
UCLA
Papers

Title
Aggregation in sensor networks: An energy-accuracy trade-off

Permalink
https://escholarship.org/uc/item/8t06k2rw

Authors
A. Boulis
S. Ganeriwal
M. B. Srivastava

Publication Date
2003

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8t06k2rw
https://escholarship.org
http://www.cdlib.org/

Aggregation in Sensor Networks: An Energy-
Accuracy Trade-off

Athanassios Boulis, Saurabh Ganeriwal, and Mani B. Srivastava

Networked and Embedded Systems Lab, EE Department, University of California at Los Angeles
email: { boulis, saurabh, mbs }@ee.ucla.edu

Abstract – Wireless ad hoc sensor networks (WASNs) are in need
of the study of useful applications that will help the researchers
view them as distributed physically coupled systems, a collective
that estimates the physical environment, and not just energy-
limited ad hoc networks. We develop this perspective using a
large and interesting class of WASN applications called
aggregation applications. In particular, we consider the
challenging periodic aggregation problem where the WASN
provides the user with periodic estimates of the environment, as
opposed to simpler and previously studied snapshot aggregation
problems. In periodic aggregation our approach allows the
spatial-temporal correlation among values sensed at the various
nodes to be exploited towards energy-efficient estimation of the
aggregated value of interest. Our approach also creates a system
level energy vs. accuracy knob whereby the more the estimation
error that the user can tolerate, the less is the energy consumed.
We present a distributed estimation algorithm that can be
applied to explore the energy-accuracy subspace for a sub-class
of periodic aggregation problems, and present extensive
simulation results that validate our approach. The resulting
algorithm, apart from being more flexible in the energy-accuracy
subspace and more robust, can also bring considerable energy
savings for a typical accuracy requirement (five -fold decrease in
energy consumption for 5% estimation error) compared to
repeated snapshot aggregations.

Keywords: sensor networks, aggregation applications, distributed
estimation, energy vs. accuracy trade-off.

I. INTRODUCTION

The technological advances in embedded computers,
sensors, and radios have led to the emergence of wireless ad-
hoc sensor networks (WASNs) as a new class of system with
uses in diverse and useful applications. Indeed, the early
papers in the area [6][7][13][15] talk about the vision of cheap
self-organizing ad-hoc networks that are able to perform a
higher level sensing task through the collaboration of a large
number of cheaper and resource constrained wireless sensor
nodes. Leveraging numerous sensing devices placed close to
the actual physical phenomena, the information that such
networks can provide is more accurate and richer than the
information provided by a system of few, expensive, state-of-
the-art sensing devices. Since WASNs operate largely
unattended, often in environments where the access cost of
deploying or maintaining nodes is high, a key problem in
designing WASNs is how to prolong their useful lifetime by
conserving energy. Consequently, a large fraction of research
in WASNs has been dedicated to aspects of the energy-
efficiency problem.

The original vision and promise of WASNs was that
multiple nodes collectively perform the sensing task requested
by the users and communicate the results to the users.
However, most of the research so far has simply viewed
WASNs as just another kind of wireless ad hoc networks,
albeit one composed of nodes that are more energy-
constrained and whose data sources are sensors. So, for
example, much work has focused on issues such as energy-
efficient MAC and ad hoc routing protocols to realize the
needed point-to-point and point-to-multipoint communication
patterns in WASNs. But, little has been done to develop an
understanding of a WASN as a collective or an aggregate
where sensor nodes collaborate to jointly estimate the desired
answer about the sensed environment. In part this is because
not many actual applications useful to the end-user have been
studied. The only notable exception is the target-tracking
problem, which has drawn attention from several research
groups. Otherwise, the applications that have been examined
are usually "toy" scenarios used to showcase the abilities of
protocols and programming frameworks (e.g., [10]), or very
specific applications examined for the sake of some energy-
saving technique (e.g., [11]).

In this research we have made a first attempt at exploring
and understanding the performance of a WASN as a collective
that performs a sensing task. We examine a general class of
WASN applications that we call aggregation applications
where the desired answer depends on the sensed value at
multiple nodes. In particular, we explore the energy vs.
accuracy subspace, i.e. how much energy savings can one get
by relaxing some accuracy requirements and vice versa. We
propose an algorithm that exploits this trade-off and jointly
considers networking and signal processing issues to create a
distributed estimation mechanism.

A. Aggregation Applications

Many of the examples and simple applications presented in
WASN research are based around some kind of aggregation
function. The most popular and simple examples of
aggregation functions are "maximum" and "average". That is,
a user may be interested in knowing the max (or average) of a
value in the WASN or in some restricted area of the WASN. If
this function needs to be performed once, we refer to it as
"snapshot aggregation". If the user needs an update in periodic
intervals we refer to it as "periodic aggregation".

The snapshot aggregation problem is trivial for a single
static user. The user sends a request to flood the sensor
network (or the area of interest). Upon reception of a request

message a node sets the sender of the message as its parent,
leading towards the user. This way an aggregation tree is
formed with the user node at its root. Data are flowing along
the aggregation tree towards the user while being aggregated
at intermediate nodes. For instance, in the max function a node
receiving multiple values (i.e., its own local reading and
values sent by other nodes) finds their maximum and sends it
to its parent. For more details on snapshot aggregation the
reader can refer to [2][3].

More generally, in aggregation applications, the user seeks a
condensed view of the physical environment the WASN is
monitoring, or a condensed view of the network's state. To
achieve this, the values from all the nodes (i.e., sensor
readings or node state values) are aggregated to a size-
bounded vector describing this condensed view. Furthermore,
several important properties hold for the aggregation process:
(i) multiple local values can be combined to an aggregated
description with a single pass, (ii) multiple aggregated
descriptions and multiple local values can be combined to an
aggregated description with a single pass. These properties
permit the aggregation process to be done easily within the
network, without the need for multiple passes of the data. A
counter-example is the calculation of median, as it requires
two passes of the data. The bound on the aggregated
description (i.e., vector) is O(1). In order to include more
specific cases of applications (like some referenced in related
work) the bound can be relaxed to O(N), where N is the
number of nodes in the network.

Some examples more advanced than "max" and "average"
include: (i) approximate contours of nodes' residual energy
(similar to the specific case studied in [16]), (ii) approximate
the boundary line between sensing and no-sensing (e.g. of
light) with a straight line or a parabola (similar to the specific
case studied in [11]). Whatever the aggregation function is, the
basic structure of in-network processing in snapshot
aggregation remains the same, combining values and
descriptions at intermediate nodes until the final aggregated
description reaches the user. This kind of in-network
processing is similar to traditional distributed/parallel
computing where precise information is handled and the
correct execution of the algorithm often depends on the right
number and order of messages exchanged. We call such
processing type-I.

If periodic aggregation is needed then one could run
snapshot aggregations periodically, executing accurate type-I
algorithms periodically. This indeed is the conventional
approach.

B. Our contribution: Distributed Estimation Approach

In WASNs though, unlike traditional distributed computing
systems, there is a strong coupling to the physical world as we
are monitoring some parameters of a physical process. The
WASN by its nature can only sample this physical process,
which in turn implies that we are only getting an
approximation of the parameters sought. Once this point is
understood, it is realized that the algorithms in WASNs have

an inherent extra dimension: accuracy. We can exploit this
extra dimension to produce more energy efficient algorithms .
The less accuracy is required, the more energy can be saved
using proper algorithmic techniques. For example, in our
particular case, the spatial-temporal correlation of sensor
node's values is leveraged to create estimates of the aggregated
descriptions of the environment. The less accurate the
estimates need to be, the fewer messages need to be
exchanged. We argue that approximation and estimation are
an inherent part of WASN algorithms and should be taken into
account while designing algorithms for WASN. We call such
type of in-network processing type-II. Type-II algorithms are
essentially distributed estimation algorithms.

Essential to our development of such distributed estimation
algorithms is the joint consideration, or co-design, of the
signal processing algorithms and networking protocols that
have thus far been treated separately in WASNs. In this paper,
we propose a distributed estimation algorithm that explores
the energy/accuracy subspace for the periodic aggregation
domain.

We have validated our approach through simulation using
the "max" aggregation function as an example. The “min”
aggregation function is completely symmetrical. Note that the
“max” aggregation function can be on any property of the
actual local measurements. For instance, if we are interested in
the maximum rate of change among local measurements, the
aggregation function will be done on the derivatives of the
local measurements. We are currently working to extend our
algorithm to the more general kth max case. In its current form,
the algorithm cannot be applied to summary aggregation
functions [17] like “average”, “count” etc.

In section II we examine related work. In section III we
introduce some initial approaches to the problem. In section
IV we describe our distributed estimation algorithm. Section V
presents simulation results. Finally, section VI concludes the
paper.

II. RELATED WORK

Aggregation applications have been popular among
researchers in WASN. This is mainly because the concept of
aggregation is simple enough to be executed at each node with
minimal effort. The main problem is how to orchestrate the
whole procedure to save energy. Efforts such as [4] and [9]
seek to provide a framework for flexible aggregation in sensor
networks. They investigate constructs to program the sensor
network to perform arbitrary aggregation functions. However,
all the prior work has been mainly concerned with snapshot
aggregation and has only superficially acknowledge the
energy/accuracy trade-off present when continuous periodic
aggregation is considered.

For example, in [17], authors have developed an
aggregation service for ad hoc networks of TinyOS motes.
The aggregates are processed in the network by computing
over the data as it flows through the sensors; what we term as

snapshot aggregation. The main contribution of the paper is to
provide a simple, declarative interface for carrying out
snapshot aggregation using database query languages. More
specifically, authors have developed a query processing
system based on SQL for extracting information from a
network of sensors. The authors show a significant
performance improvement as compared to traditional
centralized, out-of-network methods, emphasizing the need of
carrying out in-network processing in WASNs. They are
restricted to type-I processing though. We take a step further
to acknowledge the energy-accuracy space and propose type-II
algorithms for the aggregation problem, which are more robust
and flexible than type-I algorithms, as shown in this paper.
Research work that is trying to provide a general framework
for programmable sensor networks, such as [10], also
considers aggregation to illustrate the capabilities. They too
are restricted to snapshot aggregation.

More relevant to our work are efforts that view a very
restricted portion of the aggregation realm but nevertheless try
to provide algorithms for the periodic aggregation case. In
[16] the authors are concerned with the problem of providing a
residual energy map of the network. They do so by calculating
the "equi-potential" curves of residual energy with some
tolerance. Their aggregation function is quite simple, as they
do not consider approximation in location (two curves engulf
accurately all nodes with residual energy within the tolerance
unit). A more advanced aggregate function could try to fit an
accurate convex curve (having arbitrary many points) with a
fixed-point convex curve. Furthermore when the authors are
concerned with the problem of periodically update the residual
energy map they resort to the simple scheme of incremental
updates. That is, if a node changes its value over the tolerance
limit its value is transmitted and aggregated again in some
intermediate node. The final change should eventually reach
the user. There is no provision to predict changes or try to
estimate correlation between values so one can set the
threshold less conservatively.

In [8] the authors are concerned with the problem of
monitoring the values of every sensor over time. This can be
considered as a degenerate version of an aggregation function
where a node does not actually aggregate or merge any data.
However the basic notion of spatial-temporal correlation
between the sensor values exists and a periodic monitoring
scheme can try to exploit it, as an aggregation scheme would
do. The authors note that this spatial-temporal redundancy is
exploited in video compression to save storage size and/or
bandwidth. They try to use and modify the basic techniques of
MPEG-2 for sensor network monitoring to save
communication traffic and thus energy. Essentially a central
node is calculating predictions and transmits them to all the
nodes. The nodes send their update only if it is different from
the prediction. There is a hierarchy of nodes to perform this
task more distributed. The scheme proposed in [8] raises
questions on whether the prediction transmission is actually
more efficient in a large random network. Unfortunately their
algorithms are tested in small networks where every node

belongs to just one cluster (i.e., every node is one hop away
from the central node).

III. INITIAL APPROACHES

Since distributed estimation for aggregation applications is
not a well-researched area, it is beneficial to start by
describing some of the intuitive approaches to the problem.
The different approaches are individually useful under certain
circumstances but they cannot be applied universally. For each
approach we will identify some of its major weak points.
Through this process the reader can get a deeper insight into
the problem and appreciate its difficulty in the general case.
We will be considering the “maximum” as the aggregation
function to make our statements more concrete, without loss
of generality.

A. Centralized - simple

The user node gets the values from all nodes at some update
rates. As the user learns about the dynamics of the process it
computes the optimum update rate for each node and
communicates that decision to each node. Problems with this
approach: (a) centralized, (b) the processing power at the
nodes is not leveraged, and (c) although the nodes locally
know their values continuously, this solution only samples the
local values at different update rates. In essence the user
"visits" the different node locations and samples the values at
different update rates (depending on his previous
measurements). The WASN is used only as a network ,
connecting the locations to the user, so that the user does not
have to physically take the trip. One can do better by
leveraging the computation capabilities of the nodes in
WASNs.

B. Centralized - leveraging more computational and sensing
power

The user node gets the values from all nodes at non-regular
intervals. The user computes the global maximum and based
on previous values it predicts how the global maximum is
going to evolve. This prediction (a function of time) is
transmitted to all the nodes. At every sampling interval the
node compares this prediction with its own value. If the local
value is larger then it should be transmitted towards the user.
This way the processing in the nodes is leveraged, as well as
the capability of the nodes for continuous sensing. Problems
with this approach: (a) still centralized, (b) does not adapt well
to fast changing physical processes (because the prediction
should be send too often), (c) the computational capabilities at
the nodes are used minimally.

C. Distributed - simple heuristic

An aggregation tree is formed with data flowing from
children to parents. The data are aggregated in intermediate
nodes until they reach the user. Each node receives locally
aggregated values from its children at different update rates.
Depending on the values received by the children and its own
value, a node decides how to assign new update rates based on

its own update rate (i.e., the rate that its parent is notified). So
every child gets a number [0...1] and the parent's update rate.
If a node's update rate is changed (by its parent), the node
notifies its children of the new update rate. This is essentially
the distributed case of the first approach. The problem with
this approach is that computational and sensing capabilities
are still not leveraged.

D. Distributed - leveraging more computational and sensing
power

If we want to leverage the ability of the nodes to sense
constantly we can enhance the previous scheme with
feedback. A node sends the current local aggregated value
back to its children. The children decide to send or not their
value according to their own readings. There is no need for
specified update rates. A node transmits based on the local
values constantly sampled, and the partial information on the
globally aggregated value received by its parent. Problems
with the approach: (a) temporal-spatial correlation is not used
in a predictive scheme, (b) poor performance in fast global
max decreases.

IV. DISTRIBUTED ESTIMATION ALGORITHM

In this section, we propose a distributed estimation
algorithm that can be applied to a large class of aggregation
problems. More specifically we classify aggregation functions
into two categories: (i) aggregation functions whose result is
determined by the values of a few nodes (e.g., the max result is
based on one node), and (ii) aggregation functions whose
result is determined by the values of all the nodes (e.g., the
average function). We have found that different kinds of
distributed estimation algorithms are required in order to deal
efficiently with each of the categories. In this paper we only
consider the first case, i.e., aggregation function that find or
approximate some kind of boundaries (e.g., minima, maxima),
and hence the aggregation result is determined by the values
of few nodes. This still includes a large number of interesting
applications (e.g., approximate a shadow of light using a
straight line and tracking it through time). In the rest of the
paper, if we need to refer to a specific aggregation function we
will use the simple scalar max function. Finally, another point
to note is that the proposed algorithm does not assume any
knowledge about the underlying physical process.

A. Basic Approach

Instead of transmitting a partially aggregated result, as in
the snapshot aggregation case, each node keeps and possibly
transmits an estimation of the global aggregated description.
The global aggregated description in its most general form
would be a vector quantity. An estimate in its most complete
form is a probability density function (pdf) of the value (or
vector) that is being estimated. Most of the times though, due
to insufficient information, ease in computation or lack of
proper estimation theory tools, an estimate has the form:
(estimated value, confidence indication), which in estimation
theory nominally means: (average of estimated vector,

covariance matrix of estimated vector). For both reasons of
compactness and manipulability with estimation theory
methods, we chose to represent estimates in the form (A, PAA)
with A being the mean of the aggregated vector and PAA being
the covariance matrix of vector A. For the max aggregation
function, vector A becomes a scalar denoting the mean of the
estimated max, and PAA becomes simply the variance of A.

In snapshot aggregation, a node cannot change the rate at
which they send predictions to their parents. Whatever the
initial user update rate is, a node has to keep it. This is because
a node receives little information about the global maximum,
as it has no idea what is happening beyond its parent. In our
approach a node accepts estimations from all of its neighbors.
This way the node gradually gains knowledge of the global
situation and can also decide whether its own information is
useful to other nodes or not. If the decision is positive (i.e., the
estimate could be useful to other nodes) it should transmit the
new estimate. Unlike snapshot aggregation where the node
transmits its estimate to a designated node (also called its
parent), in our scheme the node broadcasts its estimate. Thus
every node in the neighborhood shall receive this new
estimate.

Note that with this approach there is no need to create and
maintain a hierarchical parent-child structure. Every node has
information about the globally aggregated value. This is a
strong point of our approach since it can operate effortlessly
with multiple users, mobile users, failing nodes, and failing
connections between the nodes, events that are very common
in WASNs. The global information is everywhere not just at
the root of an aggregation tree as in the snapshot aggregation
case. If the distributed estimation algorithm we are applying is
successful then the nodes should not have great variance
among their estimates and the estimates should also be close
to the actual aggregated value. Indeed we show these desired
properties of our algorithm in section V via simulations.

B. Modular Structure

The working of the algorithm can be subdivided into the
following major points:

• Every node has an estimated value of the global
aggregated value (henceforth called “global estimate” or
“estimated global value”) in the form: (mean, covariance
matrix).

• When a node makes a new local measurement, it updates
its global estimate. It then decides if it is worthwhile to
transmit this new global estimate to its neighbors.

• When a node gets a global estimate from a neighboring
node, it combines this estimate with its own global
estimate and forms a new global estimate. It again takes
a decision whether it’s worthwhile to transmit this
updated estimate or not.

Figure 1. Modules of the generic algorithm.

Figure 1 represents the modular breakup of this algorithm.
In the next subsections, we discuss the modules A, B, C and D
in detail.

C. Fusing two global estimates

This subsection corresponds to module B shown in Figure 1.
We need a data fusion algorithm to combine two global
estimates into a new estimate. A popular and effective
algorithm to fuse two estimates is the Kalman Filter.
Unfortunately, the Kalman Filter requires that the two
estimates are independent or that we know their dependency
by means of their covariance matrix PAB. In the distributed
environment we are operating, we cannot keep track on
“which node received what information by which node”. Thus
we do not know how much redundant (dependent) information
exists in an estimate a node receives. The most suitable
algorithm in our case is covariance intersection [5].
Covariance Intersection (CI) can be viewed as a generalization
of the Kalman Filtering. The principal advantage of CI is that
it permits filtering and data fusion to be performed on
probabilistically defined estimates without the need to know
the degree of correlation among those estimates. Thus, CI
makes no assumptions on the dependency of the two pieces of
information, when it fuses them.

Given two estimates (A, PAA) and (B, PBB), the covariance
intersection combined estimate (C, PCC) is determined by the
following equations:

.))1((111 −−− −+= BBAACC PPP ωω (1)

).)1((11 BPAPPC BBAACC
−− −+= ωω (2)

Here PAA, PBB, and PCC represents the covariance matrix
associated with estimates A, B and C respectively. The main

computational problem with CI is to compute ω , 10 ≤≤ ω ,
such that the trace of the PCC determinant is minimized.

For the case of the max aggregation function, covariance
matrixes are simple scalars. It can be observed from equations
1 and 2, that for such a case ω can be either 1 or 0.
Subsequently, PCC is equal to the minimum of PAA and PBB.
Accordingly, C becomes equal to either A or B depending on
the value of PCC. Even if the estimates are vectors of a small
number of scalars (e.g., find the 2nd or the 3rd max/min) there
are computationally efficient algorithms [5] to determine ω .

D. Fusing a local measurement with a global estimate

This subsection corresponds to module A shown in Figure 1.
Until now nothing was assumed about the specific aggregation
function (apart from the fact that it belongs to one of the major
categories of aggregation functions as discussed in the
beginning of section IV). The functionality of this module
depends on the aggregation function performed (e.g., this
module should be different for finding the maximum or the
minimum aggregated value). Since the quantities we want to
fuse are so different, there is no general fusion theory to
combine them (like fusing two global estimates), thus we
resort to heuristics. The heuristic fusion rule has to answer the
question: “How does a local measurement affect a global
estimate?” We describe the module’s functionality for the
problem of finding the global maximum. The methods used in
our example can be used as guidelines in more complex
aggregation functions.

We begin by modeling the local measurement, as a mean
and a variance, like the global estimate. The mean is the actual
measured value and the variance represents the variance of the
measurement noise. Since the quantities we want to fuse are so
different, there is no general fusion theory to combine them
(like fusing two global estimates). Thus, we resort to breaking
up the problem in two different cases and use heuristics to fuse
the data. The proposed heuristics need the actual distribution
of the global estimate and the local measurement. Since only
mean and variance information is available the best choice is
the gaussian distribution (gaussian distributions are the
maximum entropy distributions for given mean and variance).
Let us call the local measurement distribution l(x) and the
global estimate distribution g(x) . The two different cases of
the fusion rule are given below:

Figure 2. Distributions of global estimate g(x) and local measurement l(x).

Module A
FUSE

Module B
FUSE

Module C
DECIDE

Module D
DECIDE

Local measurement

Current estimate Estimate
from neighbor

New estimates

Transmit new estimate
to neighbors

Do NOT transmit new
estimate to neighbors

l(x)

g(x)

x

D.1 Mean of local measurement is larger than the mean of the
current global estimate

To analyze this case, consider the simplistic case where the
current estimate and local measurements are simple scalars
and not distributions. Clearly, the new estimate should be the
local measurement. We need to extend this argument for the
case when estimate and local measurements are modeled as
distributions. Figure 2 represents this case.

In this case, the distribution corresponding to the new
estimate cannot be simply l(x). This is because although mean
of l(x) is greater than that of g(x) , there is a non-zero
probability that the value of the new measurement is smaller
than the old estimate. Hence, the resultant distribution should
be calculated taking into account both the local measurement
as well as the old estimate. Recall that the value of the
distribution at any x’ (g(x’) or l(x’)) represents the confidence
(or certainty) which can be associated with this x’ in the
estimate (g(x) or l(x)). We use a simple heuristic that the
confidence associated with any x’ in the new estimate should
be simply the sum of the confidence associated with this x’ in
the measurement (l(x’)) and the earlier estimate (g(x’)). Also,
as the objective is to calculate the maximum aggregated value
we assign a higher weight to a potentially higher value (in this
case the local measurement). Thus the resultant distribution,
corresponding to the new estimate, is calculated by taking a
simple weighted sum of the two distributions as follows:

.1)(0)()}(*)({)(11 ≤≤∀+= xwxlxgxwxgnew (3)

Finally, we calculate the mean and variance of gnew(x) so
that we can represent the new global estimate in the form:
(mean, covariance matrix).

D.2 Mean of local measurement is smaller than the mean of
current estimate

We again combine the two distributions as in the previous
section, assigning a higher weight to the distribution with the
larger mean (in this case the old estimate).

.1)(0)()}(*)({)(22 ≤≤∀+= xwxgxlxwxgnew (4)

However, the situation is not so trivial in this case. If the
value decreases at every node, our estimate should track this
decrease rapidly. Although equation (4) can handle minor
fluctuations it performs poorly in sharp falls of the global
maximum. To account for this issue we use the following rule:
If the previous local measurement was close to the global
estimate (closeness determined by a fixed fraction value) we
assign the higher weight to the local measurement, reasoning
that the specific local measurement is still the global
aggregated value. We achieve this by calculating the new
estimate using equation (3) instead of (4).

Note that even if a new (smaller) estimate is wrongly
generated following this rule, the particular node will be
promptly corrected by one of its neighbors, which will
transmit the “correct” (higher) estimate.

Figure 3. Bounded distributions.

D.3 Calculating w1(x) and w2(x)

In this subsection, we present a simple heuristic way in
which w1(x) and w2(x) can be calculated. We make an
approximation that all Gaussian distributions are bounded
within the interval [µ-3σ,µ+3σ], where µ and σ2 represent the
mean and variance respectively. The approximation is derived
from the well-known property of gaussian distributions stating
that a gaussian distribution’s values lie in the interval [µ-
3σ,µ+3σ] with a probability of 99.7%.

Let us first consider the case, when the mean of local
measurement is larger than the mean of the current estimate.
Figure 2 is redrawn in Figure 3, but now the distributions are
bounded within finite limits. This means that l(x) and g(x) can
take nonzero values only in interval [x1, x2] and [y1, y2]
respectively.

The global aggregated value should at least be equal to the
current measurement. Hence we should assign zero probability
to the points on the left of x1. Thus w1(x) can be defined as:





−>∀
−≤∀

=
11

11
1 31

30
)(

σµ
σµ

x
x

xw (5)

Note that x1 is equal to µ1 - 3σ1, where µ1 and σ2
1 represent

the mean and variance of l(x) respectively. Figure 4 represents
the case, when the mean of local measurement is smaller than
the mean of the current estimate. We assign a zero probability
to points on the left of y1. The assumption is that the value
won’t fall too drastically within a sampling period. Moreover
as explained earlier, we should assign zero probability to the
points on the left of x1. Thus w2(x) can be defined as:





−−>∀
−−≤∀

=
)3,3max(1
)3,3max(0

)(
2211

2211
2 σµσµ

σµσµ
x
x

xw (6)

Note that y1 is equal to µ2 - 3σ2, where µ2 and σ2
2 represent

the mean and variance of g(x) respectively.

We normalize the resultant function appropriately so that it
represents a valid probability distribution. Although we are
combining two bounded gaussian distributions, we make an
assumption that the obtained distribution is still represented by
a gaussian distribution. This is done in order to maintain the
consistency of the estimates. The mean and variance of the

y1 y2 x1 x2

l(x) g(x)

Figure 4. Bounded distributions.

new gaussian distribution represents the new estimate and the
confidence (or certainty) associated with this new estimate
respectively.
E. Making the decision

This subsection corresponds to modules C and D in Figure
1. These modules directly affect the tradeoffs one can achieve
in the energy-accuracy subspace. When a node calculates a
new estimate, it should not necessarily transmit it. In fact it
should transmit only if this new estimate can bring a
significant change in one of its neighbor estimate.

This raises a question, how does a node know whether its
new estimate is going to affect the estimates of its neighbors.
For this purpose every node maintains a table where it stores
the most recent estimates received from its neighbors. Let us
call this table the estimate_table. A node, after calculating its
new estimate (by using modules A or B), combines this
estimate with every estimate in the estimate_table, by using
the same algorithm as in module B. The node then calculates
the difference between the new generated estimate for every
neighbor and the old estimate. If this difference is beyond a
preset threshold for any of the neighboring nodes, the node
broadcasts its new estimate. The threshold is expressed in
terms of a fraction, i.e., a number in [0…1].

Note that the threshold should be on both the mean and the
variance. So even if the mean remains the same, but the
variance has changed significantly, the node should still
broadcast its value. We represent the thresholds on mean and
variance as meanT and varianceT respectively. In the current
implementation, we keep both meanT and varianceT to the
same value.

Let us observe closely what does the threshold physically
mean. Suppose we set meanT to be 0.05. This means if the
node observes a change greater than 5%, it shall broadcast its
estimate. This also means that all changes less than 5% are left
unnoticed. Thus, the algorithm can converge to a global
aggregated value that is off by at most 5% from the actual
value. Thus, the threshold directly relates to the accuracy of
the global estimate in each node, and consequently the
accuracy of the estimate that the user receives . The threshold
also relates directly to the energy expenditure of the sensor
network, as it decides the amount of traffic being generated in
the network. Thus, the higher the threshold is, the lower the

accuracy is, and the higher the energy savings are. In fact, the
threshold gives the user a control knob in the energy-accuracy
subspace. This parameter is set depending on the user
requirements.

We should also try to control the overhead of passing on
redundant information. This will be clear from the scenario
shown in Figure 5. Suppose that nodes I, J and K are in each
other’s neighborhood. Suppose node I measures a local value,
which changes its estimate. After combining this estimate with
the values in its estimate_table, node I decides to broadcast its
new estimate. Both node J & K get this new value and will
update their respective estimates accordingly. Now node K (or
J) is unaware that the estimate of J (or K) has also changed.
So when node K (or J) runs its decision making step, it will
find out that it should broadcast this new estimate as it can
change the estimate of J (or K) considerably. Thus the same
estimate is propagated again.

This overhead can easily be avoided by simply maintaining
information about two-hop neighbors at every node. When a
node gets a reading from another node (say X), it only checks
for those nodes (in the estimate_table) that are in its own
neighborhood but not in the neighborhood of X. Thus, in the
above example when K (or J) gets the reading from I, it does
not broadcast as it realizes that J (or K) is also in the
neighborhood of I. The two-hop neighborhood information
can easily be acquired with a protocol like the one in [1], at
the network boot-up phase. However when nodes die this
information might get outdated. If a node does not keep track
of such dying nodes, it might just potentially spend some
unnecessary energy in making sure that information reaches
dead nodes (which it believes are still alive). Note that
irrespective of the strategy that a node follows, the accuracy of
the algorithm rema ins unaffected.

F. Insights

In this subsection, we give some insight on the current
model, as well as motivate more complex models.

F.1 Robustness of the algorithm

In this subsection we will discuss the robustness of our
proposed scheme and compare it with that of snapshot
aggregation. First let us summarize some of the key properties
for our algorithm:

• The algorithm is completely distributed and localized
(nodes exchange information only with immediate one-
hop neighbors).

Figure 5. Eliminating redundant transmissions.

I J

I J

K

x1 x2 y1 y2

g(x)

l(x)

• There is no need for time synchronization between the

nodes. Moreover, there is no requirement on the number
or order of messages that a node should receive. If a new
estimate is received the current estimate is updated.

• All the nodes perform the same functions, and compute
the same results. Every node has an estimate of the
global aggregated value. There are no special nodes.

Contrast these properties to the properties of snapshot
aggregation:

• There is a hierarchical parent-child structure.

• The parent should receive an exact number of messages,
equal to the number of its children.

• The final result is only available at the user node.

As a result our algorithm performs exactly the same with
mobile users and multiple users (the global estimate is
available everywhere). Failing nodes, failing links, non-
reliable transport protocols and MACs , deteriorate accuracy
slowly, as only the information of the failing nodes/links is
lost and this is usually redundant information. This robust
operation of the algorithm is a great advantage in the dynamic
environment of WASNs where node failures and mobile users
are the norm rather than the exception.

Snapshot aggregation on the other hand is very sensitive to
the stability of the hierarchical structure. If a parent node dies,
all its descendents are cut off from the functionality of the
algorithm and it results in generating poor estimates of the
global aggregated value. Further more, if a user moves, a new
aggregation tree needs to be formed in order to receive the
aggregated value. This is translated in more energy
consumption.

F.2 Choosing the threshold

The energy-efficiency and accuracy of the algorithm heavily
depend on the chosen threshold. As the simulation results
reveal in section V there is a very concrete dependency of
threshold, energy spent, and accuracy achieved. If a user
knows some of the macro characteristics of the physical
process being monitored, then based on the graphs provided in
section V he can knowledgably chose a threshold that fit his
needs. What the user needs to know is how dynamic the
process is. For example, how fast do the values fluctuate and
in what dynamic range? Intuitively a more dynamic physical
process will put a greater strain in our distributed estimation
process, requiring more energy for the same accuracy. Indeed
this intuition is validated from the simulation results.

The more interesting problem rises though when the user
has no information on the physical process being monitored.
In such a case, setting a threshold does not provide immediate
information on the actual accuracy achieved. The only known
fact is that the accuracy is less or equal than the chosen
threshold. The only other parameter than can provide the user
with some indirect information about the accuracy is the

variance associated with the mean estimate. Recall that
variance represents the degree of certainty that should be
associated with the estimate. Hence, if a user gets an estimate
with a large variance, he should try to decrease the threshold
and vice versa. Currently we are in the process of developing
an analytical model to provide guidelines to the user, so that
he can adjust the threshold on-line. Furthermore, the energy
spent at the user node can be used as an estimate of the
average energy spent in nodes (recall that our algorithm is
fairly homogenous in energy consumption). So even with no
physical process information the user can acquire an estimate
for the accuracy achieved, as well as for the energy spent, on
the fly. In some rare cases with very dynamic processes and
little spatial-temporal correlation between the nodes’ values
the user could be advised to resort to the periodic execution of
snapshot aggregations.

F.3 Data Staleness

The estimates generated by every node are based on
information, the node has acquired until that time. These
estimates are going to be valid at that time but as time passes
the data will become stale. Thus, we need to differentiate
between the freshness of the estimates. Ideally, we would like
to give more weight to an estimate that has been recently
generated. A very simple way of doing this is to timestamp the
prediction. Any old predictions (before a certain time) will be
neglected. However, this way we do not achieve a graceful
degradation in estimate importance. A more proper way of
achieving the gradual staleness of the estimates is to increase
their variance over time. In our current implementation, we
increase the variance associated with the estimate at a
constant rate.

This approach motivated us to look for more general
models, where mean and variance are represented as time
functions rather than simple scalars. This is a subject of on-
going work.

V. SIMULATION RESULTS

In this section we present the simulation platform, a general
model to describe diverse physical processes, and finally
measurements on several aspects of the energy and accuracy
quantities.

A. The simulation platform

The algorithms described in the previous section were
implemented in our simulation platform [18], based on
PARSEC (PARallel Simulation Environment for Complex
systems) [12]. In our simulation platform a sensor network is
modeled as: (i) a collection of sensor nodes, (ii) a channel, and
(iii) a supervising entity to create the nodes, trigger the sensing
devices, and keep statistics of several quantities. Each sensor
node consists of two entities. 1) A processing entity, where all
node-specific algorithms run, and 2) a radio entity in order to
interact with other sensor nodes. The radio entity implements
different MAC protocols and measures the energy spent due to
transmissions and receptions. Note that energy is spent on

receptions even if there is a collision of packets. For our
measurements a TDMA MAC was used. To transform
transmission and reception times to energy we used the data
from the hardware specifications provided in [14].

B. Modeling a physical process

In order to acquire concrete measurements, the underline
physical process needs to be defined. Since we do not wish to
bind our algorithm to specific physical process scenarios we
have built a general model to define a large class of physical
processes. We adopt a diffusion model of multiple, additive,
mobile, and variable sources. That is, if there is a source at
some point, its value is diffused to the environment according
to some power law of distance. For a single point in the
WASN coverage area, the influences from multiple sources
are added. The sources can move and change their value in
arbitrary ways. An example of a physical process described by
our model could be a terrain with a fire moving through it. The
measured heat follows our model. More specifically our
model states:

noisetipVidistktpV
a

allsourcesi

+⋅+⋅=
−∑)),(()1)((),(

:

 (7)

Here V(p, t) is the value of the sensed quantity at point p at
time t, dist(i) is the distance between point p and source i at
time t, p(i) is the position of source i at time t, and k , a are
parameters. The noise is gaussian with zero mean and unit
variance and it models the measurement noise. For our current
experiments we used one source with a specific waveform
(shown in Figure 6), with k=0.25 a=1. We altered the period
of the waveform and also made the source mobile in order to
test the response of our algorithm in increasingly dynamic
processes.

C. Measurements

All results are derived using networks of 50 nodes
distributed in a uniformly random fashion over a sensor terrain
of size 45m x 45m. Each node has a transmission range of 15m
and a sampling period of 0.5 seconds. Simulation is run for a
time interval of 200 seconds. All simulation results are
averaged over 500 individual cases.

Figure 6 shows how the actual maximum value varies over
time and the way it is tracked by our algorithm, for two
different thresholds. The waveform of the maximum value
also reveals the shape of the source waveform used in all our
measurements. As stated earlier the shape of the source’s
waveform remains the same and only its period changes in
different simulation scenarios.

Figure 7 shows the cumulative energy consumption of all
the nodes in the sensor network versus different threshold
values. The figure shows energy consumption using repeated
snapshot aggregation and our algorithm in three different
scenarios. As can be seen from Figure 7, the energy
consumption in our algorithm varies from 5% to 67% of the
energy consumed in repeated snapshot aggregation according
to the threshold and the physical process examined. As

expected with increasing thresholds, energy consumption
decreases. Reducing the period of the waveform of the source
or making the source mobile results in a more dynamic setting.
The energy consumption naturally increases but in a graceful
manner. The figure clearly highlights the stiffness associated
with snapshot aggregation. The energy consumption for
snapshot aggregation is the same for all the scenarios and for
all threshold values.

Figure 8 plots the estimation error, versus different
threshold values. The estimation error basically gives us the
accuracy of the algorithm. In the case of repeated snapshot
aggregation, the user node gets the actual global aggregated
value and hence there is no discrepancy between the estimated
value and the actual aggregated value (i.e. the error is 0).
Again one can see that the snapshot aggregation case is rigid,
not able to accommodate different threshold values. In our
algorithm, as the threshold increases the accuracy decreases
(estimation error increases).

 As expected, the performance is worse in a more dynamic
setting. A key thing to notice from Figure 8 is that the
estimation error is much smaller than the threshold used.
Theoretically we know that the threshold acts as an upper
bound to the estimation error. In practice we discover that the
error is considerably smaller. This is a very positive
observation as one can get significant energy savings for
typical accuracy levels. For instance, if 95% accuracy is
needed (i.e., 5% error) for the processes examined above, then
we can set the threshold to 0.125 and consume only 20% of
the energy that the repeated snapshot aggregation approach
consumes.

C.1 Spatial variation

In this subsection, we examine the spatial variation of
energy consumption and accuracy in the sensor network. The
simulations are carried out for a fixed threshold of 0.1. The
source is static and the period of the source is 200s. The
source is located at (25,25) i.e., approximately at the center of
the sensor terrain. We average out the results for 100
simulation runs.

Figure 9 plots the spatial variation of energy consumption
in the sensor terrain. The nodes located near the center of the
terrain, closer to the source, are the nodes that are going to
measure a higher reading as compared to the boundary nodes.
Thus these nodes generate new estimates of the global
aggregated value and transmit them with greater frequency
(since they are tracking the global max), consuming larger
amounts of energy. On the other hand, boundary nodes that
are measuring lower values do not need to transmit their
estimates since they notice that they cannot influence the
estimates of other nodes. Although the plot for repeated
snapshot aggregation is not shown, it can be easily inferred
that every node consumes the same amount of energy
irrespective of its location. Note that even for nodes located at
the center of the sensor terrain, the absolute value of energy
consumption is much larger for repeated snapshot aggregation
as compared to our algorithm.

Figure 6. Global maximum tracking in time.

Figure 7. Energy consumed vs threshold used.

Figure 8. Estimation Error vs threshold used.

Figure 10 plots the spatial variation of estimation error in
the sensor terrain. As can be observed from the figure, almost
every node in the sensor terrain achieves the same accuracy.
This is because of the basic operation of our algorithm
according to which every node in the sensor terrain should be

Figure 9. Spatial variation of energy consumption.

Figure 10. Spatial variation of estimation error.

having the same global picture as any other node in the
network. Only the node with the actual maximum has an error
very close to zero. In fact in every simulation run at least 95%
of the nodes had a similar estimate as the user node. This is
clearly in contrast to snapshot aggregation, in which only few
of the nodes (the nodes in path of the aggregation tree from
the node measuring the global maximum and the user node),
have the same accuracy (zero) as the user node.

Summarizing, the simulation results show how one can
achieve a desired energy consumption and accuracy by
choosing the right threshold. Furthermore, the energy
consumption is not homogeneous in the network, at least in
scenarios where the maximum remains in the same location.
The nodes, which possibly have the global maximum, end up
spending more energy. However, every node in the network
has the same global picture and hence has the same accuracy
level. In a more dynamic setting (for example where the
source is mobile), we expect both energy consumption and
accuracy to be homogeneous throughout the network.

VI. CONCLUSIONS

In this paper we study a large class of applications in
WASNs, namely aggregation applications. We propose a
distributed estimation algorithm that can be applied to a
subclass of periodic aggregation problems. Our algorithm
exploits the energy-accuracy trade-off in WASNs to provide
the user with a larger solution space than the conventional
approach of periodically running snapshot aggregations. We
validate our algorithm through simulation, achieving
promising results.

VII. ACKNOWLEDGMENTS

This paper is based in part on research funded through
Office of Naval Research’s AINS program, and DARPA’s
PAC/C program. The views expressed in this paper are those
of the author’s, and do not necessarily represent those of the
above funding agencies.

VIII. REFERENCES

[1]. S. Borbash, M. McGlynn, "Birthday Protocols for Low Energy
Deployment and Flexible Neighbor Discovery in Ad Hoc Wireless
Networks", Proceedings of MobiHoc 2001, Long Beach, USA,
2001.

[2]. A. Boulis and M. B. Srivastava, "Aggregation applications in
resource-constrained distributed systems" TM- UCLA-NESL-
2001-11-002, http://nesl.ee.ucla.edu/TM/

[3]. A. Boulis, “Illustrating Distributed Algorithms for Sensor
Networks”, http://www.ee.ucla.edu/~boulis/phd/Illustrations.html

[4]. N. H. Cohen, A. Purakayastha, J. Tuter, L. Wong, D. Yeh,
"Challenges in Flexible Aggegation of Pervasive Data" IBM
Technical Report.

[5]. Covariance Intersection Working Group (CIWG), "A Culminating
Advance in the Theory and Practice of Data Fusion, Filtering, and
Decentralized Estimation", http://www.ait.nrl.navy.mil/people/
uhlmann/CovInt.html, 1997.

[6]. D.Estrin, R.Govindan, J.Heidemann (Editors), “Embedding the
Internet”, Communications of the ACM. Vol. 43, no 5, pp. 38-41,
May 2000.

[7]. D. Estrin, R. Govindan, J. Heidemann, S. Kumar, “Next Century
Challenges: Scalable Coordination in Sensor Networks”, ACM
Mobicom Conference, Seattle, WA, August 1999.

[8]. S. Goel, T. Imielinski, "Prediction-based Monitoring in Sensor
Networks: Taking Lessons from MPEG", ACM Computer
Communications Review, vol. 31, no. 5, October 2001.

[9]. J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govidan, D. Estrin,
D. Ganesan, "Building Efficient Wireless Sensor Networks with
Low-Level Naming", Proceedings of Symposium od Operating
Systems Principles, October 2001

[10]. C. Jaikaeo, C. Srisathapornphat, and C. Shen, “Querying and
Tasking of Sensor Networks”, SPIE's 14th Annual International
Symposium on Aerospace/Defense Sensing, Simulation, and
Control (Digitization of the Battlespace V), Orlando, Florida, April
26-27, 2000.

[11]. J. Liu, P. Cheung, L. Guibas, F. Zhao, "A Dual-Space Approach to
Tracking and Sensor Management in Wireless Sensor Networks",
Palo Alto Research Center Technical Report P2002-10077, March
2002.

[12]. PARSEC: PARallel Simulation Environment for Complex
systems, http://pcl.cs.ucla.edu.

[13]. G.J. Pottie and W.J. Kaiser, “Wireless Integrated Network
Sensors”, Communications of the ACM. Vol. 43, no 5. May 2000.

[14]. A. Savvides, C. C. Han, M. B. Srivastava, “Dynamic fine-grained
localization in ad-hoc networks of sensors”, Mobicom 2001,
Rome, Italy, pp.166-179, July 2001.

[15]. D. Tennenhouse, “Proactive Computing”, Communications of the
ACM. Vol. 43, no 5, pp.43-50, May 2000.

[16]. Y. J. Zhao, R. Govidan, D. Estrin, "Residual Energy Scan for
Monitoring Sensor Networks", Proceedings of WCNC 2002.

[17]. Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein,
and Wei Hong, “TAG: A Tiny AGgregation Service for Ad-hoc
Sensor Networks”, OSDI Conference, 2002.

[18]. NESLSim, http://www.ee.ucla.edu/~saurabh/NESLsim/

