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Abstract

A Golay Complementary Sequence (CS) has Peak-to-Average-Power-Ratio (PAPR)
≤ 2.0 for its one-dimensional continuous Discrete Fourier Transform (DFT) spec-
trum. Davis and Jedwab showed that all known length 2m CS, (GDJ CS), originate
from certain quadratic cosets of Reed-Muller (1,m). These can be generated using
the Rudin-Shapiro construction. This paper shows that GDJ CS have PAPR ≤ 2.0
under all unitary transforms whose rows are unimodular linear (Linear Unimodular
Unitary Transforms (LUUTs)), including one- and multi-dimensional generalised
DFTs. We also propose tensor cosets of GDJ sequences arising from Rudin-Shapiro
extensions of near-complementary pairs, thereby generating many infinite sequence
families with tight low PAPR bounds under LUUTs.
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Some preliminary definitions:
Length N vectors a,b, where a ∈ ZN

P
, b ∈ ZN

Q
, and aj , bj are sequence elements of a and b, respectively.

We define,

Correlation: a� b =
∑N−1

j=0
εµaj−λbj , where ε = exp(2π

√
−1/lcm(P, Q)), µ =

lcm(P,Q)
P

, λ =
lcm(P,Q)

Q
,

where lcm means ’least common multiple’.
Orthogonal: a and b are ’Orthogonal’ to each other if a� b = 0.
(Almost) Orthogonal: a and b are ’(Almost) Orthogonal’ to each other if 0 ≤ |a� b| ≤

√
2N .

Roughly Orthogonal: a and b are ’Roughly Orthogonal’ to each other if 0 ≤ |a� b| ≤ B, for some
pre-chosen B significantly less than N .

1
Supported by NFR Project Number 119390/431

Preprint submitted to Elsevier Preprint 4 January 2001



Tensor Permutation: Tensor permutation of m r-state variables, xi, takes xi to xπ(i), where permutation
π is any permutation of integers Zm.
Sequence representations for linear functions, xi, are of the form x0 = 0101010101 . . ., x1 = 001100110011 . . .,
x2 = 0000111100001111 . . ., and so on.

Definition 1 Lm is the infinite set of all linear functions in m binary variables over all alphabets, Zn,
1 ≤ n ≤ ∞,

Lm = {β ⊕ (0, α0)⊕ (0, α1) ⊕ . . .⊕ (0, αm−1)}, mod n (1)

where ⊕ means ’tensor sum’, β,αj ∈ Zn ∀j, gcd(β, n) = gcd(αj , n) = 1.

Definition 2 F1m ⊂ Lm is the infinite set of all one-dimensional linear Fourier functions in m binary
variables over all alphabets, Zn, 1 ≤ n ≤ ∞,

F1m = {(0, δ)⊕ (0, 2δ) ⊕ (0, 4δ) ⊕ . . .⊕ (0, 2m−1δ), mod n

1 ≤ n ≤ ∞, 0 ≤ δ < n, gcd(δ, n) = 1}
(2)

Definition 3 Fmm ⊂ Lm is the infinite set of all m-dimensional linear Fourier functions in m binary
variables over all alphabets, Zn, 1 ≤ n ≤ ∞,

Fmm = {(0, δ + c0) ⊕ (0, δ + c1)⊕ (0, δ + c2)⊕ . . .⊕ (0, δ + cn−1) mod n

2 ≤ n ≤ ∞, n even, 0 ≤ δ < n/2, gcd(δ, n) = 1, ci ∈ {0, n/2}}
(3)

Definition 4 A 2m × 2m Linear Unimodular Unitary Transform (LUUT) L has rows taken from Lm

such that LL† = 2mIm, where † means conjugate transpose, It is the 2t × 2t identity matrix, and a row,
u, of L ’times’ a column, v, of L† is computed as u� (−v).

1 Introduction

Length N = 2m Complementary Sequences (CS) are (Almost) Orthogonal to
F1m [4,3]. Length 2m CS over Z2h, as formed using the Davis-Jedwab con-
struction, DJm, are also Roughly Orthogonal to each other [3,8]. This paper
shows that DJm is (Almost) Orthogonal to Lm, and therefore each member
of DJm has a Peak-to-Average Power Ratio (PAPR) ≤ 2.0 under all Lin-
ear Unimodular Unitary Transforms (LUUTs) of length 2m. The properties of
DJm are shown to follow directly from a generalisation of the Rudin-Shapiro
construction [10,9,4,5,1]. We then propose tensor cosets of DJm, identifying
near-complementary seed pairs whose power sum has PAPR ≤ υ under cer-
tain LUUTs, where υ is small. We grow sequence sets from these pairs by
repeated application of Rudin-Shapiro so that these sets also have PAPR ≤ υ

under certain LUUTs. In this way we extend [3,8] by proposing further infi-
nite sequence families with tight one-dimensional Fourier PAPR bounds, and
of degree higher than quadratic. We also confirm and extend recent results
of [2] who construct families of Bent sequences using Bent sequences as seed
pairs, although not in the context of Rudin-Shapiro.
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2 Complementary Sequences (CS)

Definition 5 [4,3] Length N sequences s0 and s1 are a CS pair if the sum
of their one-dimensional Fourier power spectrums is flat and equal to 2N .

Implication 1 [4,3] A length N CS, s, has a Peak-to-Average-Power-Ratio
(PAPR) for its one-dimensional Fourier power spectrum constrained by,

1.0 ≤ PAPR(s) ≤ 2N

N
= 2.0 (4)

Theorem 1 [3] s is a Golay-Davis-Jedwab (GDJ) CS if of length 2m and
expressible as a function of m variables over Z2h as,

s(x0, x1, . . . , xm−1) = 2h−1
m−2
∑

k=0

xπ(k)xπ(k+1) +
m−1
∑

k=0

ckxk + d (5)

where π is a permutation of the symbols {0, 1, . . . , m−1}, ck, d ∈ Z2h, and the
xk are linear functions over Z2h. We refer to the set of GDJ CS over Z2h as
DJm,h, and refer to DJm,∞ as DJm.

There are (m!
2

)2h(m+1) sequences in DJm,h, and DJm,h has minimum Hamming
Distance ≥ 2m−2. Thus, for distinct s0, s1 ∈ DJm,1, s0� s1 ≤ 2m−1.

3 Distance of DJm from Lm

Theorem 2 DJm is (Almost) Orthogonal to Lm.

Proof Overview: We prove for DJm,1 by using the Rudin-Shapiro construction
[10,9] to simultaneously construct DJm,1 and Lm. We then extend the proof to
DJm. Let s0j, s1j be a CS pair in DJm. More specifically, let s00, s10 be the
length 1 sequences, s00 = (0), s10 = (1), where s00, s10 ∈ DJ0,1. The Rudin-
Shapiro sequence construction is as follows:

s0j = s0j−1|s1j−1, s1j = s0j−1|s1j−1 (6)

where s0j, s1j ∈ DJj,1, s means negation of s, and | means sequence concatenation.
Example 1: s01 = 01, s11 = 00 ⇒ s02 = 0100, s12 = 0111.

More generally we generate the RM(1,m) coset of x0x1 + x1x2 + . . . + xm−2xm−1
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using all 2m combinations of m iterations of the two constructions,

A : s0j = s0j−1|s1j−1, s1j = s0j−1|s1j−1

and

B : s0j = s0j−1|s1j−1, s1j = s0j−1|s1j−1

(7)

Algebraically, constructions (7) become,

A :

B :

s0j(x) = xj−1(s0j−1(x′) + s1j−1(x′)) + s0j−1(x′)

s1j(x) = s0j(x) + xj−1

and

s0j(x) = xj−1(s0j−1(x′) + s1j−1(x′) + 1) + s0j−1(x′) + 1

s1j(x) = s0j(x) + xj−1

where x = (x0, x1, . . . , xj−1), x
′ = (x0, x1, . . . , xj−2)

(8)

We generate DJm,1 from this coset by permutation of the indices, i, of xi (tensor
permutation). There are m!

2 such tensor permutations, (ignoring reversals).
Example 2: Let s03 = x0x1 + x1x2 + x2 + 1 = 11100010. Permuting x0 → x1, x1 → x0, x2 → x2, gives

s0′
3

= x0x1 + x0x2 + x2 + 1 = 11100100, where s03, s0′
3
∈ DJm,1.

We prove Theorem 2 for construction (6). The proof for construction (7) with sub-
sequent tensor permutation is straightforward. Let fj be a sequence in Lj (Definition
1), and let f0 be the length 1 sequence, f0 = (β), where β ∈ Zn, 1 ≤ n ≤ ∞. Let
pj, qj be complex numbers satisfying,

pj = fj � s0j, qj = fj � s1j (9)

Let fj = fj−1 ⊕ (0, αj−1), mod n (10)

αj−1 ∈ Zn, 1 ≤ n ≤ ∞, gcd(αj−1, n) = 1. Using (10) ∀αj we generate Lj. Combining
(9), (6) and (10),

pj = fj−1 � s0j−1 + εαj−1fj−1 � s1j−1 = pj−1 + εαj−1qj−1 (11)

qj = fj−1 � s0j−1 − εαj−1fj−1 � s1j−1 = pj−1 − εαj−1qj−1 (12)

where ε = exp(2π
√
−1/n). Applying,

|φp + θq|2 + |φp− θq|2 = 2(|φ|2|p|2 + |θ|2|q|2) (13)

for the special case |φ|2 = |θ|2 = 1, to (11) and (12) we get,

|pj |2 + |qj|2 = 2(|pj−1|2 + |qj−1|2) = 2j(|p0|2 + |q0|2) (14)
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Noting that |p0|2 = |q0|2 = 1, it follows that |pj |2 ≤ 2j+1, |qj |2 ≤ 2j+1. Theorem 2

follows directly for a subset of DJm,1 comprising sequences generated by (6). The

proof follows for the RM(1,m) coset of x0x1 + x1x2 + . . . xm−2xm−1 by replacing

construction (6) with constructions (7). Further extension to DJm,1 follows by

observing that identical tensor-permuting of f and s leaves the argument of (11) -

(12) unchanged. The proof for DJm follows.

4 Transform Families With Rows From Lm

From Theorem 2 sequences from DJm have (Almost) flat spectrum under all
LUUTs (see Definition 4). By Parseval’s theorem the PAPR of sequences from
DJm under such transforms is ≤ 2.0 This section highlights two important
LUUT sub-classes, firstly the one-dimensional Consta-Discrete Fourier Trans-
forms (CDFTs), and secondly the m-dimensional Constahadamard Trans-
forms (CHTs). An N × N Consta-DFT (CDFT) matrix has rows from F1m

and is defined over Zn by,






0 d 2d . . . (N − 1)d

0 d + k 2(d + k) . . . (N − 1)(d + k)

. . . . .

0 d + (N − 1)k 2(d + (N − 1)k) . . . (N − 1)(d + (N − 1)k)







(15)

1 ≤ n ≤ ∞, N |n, k = n
N

, d ∈ Zk, gcd(d, k) = 1, (including the case d = 0,
k = 1, which is the N ×N DFT).

A radix-2 N = 2m-point CHT matrix has rows from Lm over Zn and is defined
by the m-fold tensor sum of CHT kernels,

(

0 δ0

0 δ0 + n
2

)

⊕

(

0 δ1

0 δ1 + n
2

)

⊕ . . . ⊕

(

0 δm−1

0 δm−1 + n
2

)

= ⊕
m−1
i=0

(

0 δi

0 δi + n
2

)

(16)

2 ≤ n ≤ ∞, n even, 0 ≤ δi < n
2

gcd(δi,
n
2
) = 1, (including the case δi = 0,

n = 2). The Hadamard Transform (HT) is ⊕mH, where H =
(

0 0

0 1

)

over Z2,

and the Negahadamard Transform (NHT) is ⊕mN, where N =
(

0 1

0 3

)

over Z4.

4.1 The (Almost) Constabent Properties of DJm

Definition 6 [6] A length 2m sequence, s, is Bent, Negabent, Constabent, if
it has PAPR = 1.0 under HT, NHT, and CHT, respectively. It is (Almost)
Bent, (Almost) Negabent, (Almost) Constabent, if it has PAPR ≤ 2.0 under
HT, NHT, and CHT, respectively.
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From Theorem 2, DJm is (Almost) Constabent. More particularly,

Theorem 3 [6] DJm,1 is Bent for m even, and (Almost) Bent, with PAPR
= 2.0, for m odd.

Theorem 4 [6] DJm,1 is Negabent for m 6= 2 mod 3, and (Almost) Negabent,
with PAPR = 2.0, for m = 2 mod 3.

Corollary 5 [6] DJm,1 is Bent and Negabent for m even, m 6= 2 mod 3.

5 Seeded Extensions of DJm

DJm is recursively constructed using the initial length 1 CS pair, s00 =
(0) and s10 = (1). DJm is (Almost) Orthogonal to Lm precisely because
|f � s00|2 + |f � s10|2 = 2.0, ∀f ∈ L0. 2.0 is the lowest possible value. We can,
instead, take any pair of length-t starting sequences s00 and s10, such that,

|f � s00|2 + |f � s10|2 ≤ υt, ∀f ∈ E0 (17)

where E0 is any desired set of length-t sequences, and υ is a real value
≥ 2.0. Let t = w2u, w odd. We define an ordered subset of u integers,
U = {q0, q1, . . . , qu−1} for integers qi, U ⊂ Zm, qi 6= qk, i 6= k. We also define
Z′m = Zm 6 ∩U. xU is the set of two-state variables {xq0, xq1, . . . , xqu−1} over
which a starting seed is described, xZ′m is the set of two-state variables
{x0, x1, . . . , xm−1}6 ∩xU over which DJm−u,h is described, and xZm

= xU ∪ xZ′m,
where xZm

is a set of length 2m−ut linear functions over Z2h . s00 and s10 are
functions of y and xU, where y has w states. s01 and s11 are functions of y,
xU, and xg, g ∈ Z′m. We refer to xg as the ’glue’ variable. We then identify
sets of seed functions Θ(y,xU, xg) derived from s00, s10 which satisfy (17) for
certain fixed (preferably small) υ.

We illustrate the seed construction as follows,

further developing the line graph representation

of [8]. Each black dot symbolises a

variable. The line between two dots (variables)

indicates a quadratic component comprising the

variables at either end of the line.

x

X

y

U

g

XZm
/

DJm-u

Theorem 6 The length t2m−u sequence family Γ(y,xZm
) = Θ(y,xU, xg) +

DJm−u(xZ′m) has correlation ≤
√

υt2m−u with the length t2m−u sequence set
E0 ⊕ Lm−u, where υ is given by (17), and g ∈ Z′m.

Theorem 6 allows us to construct favourable ’tensor cosets’ of DJm by first
identifying a starting pair of sequences with desirable correlation properties,
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i.e. a pair which satisfy (17) for small υ, and where E0 may be, say, F1u, Fmu,
Lu, or something else. We don’t consider Θ which are, themselves, line graph
extensions of smaller seeds, Θ′, i.e. Θ satisfying the following degenerate form
are forbidden: Θ(y,xU, xg) = Θ′(y,x′U, xa)+xaxb +xbxc + . . .+xqxg, for some
a, b, c, . . . , q, g 6∈ U′ but ∈ U. We identify tensor symmetries leaving PAPR
invariant. The symmetry depends on E0.

Lemma 7 If E0 = Fuu the PAPR associated with Rudin-Shapiro extensions
of a specific Θ(y,xU, xg) is invariant for all possible choices and orderings of
U where |U| = u is fixed by Θ.

We now give a few example constructions which all follow from Theorem 6,
coupled with Theorems 3 and 4.

Corollary 8 2 Let s00(xU) and s10(xU) be any two length t = 2u Bent
Functions in u variables over Z2, where u is even. Then Γ(xZm

) comprises
(Almost) Bent functions, and when h = 1, comprises Bent functions for m−u

even and functions with PAPR = 2.0 under the HT for m− u odd.

Example 3: Let s00(xU) = x0x1 + x1x2 + x2x3, s10(xU) = x0x1 + x0x2 + x2x3 over Z2. s00,s10 are in

DJ4,1 so both are Bent. However they do not form a complementary pair. By j = m−u applications of (8)

over Z2h with tensor permutation we can use these two sequences to generate the (Almost) Bent family,

Γ(xZm
) = 2h−1(xg(xq1xq2 + xq0xq2) + xq0xq1 + xq1xq2 + xq2xq3+

∑3
k=0 bkxqk

) + 2h−1 ∑j−1
k=0 xrk

xrk+1
+

∑j−1
k=0 ckxrk

+ d = Θ(xU, xg) + DJj,h(xZ′m)
where U = {q0, q1, . . . , qu−1}, Z′m = {r0, r1, . . . , rm−u−1}, qi 6= qk, ri 6= rk, i 6= k, bk ∈ Z2, ck, d ∈ Z2h ,

g ∈ Z′m. By Lemma 7 PAPR invariance is achieved by all possible assignments of qi, ri to Zm. For h = 1

Γ(xZm
) is Bent for j even, and has PAPR = 2.0 under HT for j odd.

Corollary 9 Let s00(x) and s10(x) be any two length t = 2u Bent and Ne-
gabent Functions in u variables over Z2, where u is even, and u 6= 2 mod 3.
Then Γ(xZm

) comprises (Almost) Bent and (Almost) Negabent functions in
m = u + j variables over Z2h and, when h = 1, comprises Bent and Negabent
functions for j = 0 mod 6.

Example 3 is also an example for Corollary 9. Corollaries 2 and 9 and a similar
one for Negabent sequences allows us to ’seed’ many more Bent, Negabent and
Bent/Negabent sequences with degree higher than quadratic.

5.1 Families with Low PAPR Under all CDFTs

We now identify, computationally, sets of length-t sequence pairs over Z2

which, by the application of (8), can be used to generate families of length

2
This corollary has also recently been presented in Theorems 4 and 5 of [2], but not in the context of Rudin-Shapiro.
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N = t2m−u sequences over Z2h which have PAPR ≤ υ under all length-N
CDFTs. In particular we find pairs of length t = 2u, and present sets of length
2m with PAPR ≤ υ ≤ 4.0 in Table 1. In [3,8] constructions are provided for
quadratic cosets of RM(1, m) with PAPR upper bounds ≤ 2k, k ≥ 1 under all
length-N CDFTs. The seeded constructions of this paper further refine these
PAPR upper bounds to include non-powers-of-two. We also present low PAPR
constructions not covered in [3,8].

Corollary 10 Let s00 and s10 be length t = 2u binary sequences whose one-
dimensional Fourier power spectrum sum is found, computationally, to have
a maximum = υt. Then the set of length 2m sequences over Z2h , constructed
from s00, s10, has one-dimensional Fourier PAPR ≤ υ. Table 1 shows such
sets for u = 0, 1, 2 and U ⊂ {0, 1, 2, 3, 4}, for cases υ ≤ 4.0 3 .

For the CHT examples previously discussed all choices and orderings of seed
variables leave PAPR invariant (Lemma 7). In the case of CDFT PAPR,
Lemma 7 does not hold. However tensor shifts of variables do leave PAPR
invariant. This leads us to modify our definition as follows. U is now the or-
dered subset of u integers, U = {z + q0, z + q1, . . . , z + qu−1} for integers z, qi

such that U ⊂ Zm and qi < qi+1.

Lemma 11 If E0 = F1u then the PAPR associated with Rudin-Shapiro ex-
tensions of a specific Θ(y,xU, xg) is invariant for all possible shifts of U, i.e.
for all possible values of z, given fixed qi.

For example, it is found, computationally, that the normalised sum of the
power spectrums of s00 = x0x1+x1+x0, and s10 = x0x1 under the continuous
one-dimensional Fourier Transform has a maximum of 3.5396. Here is the
complete set having PAPR ≤ 3.5396,

3aΓ
1 = 3aΘ(xU, xg) + DJm−u,h(xZ′m), U = {z, z + 1}, g ∈ Z

′
m

3aΘ(p, q, τ) = 2h−1(pq + τ(q + p) + b1q + b0p),

where b0, b1 ∈ {0, 1}, xi ∈ Z2h ,∀i

(18)

The e of eΓ
s0 and eΘ is an arbitrary categorisation label for the specific

seed, and the si of eΓ
s0,s1,...,su−2 describe the tensor-shift-invariant pattern of

variable indices, where si−1 = qi − qi−1. For instance, for our example 3aΓ
1,

we could choose U = {2, 3}, where the seed is built from the ANF form 3aΘ,
e.g. the ANF form x2x0 + x3x0 + x2x3 + x2 + x1x5 + x5x4 + x4x0 + x1 + 1 has
a PAPR ≤ 3.5396, where we have constructed our seed over x2, x3, and x0,
’attached’ the line graph x1x5 + x5x4 + x4x0 to it, connecting at xg = x0, and
added the linear term x1. The following set has PAPR ≤ 3.8570,

3
further results for u = 3 can be found in [7]
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3aΓ
2 = 3aΘ(xU, xg) + DJm−u,h(xZ′m), U = {z, z + 2}, g ∈ Z

′
m

3aΓ
2 has exactly the same algebraic structure as 3aΓ

1, but 3aΘ is, instead,
constructed over x0, x2, xg. Sets 3aΓ

s are quadratic sets so, when h = 1, the
union of the sets 3aΓ

s with DJm,1 is a set of binary quadratic forms, so retains
minimum Hamming distance of 2m−2. Table 1 shows Γ-sets using 1,2,3-variable
seeds with PAPR ≤ 4.0. We also use reversal symmetry to halve the number
of inequivalent representatives for some Γ sets, (indicated by ’with R’). 1Γ of
Table 1 is an alternative derivation for a complementary set of size 4. The size
of each Γ-set is also shown in Table 1, relative to the size, D, of DJm,h.

Table 1
Rudin-Shapiro Extensions Using u + 1 = 1, 2, 3-Variable Seeds

Γ
Θ(xg )

2h−1
=

Θ(τ)

2h−1
υ |Γ|

0Γ 0 2.0000 D

Γ
Θ(xz,xg)

2h−1
=

Θ(p,τ)

2h−1
υ |Γ|

1Γ b0p 4.0000 21−hD

Γ
Θ(xU,xg)

2h−1
=

Θ(p,q,τ)

2h−1
υ |Γ|

2Γ
1 pqτ+ 3.0000 23−2h

m
D

{pq + q, q} + b0p with R

3Γ
1 pq + b1q + b0p 3.5396 22−2h

m
D

3aΓ
1 pq + τ(q + p) + b1q + b0p 3.5396 22−2h

m
D

3Γ
2 3.8570

22−2h(m−2)

m(m−1)
D

3aΓ
2 3.8570

22−2h(m−2)

m(m−1)
D

3Γ
3 3.9622

22−2h(m−3)
m(m−1)

D

3aΓ
3 3.9622

22−2h(m−3)
m(m−1)

D

3Γ
4 3.9904

22−2h(m−4)

m(m−1)
D

3aΓ
4 3.9904

22−2h(m−4)

m(m−1)
D

3Γ
5 3.9976

22−2h(m−5)
m(m−1)

D

3aΓ
5 3.9976

22−2h(m−5)
m(m−1)

D

4Γ
1 τ(p + q) + b1q + b0p 4.0000 22−2h

m
D

4Γ
2 4.0000

22−2h(m−2)

m(m−1)
D

4Γ
3 4.0000

22−2h(m−3)
m(m−1)

D

4Γ
4 4.0000

22−2h(m−4)
m(m−1)

D

4Γ
5 4.0000

22−2h(m−5)

m(m−1)
D

b0, b1 ∈ {0, 1}, D = |DJm,h| =
(

m!
2

)

2h(m+1)

6 Discussion and Conclusions

We have shown that Golay-Davis-Jedwab Complementary Sequences, DJm,
are (Almost) Orthogonal to the set Lm of all linear functions in m binary
variables. We identified two sets of transforms, namely the one-dimensional
Consta-Discrete Fourier Transforms, and m-dimensional Constahadamard Trans-
forms, both of whose rows are from Lm. Using the Rudin-Shapiro construction
we identified many seeds from which to construct infinite sequence families

9



with (Almost) Constabent properties, and other seeds with low PAPR un-
der one-dimensional Consta-DFTs. In this way we identified new low PAPR
families not necessarily limited to quadratic degree.
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