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Abstract – Wireless ad hoc sensor networks (WASNs) are in need 
of the study of useful applications that will help the researchers 
view them as distributed physically coupled systems, a collective 
that estimates the physical environment, and not just energy-
limited ad hoc networks. We develop this perspective using a 
large and interesting class of WASN applications called 
aggregation applications. In particular, we consider the 
challenging periodic aggregation problem where the WASN 
provides the user with periodic estimates of the environment, as 
opposed to simpler and previously studied snapshot aggregation 
problems. In periodic aggregation our approach allows the 
spatial-temporal correlation among values sensed at the various 
nodes to be exploited towards energy-efficient estimation of the 
aggregated value of interest. Our approach also creates a system 
level energy vs. accuracy knob whereby the more the estimation 
error that the user can tolerate, the less is the energy consumed. 
We present a distributed estimation algorithm that can be 
applied to explore the energy-accuracy subspace for a sub-class 
of periodic aggregation problems, and present extensive 
simulation results that validate our approach. The resulting 
algorithm, apart from being more flexible in the energy-accuracy 
subspace and more robust, can also bring considerable energy 
savings for a typical accuracy requirement (five -fold decrease in 
energy consumption for 5% estimation error) compared to 
repeated snapshot aggregations.  
 

Keywords: sensor networks, aggregation applications, distributed 
estimation, energy vs. accuracy trade-off.  

I. INTRODUCTION 

The technological advances in embedded computers, 
sensors, and radios have led to the emergence of wireless ad-
hoc sensor networks (WASNs) as a new class of system with 
uses in diverse and useful applications. Indeed, the early 
papers in the area [6][7][13][15] talk about the vision of cheap 
self-organizing ad-hoc networks that are able to perform a 
higher level sensing task through the collaboration of a large 
number of cheaper and resource constrained wireless sensor 
nodes. Leveraging numerous sensing devices placed close to 
the actual physical phenomena, the information that such 
networks can provide is more accurate and richer than the 
information provided by a system of few, expensive, state-of-
the-art sensing devices. Since WASNs operate largely 
unattended, often in environments where the access cost of 
deploying or maintaining nodes is high, a key problem in 
designing WASNs is how to prolong their useful lifetime by 
conserving energy. Consequently, a large fraction of research 
in WASNs has been dedicated to aspects of the energy-
efficiency problem.   

The original vision and promise of WASNs was that 
multiple nodes collectively perform the sensing task requested 
by the users and communicate the results to the users. 
However, most of the research so far has simply viewed 
WASNs as just another kind of wireless ad hoc networks, 
albeit one composed of nodes that are more energy-
constrained and whose data sources are sensors. So, for 
example, much work has focused on issues such as energy-
efficient MAC and ad hoc routing protocols to realize the 
needed point-to-point and point-to-multipoint communication 
patterns in WASNs. But, little has been done to develop an 
understanding of a WASN as a collective or an aggregate 
where sensor nodes collaborate to jointly estimate the desired 
answer about the sensed environment. In part this is because 
not many actual applications useful to the end-user have been 
studied. The only notable exception is the target-tracking 
problem, which has drawn attention from several research 
groups. Otherwise, the applications that have been examined 
are usually "toy" scenarios used to showcase the abilities of 
protocols and programming frameworks (e.g., [10]), or very 
specific applications examined for the sake of some energy-
saving technique (e.g., [11]).  

In this research we have made a first attempt at exploring 
and understanding the performance of a WASN as a collective 
that performs a sensing task. We examine a general class of 
WASN applications that we call aggregation applications 
where the desired answer depends on the sensed value at 
multiple nodes. In particular, we explore the energy vs. 
accuracy subspace, i.e. how much energy savings can one get 
by relaxing some accuracy requirements and vice versa. We 
propose an algorithm that exploits this trade-off and jointly 
considers networking and signal processing issues to create a 
distributed estimation mechanism.   

A.   Aggregation Applications 

Many of the examples and simple applications presented in 
WASN research are based around some kind of aggregation 
function. The most popular and simple examples of 
aggregation functions are "maximum" and "average". That is, 
a user may be interested in knowing the max (or average) of a 
value in the WASN or in some restricted area of the WASN. If 
this function needs to be performed once, we refer to it as 
"snapshot aggregation". If the user needs an update in periodic 
intervals we refer to it as "periodic aggregation".  

The snapshot aggregation problem is trivial for a single 
static user. The user sends a request to flood the sensor 
network (or the area of interest). Upon reception of a request 



message a node sets the sender of the message as its parent, 
leading towards the user. This way an aggregation tree is 
formed with the user node at its root. Data are flowing along 
the aggregation tree towards the user while being aggregated 
at intermediate nodes. For instance, in the max function a node 
receiving multiple values (i.e., its own local reading and 
values sent by other nodes) finds their maximum and sends it 
to its parent. For more details on snapshot aggregation the 
reader can refer to [2][3].  

More generally, in aggregation applications, the user seeks a 
condensed view of the physical environment the WASN is 
monitoring, or a condensed view of the network's state. To 
achieve this, the values from all the nodes (i.e., sensor 
readings or node state values) are aggregated to a size-
bounded vector describing this condensed view. Furthermore, 
several important properties hold for the aggregation process: 
(i) multiple local values can be combined to an aggregated 
description with a single pass, (ii) multiple aggregated 
descriptions and multiple local values can be combined to an 
aggregated description with a single pass. These properties 
permit the aggregation process to be done easily within the 
network, without the need for multiple passes of the data. A 
counter-example is the calculation of median, as it requires 
two passes of the data. The bound on the aggregated 
description (i.e., vector) is O(1). In order to include more 
specific cases of applications (like some referenced in related 
work) the bound can be relaxed to O(N), where N is the 
number of nodes in the network.  

Some examples more advanced than "max" and "average" 
include: (i) approximate contours of nodes' residual energy 
(similar to the specific case studied in [16]), (ii) approximate 
the boundary line between sensing and no-sensing (e.g. of 
light) with a straight line or a parabola (similar to the specific 
case studied in [11]). Whatever the aggregation function is, the 
basic structure of in-network processing in snapshot 
aggregation remains the same, combining values and 
descriptions at intermediate nodes until the final aggregated 
description reaches the user. This kind of in-network 
processing is similar to traditional distributed/parallel 
computing where precise information is handled and the 
correct execution of the algorithm often depends on the right 
number and order of messages exchanged. We call such 
processing  type-I. 

If periodic aggregation is needed then one could run 
snapshot aggregations periodically, executing accurate  type-I 
algorithms periodically. This indeed is the conventional 
approach.   

B.   Our contribution: Distributed Estimation Approach 

In WASNs though, unlike traditional distributed computing 
systems, there is a strong coupling to the physical world as we 
are monitoring some parameters of a physical process. The 
WASN by its nature can only sample this physical process, 
which in turn implies that we are only getting an 
approximation of the parameters sought. Once this point is 
understood, it is realized that the algorithms in WASNs have 

an inherent extra dimension: accuracy. We can exploit this 
extra dimension to produce more energy efficient algorithms . 
The less accuracy is required, the more energy can be saved 
using proper algorithmic techniques. For example, in our 
particular case, the spatial-temporal correlation of sensor 
node's values is leveraged to create estimates of the aggregated 
descriptions of the environment. The less accurate the 
estimates need to be, the fewer messages need to be 
exchanged. We argue that approximation and estimation are 
an inherent part of WASN algorithms and should be taken into 
account while designing algorithms for WASN. We call such 
type of in-network processing type-II. Type-II  algorithms  are 
essentially distributed estimation algorithms.  

Essential to our development of such distributed estimation 
algorithms is the joint consideration, or co-design, of the 
signal processing algorithms and networking protocols that 
have thus far been treated separately in WASNs. In this paper, 
we propose a distributed estimation algorithm that explores 
the energy/accuracy subspace for the periodic aggregation 
domain.  

We have validated our approach through simulation using 
the "max" aggregation function as an example. The “min” 
aggregation function is completely symmetrical. Note that the 
“max” aggregation function can be on any property of the 
actual local measurements. For instance, if we are interested in 
the maximum rate of change among local measurements, the 
aggregation function will be done on the derivatives of the 
local measurements. We are currently working to extend our 
algorithm to the more general kth max case. In its current form, 
the algorithm cannot be applied to summary aggregation 
functions [17] like “average”, “count” etc.  

In section II we examine related work. In section III we 
introduce some initial approaches to the problem. In section 
IV we describe our distributed estimation algorithm. Section V 
presents simulation results. Finally, section VI concludes the 
paper. 

II. RELATED WORK 

Aggregation applications have been popular among 
researchers in WASN. This is mainly because the concept of 
aggregation is simple enough to be executed at each node with 
minimal effort. The main problem is how to orchestrate the 
whole procedure to save energy. Efforts such as [4] and [9] 
seek to provide a framework for flexible aggregation in sensor 
networks. They investigate constructs to program the sensor 
network to perform arbitrary aggregation functions. However, 
all the prior work has been mainly concerned with snapshot 
aggregation and has only superficially acknowledge the 
energy/accuracy trade-off present when continuous periodic 
aggregation is considered.  

For example, in [17], authors have developed an 
aggregation service for ad hoc networks of TinyOS motes. 
The aggregates are processed in the network by computing 
over the data as it flows through the sensors; what we term as 



snapshot aggregation. The main contribution of the paper is to 
provide a simple, declarative interface for carrying out 
snapshot aggregation using database query languages. More 
specifically, authors have developed a query processing 
system based on SQL for extracting information from a 
network of sensors. The authors show a significant 
performance improvement as compared to traditional 
centralized, out-of-network methods, emphasizing the need of 
carrying out in-network processing in WASNs. They are 
restricted to type-I processing though. We take a step further 
to acknowledge the energy-accuracy space and propose type-II 
algorithms for the aggregation problem, which are more robust 
and flexible than type-I algorithms, as shown in this paper. 
Research work that is trying to provide a general framework 
for programmable sensor networks, such as  [10], also 
considers aggregation to illustrate the capabilities. They too 
are restricted to snapshot aggregation.  

More relevant to our work are efforts that view a very 
restricted portion of the aggregation realm but nevertheless try 
to provide algorithms for the periodic aggregation case. In 
[16] the authors are concerned with the problem of providing a 
residual energy map of the network. They do so by calculating 
the "equi-potential" curves of residual energy with some 
tolerance.  Their aggregation function is quite simple, as they 
do not consider approximation in location (two curves engulf 
accurately all nodes with residual energy within the tolerance 
unit). A more advanced aggregate function could try to fit an 
accurate convex curve (having arbitrary many points) with a 
fixed-point convex curve. Furthermore when the authors are 
concerned with the problem of periodically update the residual 
energy map they resort to the simple scheme of incremental 
updates. That is, if a node changes its value over the tolerance 
limit its value is transmitted and aggregated again in some 
intermediate node. The final change should  eventually reach 
the user. There is no provision to predict changes or try to 
estimate correlation between values so one can set the 
threshold less conservatively.  

In [8] the authors are concerned with the problem of 
monitoring the values of every sensor over time. This can be 
considered as a degenerate version of an aggregation function 
where a node does not actually aggregate or merge any data. 
However the basic notion of spatial-temporal correlation 
between the sensor values exists and a periodic monitoring 
scheme can try to exploit it, as an aggregation scheme would 
do. The authors note that this spatial-temporal redundancy is 
exploited in video compression to save storage size and/or 
bandwidth. They try to use and modify the basic techniques of 
MPEG-2 for sensor network monitoring to save 
communication traffic and thus energy. Essentially a central 
node is calculating predictions and transmits them to all the 
nodes. The nodes send their update only if it is different from 
the prediction. There is a hierarchy of nodes to perform this 
task more distributed. The scheme proposed in [8] raises 
questions on whether the prediction transmission is actually 
more efficient in a large random network. Unfortunately their 
algorithms are tested in small networks where every node 

belongs to just one cluster (i.e., every node is one hop away 
from the central node). 

III. INITIAL APPROACHES 

Since distributed estimation for aggregation applications is 
not a well-researched area, it is beneficial to start by 
describing some of the intuitive approaches to the problem. 
The different approaches are individually useful under certain 
circumstances but they cannot be applied universally. For each 
approach we will identify some of its major weak points. 
Through this process the reader can get a deeper insight into 
the problem and appreciate its difficulty in the general case. 
We will be considering the “maximum” as the aggregation 
function to make our statements more concrete, without loss 
of generality.  

A.   Centralized - simple  

The user node gets the values from all nodes at some update 
rates. As the user learns about the dynamics of the process it 
computes the optimum update rate for each node and 
communicates that decision to each node. Problems with this 
approach: (a) centralized, (b) the processing power at the 
nodes is not leveraged, and (c) although the nodes locally 
know their values continuously, this solution only samples the 
local values at different update rates. In essence the user 
"visits" the different node locations and samples the values at 
different update rates (depending on his previous 
measurements). The WASN is used only as a network , 
connecting the locations to the user, so that the user does not 
have to physically take the trip. One can do better by 
leveraging the computation capabilities of the nodes in 
WASNs.  

B.   Centralized - leveraging more computational and sensing 
power 

The user node gets the values from all nodes at non-regular 
intervals. The user computes the global maximum and based 
on previous values it predicts how the global maximum is 
going to evolve. This prediction (a function of time) is 
transmitted to all the nodes. At every sampling interval the 
node compares this prediction with its own value. If the local 
value is larger then it should be transmitted towards the user. 
This way the processing in the nodes is leveraged, as well as 
the capability of the nodes for continuous sensing. Problems 
with this approach: (a) still centralized, (b) does not adapt well 
to fast changing physical processes (because the prediction 
should be send too often), (c) the computational capabilities at 
the nodes are used minimally. 

C.   Distributed - simple heuristic 

An aggregation tree is formed with data flowing from 
children to parents. The data are aggregated in intermediate 
nodes until they reach the user. Each node receives locally 
aggregated values from its children at different update rates. 
Depending on the values received by the children and its own 
value, a node decides how to assign new update rates based on 



its own update rate (i.e., the rate that its parent is notified). So 
every child gets a number [0...1] and the parent's update rate. 
If a node's update rate is changed (by its parent), the node 
notifies its children of the new update rate. This is essentially 
the distributed case of the first approach. The problem with 
this approach is that computational and sensing capabilities 
are still not leveraged. 

D.   Distributed - leveraging more computational and sensing 
power 

If we want to leverage the ability of the nodes to sense 
constantly we can enhance the previous scheme with 
feedback. A node sends the current local aggregated value 
back to its children. The children decide to send or not their 
value according to their own readings. There is no need for 
specified update rates. A node transmits based on the local 
values constantly sampled, and the partial information on the 
globally aggregated value received by its parent. Problems 
with the approach: (a) temporal-spatial correlation is not used 
in a predictive scheme, (b) poor performance in fast global 
max decreases. 

IV. DISTRIBUTED ESTIMATION ALGORITHM  

In this section, we propose a distributed estimation 
algorithm that can be applied to a large class of aggregation 
problems. More specifically we classify aggregation functions 
into two categories: (i) aggregation functions whose result is 
determined by the values of a few nodes (e.g., the max result is 
based on one node), and (ii) aggregation functions whose 
result is determined by the values of all the nodes (e.g., the 
average function). We have found that different kinds of 
distributed estimation algorithms are required in order to deal 
efficiently with each of the categories. In this paper we only 
consider the first case, i.e., aggregation function that find or 
approximate some kind of boundaries (e.g., minima, maxima), 
and hence the aggregation result is determined by the values 
of few nodes. This still includes a large number of interesting 
applications (e.g., approximate a shadow of light using a 
straight line and tracking it through time). In the rest of the 
paper, if we need to refer to a specific aggregation function we 
will use the simple scalar max function. Finally, another point 
to note is that the proposed algorithm does not assume any 
knowledge about the underlying physical process. 

A.   Basic Approach 

Instead of transmitting a partially aggregated result, as in 
the snapshot aggregation case, each node keeps and possibly 
transmits an estimation of the global aggregated description. 
The global aggregated description in its most general form 
would be a vector quantity.  An estimate in its most complete 
form is a probability density function (pdf) of the value (or 
vector) that is being estimated. Most of the times though, due 
to insufficient information, ease in computation or lack of 
proper estimation theory tools, an estimate has the form: 
(estimated value, confidence indication), which in estimation 
theory nominally means: (average of estimated vector, 

covariance matrix of estimated vector). For both reasons of 
compactness and manipulability with estimation theory 
methods, we chose to represent estimates in the form (A, PAA) 
with A being the mean of the aggregated vector and PAA being 
the covariance matrix of vector A. For the max aggregation 
function, vector A becomes a scalar denoting the mean of the 
estimated max, and PAA becomes simply the variance of A.  

In snapshot aggregation, a node cannot change the rate at 
which they send predictions to their parents. Whatever the 
initial user update rate is, a node has to keep it. This is because 
a node receives little information about the global maximum, 
as it has no idea what is happening beyond its parent. In our 
approach a node accepts estimations from all of its neighbors. 
This way the node gradually gains knowledge of the global 
situation and can also decide whether its own information is 
useful to other nodes or not. If the decision is positive (i.e., the 
estimate could be useful to other nodes) it should transmit the 
new estimate. Unlike snapshot aggregation where the node 
transmits its estimate to a designated node (also called its 
parent), in our scheme the node broadcasts its estimate. Thus 
every node in the neighborhood shall receive this new 
estimate.   

Note that with this approach there is no need to create and 
maintain a hierarchical parent-child structure. Every node has 
information about the globally aggregated value. This is a 
strong point of our approach since it can operate effortlessly 
with multiple users, mobile users, failing nodes, and failing 
connections between the nodes, events that are very common 
in WASNs. The global information is everywhere not just at 
the root of an aggregation tree as in the snapshot aggregation 
case. If the distributed estimation algorithm we are applying is 
successful then the nodes should not have great variance 
among their estimates and the estimates should also be close 
to the actual aggregated value. Indeed we show these desired 
properties of our algorithm in section V via simulations. 

B.   Modular Structure 

The working of the algorithm can be subdivided into the 
following major points: 

• Every node has an estimated value of the global 
aggregated value (henceforth called “global estimate” or 
“estimated global value”) in the form: (mean, covariance 
matrix). 

• When a node makes a new local measurement, it updates 
its global estimate. It then decides if it is worthwhile to 
transmit this new global estimate to its neighbors. 

• When a node gets a global estimate from a neighboring 
node, it combines this estimate with its own global 
estimate and forms a new global estimate. It again takes 
a decision whether it’s worthwhile to transmit this 
updated estimate or not. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Modules of the generic algorithm. 

Figure 1 represents the modular breakup of this algorithm. 
In the next subsections, we discuss the modules A, B, C and D 
in detail. 

C.   Fusing two global estimates 

This subsection corresponds to module  B shown in Figure 1. 
We need a data fusion algorithm to combine two global 
estimates into a new estimate. A popular and effective 
algorithm to fuse two estimates is the Kalman Filter. 
Unfortunately, the Kalman Filter requires that the two 
estimates are independent or that we know their dependency 
by means of their covariance matrix PAB. In the distributed 
environment we are operating, we cannot keep track on 
“which node received what information by which node”. Thus 
we do not know how much redundant (dependent) information 
exists in an estimate a node receives.   The most suitable 
algorithm in our case is covariance intersection [5]. 
Covariance Intersection (CI) can be viewed as a generalization 
of the Kalman Filtering. The principal advantage of CI is that 
it permits filtering and data fusion to be performed on 
probabilistically defined estimates without the need to know 
the degree of correlation among those estimates. Thus, CI 
makes no assumptions on the dependency of the two pieces of 
information, when it fuses them. 

Given two estimates (A, PAA) and (B, PBB), the covariance 
intersection combined estimate (C, PCC) is determined by the 
following equations: 

.))1(( 111 −−− −+= BBAACC PPP ωω                       (1)  

).)1(( 11 BPAPPC BBAACC
−− −+= ωω                    (2) 

Here PAA, PBB, and PCC represents the covariance matrix 
associated with estimates A, B and C respectively. The main 

computational problem with CI is to compute ω , 10 ≤≤ ω , 
such that the trace of the PCC determinant is minimized. 

For the case of the max aggregation function, covariance 
matrixes are simple scalars. It can be observed from equations 
1 and 2, that for such a case ω  can be either 1 or 0. 
Subsequently, PCC is equal to the minimum of PAA and PBB. 
Accordingly, C becomes equal to either A  or B  depending on 
the value of PCC. Even if the estimates are vectors of a small 
number of scalars (e.g., find the 2nd or the 3rd max/min) there 
are computationally efficient algorithms  [5] to determine ω . 

D.   Fusing a local measurement with a global estimate 

This subsection corresponds to module A  shown in Figure 1. 
Until now nothing was assumed about the specific aggregation 
function (apart from the fact that it belongs to one of the major 
categories of aggregation functions as discussed in the 
beginning of section IV). The functionality of this module 
depends on the aggregation function performed (e.g., this 
module should be different for finding the maximum or the 
minimum aggregated value). Since the quantities we want to 
fuse are so different, there is no general fusion theory to 
combine them (like fusing two global estimates), thus we 
resort to heuristics. The heuristic fusion rule has to answer the 
question: “How does a local measurement affect a global 
estimate?” We describe the module’s functionality for the 
problem of finding the global maximum. The methods used in 
our example can be used as guidelines in more complex 
aggregation functions. 

We begin by modeling the local measurement, as a mean 
and a variance, like the global estimate. The mean is the actual 
measured value and the variance represents the variance of the 
measurement noise. Since the quantities we want to fuse are so 
different, there is no general fusion theory to combine them 
(like fusing two global estimates). Thus, we resort to breaking 
up the problem in two different cases and use heuristics to fuse 
the data. The proposed heuristics need the actual distribution 
of the global estimate and the local measurement. Since only 
mean and variance information is available the best choice is 
the gaussian distribution (gaussian distributions are the 
maximum entropy distributions for given mean and variance). 
Let us call the local measurement distribution l(x) and the 
global estimate distribution g(x) . The two different cases of 
the fusion rule are given below: 

 

 

 

 

 

 
 

 

Figure 2. Distributions of global estimate g(x) and local measurement l(x). 

Module A 
FUSE 

Module B 
FUSE 

Module C 
DECIDE 

Module D 
DECIDE 

Local measurement

Current estimate Estimate 
from neighbor

New estimates 

Transmit new estimate 
to neighbors  

Do NOT transmit new 
estimate to neighbors 

l(x) 

g(x) 

x 



D.1 Mean of local measurement is larger than the mean of the 
current global estimate 

To analyze this case, consider the simplistic case where the 
current estimate and local measurements are simple scalars 
and not distributions. Clearly, the new estimate should be the 
local measurement. We need to extend this argument for the 
case when estimate and local measurements are modeled as 
distributions. Figure 2 represents this case. 

In this case, the distribution corresponding to the new 
estimate cannot be simply l(x). This is because although mean 
of l(x) is greater than that of g(x) , there is a non-zero 
probability that the value of the new measurement is smaller 
than the old estimate. Hence, the resultant distribution should 
be calculated taking into account both the local measurement 
as well as the old estimate. Recall that the value of the 
distribution at any x’ (g(x’) or l(x’)) represents the confidence 
(or certainty) which can be associated with this x’ in the 
estimate (g(x) or l(x)). We use a simple heuristic that the 
confidence associated with any x’ in the new estimate should 
be simply the sum of the confidence associated with this  x’ in 
the measurement (l(x’)) and the earlier estimate (g(x’)). Also, 
as the objective is to calculate the maximum aggregated value 
we assign a higher weight to a potentially higher value (in this 
case the local measurement). Thus the resultant distribution, 
corresponding to the new estimate, is calculated by taking a 
simple weighted sum of the two distributions as follows: 

.1)(0)()}(*)({)( 11 ≤≤∀+= xwxlxgxwxgnew           (3) 

Finally, we calculate the mean and variance of gnew(x) so 
that we can represent the new global estimate in the form: 
(mean, covariance matrix).   

D.2 Mean of local measurement is smaller than the mean of 
current estimate  

We again combine the two distributions as in the previous 
section, assigning a higher weight to the distribution with the 
larger mean (in this case the old estimate). 

.1)(0)()}(*)({)( 22 ≤≤∀+= xwxgxlxwxgnew         (4) 

However, the situation is not so trivial in this case. If the 
value decreases at every node, our estimate should track this 
decrease rapidly. Although equation (4) can handle minor 
fluctuations it performs poorly in sharp falls of the global 
maximum. To account for this issue we use the following rule: 
If the previous local measurement was close to the global 
estimate (closeness determined by a fixed fraction value) we 
assign the higher weight to the local measurement, reasoning 
that the specific local measurement is still the global 
aggregated value. We achieve this by calculating the new 
estimate using equation (3) instead of (4).  

Note that even if a new (smaller) estimate is wrongly 
generated following this  rule, the particular node will be 
promptly corrected by one of its neighbors, which will 
transmit the “correct” (higher) estimate.    

 
 

 

 

 

 

 

 

Figure 3. Bounded distributions. 

D.3 Calculating w1(x) and w2(x) 

In this subsection, we present a simple heuristic way in 
which w1(x) and w2(x) can be calculated. We make an 
approximation that all Gaussian distributions are bounded 
within the interval [µ-3σ,µ+3σ], where µ and σ2 represent the 
mean and variance respectively. The approximation is derived 
from the well-known property of gaussian distributions stating 
that a gaussian distribution’s values lie in the interval [µ-
3σ,µ+3σ] with a probability of 99.7%. 

Let us first consider the case, when the mean of local 
measurement is larger than the mean of the current estimate.   
Figure 2 is redrawn in Figure 3, but now the distributions are 
bounded within finite limits. This means that l(x) and g(x) can 
take nonzero values only in interval [x1, x2] and [y1, y2] 
respectively. 

The global aggregated value should at least be equal to the 
current measurement. Hence we should assign zero probability 
to the points on the left of x1. Thus w1(x) can be defined as: 





−>∀
−≤∀

=
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1 31
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σµ
σµ

x
x

xw                           (5) 

Note that x1 is equal to µ1 - 3σ1, where µ1 and σ2
1 represent 

the mean and variance of l(x) respectively. Figure 4 represents 
the case, when the mean of local measurement is smaller than 
the mean of the current estimate. We assign a zero probability 
to points on the left of y1. The assumption is that the value 
won’t fall too drastically within a sampling period. Moreover 
as explained earlier, we should assign zero probability to the 
points on the left of x1. Thus w2(x) can be defined as: 
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

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)(
2211
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x
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Note that y1 is  equal to µ2 - 3σ2, where µ2 and σ2
2 represent 

the mean and variance of g(x) respectively.  

We normalize the resultant function appropriately so that it 
represents a valid probability distribution. Although we are 
combining two bounded  gaussian distributions, we make an 
assumption that the obtained distribution is still represented by 
a gaussian  distribution. This is done in order to  maintain the 
consistency  of  the  estimates. The  mean and  variance of  the  
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Figure 4. Bounded distributions. 

new gaussian distribution represents the new estimate and the 
confidence (or certainty) associated with this new estimate 
respectively. 
E.   Making the decision 

This subsection corresponds to modules C and D in Figure 
1. These modules directly affect the tradeoffs one can achieve 
in the energy-accuracy subspace. When a node calculates a 
new estimate, it should not necessarily transmit it. In fact it 
should transmit only if this new estimate can bring a 
significant change in one of its neighbor estimate. 

This raises a question, how does a node know whether its 
new estimate is going to affect the estimates of its neighbors. 
For this purpose every node maintains a table where it stores 
the most recent estimates received from its neighbors. Let us 
call this table the estimate_table. A node, after calculating its 
new estimate (by using modules A or B), combines this 
estimate with every estimate in the estimate_table, by using 
the same algorithm as in module B. The node then calculates 
the difference between the new generated estimate for every 
neighbor and the old estimate. If this difference is beyond a 
preset threshold for any of the neighboring nodes, the node 
broadcasts its new estimate. The threshold is expressed in 
terms of a fraction, i.e., a number in [0…1]. 

Note that the threshold should be on both the mean and the 
variance. So even if the mean remains the same, but the 
variance has changed significantly, the node should still 
broadcast its value. We represent the thresholds on mean and 
variance as meanT and varianceT respectively. In the current 
implementation, we keep both meanT and varianceT to the 
same value.  

Let us observe closely what does the threshold physically 
mean. Suppose we set meanT to be 0.05. This means if the 
node observes a change greater than 5%, it shall broadcast its 
estimate. This also means that all changes less than 5% are left 
unnoticed. Thus, the algorithm can converge to a global 
aggregated value that is off by at most 5% from the actual 
value. Thus, the threshold directly relates to the accuracy of 
the global estimate in each node, and consequently the 
accuracy of the estimate that the user receives . The threshold 
also relates directly to the energy expenditure of the sensor 
network, as it decides the amount of traffic being generated in 
the network. Thus, the higher the threshold is, the lower the 

accuracy is, and the higher the energy savings are. In fact, the 
threshold gives the user a control knob in the energy-accuracy 
subspace. This parameter is  set depending on the user 
requirements.  

We should also try to control the overhead of passing on 
redundant information. This will be clear from the scenario 
shown in Figure 5. Suppose that nodes I, J and K are in each 
other’s neighborhood. Suppose node I measures a local value, 
which changes its estimate. After combining this estimate with 
the values in its estimate_table, node I decides to broadcast its 
new estimate. Both node J & K get this new value and will 
update their respective estimates accordingly. Now node K (or 
J) is unaware that   the estimate of J  (or K) has also changed. 
So when node K (or J) runs its decision making step, it will 
find out that it should broadcast this new estimate as it can 
change the estimate of J (or K) considerably. Thus the same 
estimate is propagated again.  

This overhead can easily be avoided by simply maintaining 
information about two-hop neighbors at every node. When a 
node gets a reading from another node (say X), it only checks 
for those nodes (in the estimate_table) that are in its own 
neighborhood but not in the neighborhood of  X. Thus, in the 
above example when K (or J) gets the reading from I, it does 
not broadcast as it realizes that J (or K) is also in the 
neighborhood of I. The two-hop neighborhood information 
can easily be acquired with a protocol like the one in [1], at 
the network boot-up phase. However when nodes die this 
information might get outdated. If a node does not keep track 
of such dying nodes, it might just potentially spend some 
unnecessary energy in making sure that information reaches 
dead nodes (which it believes are still alive). Note that 
irrespective of the strategy that a node follows, the accuracy of 
the algorithm rema ins unaffected.  

F.   Insights 

In this subsection, we give some insight on the current 
model, as well as motivate more complex models. 

F.1 Robustness of the algorithm 

In this subsection we will discuss the robustness of our 
proposed scheme and compare it with that of snapshot 
aggregation. First let us summarize some of the key properties 
for our algorithm: 

• The algorithm is completely distributed and localized 
(nodes exchange information only with immediate one-
hop neighbors).  

 

 

 

 

 

Figure 5. Eliminating redundant transmissions. 
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• There is no need for time synchronization between the 

nodes. Moreover, there is no requirement on the number 
or order of messages that a node should receive. If a new 
estimate is received the current estimate is updated.  

• All the nodes perform the same functions, and compute 
the same results. Every node has an estimate of the 
global aggregated value. There are no special nodes. 

Contrast these properties to the properties of snapshot 
aggregation:  

• There is a hierarchical parent-child structure. 

• The parent should receive an exact number of messages, 
equal to the number of its children. 

• The final result is only available at the user node. 

As a result our algorithm performs exactly the same with   
mobile users and multiple users (the global estimate is 
available everywhere). Failing nodes, failing links, non-
reliable transport protocols and MACs , deteriorate accuracy 
slowly, as only the information of the failing nodes/links is 
lost and this is usually redundant information. This robust 
operation of the algorithm is a great advantage in the dynamic 
environment of WASNs where node failures and mobile users 
are the norm rather than the exception.  

Snapshot aggregation on the other hand is very sensitive to 
the stability of the hierarchical structure. If a parent node dies, 
all its descendents are cut off from the functionality of the 
algorithm and it results in generating poor estimates of the 
global aggregated value. Further more, if a user moves, a new 
aggregation tree needs to be formed in order to receive the 
aggregated value. This is translated in more energy 
consumption. 

F.2 Choosing the threshold 

The energy-efficiency and accuracy of the algorithm heavily 
depend on the chosen threshold. As the simulation results 
reveal in section V there is a very concrete dependency of 
threshold, energy spent, and accuracy achieved. If a user 
knows some of the macro characteristics of the physical 
process being monitored, then based on the graphs provided in 
section V he can knowledgably chose a threshold that fit his 
needs. What the user needs to know is how dynamic the 
process is. For example, how fast do the values fluctuate and 
in what dynamic range? Intuitively a more dynamic physical 
process will put a greater strain in our distributed estimation 
process, requiring more energy for the same accuracy. Indeed 
this intuition is validated from the simulation results. 

The more interesting problem rises though when the user 
has no information on the physical process being monitored.  
In such a case, setting a threshold does not provide immediate 
information on the actual accuracy achieved. The only known 
fact is that the accuracy is less or equal than the chosen 
threshold. The only other parameter than can provide the user 
with some indirect information about the accuracy is the 

variance associated with the mean estimate. Recall that 
variance represents the degree of certainty that should be 
associated with the estimate. Hence, if a user gets an estimate 
with a large variance, he should try to decrease the threshold 
and vice versa. Currently we are in the process of developing 
an analytical model to provide guidelines to the user, so that 
he can adjust the threshold on-line. Furthermore, the energy 
spent at the user node can be used as an estimate of the 
average energy spent in nodes (recall that our algorithm is 
fairly homogenous in energy consumption). So even with no 
physical process information the user can acquire an estimate 
for the accuracy achieved, as well as for the energy spent, on 
the fly. In some rare cases with very dynamic processes and 
little spatial-temporal correlation between the nodes’ values 
the user could be advised to resort to the periodic execution of 
snapshot aggregations. 

F.3 Data Staleness 

The estimates generated by every node are based on 
information, the node has acquired until that time. These 
estimates are going to be valid at that time but as time passes 
the data will become stale. Thus, we need to differentiate 
between the freshness of the estimates. Ideally, we would like 
to give more weight to an estimate that has been recently 
generated. A very simple way of doing this is to timestamp the 
prediction. Any old predictions (before a certain time) will be 
neglected. However, this way we do not achieve a graceful 
degradation in estimate importance. A more proper way of 
achieving the gradual staleness of the estimates is to increase 
their variance over time. In our current implementation, we 
increase the  variance associated with the estimate at a  
constant rate.  

This approach motivated us to look for more general 
models, where mean and variance are represented as time 
functions rather than simple scalars. This is a subject of on-
going work. 

V. SIMULATION RESULTS 

In this section we present the simulation platform, a general 
model to describe diverse physical processes, and finally 
measurements on several aspects of the energy and accuracy 
quantities. 

A.   The simulation platform 

The algorithms described in the previous section were 
implemented in our simulation platform [18], based on 
PARSEC (PARallel Simulation Environment for Complex 
systems) [12]. In our simulation platform a sensor network is 
modeled as: (i) a collection of sensor nodes, (ii) a channel, and 
(iii) a supervising entity to create the nodes, trigger the sensing 
devices, and keep statistics of several quantities. Each sensor 
node consists of two entities. 1) A processing entity, where all 
node-specific algorithms run, and 2) a radio entity in order to 
interact with other sensor nodes. The radio entity implements 
different MAC protocols and measures the energy spent due to 
transmissions and receptions. Note that energy is spent on 



receptions even if there is a collision of packets. For our 
measurements a TDMA MAC was used. To transform 
transmission and reception times to energy we used the data 
from the hardware specifications provided in [14]. 

B.   Modeling a physical process 

In order to acquire concrete measurements, the underline 
physical process needs to be defined. Since we do not wish to 
bind our algorithm to specific physical process scenarios we 
have built a general model to define a large class of physical 
processes. We adopt a diffusion model of multiple, additive, 
mobile, and variable sources. That is, if there is a source at 
some point, its value is diffused to the environment according 
to some power law of distance. For a single point in the 
WASN coverage area, the influences from multiple sources 
are added. The sources can move and change their value in 
arbitrary ways. An example of a physical process described by 
our model could be a terrain with a fire moving through it. The 
measured heat follows our model.  More specifically our 
model states: 
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Here V(p, t) is the value of the sensed quantity at point p at 
time t, dist(i)  is the distance between point p and source i at 
time t, p(i) is the position of source i at time t, and k , a are 
parameters. The noise is gaussian with zero mean and unit 
variance and it models the measurement noise. For our current 
experiments we used one source with a specific waveform 
(shown in Figure 6), with k=0.25 a=1. We altered the period 
of the waveform and also made the source mobile in order to 
test the response of our algorithm in increasingly dynamic 
processes.  

C.   Measurements 

All results are derived using networks of 50 nodes 
distributed in a uniformly random fashion over a sensor terrain 
of size 45m x 45m. Each node has a transmission range of 15m 
and a sampling period of 0.5 seconds. Simulation is run for a 
time interval of 200 seconds. All simulation results are 
averaged over 500 individual cases. 

Figure 6 shows how the actual maximum value varies over 
time and the way it is tracked by our algorithm, for two 
different thresholds. The waveform of the maximum value 
also reveals the shape of the source waveform used in all our 
measurements. As stated earlier the shape of the source’s 
waveform remains the same and only its period changes in 
different simulation scenarios. 

Figure 7 shows the cumulative energy consumption of all 
the nodes in the sensor network versus different threshold 
values. The figure shows energy consumption using repeated 
snapshot aggregation and our algorithm in three different 
scenarios. As can be seen from Figure 7, the energy 
consumption in our algorithm varies from 5% to 67% of the 
energy consumed in repeated snapshot aggregation according 
to the threshold and the physical process examined. As 

expected with increasing thresholds, energy consumption 
decreases. Reducing the period of the waveform of the source 
or making the source mobile results in a more dynamic setting. 
The energy consumption naturally increases but in a graceful 
manner. The figure clearly highlights the stiffness associated 
with snapshot aggregation. The energy consumption for 
snapshot aggregation is the same for all the scenarios and for 
all threshold values.  

Figure 8 plots the estimation error, versus different 
threshold values. The estimation error basically gives us the 
accuracy of the algorithm. In the case of repeated snapshot 
aggregation, the user node gets the actual global aggregated 
value and hence there is no discrepancy between the estimated 
value and the actual aggregated value (i.e. the error is 0). 
Again one can see that the snapshot aggregation case is rigid, 
not able to accommodate different threshold values. In our 
algorithm, as the threshold increases the accuracy decreases 
(estimation error increases). 

 As expected, the performance is worse in a more dynamic 
setting. A key thing to notice from Figure 8 is that the 
estimation error is much smaller than the threshold used. 
Theoretically we know that the threshold acts as an upper 
bound  to the estimation error. In practice we discover that the 
error is considerably smaller. This is a very positive 
observation as one can get significant energy savings for 
typical accuracy levels. For instance, if 95% accuracy is 
needed (i.e., 5% error) for the processes examined above, then 
we can set the threshold to 0.125 and consume only 20% of 
the energy that the repeated snapshot aggregation approach 
consumes. 

C.1 Spatial variation 

In this subsection, we examine the spatial variation of 
energy consumption and accuracy in the sensor network. The 
simulations are carried out for a fixed threshold of 0.1. The 
source is static and the period of the source is 200s. The 
source is located at (25,25) i.e., approximately at the center of 
the sensor terrain. We average out the results for 100 
simulation runs.  

Figure 9 plots the spatial variation of energy consumption 
in the sensor terrain. The nodes located near the center of the 
terrain, closer to the source, are the nodes that are going to 
measure a higher reading as compared to the boundary nodes. 
Thus these nodes generate new estimates of the global 
aggregated value and transmit them with greater frequency 
(since they are tracking the global max), consuming larger 
amounts of energy. On the other hand, boundary nodes that 
are measuring lower values do not need to transmit their 
estimates since they notice that they cannot influence the 
estimates of other nodes. Although the plot for repeated 
snapshot aggregation is not shown, it can be easily inferred 
that every node consumes the same amount of energy 
irrespective of its location. Note that even for nodes located at 
the center of the sensor terrain, the absolute value of energy 
consumption is much larger for repeated snapshot aggregation 
as compared to our algorithm. 



 

 
Figure 6. Global maximum tracking in time. 

 

 
Figure 7. Energy consumed vs threshold used. 

 

 
Figure 8. Estimation Error vs threshold used. 

Figure 10 plots the spatial variation of estimation error in 
the sensor terrain. As can be observed from the figure, almost 
every node in the sensor terrain achieves the same accuracy. 
This is because of the basic operation of our algorithm 
according to which  every node in the sensor  terrain should be  

 

 

 
Figure 9. Spatial variation of energy consumption. 

 

 
Figure 10. Spatial variation of estimation error. 

having the same global picture as any other node in the 
network. Only the node with the actual maximum has an error 
very close to zero. In fact in every simulation run at least 95% 
of the nodes had a similar estimate as the user node. This is 
clearly in contrast to snapshot aggregation, in which only few 
of the nodes (the nodes in path of the aggregation tree from 
the node measuring the global maximum and the user node), 
have the same accuracy (zero) as the user node. 

Summarizing, the simulation results show how one can 
achieve a desired energy consumption and accuracy by 
choosing the right threshold. Furthermore, the energy 
consumption is not homogeneous in the network, at least in 
scenarios where the maximum remains in the same location. 
The nodes, which possibly have the global maximum, end up 
spending more energy. However, every node in the network 
has the same global picture and hence has the same accuracy 
level. In a more dynamic setting (for example where the 
source is mobile), we expect both energy consumption and 
accuracy to be homogeneous throughout the network. 

 

 



VI. CONCLUSIONS 

In this paper we study a large class of applications in 
WASNs, namely aggregation applications. We propose a 
distributed estimation algorithm that can be applied to a 
subclass of periodic aggregation problems. Our algorithm 
exploits the energy-accuracy trade-off in WASNs to provide 
the user with a larger solution space than the conventional 
approach of periodically running snapshot aggregations. We 
validate our algorithm through simulation, achieving 
promising results. 
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