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Abstract
This paper describes various mechanisms for adding

stochasticity to a dynamic hierarchical neural clusterer.
Such a network grows a tree-structured neural classifier
dynamically in response to the unlabelled data with
which it is presented. Experiments are undertaken to
evaluate the effects of this addition of stochasticity.
These tests were carried out using two sets of internal
parameters, that define the characteristics of the neural
clusterer.

A Genetic Algorithm using appropriate cluster
criterion measures in its fitness function was used to
search the parameter space for these instantiations. It
was found that the addition of non-determinism produced
more reliable clustering performances especially on
unseen real world data.

Finally, deliberately changing the tree shape by
varying key parameters was investigated, illustrated and
systematically analysed.

Keywords: clustering measure, competitive learning,
genetic algorithms, neural tree networks, stochasticity.

1. Introduction

The standard Neural Network Competitive Learning
algorithm [6] may be modified by the addition of
dynamic node creation and the imposition of a tree
structure on the classificatory ordering of the nodes. This
brings two main advantages: the number of clusters that
the neural network will identify does not need to be
predefined, and the hierarchical tree structure improves
the interpretability of the results. In addition, the use of a
tree structure allows a more efficient search for the
classifying node so increasing the speed of the model. A
basic neural network hierarchical clusterer has been
introduced in [1,2]. The latest version of which is called
CENT II.

In this paper, we introduce stochasticity to the basic
competitive hierarchical clusterer. The main goal of this

addition is to make the performance of the basic model
more robust to internal parameter settings and able to
produce a suitable classification over a large variety of
data sets. The basic competitive evolutionary neural tree
model is described in Section 2. Three different forms of
stochasticity that can be added to the CENT II model are
introduced in Section 3. The experiments performed are
described in Section 4, and the results are reported and
illustrated in Section 5. Finally, some discussion and
conclusions are given.

2. Competitive Evolutionary Neural
Tree (CENT II)

In CENT II, the tree structure is created dynamically
in response to structure in the data set. The neural tree
starts with a root node with its tolerance (the radius of its
classificatory hypersphere) set to the standard deviation
of input vectors and its position is set to the mean of
input vectors. It has 2 randomly positioned children.
Each node has two counters, called inner and outer,
which count the number of occasions that a classified
input vector is within or outside tolerance, respectively.
These counters are used to determine whether the tree
should grow children or siblings once it has been
determined that growth is to be allowed.

2.1. Top-Level Algorithm

At each input presentation, a recursive search through
the tree is made for a winning branch of the tree. Each
node on this branch is moved towards the input using the
standard competitive neural network update rule.

Any winning node is allowed to grow if it satisfies 2
conditions. It should be mature (have existed for an
epoch), and the number of times it has won compared to
the number of times its parent has won needs to exceed a
threshold. A finite limit is put on the number of times a
node attempts growth.



When a node is allowed to grow, if it represents a
dense cluster, then its inner counter will be greater than
its outer counter and it creates two children. Otherwise,
it produces a sibling node. The process of growth is
illustrated in Figure 1.

Child nodes are created Sibling node is created

Input data

Winner

Figure 1. Process of growing a tree. Child node
creation

is shown on the left whereas sibling node creation is
shown on the right.

To improve the tree two pruning algorithms, short and
long term, are applied to delete the insufficiently useful
nodes. The short-term pruning procedure deletes nodes
early in their life, if their existence does not improve the
classificatory error. The long-term pruning procedure
removes a leaf when its activity (the rate of classifying
input) is not greater than a threshold. See Figure 2 for the
pruning process.

(a) Node to be pruned.

(b) Singleton is removed, the tree is reconstructed.

(c) Final tree after pruning process.

Figure 2. Pruning process of an inactive node from the

tree. The final tree is restructured so that a singleton is
removed.

2.2. Parameter Setting

The behaviour of CENT II is determined by a set of
parameters, that specify for example the growth/pruning
thresholds. In order to measure the effects of adding
stochasticity to the basic model, a good instantiation of
the parameters is needed. A Genetic Algorithm (GA)  was
used to search for such a set of parameters [8].
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Figure 4. Process of finding parameter values using
Genetic Algorithm.

In the GA each parameter is coded into a binary



chromosome where each parameter is given a power of 2
different values so that each binary number represent a
valid parameter value. A picture of the 7 encoded
parameters is shown in Figure 3. Figure 4 illustrates this
process; fitness is assigned using two specific criteria
which are described in Section 4.

In order to investigate the robustness of the model to
its parameter settings, we found a second instantiation of
the parameters deliberately designed to be non-optimal.
This was achieved by modifying the fitness function of
the GA so that it had a strong preference for small trees.

3. Stochasticity and CENT II

We anticipated that the addition of randomness to
CENT II could have some benefit in helping the model
avoid local minima in its implicit cost function. This
approach is well known in the field of optimisation.

There are two different ways in which stochasticity
can be added to the model. Firstly the deterministic
decisions relating to growth and pruning can be made
probabilistic, we call this Decision Based Stochasticity.

Secondly the attributes inherited by nodes when they
are created can be calculated with a stochastic element,
we call this Generative Stochasticity. To both of these
approaches a simulated annealing  process can be added
to mediate the amount of non-determinism in a
controlled way, so that a decreasing temperature allows
for less randomness later in the life of the network.

3.1. Decision Based Stochasticity

There are three crucial decision making points in the
model: the selection for growth, the type of growth and
selection for pruning. These decisions are made
deterministically in the basic model, a relevant scalar
value is calculated and compared to the appropriate
threshold. Decision Based Stochasticity is generalised in
the normal way to a stochastic decision, where the sharp
change of decision, depending on some input, is made
softer by the addition of some randomness.

Figure 5 illustrates the heaviside threshold function
softened to a sigmoid. In the deterministic version (on
the left) the decision is made at a precise value of the
decision variable plotted on the horizontal axis.
However, in the stochastic version (on the right) the
value obtained by the sigmoid function is compared to a
random number between 0 and 1, and if larger, the
decision is accepted. In this way values of the decision
variable less than the original threshold can lead to
positive decisions and values greater than the precise one
can lead to negative decisions.
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Figure 5. Decision Based Stochasticity. The
probability

of accepting a decision produced in the left ellipse is
crisp whereas the probability of accepting a decision

in
the right ellipse is fuzzy.

Decision Based Stochasticity is essentially the same
technique as the addition of stochasticity to neural
networks such as the Hopfield Network forming the
Boltzmann machine [6].

The reason for adding stochasticity is that it may be
useful for the network to create more tentative new
growth and therefore for the pruning process to be more
common. The stochasticity softens the strong decision
making and allows the possibility of more chances at
growth and of keeping that growth, in the hope that more
correct decisions will be made for the different data sets.

3.2. Generative Stochasticity

This type of stochasticity adds noise to a generated
value in the model. The major occurrence of a generated
value in CENT II is during sidegrowth (Sibling creation)
and downgrowth (Child creation). In both cases a new
tolerance is required.

The key property of a newly created node, calculated
from its parent, is its tolerance size. Here, some
randomness is added to this calculation. To achieve this,
a Gaussian centred on the deterministic value gives the
probability distribution of the new value. Since the
network is sensitive to the value of tolerance a stochastic
element added here could be beneficial. This technique is
similar to the Soft Competition Scheme [10].

Figure 6 illustrates for the child creation process how
the implementation was carried out in this new stochastic
approach. The size of tolerance, which is computed in
the deterministic model entirely in terms of certain
parameters values, here has a stochastic element added to
it.
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Figure 6. Generative Stochasticity process. Green
circles represent equal child tolerance size produced
in a deterministic process. Blue circles are of different
sizes as a result of adding stochasticity into the
computation of the tolerance of children.

3.3. Control of Stochasticity

The degree of randomness in the stochasticity can be
controlled into 2 different ways. The first method has a
fixed temperature (degree of randomness) during the
whole run whereas for the second method the
temperature is reduced every epoch by a temperature
decrease factor. The second method is known as
Simulated Annealing, as in the standard simulated
annealing approach. A high temperature corresponds to
a large amount of randomness, and this is reduced over
time. When the temperature is reduced to zero, the
decision will become deterministic.

4. Experiments

4.1. Data Sets

The data sets used in this investigation have been
chosen to test many different aspects of the performance
of the CENT II model.

Three 2-dimensional and two higher dimensional
artificial data sets are used, these have a variety of

numbers of clusters (2 to 27) and hierarchical structure
(1 to 4/5 levels). In addition, nine real-world data sets are
used: contraceptive prevalence survey, male Egyptian
skulls, glass identification database, synthetic control
chart time series, teaching assistant (TA), vowel
recognition, IRIS, wine and zoo. Table 1 represents
details of each real world data set, and full descriptions
of these data sets are described in [9].

Table 1 Nine real-world data sets details

Data sets Classes Attributes Total vectors
Contraceptive 3 9 1,453
Egypt Skull 5 4 150
Forensic Glass 6 9 214
Time Series 6 60 600
TA 3 5 151
Vowel 10 7 1,520
IRIS 3 4 150
Wine 3 13 178
ZOO 7 16 118

4.2. Measurement of Clustering
Performances

The general goal in many clustering applications is to
arrive at clusters of objects that show small within-
cluster variation relative to the between-cluster variation
[5]. Clustering is difficult as many reasonable
classifications may exist for a given data set, moreover it
is easy for a clusterer to identify too few or too many
clusters. Suitable cluster criterion measures are therefore
needed [3].

There are two types of clustering measures, ones that
grade the flat clustering performance of the leaf nodes
and ones that grade the hierarchical structure.

An initial investigation concentrated on 10 non-
hierarchical clustering methods from Milligan and
Cooper [7] and another 2 hierarchical methods from
Gordon [4]. As a result of this study, the best method of
each type was chosen: the Gamma measure method [7],
which measures the flat partitioning performance, and
the Hierarchical Correlation method [4], that assesses the
hierarchy structure in a network. The methods are as
follows:

Gamma measure: s(+) is the number of times when
two points not clustered together are further apart than
two points which are in the same cluster and  s(-) is the
number of times when two point not clustered together
are closer than two points which are in the cluster.

In Figure 7, if D1 is less than D2 then s(+) is



incremented, otherwise s(-) is incremented. Gamma
measure is calculated from these two values using the
following formula.
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This gives a value between -1 and +1, where +1 is
optimal. For comparison with the second measure we
rescale this to the range 0 to +1.
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Figure 7. The distances within and between cluster
used

in calculating gamma measure.

Hierarchical Correlation: measures the correlation
between the dissimilarity matrix dij and hierarchical
separation matrix hij. A measure of the quality of the
hierarchy structure in the tree is then given by:
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dij is a dissimilarity between i and j objects. In this
study, the dissimilarity is computed using the Euclidean
distance.

hij is the relative height, which is the number of steps
in the tree to the closest node that has i and j as
descendants.
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Figure 8. Examples of calculating the relative height.

Figure 8 shows two examples of computing this

relative height. The relative height of the node that
classifies the 2nd input and the node that classifies the
5th input is 2. However, the relative height of the node
that classifies the 1st input and the node that classifies
the 6th input is 3. Hierarchical correlation gives a value
between 0 and +1, where +1 is optimal.

5. Results

In this section, we present the comparative results for
the deterministic version of our model (CENT II) and
two non-deterministic versions over fourteen data sets
using two different sets of parameters.

The two different forms of stochasticity: decision
based stochasticity (selection for growth, the type of
growth and selection for pruning.) and generative
stochasticity (sidegrowth and downgrowth) can be added
separately or tolerance value calculation in together.
There are therefore 32 different stochastic modes in both
a fixed temperature regime and in a simulated annealing
regime.

Initial investigations [9] were carried out on all
combinations of the stochastic procedures and the
networks tested with existing data sets. It showed that the
effect of any individual stochastic mode was the same
regardless of whether it was combined with the other
modes. It was therefore decided to use just two
variations. The first is a mixture of all modes for a fixed
temperature. The second is a mixture of all modes with
SA. In this paper, these two mixed modes are considered
together with the original deterministic CENT.

The results are divided into three sections, the first two
sections are comparative results between the
deterministic and the non-deterministic models
corresponding to the two parameter settings described
earlier in Section 2. The results are presented using the 2
modes of stochasticity defined above, compared with the
deterministic version. All test results are obtained by
running the model for thirty epochs.

The third section presents the method of changing tree
shape by tuning the parameters so that different
interpretation of data can be achieved.

5.1. Optimal Parameters

Table 2 represents the average and standard deviation
of the two different clustering measures, over all fourteen
data sets, tested for the deterministic version, and two
different stochastic versions of the model, using the first
set of parameter values. This set of parameters is
designed to be optimal for deterministic CENT II with
respect to a set of artificial data sets.

Figure 9 and Figure 10 give the gamma measure  and
the hierarchical correlation respectively for each



individual data set using CENT II and the two stochastic
variants.

Unsurprisingly Table 2 clearly shows that the overall
performances of the network over real world data sets
are worse than artificial data sets for all three models.
Besides, the real world data sets produce more variation
in clustering performance and are particularly worse for
the gamma measure. Additionally, when comparing
amongst the models, the deterministic version performed
well and non-determinism appeared to be of limited

value. A good performance by the deterministic model is
illustrated for the IRIS data set in Figure 11.

The true structure of the IRIS data consists of 3
different classes shown in Figure 11(a), each of 50
inputs, where each class represents a type of IRIS plant.
Figure 11(b) depicts that one class is linearly separable
from the other two, and this division is made at the top
level of the tree. The other two classes are then
immediately separated in the right subtree.

Table 2 Clustering measures of 14 data sets using the optimal parameter setting; average values range from 0-1 where
1 represents the best results

Artificial Gamma measure Hierarchical correlation
Modes Average Standard Deviation Average Standard Deviation
Deterministic 0.940 0.047 0.714 0.057
Stochastic 0.945 0.042 0.711 0.043
Stochastic (SA) 0.947 0.037 0.684 0.061
Real world data Gamma measure Hierarchical correlation
Modes Average Standard Deviation Average Standard Deviation
Deterministic 0.746 0.164 0.562 0.098
Stochastic 0.709 0.200 0.532 0.072
Stochastic (SA) 0.724 0.201 0.534 0.130
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Figure 9. Gamma measure of 14 data sets using the optimal set of parameter values
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Figure 10. Hierarchical correlation of 14 data sets using the optimal set of parameter values
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Figure 11. Tree structure produced by deterministic model with the IRIS data set.

5.2. Non-Optimal Parameters

Table 3 gives the results using the second parameter
set. These parameters were obtained in the Genetic

Algorithm where the fitness function deliberately
restricted the size of the tree for the CENT II model,
which means that the trees produced using this parameter
set may be non-optimal for data with many clusters. As

Class 1

Class 2 Class 3



expected the deterministic version did not perform as
well here, as can be seen by comparing Tables 2 and 3.

The performance of the three networks using this
parameter setting produce a smaller gamma measure and
large variation in performance especially over real world
data sets. However, the hierarchical correlation is more
resilient

Interestingly, the stochastic model performed well in
this situation especially the mode with the addition of
simulated annealing. In particular, it improved the
performance over the real world data.

Results in Table 2 and 3 shows that the macro analysis
of the performance using these two clustering measures
did not show much different in performance among the
three networks. Therefore, we used a micro analysis, that
is the consideration of details of the actual tree structure
produced by the network. From this micro analysis it is

apparent that stochasticiy did bring some benefit.
As an example of the improvement the non-

deterministic version offers consider Figures 11 and 12.
They illustrate the performance of both versions of the
model, with non-optimal parameter settings, on a data set
of 27 clusters.

CENT II produced an inappropriate tree, with only 8
leaf nodes for the 27 clusters and the nodes were not well
distributed. However the stochastic model produced
enough nodes to represent the data. At least one leaf
node appears in each cluster position and the four main
cluster areas were separated by the second level of the
tree. Admittedly there is a slight overproduction of nodes
but this is preferable to not finding all the clusters.

Most data sets show similar results with the stochastic
version performing better than the deterministic version.

Table 3 Clustering measures of 14 data sets using the non-optimal parameter setting; average values range from 0-1
where 1 represents the best results

Artificial Gamma measure Hierarchical correlation
Modes Average Standard Deviation Average Standard Deviation
Deterministic 0.755 0.166 0.630 0.259
Stochastic 0.927 0.075 0.702 0.093
Stochastic (SA) 0.910 0.072 0.663 0.058
Real world data Gamma measure Hierarchical correlation
Modes Average Standard Deviation Average Standard Deviation
Deterministic 0.395 0.293 0.642 0.130
Stochastic 0.589 0.257 0.570 0.140
Stochastic (SA) 0.490 0.239 0.603 0.123
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Figure 11. Position of leaf nodes and a tree structure produced by CENT II with data 3 which contains 27 clusters
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Figure 12. Position of leaf nodes and a tree structure produced by Stochastic (fixed amount of randomness) with data
3

which contains 27 clusters.

5.3. Tuning Tree Shape

A desirable feature of a hierarchical clusterer would be
one in which the shape of the induced tree could be
controlled and selected by the user in order to provide
the best interpretation of the structure of the data.

The experiment was conducted by varying some key
parameters using 5 selected real world data sets and
CENT II. Results in this section are assessed by two
values: branching factor and mean depth of tree. The

branching factor is the ratio of the total number of
children nodes to the nodes that have children. The mean
depth of tree is the mean of the depth all leaf nodes in the
tree. Figure 13 illustrates the average value of branching
factor and mean depth over 5 data sets.

Figures 14 and 15 illustrate the different shape of trees
that can be produced by changing parameters. The
predictability of the model to certain changes in the
parameter settings is of benefit to users who can choose
to interpret the tree shape when interpreting data.

Tune Tree Shape
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Figure 13. Average value of branching factor and mean depth produced by 5 different sets of parameters over 5 data
sets.

Branching factor=3.500
Mean depth=3.212

(a) Tree produced by parameter setting 1 (see Figure 13)

Branching factor=1.991
Mean depth=7.539

(b) Tree produced by parameter setting 5 (see Figure 13)

Figure 14. Different tree shapes produced by varying parameter settings on Wine data set.



Branching factor=5.567
Mean depth=2.756

(a) Tree produced by parameter setting 1 (see Figure 13)

Branching factor=1.988
Mean depth=8.384

(b) Tree produced by parameter setting 5 (see Figure 13)

Figure 15. Different tree shapes produced by varying parameter settings on the picture data set analysed in [2].

6. Discussion and Conclusion

This paper presents a method for adding stochasticity
to a dynamic hierarchical neural clusterer. We identified
two different combinations of non-deterministic
behaviour that can be added to the basic model in terms
of the control of stochasticity. In order to investigate the
benefits or costs of these additions we created two
parameter sets for the deterministic model using a GA.

One set is optimal for deterministic CENT II and a
particular collection of artificial data, and the other is
deliberately non-optimal. As expected the deterministic
version performed well on the artificial training sets for
which its parameters were optimised, and adding
stochasticity had little effect on performance.

However for unseen data sets with unpredictable
structure the parameters would obviously not be optimal.
The variability inherent in the stochastic models allows
the tree growth to adapt to this new data producing



reliably good tree structures to represent the data. This
can be seen most clearly in the performance of
deterministic CENT II with non-optimal parameter
settings, compared to the stochastic version with the
same parameters, where the non-determinism still
allowed high quality trees to be produced.

The stochastic model has produced a consistently
good performance over all of the data set presented, has
maintained the quality of performance shown by the
CENT II and has improved reliability.

Furthermore, the integration of simulated annealing
with stochasticity produced better results than using a
fixed amount of randomness.

By varying the parameter settings, different tree
shapes can be selected. So that the most appropriate data
interpretation could be achieved.
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