide the fusion process. In those techniques, a mixture of probability
densities functions is used to model the edge intensity histogram of an image. By studying the effects
of the noise on the parameters of the mixture model, an estimation of the amount of noise and image
quality is made.
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More recently, Xydeas and Petrovi¢ [111] proposed an objective performance metric that models
the accuracy with which visual information is transferred from the source images to the fused image.
In their approach, important visual information is associated with edge information measured for each
pixel. Correspondingly, by evaluating the relative amount of edge information that is transferred from
the input images to the fused image, a measure of fusion performance is obtained.

From the current literature, we can conclude that the topic of objective performance assessment
is an open problem which has received little attention. Besides, in most existing approaches, the
quality of a fused image is evaluated only at very low level, and the methods used do not seem to be
easily applicable to objects (high level). Much more research is required to provide valuable objective
evaluation methods for fused images and, in particular, to object-oriented quality measures.

6 Conclusions

In this paper, we have introduced a general framework for MR image fusion. The proposed framework
not only encompasses most of the existing MR image fusion schemes, but also allows the construction
of new ones, either pixel or region-based approaches.

The region-based MR fusion scheme presented in this paper is an extension of the classical pixel-
based schemes. The basic idea is to perform a MR/MM segmentation of the various input images in
order to guide the fusion process. For this purpose, we developed a MR/MM segmentation method
based on pyramid linking and suggested some combination algorithms which make use of the resulting
segmentation. Experimental results have also been shown.

The implementation of our region-based fusion approach is still in a preliminary stage and in
the experiments performed we did not attempt to optimize its performance. However, the results
obtained so far suggest that our approach may be useful for several image fusion applications. We
need to investigate this more thoroughly in the future. In particular, we plan to study the effect of
the different parameters and functions in the scheme on the final fusion process. We also intend to
design new combination algorithms and replace the MR/MM segmentation by pyramid linking by
some other techniques, such as a hierarchical watershed from mathematical morphology.

A substantial part of our efforts will be devoted to the design of objective measures for fusion
performance assessment. We intend to use such objective measures to evaluate and demonstrate the
capacities of our region-based fusion approach, as well as to compare its performance with other MR
fusion schemes. We also plan to study how these objective measures can be used to guide the fusion
and improve the fusion performance.
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