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Abstract

A Golay Complementary Sequence (CS) has Peak-to-Average-Power-Ratio (PAPR)
< 2.0 for its one-dimensional continuous Discrete Fourier Transform (DFT) spec-
trum. Davis and Jedwab showed that all known length 2™ CS, (GDJ CS), originate
from certain quadratic cosets of Reed-Muller (1, m). These can be generated using
the Rudin-Shapiro construction. This paper shows that GDJ CS have PAPR < 2.0
under all unitary transforms whose rows are unimodular linear (Linear Unimodular
Unitary Transforms (LUUTSs)), including one- and multi-dimensional generalised
DFTs. We also propose tensor cosets of GDJ sequences arising from Rudin-Shapiro
extensions of near-complementary pairs, thereby generating many infinite sequence
families with tight low PAPR bounds under LUUTs.
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Some preliminary definitions:
Length N vectors a,b, where a € Zg, b e ZY, and aj,b; are sequence elements of a and b, respectively.
We define,

Correlation: a®b = Zj\;)l €t =Abj where € = exp(2myv/—1/lem(P, Q)), p = lcmgsP,Q), A= lcmészQ)7

where lcm means ’least common multiple’.

Orthogonal: a and b are ’Orthogonal’ to each other if a® b = 0.

(Almost) Orthogonal: a and b are ’(Almost) Orthogonal’ to each other if 0 < |a® b| < v/2N.
Roughly Orthogonal: a and b are ’Roughly Orthogonal’ to each other if 0 < |[a® b| < B, for some
pre-chosen B significantly less than N.
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Tensor Permutation: Tensor permutation of m r-state variables, z;, takes x; to z,(;), where permutation
7 is any permutation of integers Z,.

Sequence representations for linear functions, z;, are of the form xo = 0101010101 ..., 3 = 001100110011 . ..
z2 = 0000111100001111 ..., and so on.

Definition 1 L., is the infinite set of all linear functions in m binary variables over all alphabets, Zy,,
1<n< oo,

L ={8® (0,a0) ® (0, 01) ... (0, xm—1)}, modn (1)

where @& means ’tensor sum’, 8,05 € Zpn Vi, gcd(B,n) = ged(ay,n) = 1.

Definition 2 F1l,, C Lm is the infinite set of all one-dimensional linear Fourier functions in m binary
variables over all alphabets, Z,, 1 <n < oo,

Flm = {(0,0) ® (0,28) & (0,48) @ ... @ (0,2™~15), mod n

(2)
1<n<00,0<68<n,ged(d,n) =1}

Definition 3 Fmy, C L is the infinite set of all m-dimensional linear Fourier functions in m binary
variables over all alphabets, Zp, 1 < n < oo,

Fmpm = {(0,6 +¢0) ® (0,5 +¢1) D (0,6 +¢c2)d...8 (0,6 + cn—1) mod n

(3)
2<n<oo,n even,0 < 8§ < n/2, ged(6,n) = 1,¢; € {0,n/2}}

Definition 4 A 2™ x 2™ Linear Unimodular Unitary Transform (LUUT) L has rows taken from Lm
such that LLT = 2™ 1., , where T means conjugate transpose, Iy is the 2t x 2t identity matriz, and a row,
u, of L ’times’ a column, v, of Lt is computed as u ® (—v).

1 Introduction

Length N = 2™ Complementary Sequences (CS) are (Almost) Orthogonal to
F1,, [4,3]. Length 2™ CS over Zy, as formed using the Davis-Jedwab con-
struction, DJy,, are also Roughly Orthogonal to each other [3,8]. This paper
shows that DJ,, is (Almost) Orthogonal to Ly,, and therefore each member
of DJ,, has a Peak-to-Average Power Ratio (PAPR) < 2.0 under all Lin-
ear Unimodular Unitary Transforms (LUUTS) of length 2. The properties of
DJ,, are shown to follow directly from a generalisation of the Rudin-Shapiro
construction [10,9,4,5,1]. We then propose tensor cosets of DJ,,, identifying
near-complementary seed pairs whose power sum has PAPR < v under cer-
tain LUUTSs, where v is small. We grow sequence sets from these pairs by
repeated application of Rudin-Shapiro so that these sets also have PAPR < v
under certain LUUTSs. In this way we extend [3,8] by proposing further infi-
nite sequence families with tight one-dimensional Fourier PAPR bounds, and
of degree higher than quadratic. We also confirm and extend recent results
of [2] who construct families of Bent sequences using Bent sequences as seed
pairs, although not in the context of Rudin-Shapiro.



2 Complementary Sequences (CS)

Definition 5 [4,3] Length N sequences sO and s1 are a CS pair if the sum
of their one-dimensional Fourier power spectrums is flat and equal to 2N .

Implication 1 [/,3] A length N CS, s, has a Peak-to-Average-Power-Ratio
(PAPR) for its one-dimensional Fourier power spectrum constrained by,

IN

1.0 < PAP <
0< R(s) < N

2.0 (4)

Theorem 1 /3] s is a Golay-Davis-Jedwab (GDJ) CS if of length 2™ and
expressible as a function of m variables over Zyn as,

m—2 m—1
s(20, 1, ..., Tppy) = 2871 Z T (k) Tkt 1) + Z cpry +d (5)
k=0 k=0

where 7 is a permutation of the symbols {0,1,... ., m—1}, cx,d € Zyn, and the
xk are linear functions over Zyn. We refer to the set of GDJ CS over Zyn as
DJmn, and refer to DJy oo as DJ .

There are (%!)Qh(m“) sequences in DJ,, n, and DJyy, i, has minimum Hamming
Distance > 2™~ 2. Thus, for distinct s0,s1 € DJni1,s0©s1 < om—1,

3 Distance of DJ,, from L,,

Theorem 2 DJ,, is (Almost) Orthogonal to Lyy,.

Proof Overview: We prove for DJy, 1 by using the Rudin-Shapiro construction
[10,9] to simultaneously construct DJy, 1 and Ly,. We then extend the proof to
DJy,. Let 805, s1; be a CS pair in DJy,. More specifically, let sOg, slg be the
length 1 sequences, s0g = (0), slp = (1), where s0g,s19p € DJg 1. The Rudin-
Shapiro sequence construction is as follows:

S()j = SOjfl‘Sljfl, Slj = SOjfl‘Sljfl (6)
where s0;,s1; € DJ; 1, § means negation of s, and | means sequence concatenation.

Example 1: s01 = 01,s17 = 00 = s02 = 0100,s12 = 0111.
More generally we generate the RM(1,m) coset of zox; + x129 + ... + Typ—2Tm—1



using all 2™ combinations of m iterations of the two constructions,

A: SOj = SOjfl‘Sljfl, Slj = SOjfl‘Sljfl
and (7)
B: SOj = SOjfl‘Sljfl, Slj = SOjfl‘Sljfl

Algebraically, constructions (7) become,

$0j(2) = 21 (051 (2') + 8151 (2')) + 5041 (a')

A
s1j(z) = s0;(x) + xj_1
and
(8)
B SOJ(.CIT) = .’Ej,l(SOj_l(SE/) + S]_j_l(il?/) + 1) + SOj_l(xl) + 1

Slj(l‘) = SOj(.%') + Tj—1
where z = (zo,21,...,2j-1),2 = (zo,21,...,2j-2)

We generate DJyy, 1 from this coset by permutation of the indices, i, of z; (tensor

. ! . . .
permutation). There are 5 such tensor permutations, (ignoring reversals).

Example 2: Let sO03 = zox1 + z122 + 22 + 1 = 11100010. Permuting 9 — z1, 1 — xo, 2 — X2, gives
s05 = wox1 + wow2 + 2 + 1 = 11100100, where s03,505 € DI 1.

We prove Theorem 2 for construction (6). The proof for construction (7) with sub-
sequent tensor permutation is straightforward. Let f; be a sequence in L; (Definition
1), and let fy be the length 1 sequence, fo = (3), where g € Z,,,1 < n < co. Let
Pj,»qj be complex numbers satisfying,

pj =080, g =1£0Osl; (9)

Let f;=1i_1®(0,aj_1), mod n (10)

aj_1 € Zp,1 <n < oo, ged(aj—1,n) = 1. Using (10) Va; we generate L;. Combining
(9), (6) and (10),

pj =f_1 08051 + i1 ©Oslj_y =pj 1+ €V 1g (11)

¢ =fj-1 ©s0j_1 — € fj_1 ©slj_1 =pj_1 — €7 g1 (12)

where € = exp(2mv/—1/n). Applying,

\ép + 0g|* + |¢p — Oq|* = 2(|o*|p|* + 10]*|g]*) (13)

for the special case |¢|? = |8]?> = 1, to (11) and (12) we get,

I * + la|* = 2(Ipj-11* + la;-11*) = 2/ (Ipo|* + lao]*) (14)



Noting that |po|> = |go|? = 1, it follows that [p;|* < 2971 |g;|? < 27F1. Theorem 2
follows directly for a subset of DJy, 1 comprising sequences generated by (6). The
proof follows for the RM(1,m) coset of zox; + z122 + ... Xy—22m—1 by replacing
construction (6) with constructions (7). Further extension to DJp, 1 follows by
observing that identical tensor-permuting of f and s leaves the argument of (11) -
(12) unchanged. The proof for DJy, follows. ||

4 Transform Families With Rows From L,

From Theorem 2 sequences from DJ,, have (Almost) flat spectrum under all
LUUTS (see Definition 4). By Parseval’s theorem the PAPR of sequences from
DJ,, under such transforms is < 2.0 This section highlights two important
LUUT sub-classes, firstly the one-dimensional Consta-Discrete Fourier Trans-
forms (CDFTs), and secondly the m-dimensional Constahadamard Trans-
forms (CHTs). An N x N Consta-DFT (CDFT) matrix has rows from F1,,
and is defined over Z,, by,

0 d 2d (N —1)d
0 d+k 2(d + k) (N = 1)(d + k) (15)
0 d+ (N —1Dk 2(d+ (N —1)k) ... (N —1)(d+ (N —1)k)

1 <n<oo, Nln, k=%, d¢€ Z, ged(d, k) = 1, (including the case d = 0,
k =1, which is the N x N DFT).

A radix-2 N = 2™-point CHT matrix has rows from L, over Z,, and is defined
by the m-fold tensor sum of CHT kernels,

0 5 0 5 0 S — _ 0 i
o ® 1 & m—1 —gm-l i (16)
0 80+ 5 081+ % 06m_1+% 06, +%

2 <n <oomneven, 0 <6 < g ged(d;, 5) = 1, (including the case §; = 0,

n = 2). The Hadamard Transform (HT) is ®@™H, where H = (2 T> over Zs,

and the Negahadamard Transform (NHT) is @™ N, where N = <2 ;) over Zy.

4.1 The (Almost) Constabent Properties of DJpy,

Definition 6 [6] A length 2™ sequence, s, is Bent, Negabent, Constabent, if
it has PAPR = 1.0 under HT, NHT, and CHT, respectively. It is (Almost)
Bent, (Almost) Negabent, (Almost) Constabent, if it has PAPR < 2.0 under
HT, NHT, and CHT, respectively.



From Theorem 2, DJ,, is (Almost) Constabent. More particularly,

Theorem 3 [6] DJ,,1 is Bent for m even, and (Almost) Bent, with PAPR
= 2.0, for m odd.

Theorem 4 [6] DJ,, 1 is Negabent for m # 2 mod 3, and (Almost) Negabent,
with PAPR = 2.0, for m = 2 mod 3.

Corollary 5 [6] DJy,1 is Bent and Negabent for m even, m # 2 mod 3.

5 Seeded Extensions of DJ,,

DJ,, is recursively constructed using the initial length 1 CS pair, s0g =
(0) and sl = (1). DJ,, is (Almost) Orthogonal to L,, precisely because
If ©s00|>+|f @slg|* = 2.0, Vf € Lg. 2.0 is the lowest possible value. We can,
instead, take any pair of length-¢ starting sequences sy and slg, such that,

‘f ® SOO|2 -+ |f ® 810‘2 S ’Ut, vt € EO (17)

where Eg is any desired set of length-t sequences, and v is a real value
> 2.0. Let t = w2", w odd. We define an ordered subset of u integers,
U ={q,q,---,q_1} for integers ¢;, U C Zm,, ¢; # qx, i # k. We also define
Z,, =7y, NU. xy is the set of two-state variables {z,,,zq,,...,zq, ,} over
which a starting seed is described, xz; is the set of two-state variables

{xo, 21, ..., &1} Nxy over which DIy, n is described, and xz,,, = xy U xz ,
where xz_ is a set of length 2™7%¢ linear functions over Zyn. s0p and slg are
functions of y and xy, where y has w states. s0; and s1; are functions of y,
xy, and x4, g € Z.,. We refer to z, as the ‘glue’ variable. We then identify
sets of seed functions G (y, xy, z,) derived from s0p, s1o which satisfy (17) for
certain fixed (preferably small) v.

‘We illustrate the seed construction as follows, 0 DJT‘I»U

further developing the line graph representation - _L S P
. A

of [8]. Each black dot symbolises a J Yo Sy

variable. The line between two dots (variables) I eee
indicates a quadratic component comprising the ‘.)(U...
.

variables at either end of the line.

Theorem 6 The length t2"~" sequence family I'(y,xz,,) = O(y,xu,z,) +
DJm,u(XZ;n) has correlation < /ut2m=v with the length t2™~" sequence set
Eo @ Lyy_u, where v is given by (17), and g € Z!,.

Theorem 6 allows us to construct favourable 'tensor cosets’ of DJ, by first
identifying a starting pair of sequences with desirable correlation properties,



i.e. a pair which satisfy (17) for small v, and where Eq may be, say, F1,,, Fm,,
Ly, or something else. We don’t consider ® which are, themselves, line graph
extensions of smaller seeds, ®'; i.e. ® satisfying the following degenerate form
are forbidden: ©(y, xu, z,) = O'(y, Xy, Ta) + Ty + TpTo+ . . .+ 242, for some
a,b,c,...,q,g ¢ U but € U. We identify tensor symmetries leaving PAPR
invariant. The symmetry depends on Eg.

Lemma 7 If Eg = Fu, the PAPR associated with Rudin-Shapiro extensions
of a specific ©(y,xu, x,) is invariant for all possible choices and orderings of
U where |U| = u is fized by ©.

We now give a few example constructions which all follow from Theorem 6,
coupled with Theorems 3 and 4.

Corollary 8 ? Let s0o(xu) and slo(xy) be any two length t = 2" Bent
Functions in u variables over Z,, where u is even. Then I'(xz,_) comprises
(Almost) Bent functions, and when h = 1, comprises Bent functions for m—u
even and functions with PAPR = 2.0 under the HT for m — u odd.

Example 3: Let s0o(xu) = zoz1 + z122 + z223, slo(xu) = zox1 + zox2 + x2x3 over Za. s0g,slg are in
DJ4,1 so both are Bent. However they do not form a complementary pair. By j = m —u applications of (8)

over Z,n with tensor permutation we can use these two sequences to generate the (Almost) Bent family,
_ 9h—1
L(xzm) = 2" (29(2q, gy + TgoTqz) + TgoTqy + TquTgs + TgaTgs+

22:0 bkqu) + 2h_1 Zi:;%) LrpLryyq + Z{g;%) CiZr, +d= Q(XU’ xg) + DJj,h(XZQr.)
where U = {qo0,q1,. .-, qu—1}, Ziy = {70,71,-- s "m—u—1}, @G 7 Qk, Ti # Tk, L # k, by € Z2, ¢, d € Zyn,
g € Z.,,. By Lemma 7 PAPR invariance is achieved by all possible assignments of g;,7; to Zm. For h = 1
I'(xz,,) is Bent for j even, and has PAPR = 2.0 under HT for j odd.

Corollary 9 Let sOg(z) and slg(x) be any two length t = 2" Bent and Ne-
gabent Functions in u variables over Zy, where u is even, and u # 2 mod 3.
Then T'(xz,,) comprises (Almost) Bent and (Almost) Negabent functions in
m = u+ j variables over Zyn and, when h =1, comprises Bent and Negabent
functions for 7 =0 mod 6.

Example 3 is also an example for Corollary 9. Corollaries 2 and 9 and a similar
one for Negabent sequences allows us to 'seed” many more Bent, Negabent and
Bent /Negabent sequences with degree higher than quadratic.

5.1 Famalies with Low PAPR Under all CDFTs

We now identify, computationally, sets of length-t sequence pairs over Zj
which, by the application of (8), can be used to generate families of length

This corollary has also recently been presented in Theorems 4 and 5 of [2], but not in the context of Rudin-Shapiro.



N = 2™ " sequences over Z,» which have PAPR < v under all length-N
CDF'Ts. In particular we find pairs of length ¢ = 2%, and present sets of length
2™ with PAPR < v < 4.0 in Table 1. In [3,8] constructions are provided for
quadratic cosets of RM(1, m) with PAPR upper bounds < 2%, k > 1 under all
length-N CDFTs. The seeded constructions of this paper further refine these
PAPR upper bounds to include non-powers-of-two. We also present low PAPR
constructions not covered in [3,8].

Corollary 10 Let sOg and slqg be length t = 2% binary sequences whose one-
dimensional Fourier power spectrum sum is found, computationally, to have
a mazimum = vt. Then the set of length 2™ sequences over Zyn, constructed
from s0q, slg, has one-dimensional Fourier PAPR < v. Table 1 shows such
sets foru=0,1,2 and U C {0,1,2,3,4}, for cases v < 4.0 3.

For the CHT examples previously discussed all choices and orderings of seed
variables leave PAPR invariant (Lemma 7). In the case of CDFT PAPR,
Lemma 7 does not hold. However tensor shifts of variables do leave PAPR
invariant. This leads us to modify our definition as follows. U is now the or-
dered subset of w integers, U = {z+ qo, 2+ q1,...,2 + qu_1} for integers z, g,
such that U C Z, and ¢; < gj11.

Lemma 11 If Eq = F1,, then the PAPR associated with Rudin-Shapiro ex-
tensions of a specific ©(y, Xy, x,) is invariant for all possible shifts of U, i.e.
for all possible values of z, given fixed g;.

For example, it is found, computationally, that the normalised sum of the
power spectrums of s0g = xox1+x1 + o, and s1lg = xgz; under the continuous
one-dimensional Fourier Transform has a maximum of 3.5396. Here is the
complete set having PAPR < 3.5396,

3ar1 = 3a@(XUaxg) + DJm—u,h(XZ{m)’ U= {Za z+ 1},9 € Z;rn
3a0O(p,¢,7) = 2" H(pg + 7(q + p) + b1g + bop), (18)
where by, b1 € {0, 1}, Ti € Zon, Vi

The e of I and © is an arbitrary categorisation label for the specific
seed, and the s; of (I'S9:%1-»Su-2 degcribe the tensor-shift-invariant pattern of
variable indices, where s,_; = ¢; — ¢;_1. For instance, for our example g,I'!,
we could choose U = {2, 3}, where the seed is built from the ANF form 3,0,
e.g. the ANF form woxg + w320 + Tox3 + T2 + 125 + 524 + 429 + 1 + 1 has
a PAPR < 3.5396, where we have constructed our seed over xo, x3, and g,
‘attached’ the line graph x1x5 + 2524 + 2470 to it, connecting at x, = ¢, and
added the linear term 1. The following set has PAPR < 3.8570,

further results for u = 3 can be found in [7]



3al'? = 3.O(xu, zy) + DJpy_un(xz), U={z,2+2},g€Z,

3al'2 has exactly the same algebraic structure as g,I'!, but 3,0 is, instead,
constructed over zg, x2, z4. Sets 3, I'® are quadratic sets so, when h = 1, the
union of the sets 3,I'* with DJy, 1 is a set of binary quadratic forms, so retains
minimum Hamming distance of 272, Table 1 shows I'-sets using 1,2,3-variable
seeds with PAPR < 4.0. We also use reversal symmetry to halve the number
of inequivalent representatives for some I' sets, (indicated by 'with R’). 1T of
Table 1 is an alternative derivation for a complementary set of size 4. The size
of each I'-set is also shown in Table 1, relative to the size, D, of DJy, n.

Table 1
Rudin-Shapiro Extensions Using u + 1 = 1, 2, 3-Variable Seeds
Ozg) _ O(1)
r Sh—1 — Sh—1 v IT|
ol 0 2.0000 D
Ozz,vg) _ O(p,7)
r o1 T ShoT v T
,T bop 4.0000 21=hp
Oxy.rg) _ ©(p.q.,7)
r oh—1 ~ T oh—1 v |T|
1 23—2h
2T rqT+ 3.0000 Z—>p
{rq+ q,q} + bop with R
1 22—2h
sl pq + big + bop 3.5396 Z_—bp
1 22—2h
3al'" |pg+ 7(a+p) +b1g+bop 3.5396 22 2p
2 2272h(m,72)
sl 3.8570 WD
2 22-2h(m—2)
3all 3.8570 27"2(;17"71) D
3 22— 20 (1 —3)
s3I 3.9622 o D
3 272" (m—3)
3all 3.9622 2”2(;"'71) D
4 227 2h(m—q)
s 3.9904 27"2(;17"7” D
4 2272 (m—4)
3al’ 3.9904 zmz(hmfl) D
5 272" (m—5)
L3N 3.9976 2”2(;"'71) D
5 22— 20 (1 —5)
3al’ 3.9976 WD
4T | 7(p+q) +big+bop 4.0000 222
2 22=2h (i —2)
4l 4.0000 WD
3 22— 20 (1 —3)
all 4.0000 WD
4 22-2h (m—q)
4l 4.0000 2m2(;n71) D
a'® 4.0000 2 m(nf:"lf)D
by, b1 € {0,1}, D= DIy nl = (%') Sh(m+1)

6 Discussion and Conclusions

We have shown that Golay-Davis-Jedwab Complementary Sequences, DJ,,
are (Almost) Orthogonal to the set Ly, of all linear functions in m binary
variables. We identified two sets of transforms, namely the one-dimensional
Consta-Discrete Fourier Transforms, and m-dimensional Constahadamard Trans-
forms, both of whose rows are from Ly,. Using the Rudin-Shapiro construction
we identified many seeds from which to construct infinite sequence families



with (Almost) Constabent properties, and other seeds with low PAPR un-
der one-dimensional Consta-DFTs. In this way we identified new low PAPR
families not necessarily limited to quadratic degree.
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