Restoring Satisfiability or
Maintaining Unsatisfiability
by finding small Unsatisfiable Subformulae

R. Bruni and A. Sassano

Dipartimento di Informatica e Sistemistica, Universita di Roma “La Sapienza”,
Via Buonarroti 12, I-00185 Rome, Italy

{bruni,sassano}@dis.uniromal.it

Abstract

In several applicative fields, the generic system or structure to be designed can be
encoded as a CNF formula, which should have a well-defined satisfiability property
(either to be satisfiable or to be unsatisfiable). Within a complete solution frame-
work, we develop an heuristic procedure which is able, for unsatisfiable instances,
to locate a set of clauses causing unsatisfiability. That corresponds to the part of
the system that we respectively need to re-design or to keep when we respectively
want a satisfiable or unsatisfiable formula. Such procedure can guarantee to find an
unsatisfiable subformula, and is aimed to find an approximation of a minimum un-
satisfiable subformula. Successful results on both real life data collecting problems
and Dimacs problems are presented.

Key words: Consistency restoring, MUS location, (Un)Satisfiability.

1 Introduction

Several problems arising from fields as different as Artificial Intelligence, Cryp-
tography, Database Systems, Machine Vision, VLSI design and testing, are
usually encoded into propositional logic formulae. A propositional formula F
in conjunctive normal form (CNF) is a conjunction of clauses C;, each clause
being a disjunction of literals, each literal being either a positive (z;) or a
negative (—x;) propositional variable. By denoting with /; the cardinality of
C;, and with [-] the possible presence of —, this is

A CV [F])

j=l.m i=1.l,

Preprint submitted to Elsevier Science 25 May 2001

The satisfiability problem (SAT) consists in finding a truth assignment for the
variables such that F evaluates to True, or proving that such truth assignment
does not exist. This problem is well-known NP-complete. Generally, when
an instance F encodes the system or structure one must design, we desire
F to have a well-defined solution property (either to be satisfiable or to be
unsatisfiable). When F is unsatisfiable, and we want it to be satisfiable, we
would like to modify the system in order to make F satisfiable. Conversely,
when F is unsatisfiable and we want it to be so, if we need to re-design the
system, we would like to keep F unsatisfiable.

An approach to the first problem leads to the solution of maximum satisfia-
bility problems. The mazimum satisfiability problem (Max-SAT) consists in
finding a truth assignment for the variables maximizing the number of clauses
C; which evaluates to True. Max-SAT is well-known NP-hard, and, unless
P=NP, it cannot be approximated in polynomial time within a performance
ratio greater than 7/8 [2|. Note that Max-SAT gives an answer to the SAT
problem as well. By denoting with S such maximum set of clauses which can
be simultaneously satisfied, S C F, satisfiability can be restored by removing
from the system all elements corresponding to clauses of F \ S. If we have
for example an inconsistent knowledge base, consistency can be restored by
deleting some of the information contained in it. However, such approach is
not desirable in many practical cases. Very often, in fact, we cannot just delete
a part of our system, because we need the functionalities contained in that
part. Instead, we would like to locate and understand the problem, and, basing
on this information, re-design only the small part of the system causing the
problem. As for the second problem, when we want F to be unsatisfiable, it
often happens that we want to modify the system, e.g. to reduce its cost. We
typically would like to know which part of the system should not be changed,
and which one can be modified (or possibly removed).

Both of the above problems can be approached by looking for a subset of
clauses U within an unsatisfiable formula F such that U/ is still unsatisfiable,
as explained in Sect. 2. More than one unsatisfiable subformula can be con-
tained within the same F. Unsatisfiable subformulae are characterized with
respect to the number of their clauses, and relations between them and the
solution of Max-SAT are investigated. While solving SAT by means of an enu-
meration approach, an analysis on the history of the search guide us to the
individuation of “hard-to-satisfy” clauses, as illustrated in Sect. 3. We there-
fore propose, in Sect. 4, an algorithm to find an approximation of the minimum
unsatisfiable subformula, by selecting “hard-to-satisfy” clauses until we obtain
an unsatisfiable subformula. This procedure is applied to real world problems
arising from data collecting, where we want the resulting logic formula to be
satisfiable. Moreover, the procedure is applied to widely-known unsatisfiable
problems from the Dimacs collection.

2 Unsatisfiable Subformulae

A CONF instance F can be viewed simply as a set of clauses C;. Throughout
the rest of this section, we assume F unsatisfiable (otherwise no unsatisfiable
subformula could be found in it).

An unsatisfiable subformula of F is a set U of clauses such that:

(1) U C F (in the sense of clause-subset, i.e. C; e U = C; € F).
(2) U is unsatisfiable.

An unsatisfiable subformula can be a proper subformula of F or coincide with
F. However, some formulae F do not admit proper unsatisfiable subformulae,
because they become satisfiable as soon as we remove any of its clauses (e.g.
the famous pigeon hole Dimacs problems).

A minimal unsatisfiable subformula (MUS) of F is a set M of clauses such
that:

(1) M C F (in the sense of clause-subset).
(2) M is unsatisfiable.
(3) Every proper clause-subset of M is satisfiable.

In the general case, we can have more than one MUS in the same F. Some
of them can overlap, in the sense that they can share some clauses, but they
cannot be fully contained one in another. Formally, the collection of all MUS
of F is a clutter. The concept of MUS have analogies with that one of IIS
(irreducible infeasible systems) in the case of systems of linear inequalities [1].

A minimum unsatisfiable subformula (minMUS) of F is a minimum cardinality
MUS. We denote with p its cardinality.

To find a MUS within a formula is an NP-hard problem, since it implies solving
the SAT problem. Moreover, finding a MUS typically requires much more time
than just solving the SAT problem, just like finding an IIS requires much
more time than just solving the feasibility of a system of linear inequalities
[6]. We therefore introduce the concept of approximation for an unsatisfiable
subformula. Being m the number of clauses in F, and p the cardinality of any
minMUS, an unsatisfiable subformula U of approzimation ¢ (with 0 < & <
m — u) of F is an unsatisfiable subformula ¢/ having cardinality ¢ = p+¢. A
0-approximation unsatisfiable subformula is a minMUS.

Relations between the concepts of Max-SAT solution and MUS can be investi-
gated. Considering example in Fig. 1, we have the set of clauses corresponding
to the solution of the Max-SAT problem S = {C4, Cy, C3, Cy, Cs, Cs, Co, Cip },

and its complement F\ S = {Cs,C7}. The clutter of all MUS is given by
My = {C4,Cs} and My = {C7,Cs,Co}. The first is the minimum unsat-
isfiable subformula, and we have p = 2. An l-approximation unsatisfiable
subformula is Y = {C3, Cy, C5}. The following general result holds:

Relation between Max-SAT and MUS
Let F be an unsatisfiable CNF formula. The complement F \ S of any set of

clauses § corresponding to a Mazx-SAT solution of F is a cover of the clutter
of all MUS of F.

Proof: S cannot entirely contain any MUS. However, S can partially contain
all MUS. Therefore, every MUS has at least one clause in F \ S.

Max-SAT
solution
Minimum MUS
approximation
Clutter of
all MUS

Fig. 1. Relations among the solution of Max-SAT, the clutter of all MUS, and an
l-approximation unsatisfiable subformula

The problems depicted in Sect. 1 correspond to the problem of selecting a
minMUS, as follows. In the case we want to restore satisfiability by locating
only the small part of the system causing the problem, this actually means
locating a minMUS, or at least a MUS or a low-approximation unsatisfiable
subformula. Re-design of that part is another issue, and, typically, requires
the work of the original human designer. Postinfeasibility analysis, in fact,
always requires the cooperation of algorithmic engine and human intelligence
[6]. The process could need to be repeated until all MUS are removed from
the formula. On the contrary, the set of clauses not satisfied by a Max-SAT
solution is not, in general, an unsatisfiable subset (although it may be), hence
its location would not help in understanding the problem. In the case we
want to keep unsatisfiability, while modifying the system, this again means
locating a minMUS, or at least a MUS or a low-approximation unsatisfiable
subformula. That is the part of the system that should not be changed.

3 Clause Hardness Evaluation

Many algorithms for the SAT problem have been proposed (see for instance
[5,8,9,14] for extensive references). Most of complete methods are based on
enumeration techniques and perform a tree search. They are also called Davis-
Putnam-Loveland variants [7,12], and have the following general structure:

DPL scheme

(1) Choose a variable x according to a branching rule (see e.g. [10]). Gener-
ally, priority is given to variables appearing in unit clauses (unit resolu-
tion).

(2) Fix x to a truth value and remove all satisfied clauses and all falsified
literals.

(3) If an empty clause is obtained, backtrack and change a truth assignment.
Usually, change the last replaceable one (depth-first exploration of the
search tree).

Repeat (1,2,3) until) a satisfying solution is found: the formula is sat-
isfiable, or ii) the search tree is completely explored and no satisfying
solution is found: the formula is unsatisfiable.

During such enumeration, we could consider the history of the search as an
information on the structure of the formula. Such analysis guide us to the
individuation of “hard-to-satisfy” clauses within the formula. Note that hard-
ness of a clause is typically not due to the single clause in itself, but to its
combination with the rest of the clauses in F. Therefore, we will speak of
hardness of a clause C; in the case when C; belongs to the particular instance
F we are considering. This, however, will be implicit in the following.

Our SAT solution algorithm uses a clause-based search tree [13,10]. At every
iteration, a clause C§ to be satisfied is selected. Variables from Cy are therefore
selected, and fixed in order to satisfy C§. Let the first be x,. If we need to
backtrack, the next assignment would not be just the opposite truth value
for the same variable x,, because this would not satisfy C. Instead, we select
another variable x;, in C§, and fix z, in order to satisfy C,. Moreover, since
the previous truth assignment for x, was not successful, we can also fix the
opposite truth value for z,. Clause selection is as follows. Priority is given
to unit clauses (unit resolution). After them, since starting assignment by
satisfying the more difficult clauses is known to be very helpful in reducing
backtracks [10], we select hardest clauses. Hardness of a clause is evaluated by
means of the below ¢(C}).

A clause C} is wisited during the exploration of the search tree if we make a
truth assignment aimed at satisfying C;. We fail on a clause C; either if a

truth assignment aimed at satisfying C; produces an empty clause, or if C;
itself becomes empty due to some other truth assignment. We evaluate the
difficulty of a clause C; by counting how many times Cj is visited, and how
many times the enumeration fails on C;. Visiting C; many times shows that
C}; is difficult, and failing on it shows even more clearly that Cj is difficult.
Moreover, as known, the shorter a clause is, the harder that clause is.

Clause hardness adaptive evaluation

Let v; be the number of visits of clause C;, f; the number of failures due to
C;, p a penalty considered for failures, and l; the length of C;. An hardness
evaluation of C; in F is given by

©(Cy) = (v; +pfy) /1

Counting visits and failures has the important feature of requiring very little
overhead. The quality of such evaluation improves as the search proceeds.

4 Unsatisfiable Subformula Selection

By using the above hardness evaluation, we progressively select a subset of
hard clauses, that we call a core. We solve the core without propagating as-
signments to clauses out of the core. In case the core is satisfiable, we extend
current (partial) solution to a larger subset of clauses (a bigger core), until
solving the whole formula, or stopping at an unsatisfiable subformula. This
can be related to well-known techniques of row generation often used in math-
ematical programming.

Adaptive core search

e Preprocessing Perform d branching iterations using just shortest clause
rule. Initial core Cy is empty. (If the instance is already solved, Stop.)
e Base Add to Cj a fixed percentage c of the clauses of F, giving priority to

hardest clauses. Obtain a new core C;. Remaining clauses form O;.

e Iteration k Perform b branching iteration on current core Cy, ignoring Oy,

using adaptive clause selection. We have one of the following a, b, c:

- a (i is unsatisfiable = F is unsatisfiable, Cj is the selected unsatisfiable
subformula. Stop.

- b No answer after b iterations = Contraction: Form a new core Cj
by selecting a fixed percentage c¢ of the clauses of Cy, giving priority to
hardest clauses. Put k := k + 1, goto k.

- ¢ Cj is satisfied by solution Sy = Fxpansion: Form a new core Cy,q by
adding to Cy a fixed percentage c of the clauses of 0. First give priority

to clauses falsified by Sk, and then give priority to hardest clauses. Put
k =k +1, goto k.

Preprocessing serves to give initial values of visits and failures, in order to
compute . Then, we try to solve a set of hard clauses as if they were our
entire instance. When current core is not solved by b branching iterations,
this means that it is too large, and must be reduced. Finally, if we find a
satisfying solution for the core, we try to extend it to the rest of the clauses.
If some clauses are falsified, this means that they are difficult (together with
the clauses of the core), and therefore they should be added to the core. The
above is a complete solution scheme.

Parameters (d, b,) greatly affect the result. They can be set in order to quickly
solve the SAT problem, as in [3], or with the aim of selecting small subformulae.
This latter result is obtained by using values for d of the order of 2 x m,
values for b of the order of 5 ~ 100, and values for ¢ very small, e.g. 0.01,
if we expect MUS much smaller than the original F, or larger otherwise.
Such procedure can guarantee to always find an unsatisfiable subformula (for
unsatisfiable F). Moreover, it is aimed to find an approximation of a minimum
unsatisfiable subformula. This because, by progressively selecting hard clauses,
and performing several core expansions and contractions (expecially when b is
small), we believe it is able to locate the core on a minMUS.

5 Computational Results

In the tables, we report number of variables (n) and number of clauses (m)
of the original instance and of the smaller unsatisfiable subformula selected.
Column 'MUS’ report if selected unsatisfiable subformula is minimal (Y) or
not (N). This could be tested. We are unable to determine if it is a minMUS
or not, because we do not have an exact procedure to test this. A simple
test of all possible subformulae would be hopeless. Column ’rest’ report if
the formula obtained by removing the selected unsatisfiable subformula is
satisfiable (S) or not (U). Parameter p (failure penalty in hardness evaluation)
was set at 10. Such choice gave better and more uniform results. Parameter
d (number of branching iterations in preprocessing), b (number of branching
iterations in every branching phase), ¢ (percentage of core variations), have
not single preferable values. We give the values corresponding to the reported
unsatisfiable subformulae. The size of selected subformula is very sensible to
parameters’ values, expecially ¢ and b. In order to give an idea, the cardinality
of selected subformula (ranging form 60 to 850) varying ¢ (from 1 to 10) and
b (from 10 to 20) is also given, in the case of problem jnh?2 (see Fig. 2). Times
are in CPU seconds (on a Pentium II 450 MHz).

5.1 Data Collecting Problems

When dealing with a large number of collected information, which could con-
tain errors, the relevant problem of error detection arises. Error detection is
generally approached by formulating a set of rules that the data records must
respect in order to be declared correct. Records not respecting all the rules
are declared erroneous. The more accurate and careful the rules are, the more
truthful individuation of correct and erroneous data can be achieved. A first
problem arising from this is the validation of such set of rules. In fact, the
rules could contain some contradiction among themselves. This could result in
erroneous records to be declared correct, and vice versa. The problem of check-
ing the set of rules against inconsistencies can be transformed into a sequence
of SAT problems (see [4] for details). Every unsatisfiable instance obtained
reveals an inconsistency in the set of rules. In such case, we couldn’t just re-
move some rules to restore consistency. On the contrary, we need to locate the
entire set of conflicting rules, in order to let the human expert understand the
problem and solve it by modifying some rules. That problem would hardly be
understood by the expert without such localization of conflicting rules.

In Table 1 we report results on some instances encoding the set of rules called
censusl (developed for a real census). They produced a main SAT instance
and a sequence of derived instances (census_1.x), some of which resulted un-
satisfiable. Such instances are large but structurally easy. Since inconsistencies
are unwanted, they generally contained only one MUS of very small size. In-
consistencies on purpose introduced could always be detected.

Original formula Selected U Parameters
Problem n m n m ‘ rest ‘ MUS d ‘ b | c ‘ time
census_-1.0 1960 10420 2 3 S Y 1000 | 4 | 0.01 0.1
census_-1.1 1958 10415 2 3 S Y 1000 | 4 | 0.01 0.1
census_1.2 1957 10418 2 4 S Y 1000 | 4 | 0.01 0.1
census-1.3 1953 10410 3 4 S Y 1000 | 4 | 0.01 0.0
census_-1.4 1958 10412 2 3 S Y 1000 | 4 | 0.01 0.1
census_1.5 1948 10400 2 3 S Y 1000 | 4 | 0.01 0.1
census_1.6 1956 10416 2 4 S Y 1000 | 4 | 0.01 0.0
census_1.7 1952 10411 2 3 S Y 1000 | 4 | 0.01 0.0
census-1.8 1950 10420 3 5 S N 1000 | 4 | 0.01 0.0
census_-1.9 1955 10413 2 4 S Y 1000 | 4 | 0.01 0.0

Table 1: Unsatisfiable subformula selection on instances encoding rules for
data collecting problems.

5.2 Dimacs Problems

We choose some unsatisfiable problems from the Dimacs® test set, since they
are widely-known and easily available?. The series aim are 3-SAT instances
artificially generated by K. Iwama, E. Miyano and Y. Asahiro, the series jnh
are generated by J.N. Hooker. They are nowadays easily solved by many SAT
solvers, being small in size. Nevertheless, they have a structure much more
difficult than usual real problems. This results in the presence of unsatisfiable
subformulae much larger than in sec. 5.1.

Original formula Selected U Parameters
Problem n m n m ‘ rest ‘ MUS d | b ‘ c ‘ time
aim-50-1_6-no-1 50 80 20 22 S Y 80 10 | 10 0.1

aim-50-1_6-no-2 50 80 28 32 80 10 | 15 0.1

aim-50-1.6-no-3 50 80 28 31
aim-50-1_6-no-4 50 80 18 20
aim-50-2_0-no-1 50 100 21 22
aim-50-2.0-no-2 50 100 28 31

80 10 | 15 0.1

80 10 | 10 0.0

100 | 10 | 15 0.1
100 | 10 | 20 0.3

aim-50-2_0-no-3 50 100 22 28 100 | 15 | 20 0.0

n|ln|lu|lu|ln|ln|n
<Kz |<[=<]|<|=

aim-50-2_0-no-4 50 100 18 21 100 | 15 | 20 0.3

Table 2: Unsatisfiable subformula selection on the aim-50 series: 3-SAT artifi-
cially generated problems.

Original formula Core Parameters
Problem n m n m ‘ rest ‘ MUS d | b | c | time
aim-100-1_6-no-1 100 160 43 47 S Y 160 | 20 | 20 1.2

160 | 65 [15 4.5
160 | 60 [15 4.6
160 | 48 | 20 2.5

aim-100-1_6-no-2 100 160 46 54
aim-100-1_6-no-3 100 160 51 57
aim-100-1_6-no-4 100 160 43 48
aim-100-2_0-no-1 100 200 18 19
aim-100-2_0-no-2 100 200 35 39
aim-100-2_0-no-3 100 200 25 27
aim-100-2_0-no-4 100 200 26 32

200 | 12 | 8 0.5

200 | 16 | 15 0.9

200 | 30 | 10 1.8
200 | 40 | 15 1.6

n|ln|ln|lu|ln|rn|n
Z|Ix|K|Ix[=<]|Z2]|=2

Table 3: Unsatisfiable subformula selection on the aim-100 series: 3-SAT arti-
ficially generated problems.

L' NFS Science and Technology Center in Discrete Mathematics and Theoretical
Computer Science - A consortium of Rutgers University, Princeton University,
AT&T Bell Labs, Bellcore.

2 Available from
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/benchmarks/cnf/

Original formula Core Parameters

Problem n m n m ‘ rest ‘ MUS d | b | c | time

aim-200-1_6-no-1 200 320 52 55 S Y 320 | 30 | 15 2.6
640 | 60 | 24 | 43.0
640 | 65 | 25 300
640 | 34 | 10 2.3

aim-200-1.6-no-2 200 320 76 82
aim-200-1_6-no-3 200 320 77T 86

aim-200-1_6-no-4 200 320 44 46

aim-200-2_0-no-1 200 400 49 54 400 | 40 | 12 3.7
400 | 35 | 10 3.0
400 | 35 | 7 0.4

400 | 12 | 7 0.8

aim-200-2_.0-no-2 200 400 46 50

aim-200-2_.0-no-3 200 400 35 37
aim-200-2_0-no-4 200 400 36 42

nlnln|lw|lrn|lnl|ln
<K<K [Z|=<]Z2]|=2

Table 4: Unsatisfiable subformula selection on the aim-200 series: 3-SAT arti-
ficially generated problems.

Original formula Selected U Parameters
Problem n m n m | rest | MUS d ‘ b ‘ c ‘ time
jnh2 100 850 51 60 S N 850 17 3 3.2
jnh3 100 850 92 173 S N 8387 | 110 | 16 | 29.7
jnh4 100 850 86 140 S N 2550 | 77 | 15 8.2
jnh5 100 850 85 125 S N 1700 | 85 | 14 7.7
jnh6 100 850 88 159 S N 2550 | 80 | 17 | 22.9
jnh8 100 850 70 91 S N 646 37 6 0.6
jnh9 100 850 78 118 S N 1750 | 65 9 1.0
jnh10 100 850 95 161 S N 1700 | 160 | 12 0.1
jnhll 100 850 79 129 S N 1700 | 160 | 11 | 19.0
jnh13 100 850 77 106 S N 2550 | 145 | 10 0.1
jnh14 100 850 87 124 S N 5100 | 149 | 11 0.5
jnh15 100 850 87 140 S N 850 | 140 | 12 1.4
jnhl6 100 850 100 321 S N 1700 | 160 | 30 | 55.8
jnh18 100 850 91 168 S N 850 | 146 | 17 | 40.6
jnh19 100 850 78 122 S N 2550 | 101 | 10 74
jnh20 100 850 81 120 S N 1700 | 120 | 9 0.7

Table 5: Unsatisfiable subformula selection on the jnh series: randomly gener-
ated hard problems.

6 Conclusions

In several applicative fields, in addition to solving the SAT problem, one need
to locate a minMUS, or at least a MUS or an unsatisfiable subformula of a
given unsatisfiable formula. During the solution of SAT by means of a complete

10

enumeration technique altogether denominated Adaptive Core Search, we are
able to evaluate clause hardness, by analyzing the history of the search. By
progressively selecting hard clauses, in the case of unsatisfiable instances, we
are guaranteed to find an unsatisfiable subformula. Moreover, in almost all of
the analyzed real problems arising from data collecting, and in several Dimacs
problems, our procedure is able to find a MUS. We are unable to determine
whether it is a minMUS or not, because, contrary to the case of MUS, we do
not have a procedure to test this. (Testing every possible subset, even for small
instances, would be hopeless.) However, we suspect a minMUS was selected
in many of the analyzed real problems and in some Dimacs problems.

850

- 751

850.0

I 652

553

455

356

257

158

¢ (perc.)
18 9

60

Fig. 2. Cardinality of the unsatisfiable subformula selected in jnh2 for different
values of b and c.

References

[1] E. Amaldi, M.E. Pfetsch, and L. Trotter, Jr. Some structural and algorithmic
properties of the maximum feasible subsystem problem. in proc. of 10th Integer
Programming and Combinatorial Optimization conference., Lecture Notes in
Computer Science 1610, Springer-Verlag, 45-59, 1999.

[2] R. Battiti and M. Protasi. Approximate Algorithms and Heuristics for
MAX-SAT. In D.Z. Du and P.M. Pardalos eds. Handbook of Combinatorial
Optimization, Kluwer Academic Publishers, 1:77-148, 1998.

11

3]

R. Bruni and A. Sassano. A Complete Adaptive Algorithm for Propositional
Satisfiability. Technical Report 19-00, DIS, University of Rome “La Sapienza”,
2000.

R. Bruni and A. Sassano. Optimization Techniques for an Error Free Data
Collecting. Technical Report 01-01, DIS, University of Rome “La Sapienza”,
2001.

V. Chandru and J.N. Hooker. Optimization Methods for Logical Inference.
Wiley, New York, 1999.

J.W. Chinneck and E.W. Dravnieks. Locating Minimal Infeasible Constraint
Sets in Linear Programs. ORSA Journal on Computing, 3:157-168, 1991.

M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Comm. Assoc. for Comput. Mach., 5:394-397, 1962.

I.P. Gent and T. Walsh, editors. SAT 2000, Journal of Automated Reasoning,
Volume 24, Issue 1/2, 2000.

J. Gu, P.W. Purdom, J. Franco, and B.W. Wah. Algorithms for the Satisfiability
(SAT) Problem: A Survey. DIMACS Series in Discrete Mathematics, American
Mathematical Society, 1999.

[10] J.N. Hooker and V. Vinay. Branching Rules for Satisfiability. Journal of

Automated Reasoning, 15:359-383, 1995.

[11] D.S. Johnson and M.A. Trick, editors. Cliques, Coloring, and Satisfiability,

volume 26 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science. American Mathematical Society, 1996.

[12] D.W. Loveland. Automated Theorem Proving: a Logical Basis. North Holland,

1978.

[13] B. Monien and E. Speckenmeyer. Solving satisfiability in less than 2™ steps.

Discrete Applied Mathematics, 10 287-295, 1985.

[14] K. Truemper. Effective Logic Computation. Wiley, New York, 1998

12

