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Abstract

The design and operational tuning of the instruments and procedures employed in communi-

cations-navigation-surveillance (CNS) and air traffic management (ATM) often relies on

stochastic simulation techniques. In this paper the application areas of simulation in the

CNS/ATM context are reviewed together with the simulation methods that can help solve the

main problems encountered, i.e. quick simulation techniques for the simulation of rare events,

and the bootstrap technique for the evaluation of the accuracy of the results.
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1. Introduction

Both deterministic and stochastic simulation techniques are more and more used

in the context of communications-navigation-surveillance (CNS) and air traffic man-

agement (ATM). The driving factors are (i) the widespread availability of powerful
hardware and software tools; (ii) the trend to integrate different simulators, real
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equipment and human elements in a network (either local or geographical); (iii) the

increasing quality of models. Different breeds of simulators are employed, ranging

from real-time ones (for training and operational needs) to non-real-time one (for

the design and planning phases) and fast-time ones. In this paper the main simula-

tion problems encountered in the CNS/ATM context are reviewed and appropriate

simulation techniques are referred to. The relevance of fast-simulation techniques in

the ATM applications is mainly related to to the need to evaluate probabilities of

rare events, e.g. accidents, incidents or failures.
2. Application areas

Simulation is a fundamental aid to the ATM validation process, as can be seen

from its decomposition into six phases proposed in [27]: (a) paper (analytical) study;

(b) mock up and fast-time simulation; (c) real-time simulation; (d) shadow mode trial

with prototype; (e) live mode trial with prototype; (f) pre-operational validation.
Likewise, simulation in CNS is oriented to the design, fast prototyping, and per-

formance evaluation phases.

In the following the main areas of CNS/ATM operations where simulation is in-

volved are reviewed.

2.1. Safety of flights: aircraft separation and related standards

A major issue in the safety of flights is the establishment of adequate aircraft sepa-
ration standards and the fine tuning of the related procedures embodied in aircraft

separation assurance systems (ASAS). Several contributions to safety endangerment

due to different categories of events whose probabilities are distributed over a wide

range determine target levels of safety (TLS) as low as 10�9 (mid-air collisions per

flight hour) [37]. An important element is the modelling of collision risk on air

routes, whose numerical solution is difficult [2].

The main challenge here is the accurate evaluation of the very low probabilities of

events corresponding to stringent safety requirements.

2.2. Weather-induced risks

Weather phenomena (e.g. wake vortices, gust fronts, microbursts) may have a

determining influence on accidents, which is now evaluated through probabilistic

models in lieu of––or in addition to––the previous deterministic ones [22].

In addition to the rarity of events, an additional issue is the difficulty of modelling

weather phenomena as related to flight, according to the (often inadequate) experi-
mental data.

Wind shear is a type of air motion associated with many atmospheric processes.

Aircraft statistics have shown that many accidents are due to wind shear and wind

related phenomena. A general definition of wind shear refers to spatial/temporal

rates of variation of wind speed and/or direction and it becomes important from
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the aviation point of view only when it is of a certain types and strengths. Wind shear

may be expressed quantitatively in terms of the temporal and spatial derivatives of

the wind velocity vector.

2.3. Capacity of airports and airspace

In the planning phase the capacity of airports and airspace has to be assessed and its

relationship to flight delays has to be controlled. Several elements (e.g. gates, runways,
taxiways, parkways, surface movements guidance and control systems (SMGCS) for

short) have to be considered since they contribute to the overall evaluation [5].

The aim is to set load limits for ATM and for surface operations. Again, because

of the difficulty of modelling many of the variables involved, massive use of empirical

data (e.g. aircraft arrival rates) is done.

2.4. Flight scheduling and route allocation

New planning/scheduling of flights, with possible delays and detours, is needed

when safety criteria are in place and the terminal area and airport capacities are re-

duced. The analysis of schedule modifications (e.g. move flights to off-peak hours,

usage of less congested airports) to minimize delays, [23,35], is often conducted

through simulation, with the goal of arriving at effective scheduling procedures.

Large networks of queues are typically used as models and massive usage of empiri-

cal data is done.

2.5. Surveillance and aircraft tracking

The surveillance function, both in air traffic control and in SMGCS, is the main

input to the control guidance and planning/routing functions, whose aim is to pre-

vent accidents on the airport surface [12] or to predict deviations from the prescribed

path in the descent path [34]. The adequacy of the surveillance function to the overall

system requirements (TLS and others) can be assessed by analytical techniques in

some ideal situations (e.g. widely spaced targets, lack of manoeuvres) and in most
cases Montecarlo simulations are needed. Particular attention is paid to the surveil-

lance sensors, the main one being radar [18].
3. Advanced simulation techniques

From the examination of the problems described in Section 2 some common

threads emerge related to the simulation needs in the CNS/ATM context. The most
relevant issues appear to be the following:

(a) Simulation of complex systems;

(b) Rare event simulation;

(c) Simulation in the absence of mathematical models (use of recorded data).
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The first issue is a need imposed by the ever growing complexity of the systems

employed, especially when the system is actually made up of a large number of very

different interacting subsystems (e.g. a network).

Examples of simulation applications to complex systems

(1) Track-while-scan algorithms with interacting multiple models, where non-

linear blocks and non-Gaussian processes have to be simulated, typically through

the use of a Gaussian generator followed by the combination of a linear filter and

of a zero-memory non-linearity [10].
(2) Markovian models as characterised by a complex time evolution, whose closed

form solution is complicated or even intractable [11].

(3) Very large networks (10 000 or more nodes), where hybrid simulation

technique (i.e. the combination of analytical, equation-based, modelling for a fast

and approximate steady state solution and discrete-event simulation for the

detailed study of the dynamic behaviour of the network) are being proposed

[20].

(4) Simulation of weather-related phenomena, in particular rain and storms, and
of the weather radar signals.

Simulation of the signal received by weather radar, in its components in-phase and

quadrature (I and Q), is necessary to study the signal processing and the data extrac-

tion. By means of a signal simulator it is possible to evaluate the effectiveness of sig-

nal processing algorithms in perfectly known and controlled conditions. In fact the

use of real signals (i.e. acquired by a weather radar in some rain situation) does not

permit such an easy and exact check with the real parameters of the phenomena.

(5) Simulation models for microburst [1,32]:
Double sheet model [16,29,30] is a simple dynamic model of an incompressible,

irrotational flow without viscosity that can be generated by distributions of singular-

ity points as sources and vortexes. The sources are distributed on a plane at a height

H from the ground such to produce a current toward the lower part of the space for

a convenient horizontal extension. To assure that the ground is a surface of flow, an

image distribution of singleness is inserted for z ¼ �H .

Ring vortex model [7,8,19]: this microburst model is based on the generation of a

fluid field from a couple of ring vortexes. To describe the model closed form equa-
tions of the current flow around the ring vortex are used. The ring vortex current

flow is expressed by combination of complete elliptical integrals. A downburst

can be simulated using an horizontal ring vortex with radius RV at height HV in

correspondence of which a flow of air descends along the central axis z with velocity

Vz.

Finite element model [21,38] is a simple and realistic model again based on a sta-

tionary, irrotational and incompressible flow without viscosity. In this model the

characteristics of the microburst are implemented defining an opportune potential
function / at the upper bound of the considered region. This function is distributed

on a circular surface around the symmetry (usually vertical) axis. This model has

three parameters: the first defines the form and the intensity of the potential distri-

bution, the second characterises the height while the last shows the dimension of

the surface where the potential function is assigned.
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For the simulation of rare events several techniques are now available, and being

enhanced, aiming at the reduction of the computational cost (time) of the simulation

while maintaining its accuracy. The most relevant are the following:

• Importance sampling (IS);

• Repetitive simulation trials after reaching threshold (RESTART);

• Generalized extreme value theory (GEVT).

IS and RESTART are inspired by the same basic principle: altering the process

under simulation so to make rare events happen more frequently and then removing

the bias so introduced by appropriately weighting the simulation results (basically

the count of the number of occurrences of the event of interest).
3.1. Importance sampling

In IS, first applied to radar and digital communication systems [24] and more re-
cently employed for queuing and reliability models [17], the biasing is accomplished

by replacing the probability model that governs the actual phenomenon with a dif-

ferent model where the values of the random variable that lead to the rare event of

interest are more likely to take place (Fig. 1). In simplified terms, if the rare event

corresponds to the region E of the sample space and the actual probability density

function (pdf) of the N -dimensional vector variable that gathers the observations

is f ðxÞ, the probability of the event of interest is
P ¼
Z
E
f ðxÞdx ¼

Z
IEðxÞf ðxÞdx;
where IEðxÞ is the indicator function, being 1 if x ¼ fx1; x2; . . . ; xNg 2 E and 0 else-

where. This integral may be difficult to solve because of the particular shape of the

integrand function or of the integration domain, and the estimate
bPP ¼ 1

N

XN
i¼1

IEðxiÞ
would be affected by a very large statistical error due to the rarity of the event of

interest. If we alter the probability model, replacing f ðxÞ by f ðisÞðxÞ (the modified or

‘‘biased’’ pdf), the estimator
bPP ðisÞ ¼ 1

N

XN
i¼1

IEðxðisÞi Þ;
where the xðisÞi �s are drawn from f ðisÞðxÞ) actually estimates the probability P ðisÞ ¼R
E f

ðisÞðxÞdx that is different from P . But, if we multiply the simulation outcomes by

the weight wðxiÞ ¼ f ðxiÞ=f ðisÞðxiÞ, the resulting IS estimator bPPIS ¼ 1
N

PN
i¼1IEðx

ðisÞ
i Þ�

wðxðisÞi Þ is an unbiased estimator of P , since its expected value is:



Fig. 1. IS probability density function.
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E½bPPIS
 ¼
Z

IEðxÞf ðisÞðxÞwðxÞdx ¼
Z

IEðxÞf ðisÞðxÞf ðxÞ=f ðisÞðxÞdx ¼
Z

IEðxÞf ðxÞdx ¼ P :
In some cases, where the integrand function is not known, being the probability

density function of the output of a complex system, we may bias the input x of the

system and accordingly weight the simulation outcomes (i.e. the system output y),

exploiting the fact that
Z
IEðyÞfY ðyÞdy ¼

Z
IEðxÞf ðxÞdx
and following the above procedure.

A major problem in the implementation of IS is the proper choice of the biased

function f ðisÞðxÞ. Common ways to construct the ‘‘biased’’ pdf, when problems re-

lated to the exceeding of a threshold are considered (Fig. 1), are the following:
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• Shift: xis ¼ xþ Dx, Dx � 0

• Power increase: xis ¼ kx, k > 0.

Recent advances in IS concern the adaptive choice of this function, so to arrive at

the rare event probability estimation through an iterated process [31].

3.2. Restart technique

The RESTART technique, born in the context of high-speed communications

networks [33] is based on the assumption that the state space path leading the pro-

cess to the rare event (the target state) passes through some intermediate states, more

frequent than the target state. Hence, when the system passes through these inter-

mediate states, the process is altered by triggering the splitting of the trajectory:

the current system state is saved and a number of independent system sub-trajectories

(restarts) are simulated from that state. For example, in Fig. 2 the target state is rep-

resented by the crossing of the threshold H, while the intermediate state is repre-
sented by the crossing of the threshold L; the subtrajectories are the paths

B1D11;B1D12; . . . ;B1D1R. As reaching the target state is easier when starting from

the intermediate states, the probability of the rare event is so artificially increased.

The bias is removed by taking into account the number of restarts generated at each

intermediate state.

3.3. Generalised extreme value theory (GEVT)

In the GEVT technique, applied first to digital communication and radar systems

[36], [14] and then to queuing systems [3], the estimation of the probability of rare

events is based upon the extrapolation of the tail of the probability distribution of

the random variable of interest. This is done by dividing the N observations in m
groups and considering the greatest of the n ¼ N=m elements in each group, leading
X(t)

L
B1 B2

D11
D12 D13D1R

Interval of occurrence
of event F

Interval of occurrence
 of event E

H

Fig. 2. Trajectories in a RESTART simulation.
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to m maxima. According to Gumbel�s extreme value theory [15], the distribution of

maxima in a sample may converge, when n increases, to one of three possible asymp-

totes or not converge at all. We can therefore estimate the tail of this cumulative

distribution function (cdf) if we are able to tell the kind of asymptote (which is done

by assumption) and to assign proper values to its parameters (which is done by an

estimation procedure). By exploiting the relationship between the cdf of the maxi-

mum element in a group and the cdf common to all the elements of the group among

which the maximum has been extracted, we can arrive at the cdf of the random vari-
able of interest.

As the shape of the extreme value cdf tail is assumed to be known, the GEVT is

essentially a parametric technique; this is the reason for its strength with respect to

traditional simulation methods which are basically counting techniques. A conse-

quence of this feature is that the output of GEVT is not a point estimate, but a closed

form expression of the probability tail. The GEVT working hypothesis is that the

probability distribution of the random variable of interest belongs to the exponential

class (which includes the normal, log-normal, gamma, and K distributions, beside
the exponential one). A comparison of GEVT and IS is contained in [9].

A brief description of EVT and GEVT follows.

3.3.1. Extreme value theory (EVT)

If X1;X2; . . . ;Xn are n independent random variables with common distribution

FX ðxÞ and Yn ¼ maxðX1;X2; . . . ;XnÞ, the cdf of Yn is: FYnðyÞ ¼ ½FX ðyÞ
n. The EVT con-

siders the form of FYnðyÞ as n ! 1. Since the initial distribution FX ðxÞ is sometimes

unavailable, the aim is to examine whether there is an unique distributions for FYnðyÞ
when n ! 1 and independent of the form of FX ðxÞ.

This is not unlike looking for results similar to the central limit theorem.

While the distribution function FYnðyÞ becomes increasingly insensitive to the exact

distributional features of X as n ! 1 no unique results can be obtained which are

completely independent of the form of FX ðxÞ. Some features of the distribution

FX ðxÞ are important and the asymptotic forms of FYnðyÞ (and of the distribution of

the minima FZnðzÞ) are classified into three types based on general features in the dis-

tribution tails of X .
Consider the Gumbel�s type I asymptotic distribution of maximum values. It is the

limiting distribution of Yn (as n ! 1) from an initial distribution FX ðxÞ whose right

tail is unbounded and of an exponential type, that is, FX ðxÞ approaches the unity at

least as fast as an exponential distribution. For this case, we can express FX ðxÞ in the

form FX ðxÞ ¼ 1 � e�gðxÞ where gðxÞ is an increasing function of x. A number of impor-

tant distributions fall into this category, such as Normal, Lognormal, Rayleigh

and Gamma distributions. Denoting by FY ðyÞ the asymptotic distribution of the

maxima, i.e. lim
n!1

FYnðyÞ ¼ FY ðyÞ (in other words, let Yn converge to Y in distri-
bution), we have the following important result.

Theorem 1 ([13,15]). Let the r.v.�s X1;X2; . . . ;Xn be independent and identically dis-

tributed with the same distribution function FX ðxÞ. If FX ðxÞ ¼ 1 � e�gðxÞ, we have

FY ðyÞ ¼ exp½�e�aðy�uÞ
 �1 < y < 1 where að> 0Þ and u are the scale and the loca-
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tion parameter, respectively. In particular u is the mode of Y (i.e. fY ðuÞ is the maxi-

mum value of the probability density function of Y ), the mean of Y is mY ¼ uþ c
a,

where c ffi 0:577 is the Euler constant, and its variance is given by r2
Y ¼ p2

6a2.
3.3.2. Generalised EVT

Let FX ð�Þ; v > 0, be of the exponential type with respect to tv : FX ðtÞ ¼
1 � exp½�gðtvÞ
, where gð�Þ is an increasing function; by linearizing gð�Þ around the

point an such that FX ðanÞ ¼ 1 � 1=n, the cumulative distribution function of the max-
imum Yn, i.e. ½FX ð�Þ
n, becomes:
FYnðynÞ ¼ 1

�
� 1

n
exp

�
� yvn � av

n

cn

�	n

;

where cn ¼ bnvav�1
n with bn such that
FX ðan þ bnÞ ¼ 1 � 1

n � e :
Using
lim
z!1

1



þ a
z

�z
¼ expðaÞ
we have
lim
n!1

FX ðav
n

h
þ cnyÞ1=v

in
¼ expf�e�yg:
Weinstein [36] has shown that FX ð�Þ is an exponential type iff
lim
n!1

n 1
h

� FX ðav
n þ cnyÞ1=v

i
¼ expð�yÞ:
The GEVT approximation is based upon above expressions for a finite value of n;

for v ¼ 1 we obtain the classical EVT approximation.

Posing:
x ¼ av
n þ cny and a�n ¼ av

n;
the extrapolated tail is
1 � FX ðxÞ ¼
1

n
exp

�
� xv � a�n

cn

�

and the approximated distribution of the maxima is
F2ðxÞ ¼ exp

�
� exp

�
� xv � a�n

cn

�	

the parameter v allow to extend the domain where the approximation is fairly good

[with respect to the EVT (i.e. to v ¼ 1)].

From a given sample and the approximated distribution of the maxima, the rele-

vant parameters are estimated. The probability of exceeding any given value x (prob-

ability of false alarm, Pfa, in the radar case) is evaluated by equation
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1 � FX ðxÞ ¼
1

n
exp

�
� xv � a�n

cn

�
:

The result is exact for X ¼ an (by definition) and nearly exact in an interval

around an, widened by introducing the parameter v (GEVT).

The advantages of GEVT method are:

• valid for most probability distributions (Gaussian, Rayleigh, Gamma, Log-

normal, K)
• gives a closed-form expression of the probability tail : QðxÞ ¼ 1 � FX ðxÞ
• the algorithm is general (should not be adapted to the input data)

• the computational cost is acceptable.

The estimation problem is the following: given a sample: (x1; x2; . . . ; xN ) of the N
observations, it is divided into m groups (each of n elements) with N ¼ m � n, and the

m maxima are determined ðy1; y2; . . . ; ymÞ; the parameters a�n, cn, v are estimated from

the set ðY1; Y2; . . . ; YmÞ using the approximated distribution of the maxima
F2ðyÞ ¼ exp

�
� exp

�
� yv � a�n

cn

�	
:

The estimation of the parameter of the extrapolated tail can be done [14] by

means of:

• maximum likelyhood method (ML)

• linear approximation (LA).

The performance are equivalent and the latter is considered here; it has the advan-

tage of simplicity and is performed in the following steps:

1. The distribution of the maxima is linearized by the transformation F �1
2 ð�Þ

2. A linear regression model is assumed for the data Xv
i

3. The regression coefficients, a�n and cn, are estimated by the standard method (least

squares)

4. The parameter v is selected in order to maximise the correlation coefficient.
3.4. Evaluation of the accuracy: the bootstrap method

An important issue in the selection of the appropriate simulation technique is the

evaluation of its computational cost in comparison with other techniques, with the

goal of establishing preference domain of applicability for each technique on the

basis of the knowledge of the problem at hand, the size of the system under simula-

tion and the order of magnitude of the probability to be estimated [4,25].

A problem recurring in many of the application areas reviewed in Section 2 is that

the available observations of the phenomena involved (e.g. the delays incurred or the
extent of detours) are not amenable to mathematical models. As an alternative to the
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use of quite rough analytical approximations, the simulation approach can take ad-

vantage of the combination of the plug-in principle and the bootstrap method [6,26].

The plug-in principle allows us to bypass the need for a model of the probability

distribution function F of the random variable governing the phenomenon under in-

vestigation. If we are interested in a parameter of this distribution or in any quantity

that depends on this distribution through a function h ¼ tðF Þ, but we do not know F ,

we can replace the actual distribution function by its empirical counterpart F̂F (the

related density function has equal mass n�1 at each point xi) and obtain the corres-
ponding plug-in estimate from the application ĥh ¼ tðF̂F Þ. As the plug-in principle

solves the problem of estimating the parameter of interest when all we know about

the phenomenon is the observed sample of its realisations, the bootstrap methods

provides us with a straightforward evaluation of its accuracy. Given a sample x of

observations ðx1; x2; . . . ; xmÞ, on which basis we have obtained a single estimate ĥh
of the quantity of interest, we generate B bootstrap replications of x by resampling

with replacement from the original sample, i.e. by the application of a random poin-

ter to the entries of the vector gathering the observations. This is equivalent to gene-
rate B sets of m pseudorandom quantities each from the empirical distribution

function F̂F ðxÞ, using the well-known analytical inversion technique [28]. For each

of the bootstrap replications we can obtain an estimate ĥh�
i (i ¼ 1; 2; . . . ;B). Fig. 3

shows the scheme of the bootstrap method. The standard deviation of the

set ĥh�
1; ĥh

�
2; . . . ; ĥh

�
B


 �
is a basic indication of the accuracy of the estimate. Confi-

dence intervals can be built for ĥh by exploiting (for large values of B) or by approx-

imating the empirical distribution F̂F ðĥhÞ.
Fig. 3. Scheme of the bootstrap method.
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The bootstrap method can be used for hypotheses testing, a key element in the

applications considered here as well as in many signal processing applications

(e.g., in radar [18]) by generating B bootstrap statistics and using the Mth rank sta-

tistics (M being related to the level of significance: a ¼ ðBþ 1 �MÞ=ðBþ 1Þ.
As compared other methods, the bootstrap is very valuable when data sizes are

too small to use asymptotic result.
4. Conclusions

The main application areas of simulation in the context of CNS and ATM have

been reviewed. The most relevant challenges posed to the simulation techniques in

this context appear to be the simulation of complex systems, the simulation of rare

events, and the simulation in the absence of mathematical models (where recorded

data can be used instead). Three techniques, namely IS, GEVT and RESTART, have

been described for the quick simulation of rare events. The combination of the plug-
in principle and of the bootstrap method has been suggested as a tool to bypass the

lack of appropriate mathematical models.
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