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Soft computing methodologies for structural optimization
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Abstract

The paper examines the efficiency of soft computing techniques in structural optimization, in particular algorithms based
on evolution strategies combined with neural networks, for solving large-scale, continuous or discrete structural optimiza-
tion problems. The proposed combined algorithms are implemented both in deterministic and reliability based structural
optimization problems, in an effort to increase the computational efficiency as well as the robustness of the optimization
procedure. The use of neural networks was motivated by the time-consuming repeated finite element analyses required during
the optimization process. A trained neural network is used to perform either the deterministic constraints check or, in the case
of reliability based optimization, both the deterministic and the probabilistic constraints checks. The suitability of the neural
network predictions is investigated in a number of structural optimization problems in order to demonstrate the computational
advantages of the proposed methodologies.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Evolutionary algorithms have successfully been
applied to a variety of applications in computational
mechanics. The effectiveness of evolutionary type
algorithms in structural shape optimization has been
examined in a number of cases. In shape optimiza-
tion of truss structures[1], aerodynamic improvement
[2,3] and shape optimization of 2D mechanical parts
[4,5]. Evolutionary algorithms have also been applied
in a number of sizing structural optimization prob-
lems [6–8]. However, the relevant literature when
probabilistic constraints are taken into consideration
is rather limited[9,10]. Optimization of large-scale
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structures, such as sizing optimization of multi-storey
3-D frames or shape optimization of 2-D mechanical
parts, is a computationally intensive task, especially
when both deterministic and probabilistic constraint
functions are involved.

In the present work the application of evolution
strategies (ES) combined with neural networks (NN)
is investigated, both in deterministic and reliability
based structural optimization problems, in an effort to
increase the computational efficiency as well as the
robustness of the optimization procedure. The reason
for introducing reliability theory into structural engi-
neering and structural optimization is to account in a
more rational way of all existing uncertainties that can
influence structural response as well as of the fact that
the loadings applied to a structure are not known with
the desirable degree of precision. Reliability is recog-
nized as a safety constraint in structural engineering
and an optimum design should balance both cost and
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safety. In the case of deterministic based design, stress
and displacement constraints are considered accepting
the design code safety factors without introducing reli-
ability as explicit design constraints, while in the case
of the reliability based design additional probabilistic
constraints related to the strength of the structure are
considered.

The basic idea of the proposed methodologies in
this work is to employ a properly trained NN for
performing the time consuming calculations that are
encountered repeatedly during the optimization pro-
cess. In the case of deterministic based structural
optimization (DBO) the use of NN was motivated by
the time-consuming repeated finite element (FE) anal-
yses required for the optimization process. In the case
of reliability-based optimization (RBO) both deter-
ministic and probabilistic constraint functions have to
be taken into consideration. The use of NN in RBO is
motivated by the approximations that are inherent in
reliability analysis and the time consuming repeated
analyses required by Monte Carlo simulation (MCS).
It appears that the use of a properly selected and
trained NN can eliminate any limitation on the dimen-
sionality of the FE model and on the sample size re-
quired for MCS. Thus, in the case of RBO, the robust-
ness of the optimization algorithm is improved, since
it provides with no extra computational cost more
accurate calculation of the probability constraints.

2. Time invariant structural reliability analysis

The inherent probabilistic nature of design pa-
rameters, material properties and loading conditions
involved in structural analysis is an important factor
that influences structural safety. Reliability analysis
leads to safety measures that a design engineer has
to take into account due to the aforementioned uncer-
tainties. A time invariant reliability analysis produces
the following relationship

pf = p[R < S] =
∫ ∞

−∞
FR(y)fS(y)dy

= 1 −
∫ ∞

−∞
FS(y)fR(y)dy (1)

whereR denotes the structure’s bearing capacity and
S the external loads. The randomness ofR andS can

be described by known probability density functions
fR(t) andfS(y), respectively, withFR(y) = p[R < y],
FS(y) = p[S < y] being the cumulative probability
density functions ofR andS, respectively.

Most often a limit state function is defined as
G(R, S) = S − R and the probability of structural
failure is given by

pf =p[G(R, S) ≥ 0] =
∫
G≥0

fR(R)fS(S)dRdS (2)

It is practically impossible to evaluateR analytically
for complex and/or large-scale structures. In such
cases the integral ofEq. (2)can be calculated only ap-
proximately using either simulation methods, such as
the Monte Carlo Simulation, or approximation meth-
ods. First- and second-order approximation methods
(FORM and SORM) lead to formulations that require
prior knowledge of the means and variances of the
random variables and the definition of a differentiable
failure function. On the other hand, MCS methods re-
quire that the probability density functions of all ran-
dom variables must be known prior to the reliability
analysis. For small-scale problems FORM and SORM
implementations have been proved very efficient[11],
but when the number of random variables increases
and the problems become more complex MCS-based
methods have been proven more reliable[12].

The reliability analysis, employed in this study, is
connected to a structural failure criterion of space
frames. The failure criterion is considered to be the
formation of a mechanism without considering in-
stability effects on the members of the structure.
The adopted incremental non-holonomic first-order
step-by-step limit analysis is based on the generalized
plastic node concept. The non-linear yield surface is
approximated by a multi-faceted surface[12].

2.1. Monte Carlo simulation

In reliability analysis of structures the MCS method
is particularly applicable when an analytical solution
is not attainable and the failure domain cannot be ex-
pressed or approximated by an analytical form. This
is mainly the case in problems of complex nature with
a large number of basic variables where all other re-
liability analysis methods are not applicable. Despite
the fact that the mathematical formulation of the MCS
is relatively simple and the method has the capability
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of handling practically every possible case regardless
of its complexity, this approach has not received an
overwhelming acceptance due to the excessive com-
putational effort that is required. Several sampling
techniques, also called variance reduction techniques,
have been developed in order to improve the com-
putational efficiency of the method by reducing the
statistical error that is inherent in MCS methods and
keeping the sample size to the minimum possible.
Furthermore, advanced solution methods and parallel
processing have been recently implemented having a
beneficial effect on the efficiency of MCS[10].

MCS can be stated as follows in structural reliability
analysis problems. Expressing the limit state function
asG(x) < 0, wherex = (x1, x2, . . . , xM) is the vector
of the random variables,Eq. (2)can be written as

pf =
∫
G(x)≥0

fx(x)dx (3)

wherefx(x) denotes the joint probability of failure for
all random variables. Since MCS is based on the theory
of large numbers (N∞) an unbiased estimator of the
probability of failure is given by

pf = 1

N∞

N∞∑
j=1

I(xj) (4)

in which I(xj) is an indicator for successful and un-
successful simulations defined as

I(xj) =
{

1, if G(xj) ≥ 0

0, if G(xj) < 0
(5)

In order to estimatepf an adequate number ofN
independent random samples is produced using a spe-
cific, usually uniform, probability density function of
the vectorx. The value of the failure function is com-
puted for each random samplexj and the Monte Carlo
estimation ofpf is given in terms of sample mean by

pf ∼= NH

N
(6)

whereNH is the number of successful simulations and
N the total number of simulations.

2.2. Importance sampling

Various reduction techniques have been proposed
in order to improve the efficiency and the accuracy

of the MCS method. Importance sampling (IS) is
generally recognized as the most efficient reduction
technique[13–15]. The key-idea of this technique is
to obtain a non-negative sampling density located in
the neighborhood of the most probable failure point.
The selection of an appropriate important sampling
density functiongx(x) is of critical importance for
both the efficiency and the accuracy of the MCS.
A successful choice ofgx(x) yields reliable results
and reduces significantly the number of simulations,
while an inappropriate choice produces inaccurate
results. The key-idea of this technique is to obtain a
non-negative sampling density located in the neigh-
borhood of the most probable failure point. Using
MCS-ISEq. (3)can be expressed as

pf = 1

N

N∑
j=1

I(xj)
fx(xj)

gx(xj)
(7)

wheregx(x) is the importance sampling function.

3. Neural networks

A neural network attempts to create a desired rela-
tion for an input/output set ofm learning patterns. This
set which is called training set consists of a finite num-
ber of m pairs(inp, tar) ∈ Rk × R�. The first coordi-
nate is a position ink-dimensional space, correspond-
ing to the input space, and the second coordinate is a
position in�-dimensional space, corresponding to the
desired or target space. The algorithm that is usually
used in order to form the relationRk → R� between
those two spaces is the back propagation algorithm.
This algorithm tries to determine a set of parameters
called weights, in order to achieve the right response
for each input vector applied to the network. If the
training is successful, application of a set of inputs to
the network produces the desired set of outputs. Thus,
in the case of NN training,w corresponds to the weight
matrix defining the parameters to be determined, while
the objective function can be defined as follows

E(w) = 1

2m
||E(w)||2 (8)

where the terms of the vectorE(w) = [E1(w),E2(w),

. . . , Em(w)]T have to minimized.Ei denotes the resid-
ual between the value of the approximating function
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and the desired value. This term is determined by the
following expression

Ei(w) =
�∑

j=1

[outj(inpi, w) − tari,j] (9)

where inpi is a k-dimensional input vector, tari the
desired response corresponding to theith input, tari,j
the desire response of thejth node of the output vec-
tor for the ith input pattern, while out is the response
of the network for the current values of the weight
parameters.

3.1. Minimization algorithms

The numerical minimization algorithms used for the
solution of the problem ofEq. (8)generate a sequence
of weight parameters through an iterative procedure.
To apply an algorithmic operatorA we need a starting
weight matrixw(0), while the iteration formula can be
written as follows

w(t+1) = A(w(t)) = w(t) + �w(t) (10)

All numerical methods applied for the solution of
Eq. (8) are based on the above formula. The chang-
ing part of the algorithm�w(t) is further decomposed
into two parts as

�w(t) = atd
(t) (11)

whered(t) is a desired search direction of the move
andat the step size in that direction.

The algorithms most frequently used in the NN
training are the steepest descent, the conjugate gradi-
ent, the Newton and the Levenberg–Marquard meth-
ods with the following direction vectors:

Steepest descent method: d(t) = −∇E(w(t))

Conjugate gradient method: d(t) = −∇E(w(t)) +
βt−1d

(t−1) whereβt is defined as follows

βt−1 =




∇Et · (∇Et − ∇Et−1)/d
(t−1) · (∇Et−1 − ∇Et) Hestenes–Stiefel

∇Et · (∇Et − ∇Et−1)/∇Et−1 · ∇Et−1 Polak–Ribiere

∇Et · ∇Et/∇Et−1 · ∇Et−1 Fletcher–Reeves

Newton method: d(t) = −[H(w(t))]−1∇E(w(t))

Levenberg–Marquard method: d(t) = −[H(w(t)) +
λtI]−1∇E(w(t))

whereλt is a positive constant and∇E(w(t)) is the
gradient of the functionE.

∇E(w) = J(w)TE(w) (12)

H(w) is the Hessian matrix of the functionE

∇2E(w) = H(w) = J(w)TJ(w) +
m∑
i=1

Ei(w)Hi(w)

(13)

J(w) is the Jacobian matrix of vector functionE(w)
and Hi(w) is the Hessian matrix of the component
function Ei(w). In the present study the steepest de-
scent and the Levenberg–Marquard[16] methods are
used.

3.2. Improving generalization

One of the problems that occur during neural net-
work training is called over-fitting. The error on the
training set is driven to a very small value, but when
new data is presented to the network the error is large.
The network has memorized the training samples, but
it is not capable to generalize to new ones. A method
for improving generalization is called regularization.
This involves modifying the objective function of the
Eq. (8). The typical objective function that is used
for training feed-forward neural networks is the mean
sum of squares of the network errors. It is possible to
improve generalization if we modify the performance
function by adding a term that consists of the mean of
the sum of squares of the network weights and biases
as follows

M(w) = γE(w) + (1 − γ)Ew(w) (14)

whereλ is the performance ratio, and

Ew(w) = 1

2

∑
i

w2
i (15)

Using this modified function will cause the network
to have smaller weights and biases, and this will force
the network response to be smoother and less likely to
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over-fit. The problem with regularization is that it is
difficult to determine the optimum value for the per-
formance ratio parameterλ. If we make this parameter
too large, we may get overfitting. If the ratio is too
small, the network will not adequately fit the training
data.

One approach to determine the regularization pa-
rameters in an automated fashion is the Bayesian
framework proposed by David MacKay[17]. In this
framework, the weights and biases of the network
are assumed to be random variables with specified
distributions. The regularization parameters are re-
lated to the unknown variances associated with these
distributions. We can then estimate these parameters
using statistical techniques. A detailed discussion
of the use of Bayesian regularization, in combina-
tion with Levenberg–Marquardt training that have
been employed in the current study, can be found in
[18].

3.3. The training set

In our implementation the main objective is to in-
vestigate the ability of the NN either to perform the
probabilistic and/or deterministic constraints check
or to predict the collapse loads of the structures. For
the BP algorithm to provide good results the training
set must include data over the entire range of the out-
put space. The appropriate selection of I/O training
data is one of the important factors in NN training.
Although the number of training patterns may not
be the only concern, the distribution of samples is of
greater importance. The selection of the I/O training
pairs is based on the requirement that the full range
of possible results should be represented in the train-
ing procedure. In an effort to increase the robustness
as well as the computational efficiency of the NN
procedure, in the case of DBO, two types of selection
are used in this study: (i) the training set is chosen
automatically based on a uniform distribution of the
design variables in the design space, (ii) the training
set is chosen automatically based on a Gaussian dis-
tribution of the design variables around the midpoints
of the design space. In the case of RBO the sample
space for each random variable is divided into equally
spaced distances for the application of the NN sim-
ulation and for the selection of the suitable training
pairs.

4. Structural optimization

In deterministic-based optimization problems the
aim is to minimize the weight or the volume of
the structure under certain deterministic behavioral
constraints usually on stresses and displacements.
In reliability-based optimal design additional proba-
bilistic constraints are imposed in order to take into
account various random parameters. Probabilistic
constraints define the feasible region of the design
space by restricting the probability that a determin-
istic constraint is violated within the allowable prob-
ability of violation. The probabilistic constraint that
is employed in this study enforces the condition that
the probability failure of the system is smaller than a
certain specified value.

4.1. Deterministic-based structural optimization

4.1.1. Shape optimization
Shape optimization attempts to integrate geomet-

rical modeling, structural analysis, and optimization
into one complete and automated computer aided de-
sign process. It determines the shape of the boundary
of a two- or three-dimensional structural component
of minimum mass under constraints on geometry and
structural responses such as stress, displacements and
natural frequencies. A number of researchers in the
past have been dealt with the structural shape opti-
mization problem introducing new methods and new
types of shape optimization problems[19–23]. The
mathematical formulation of a typical structural shape
optimization problem with respect to the design vari-
ables, the objective and constraint functions can be ex-
pressed in standard mathematical terms as a non-linear
programming problem as follows:

min F(s),

subject to hj(s) ≤ 0, j = 1, . . . , m

sli ≤ si ≤ sui , i = 1, . . . , n

(16)

where s is the vector of design variables,F(s) the
objective function to be minimized (or maximized),
hj(s) the behavioral constraints,sli andsui are the lower
and the upper bounds of a typical design variablesi.

The set of design variables gives a unique def-
inition of a particular design. The selection of de-
sign variables is very important in the optimization
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process. The designer has to decide a priori where
to allow design changes and to evaluate how these
changes should take place by defining the location of
the design variables and the moving directions. The
use of the coordinates at key points of the curves that
define the shape of the structural model as design vari-
ables leads to fewer design variables and more free-
dom in controlling the shape of the structure.

It is an issue of extreme importance to formulate
the optimization problem correctly otherwise unreal-
istic solutions may be found. Normally, it is necessary
to constrain some function of the stresses (e.g. the
principal stress) so that it will not exceed a specified
value throughout the entire structure. From a practi-
cal point of view a finite number of so-called ‘stress
constraint points’ is selected, where the condition is
enforceable. These points are either some predefined
points within the domain, or some boundary nodes.
Other type of constraints, like displacement or fre-
quency constraints, can also be imposed depending on
the type of problem. Usually the constraint functions
and their derivatives are normalized in order to im-
prove the performance of the optimizer.

The shape optimization methodology proceeds with
the following steps: (1) at the outset of the optimiza-
tion, the geometry of the structure under investigation
has to be defined. The boundaries of the structure are
modeled using cubic B-splines which, in turn, are de-
fined by a set of key points. Some of the coordinates
of these key points will be the design variables which
may or may not be independent to each other. (2) An
automatic mesh generator is used to create a valid and
complete FE model. A finite element analysis, is then
carried out and the displacements and stresses are eval-
uated. In order to increase the accuracy of the analy-
sis an h-type adaptivity analysis may be incorporated
in this stage. (3) The design variables are being opti-
mized. If the convergence criteria for the optimization
algorithm are satisfied, then the optimum solution has
been found and the process is terminated, else a new
geometry is defined and the whole process is repeated
from step 2.

4.1.2. Sizing optimization
In sizing optimization problems the aim is usually

to minimize the weight of the structure under certain
behavioral constraints on stress and displacements.
The design variables are most frequently chosen to

be dimensions of the cross-sectional areas of the
members of the structure. Due to engineering practice
demands the members are divided into groups having
the same design variables. This linking of elements
results in a trade-off between the use of more material
and the need of symmetry and uniformity of struc-
tures due to practical considerations. Furthermore, it
has to be taken into account that due to fabrication
limitations the design variables are not continuous but
discrete since cross-sections belong to a certain set.

A discrete structural optimization problem can be
formulated in the following form:

min F(s),

subject to hj(s) ≤ 0, j = 1, . . . , m

si ∈ Rd, i = 1, . . . , n

(17)

whereRd is a given set of discrete values and design
variablessi (i = 1, . . . , n) can take values only from
this set. In the present study the sizing optimization
of multi-storey 3-D frames is investigated. Optimal
designs of frames have been studied initially using
conventional plastic design methods. Then more so-
phisticated optimization algorithms were introduced
in order to solve this type of problems more effi-
ciently [24,25]. Most frequently the objective func-
tion is the weight of the structure and the constraints
are the member stresses and nodal displacements or
inter-storey drifts. For rigid frames in rolled W-shapes,
under allowable stress design requirements specified
by Eurocode 3[26], the stress constraints are the
non-dimensional ratioq of the following formulas:

q = fa

Fa
+ f

y

b

F
y

b

+ f z
b

Fz
b

≤ 1.0, if
fa

Fa
≤ 0.15 (18)

and

q = fa

Fa
+ Cmf

y

b

(1 − fa/F ′
e)Fb

+ Cmf
z
b

(1 − fa/F ′
e)Fb

≤ 1.0,

if
fa

Fa
> 0.15 (19)

where fa is the computed compressive axial stress,
f
y

b , f
z
b are the computed bending stresses fory- and

z-axis, respectively.F ′
e is the Euler stress divided by

the safety factor 1.10,Cm is a coefficient depending
upon element’s curvature caused by the applied mo-
ments,Fa = 0.60 × σy is the allowable axial stress,
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Fb = 0.66 × σy is the allowable bending stress and
σy is the yield stress. The allowable inter-storey drift
is limited to 1.5% of the height of each storey.

4.2. Reliability-based structural optimization

In reliability-based sizing optimization of large-
scale multi-storey 3-D frames the overall probabil-
ity of failure of the structure, as a result of a limit
elasto-plastic analysis, is taken as the global reliability
constraint. The probabilistic variables are chosen to
be the cross-sectional dimensions of structural mem-
bers and the material properties, modulus of elasticity
E and yield stressσy. Due to engineering practice
demands the members are divided into groups having
the same design variables. This linking of elements
results in a trade-off between the use of more material
and the need of symmetry and uniformity of struc-
tures due to practical considerations. Furthermore, it
has to be taken into account that due to manufacturing
limitations the design variables are not continuous
but discrete since cross-sections belong to a certain
set provided by the manufacturers.

A discrete RBO problem can be formulated in the
following form

min F(s),

subject to hj(s) ≤ 0, j = 1, . . . , m

si ∈ Rd, i = 1, . . . , n

pf ≤ pa

(20)

whereF(s) is the objective function,s the vector of
geometric design variables,hj(s) are the deterministic
constraints, whilepf is the probability of failure of the
structure required to remain below a threshold value
( pa) which comprise the probabilistic constraint. For
rigid frames with W-shape cross-sections the stress
constraints are also expressed byEqs. (18) and (19).
The design variables are selected from the W-shape
database comprising of 311 elements.

The proposed reliability-based sizing optimization
methodology proceeds with the following steps:

1. At the outset of the optimization procedure the ge-
ometry, the boundaries and the reference loads of
the structure under investigation are defined.

2. The constraints are defined in order to formulate
the optimization problem as inEq. (20).

3. The optimization phase is carried out with evolu-
tion strategies where feasible designs are produced
at each generation. The feasibility of the designs
is checked for each design vector with respect to
both deterministic and probabilistic constraints of
the problem.

4. The satisfaction of the deterministic constraints is
monitored through a finite element analysis of the
structure.

5. The satisfaction of the probabilistic constraints is
realized with the reliability analysis of the structure
using the MCS technique in order to evaluate its
probability of failure.

6. If the convergence criteria for the optimization al-
gorithm are satisfied then the optimum solution has
been found and the process is terminated, else the
whole process is repeated from step 3 with a new
generation of design vectors.

In this work, the reliability constraint is related to
the ultimate load-carrying capacity of space frame
structures. This failure criterion is considered to
be the formation of a mechanism as a result of a
limit elasto-plastic analysis of the structure without
considering member instability effects. The adopted
incremental non-holonomic first order step-by-step
limit analysis is based on the generalized plastic node
concept[27,28]. The non-linear yield surface is ap-
proximated by a multi-faceted surface thus avoiding
iterations at each load step. In order to prevent the
occurrence of very small load steps a second internal
and homothetic to the initial yield surface is imple-
mented which form a plastic zone for the activation
of the plastic nodes[12].

5. Evolution strategies

The two most widely used optimization algorithms
belonging to the class of evolutionary computation that
imitate nature by using biological methodologies are
the genetic algorithms (GA) and evolution strategies
(ES). In this work, ES are used as the optimization tool
for addressing large-scale DBO and RBO problems.
ES were introduced in the seventies by Rechenberg
and Schwefel[29] and have three characteristics that
make them differ from other conventional optimiza-
tion algorithms: (i) in place of the usual deterministic
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operators, they use randomized operators: mutation,
selection, recombination; (ii) instead of a single design
point, they work simultaneously with a population of
design points; (iii) they can easily handle continuous,
discrete and mixed optimization problems.

5.1. ES in structural optimization problems

The ES optimization procedure starts with a set of
parent vectors and if any of these parent vectors cor-
responds to an infeasible design then it is modified
until it becomes feasible. Subsequently, the offspring
design vectors are generated and checked if they are
in the feasible region. According to(µ+ λ) selection
scheme the values of the objective function of the par-
ent and the offspring vectors in every generation are
compared and the worst vectors are rejected, while the
remaining ones are considered to be the parent vec-
tors of the new generation. This procedure is repeated
until the chosen termination criterion is satisfied. The
standard implementation of ES algorithm for structural
optimization applications can be stated as follows:

1. Selection step: selection ofsi (i = 1,2, . . . , µ)
parent design vectors.

2. Analysis step: solve K(si)xi = b (i = 1,2,
. . . , µ).

3. Constraints check: if satisfied continue, else re-
ject sj and go to step 1.

4. Offspring generation: generatesj, (j = 1,2,
. . . , λ) offspring design vectors.

5. Analysis step: solveK(sj)xj = b (j = 1,2,
. . . , λ).

6. Constraints check: if satisfied continue, else
changesj and go to step 4.

7. Selection step: selection of the next generation
parent design vectors.

8. Convergence check: if satisfied stop, else go to
step 4.

The procedure is terminated as soon as the mean
value of the objective values from all parent vectors in
the last 2nµ/λ generations has been improved by less
than 0.01%.

An important characteristic of ES is that instead of
a single design point, like most of the conventional
optimization algorithms, they work simultaneously

with a population of design points. This allows the
natural implementation of the ES optimization proce-
dure in parallel computing environments where the FE
analyses needed for the individuals of the population
are performed independently and concurrently. The
most straightforward parallel implementation of ES
is to assign each individual of the current population
to a processor without any need of inter-processor
communication during the analysis phase.

In a distributed memory computing environment the
natural parallel implementation of ES can be realized
provided that each processor’s memory capacity is ad-
equate to accommodate the matrices and vectors re-
quired by the solution algorithm. In a shared memory
environment, on the other hand, the number of pro-
cessors employed is related to the storage limitations
since the total memory required is the corresponding
memory required for serial computations multiplied
by the number of processorsp. In the present study,
the parallel computations were performed on a Silicon
Graphics Power Challenge shared memory computer
where the number of processors activated is equal to
the number of the parent or offspring design vectors
sinceµ = λ.

Although evolutionary type of algorithms were ini-
tially developed to solve unconstrained optimization
problems, during the last decade several methods have
been proposed for handling constrained optimization
problems as well. The methods based on the use of
penalty functions are employed in the majority of cases
for treating constraint optimization problems. In a re-
cent work by the authors[30] it has been observed that
death penalty method employed by ES performs well
for the problems considered. An extensive review of
the constraint handling methods can be found in[31].

5.2. Deterministic-based structural optimization
using ES and NN

After the selection of the suitable NN architecture
and the training procedure is performed over a number
(M) of data sets. In order to alleviate any inaccuracies
entailed by the NN-based structural analysis a correc-
tion on the output values is proposed[32], especially
when the constraint value is near the limit which di-
vides the feasible with the infeasible region. Thus a
relaxation of this limit is introduced before entering
the optimization procedure during the NN testing
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phase. Therefore, a “correction” of the allowable con-
straint values is performed analogous to the maximum
testing error of the NN configuration. The maximum
testing error is the bigger average error of the output
values among testing patterns. When the predicted
values are smaller than the accurate ones derived
from the conventional FE analysis then the allowable
values of the constraints are decreased according to
the maximum testing error of the NN configuration
and vice versa. Li et al.[33] have implemented a
hybrid methodology combining genetic algorithms
and neural networks in predicting the dynamic re-
sponse of plane frames, while El-Beltagy and Wright
[34] have also proposed a combined GA and NN
procedure, using Gaussian processes for improving
generalization.

The combined ES-NN optimization procedure is
performed in two phases. The first phase includes the
training set selection, the FE analyses required to ob-
tain the necessary I/O data for the NN training, and
finally the selection, training and testing of a suitable
NN configuration. The second phase is the ES opti-
mization stage where instead of the conventional FE
analyses the trained NN is used to predict the response
of the structure in terms of objective and constraint
functions’ values due to different sets of design vari-
ables.

The proposed methodology ES-NN can be de-
scribed with the following algorithm:

• NN training phase:
1. Training set selection step: selectM input pat-

terns.
2. Constraints check: perform the check for each

input pattern vector.
3. Training step: training of the NN.
4. Testing step: test the trained NN.

• ES-NN optimization phase:
1. Parents initialization.
2. NN constraints check: all parent vectors be-

come feasible.
3. Offspring generation.
4. NN Constraints check: if satisfied continue,

else and go to step 3.
5. Parents’ selection step.
6. Convergence check.

5.3. Reliability-based structural optimization
using MCS, ES and NN

In reliability analysis of elasto-plastic structures
using MCS the computed critical load factors are
compared to the corresponding external loading lead-
ing to the computation of the probability of structural
failure. The probabilistic constraints enforce the con-
dition that the probability of a local failure of the
system or the global system failure is smaller than a
certain value (i.e. 10−5–10−3). In this work the over-
all probability of failure of the structure, as a result
of limit elasto-plastic analyses, is taken as the global
reliability constraint. The probabilistic variables are
chosen to be the cross-sectional dimensions of the
structural members and the material properties (E, σy).

MCS requires a number of limit elasto-plastic
analyses that can be dealt independently and concur-
rently. This allows the natural implementation of the
MCS method in parallel computing environment as
well. The most straightforward parallel implementa-
tion of the MCS method is to assign one limit elasto-
plastic analyses to a processor without any need of
inter-processor communication during the analysis
phase.

5.3.1. NN used for deterministic and probabilistic
constraints check

In this methodology, a trained NN utilizing infor-
mation generated from a number of properly selected
design vectors is used to perform both the determinis-
tic and probabilistic constraints checks during the op-
timization process. After the selection of the suitable
NN architecture the training procedure is performed
using a number (M) of data sets, in order to obtain the
I/O pairs needed for the NN training. The trained NN
is then applied to predict the response of the structure
in terms of deterministic and probabilistic constraints
checks due to different sets of design variables.

The combined ES-NN optimization procedure is
performed in two phases. The first phase includes
the training set selection, the corresponding structural
analysis and MCS for each training set required to ob-
tain the necessary I/O data for the NN training, and
finally the training and testing of a suitable NN con-
figuration. The second phase is the ES optimization
stage where the trained NN is used to predict the re-
sponse of the structure in terms of the deterministic
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and probabilistic constraints checks due to different
sets of design variables.

This ES-NN methodology can be described with the
following algorithm 1:

• NN training phase:
1. Training set selection step: selectM input

patterns.
2. Deterministic constraints check: perform the

check for each input pattern vector.
3. Monte Carlo simulation step: perform MCS

for each input pattern vector.
4. Probabilistic constraints check: perform the

check for each input pattern vector.
5. Training step: training of the NN.
6. Testing step: test the trained NN.

• ES-NN optimization phase:
1. Parents initialization.
2. NN (deterministic-probabilistic) constraints

check: all parents become feasible.
3. Offspring generation.
4. NN (deterministic-probabilistic) constraints

check: if satisfied continue, else go to step 3.
5. Parents’ selection step.
6. Convergence check.

5.3.2. NN prediction of the critical load in
structural failure

In the second methodology the limit elasto-plastic
analyses required during the MCS are now replaced
by NN prediction of the structural behavior up to
collapse. For every MCS an NN is trained utiliz-
ing available information generated from selected
conventional elasto-plastic analyses. The limit state
analysis data is processed to obtain input and output
pairs, which are used for training the NN. The trained
NN is then used to predict the critical load factor due
to different sets of basic random variables.

At each ES cycle (generation) a number of MCS
are carried out. In order to replace the time consum-
ing limit elasto-plastic analyses by predicted results
obtained with a trained NN, a training procedure is
performed based on the data collected from a number
of conventional limit elasto-plastic analyses. After the
training phase is concluded the trained NN predictions
replace the conventional limit elasto-plastic analyses,

for the current design. For the selection of the suit-
able training pairs, the sample space for each random
variable is divided into equally spaced distances. The
central points within the intervals are used as inputs
for the limit state analyses.

This ES-NN methodology can be described with the
following algorithm 2:

1. Parents initialization.
2. Deterministic constraints check: all parents

become feasible.
3. Monte Carlo simulation step:

3a. Selection of the NN training set.
3b. NN training for the limit load.
3c. NN testing.
3d. Perform MCS using NN.

4. Probabilistic constraints check: all parents be-
come feasible.

5. Offspring generation.
6. Deterministic constraints check: if satisfied

continue, else go to step 5.
7. Monte Carlo simulation step:

7a. Selection of the NN training set.
7b. NN training for the limit load.
7c. NN testing.
7d. Perform MCS using NN.

8. Probabilistic constraints check: if satisfied
continue, else go to step 5.

9. Parents’ selection step.
10. Convergence check.

6. Numerical results

The performance of the optimization method-
ologies discussed in previous sections is investi-
gated in a number of characteristic test examples
in sizing as well as in shape structural optimiza-
tion, in deterministic as well as in reliability based
optimization problems. One shape optimization
benchmark test example and one characteristic 3-D
building frame have been considered in order to illus-
trate the efficiency of the proposed methodologies for
deterministic-based optimization problems. In the ta-
bles containing the results for the deterministic-based
optimization problems the following abbreviations



M. Papadrakakis, N.D. Lagaros / Applied Soft Computing xxx (2003) xxx–xxx 11

are used:ES refers to the standard implementation
of the evolution strategies optimization procedure,
in which structural analyses are performed using the
conventional FE analysis.ES-NNrefers to the com-
bined ES and NN methodology, where the FE analysis
response is predicted by a trained NN. For the two
different types of training set selection that have been
compared in this study the following abbreviations
are used: (i)UT stands for the automatic selection
of training set based on a uniform distribution of the
design variables in the design space, while (ii)GT
stands for the automatic selection of training set based
on a Gaussian distribution of the design variables in
the design space. The symbol “(c)” denotes that the
allowable limits of the constraints have been adjusted,
as discussed previously, in order to “correct” the NN
predictions near the feasible region limits, while sym-
bol “(v)” indicates that the final design is violating
the constraints and thus it is infeasible. The symbols
sd and ml stand for the minimization algorithms used
during the training process, corresponding to steepest
descent and the Levenberg–Marquard, respectively,
while “(g)” means generalization. Only in the first
test example we have examined the influence of the
Levenberg–Marquard and the generalization.

One characteristic 3-D building frame has been
tested in order to illustrate the efficiency of the pro-
posed methodologies for reliability-based sizing op-
timization problems. The probabilistic constraint is
imposed on the probability of structural collapse due
to successive formation of plastic nodes and is set
to pa = 0.001. The probability of failure caused by
uncertainties related to material properties, geometry
and loads of the structures is estimated using MCS
with the Importance Sampling technique. External
loads, yield stresses, elastic moduli and the dimen-
sions of the cross-sections of the structural members
are considered to be random variables. The loads fol-
low a log-normal probability density function, while
random variables associated with material properties
and cross-section dimensions follow a normal proba-
bility density function. The required importance sam-
pling functiongx(x) for the loads is assumed to follow
a normal distribution. In the tables containing the re-
sults for the reliability based optimization test exam-
ple the following abbreviations are used:DBO stands
for the standard deterministic-based optimization ap-
proach,RBOstands for the standard reliability-based

optimization approach, whileRBO–NNicorresponds
to the proposed reliability-based optimization with
NN incorporating algorithmi (i = 1,2).

6.1. Deterministic-based structural optimization
test examples

6.1.1. Square plate with central cut-out problem
In this example plane stress conditions and isotropic

material properties are assumed (elastic modulus
E = 210,000 N/mm2 and Poisson’s ratioν = 0.3).
The problem definition of this example is given in
Fig. 1a, where due to symmetry only a quarter of the
plate is modeled. The optimized shape is depicted in
Fig. 1b. The two exterior sides of the plate are loaded
with a distributed loadingp = 0.65 N/mm2, as shown
in Fig. 1a. The objective is to minimize the volume of
the structure subject to a limit to the equivalent stress
σmax = 7.0 N/mm2. The model consists ofeight key
points andfive primary design variables (2, 3, 4, 5,
6) which can move along radial lines. The movement
directions of the design variables are indicated by the
dashed arrows. The stress constraints are imposed as
a global constraint for all the Gauss points and as key
point constraints for key points 2, 3, 4, 5, 6 and 8.
For this test example the(µ+λ)-ES approach is used
with λ = µ = 5.

The number of NN input units is taken equal to the
number of design variables, the seven output units
correspond to the seven constraint function values,
whereas the NN architecture used has one hidden
layer. The 5-11-7 NN architecture is therefore chosen
and used for the optimization runs.Table 1 depicts
the performance of the proposed ES-NN methodol-
ogy, for all types of training set selection schemes,
compared to the conventional ES optimization proce-
dure for various numbers of NN training patterns. It is
verified that the “correction” scheme of the allowable
constraint values is more robust than the standard
ES-NN version in producing feasible optimum de-
signs. In addition it can be observed that a reduction in
the number of training sets deteriorates the efficiency
of the uniform type of training set selection, whereas
for the Gaussian type it improves the efficiency with
minor violations of the constraints in the final de-
sign. For this test case a significant improvement in
total computing time required by ES-NN over ES is
observed.
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Fig. 1. Square plate: (a) initial shape; (b) final shape.

6.1.2. Six storey space frame
A six-storey space frame has been considered to il-

lustrate the efficiency of the proposed methodology in
deterministic-based sizing optimization problems with
discrete design variables. In this example, the modu-
lus of elasticity is 200 GPa (29,000 ksi) and the yield
stress isσy = 250 MPa (36 ksi). The cross section
of each member is assumed to be a W-shape and for

Table 1
Square plate—performance of the optimization methods

Optimizer type Optimization steps/
training patterns

ES-NN
“steps”

Computing time (s) Optimum
volume (mm3)Analysis Training ES-NN Total

ES 127/– – – – – 2141 279(v)
ES-NN-UT-sd –/50 112 946.3 245.1 1.8 1193 272(v)
ES-NN-UT-sd(c) –/50 132 946.3 245.1 2.0 1193 281(v)
ES-NN-UT-ml –/50 112 946.3 203.2 1.8 1151 272(v)
ES-NN-UT-ml(g) –/50 120 946.3 207.6 2.0 1156 280(v)
ES-NN-UT-sd –/40 138 674.4 238.8 1.9 915 259(v)
ES-NN-UT-sd(c) –/40 151 674.4 238.8 2.1 915 271(v)
ES-NN-UT-ml –/40 138 674.4 191.5 1.9 868 259(v)
ES-NN-UT-ml(g) –/40 123 674.4 194.9 1.8 871 280(v)
ES-NN-GT-sd –/50 116 946.3 254.4 1.9 1203 270(v)
ES-NN-GT-sd(c) –/50 125 946.3 254.4 2.1 1203 283(v)
ES-NN-GT-ml –/50 116 946.3 212.9 1.9 1161 270(v)
ES-NN-GT-ml(g) –/50 125 946.3 217.1 2.1 1166 279
ES-NN-GT-sd –/40 112 674.4 238.8 1.8 915 263(v)
ES-NN-GT-sd(c) –/40 132 674.4 238.8 2.0 915 275(v)
ES-NN-GT-ml –/40 112 674.4 192.6 1.8 869 263(v)
ES-NN-GT-ml(g) –/40 130 674.4 197.4 2.0 874 274(v)

each member two design variables are considered as
shown inFig. 2. The objective function of the prob-
lems is the weight of the structure. The constraints
are imposed on the inter-storey drifts and the maxi-
mum non-dimensional ratioq of Eqs. (18) and (19)
in each element group which combines axial force
and bending moments. The values of allowable axial
and bending stresses areFa = 150 MPa andFb =
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Fig. 2. W-shape cross-section design variables.

165 MPa, respectively, whereas the maximum allow-
able inter-storey drift is limited to 5.6 cm which cor-
responds to 1.5% of the height of each storey.

This example consists of 63 elements with 180 de-
grees of freedom as shown inFig. 3a. The beams have
lengthL1 = 7.32 m and the columnsL2 = 3.66 m.

x

y z

(a) (b) 

Fig. 3. (a) Six storey space frame; (b) element groups.

The structure is loaded with a 19.16 kPa gravity load
on all floor levels and a lateral load of 109 kN ap-
plied at each node in the front elevation along the
z-direction. The element members are divided into five
groups, as shown in Fig. 3b, each one having two de-
sign variables resulting in total to 10 design variables.
The constraints are imposed on the maximum allow-
able inter-storey drift and the non-dimensional ratio q
in each element group. For this test case the (µ+λ)-ES
approach is used with µ = λ = 5.

For this example the number of NN input units
is equal to the number of design variables, whereas
the eleven output units correspond to the two values
of axial force and bending moment for the five ele-
ment groups, plus one for the maximum value of the
inter-storey drift. The NN architecture used has one
hidden layer, the 10-18-11 NN architecture is chosen
and used for the optimization runs, while the mini-
mization algorithm used is the steepest descent with no
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Table 2
Six storey space frame—performance of the optimization methods

Analysis type Number of FE analysis/
training patterns

Number of
NN analyses

Computing time (s) Optimum
weight (kN)

Analysis Training ES-NN Total

ES 281/– – – – – 116.3 867
ES-NN-UT-ml –/100 263 39.3 513.1 2.7 555.1 786(v)
ES-NN-UT-ml(c) –/100 255 39.3 513.1 2.6 555 918(v)
ES-NN-UT-ml –/80 187 33.1 342.6 1.8 377.5 685(v)
ES-NN-UT-ml(c) –/80 232 33.1 342.6 2.4 378.1 758(v)
ES-NN-GT-ml –/100 274 39.3 478.0 3.0 520.3 927(v)
ES-NN-GT-ml(c) –/100 269 39.3 478.0 2.9 520.2 898(v)
ES-NN-GT-ml –/80 274 33.1 321.7 3.0 357.8 940(v)
ES-NN-GT-ml(c) –/80 266 33.1 321.7 2.9 357.7 884(v)
ES-NN-GT-ml –/60 169 24.8 295.3 1.7 321.8 996(v)
ES-NN-GT-ml(c) –/60 211 24.8 295.3 2.1 322.2 961(v)

generalization. Table 2 depicts, the performance of the
proposed ES-NN methodology compared to the con-
ventional ES optimization procedure for various num-
bers of NN training patterns. It can be observed that a
marginal reduction in the number of training sets de-
teriorates the efficiency of the uniform type of training
set selection, whereas it improves the efficiency of the
Gaussian type with a minor increase of the objective
function value in the final design. For this test case
a slight increase in total computing time required by
ES-NN over ES is observed due to the small size of
the FE model of the structure.

6.2. Reliability-based structural optimization test
example

6.2.1. Twenty-storey space frame
A 20-storey space frame has been considered to

illustrate the efficiency of the proposed methodology
in reliability based sizing optimization problems with
discrete design variables. In this example the modu-
lus of elasticity is 200 GPa (29,000 ksi) and the yield
stress is σy = 250 MPa (36 ksi). The 20-storey space
frame shown in Fig. 4 consists of 1020 members with
2400 degrees of freedom. This example is selected in
order to show the efficiency of the proposed method-
ologies in relatively large-scale RBO problems. The
basic load of the structure is a uniform vertical load
of 4.78 kPa at each storey and a horizontal pres-
sure of 0.956 kPa acting on the front elevation of
the frame. The cross-section of each member of the
space frame considered is assumed to be a W-shape

and for each structural member one design variable is
allocated corresponding to a member of the W-shape
data base. The objective function is the weight of the
structure. The deterministic constraints are imposed
on the inter-storey drifts and, for each group of struc-
tural members, on the maximum non-dimensional
ratio q of Eqs. (18) and (19) which combines axial
forces and bending moments. The values of allowable
axial and bending stresses are Fa = 150 MPa and
Fb = 165 MPa, respectively, whereas the allowable
inter-storey drift is restricted to 1.5% of the height
of each storey. The members of the frame are di-
vided into 11 groups, as shown in Fig. 4, and the
total number of design variables is 11. The deter-
ministic constraints are 23, 2 for the stresses of each
element group and 1 for the inter-storey drift. The
type of probability density functions, mean values,
and variances of the random parameters are shown in
Table 3. A typical load-displacement curve of a node
in the top-floor is depicted in Fig. 5, corresponding to
the following design variables: 14WF176, 14WF158,
14WF142, 14WF127, 12WF106, 12WF85, 10WF60,
8WF31, 12WF27, 16WF36, 16WF36.

Table 3
Twenty storey space frame—characteristics of the random variables

Random variable Probability density
function (pdf)

Mean
value

Standard
deviation (σ)

E N 200 0.10E
σy N 25.0 0.10σy
Design variables N si 0.1si
Loads log-N 5.2 0.2
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Fig. 4. Description of the 20-storey frame.

For this test case the (µ + λ)-ES approach is used
with µ = λ = 10, while a sample size of 500 and 1000
simulations is taken for the MCS with the Important
Sampling technique. Table 4 depicts the performance
of the optimization procedure for this test case. As
can be seen the probability of failure corresponding
to the optimum computed by the deterministic opti-
mization procedure is much larger than the specified
value of 10−3. For this example the increase on opti-
mum weight achieved, when probabilistic constraints
are considered, is approximately 26% of the determin-
istic one, as it can be observed from Table 4. For both
versions of the proposed methodology the minimiza-
tion algorithm used is the steepest descent with no
generalization. For the application of the RBO-NN1
methodology the number of NN input units is equal to
the number of design variables. Consequently the NN
configuration used in this case has one hidden layer

with 15 nodes resulting in an 11-15-1 NN architecture
which is used for all runs. The training set consists of
200 training patterns capturing the full range of pos-
sible designs, using the uniform distribution selection
of the training set.

For the application of the RBO-NN2 methodology
the number of NN input units is equal to the num-
ber of random variables, whereas one output unit is
needed corresponding to the critical load factor. Con-
sequently the NN configuration with one hidden layer
results in a 3-7-1 NN architecture which is used for all
runs. The number of conventional step-by-step limit
analysis calculations performed for the training of
NN is 60 corresponding to different groups of random
variables properly selected from the random field. As
can be seen from Table 4 the proposed RBO-NN2
optimization scheme manages to achieve the optimum
weight in one tenth of the CPU time required by the
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Fig. 5. Load–displacement curve.

Table 4
Twenty storey space frame—performance of the methods

Optimization procedure ES
generations

pf
a Optimum

weight (kN)
Sequential
time (h)

Parallel time (h)

P = 5 p = 10 p = 20

DBO 83 0.197 × 10−0 6771 2.0 0.7 0.3 0.3

RBO (500 simulations) 126 0.103 × 10−2 9114 141.0 28.4 14.1 7.1
RBO-NN1 (500 simulations) 129 0.102 × 10−2 9121 34.5 7.2 3.5 1.8
RBO-NN2 (500 simulations) 126 0.103 × 10−2 9114 15.8 3.3 1.7 0.9

RBO (1000 simulations) 120 0.103 × 10−2 9156 250.3 50.1 25.1 12.6
RBO-NN1 (1000 simulations) 127 0.101 × 10−2 9172 68.5 13.8 6.9 3.5
RBO-NN2b 122 0.97 × 10−3 9255 17.0 4.1 2.2 1.2

a For 100,000 simulations using the NN2 scheme.
b For 100,000 simulations.

conventional RBO procedure in sequential computing
implementation.

Table 4 also depicts the performance of the proposed
methodologies in a straightforward parallel mode, with
5, 10 or 20 processors in which 5, 10 or 20 Monte
Carlo simulations are performed independently and
concurrently. It can be seen that the parallel versions of
RBO, RBO-NN1 and RBO-NN2 reached the perfect
speedup irrespective of the number of processors used.

7. Conclusions

The implementation of a hybrid optimization proce-
dure, based on the combination of evolution strategies
and neural networks, in deterministic and reliability
based structural optimization problems was found to
be very effective. The time-consuming requirements
of repeated finite element analyses associated with
the deterministic based optimization procedure using
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evolution strategies motivated the use of neural net-
works. The computational effort involved in the opti-
mization procedure becomes excessive in large-scale
problems and the use of neural networks to predict the
necessary optimization data for evolution strategies
can practically eliminate any limitation on the size of
the problem, while the predicted structural response
corresponding to different optimization simulations
falls within acceptable tolerances.

The solution of realistic reliability based optimiza-
tion problems in structural mechanics is an extremely
computationally intensive task. In the test example
considered in this study the conventional reliability
based optimization procedure was found over 70 times
more expensive than the corresponding deterministic
optimization procedure. The goal of decreasing the
computational cost by one order of magnitude in se-
quential computing mode was achieved using: (i) NN
predictions to perform both deterministic and prob-
abilistic constraints check, or (ii) NN predictions to
perform the structural analyses involved in MCS.
Furthermore, the achieved reduction in computa-
tional time was almost two orders of magnitude
in parallel computing mode with the proposed NN
methodologies.

The methodology presented is an efficient, robust
and generally applicable optimization procedure ca-
pable of finding the global optimum design of compli-
cated structural optimization problems. Additionally,
it was found that the proposed hybrid optimization
methodology can reach the optimum for large and
computationally intensive problems at a fraction of the
computing time required by the standard implemen-
tation of evolution strategies optimization algorithm
and the conventional method based on mathematical
programming technique.
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