
Learning to Select Branching Rules in the DPLL Procedure for Satisfiability

Michail G. Lagoudakis MGL@CS.DUKE.EDU

Department of Computer Science, Duke University, Durham, NC 27708, USA

Michael L. Littman MLITTMAN@RESEARCH.ATT.COM

Shannon Laboratory, AT&T Labs Research, Florham Park, NJ 07932, USA

Abstract

The DPLL procedure is the most popular com-
plete satisfiability (SAT) solver. While its worst
case complexity is exponential, the actual run-
ning time is greatly affected by the ordering
of branch variables during the search. Several
branching rules have been proposed, but none
is the best in all cases. This work investigates
the use of automated methods for choosing the
most appropriate branching rule at each node in
the search tree. We consider a reinforcement-
learning approach where a value function, which
predicts the performance of each branching rule
in each case, is learned through trial runs on a
typical problem set of the target class of SAT
problems. Our results indicate that, provided
sufficient training on a given class, the resulting
strategy performs as well as (and, in some cases,
better than) the best branching rule for that class.

1. Introduction

Repetitive tasks, such as adding numbers, counting votes,
or solving instances of a specific problem are common for
both people and computers. It is true that nowadays most
such tasks are performed by machines that, unlike humans,
do not get tired of doing the same thing over and over again.
However, unlike machines, people tend to improve their
performance on a repetitive task as they accumulate more
and more experience with the task. A computer is, in gen-
eral, doomed to taking the very same steps in solving a
problem no matter whether it is its first or millionth time.
The human quality of learning, if embedded in a machine,
would have a significant impact on the way we program,
think of, and use computers.

Our work proposes to combine human knowledge with ma-
chine power: the human programmers provide a set of dif-
ferent algorithms for a given problem and the machine un-
dertakes the task of learning over time how to combine the

algorithms to improve its performance. Our earlier work
on algorithm selection (Lagoudakis & Littman, 2000) at-
tacked recursive algorithms for sorting and order-statistic
selection. This paper extends our approach to backtrack-
ing algorithms for satisfiability (SAT), and discusses our
initial experimental efforts. Solving computationally de-
manding problems, such as SAT, is an area in which learn-
ing to do algorithm selection can have a significant impact.
Not only do numerous algorithms exist for special cases of
such problems, but even a modest speedup in solving such
problems is highly desirable.

Section 2 provides an overview of the SAT problem and
its counting variation and outlines the basic algorithm for
solving them. The set of branching rules that we consid-
ered is described in Section 3 and the learning algorithm
is covered in Section 4. Experimental results are included
in Section 5, while Section 6 discusses the difficulties we
faced along the way and future plans of this work.

2. SAT, #SAT, and DPLL

A Boolean formula in conjunctive normal form (CNF) con-
sists of n Boolean variables x1, x2, ..., xn and m clauses
C1, C2, ..., Cm. Each variable can take a TRUE or FALSE
value. The value of the complement x̄i of some variable xi
is the opposite of xi. Each clause is a disjunction of dis-
tinct literals, where a literal is a single variable xi itself or
its complement x̄i. A clause is satisfied iff at least one of
its literals takes a TRUE value. An empty clause is by defi-
nition unsatisfiable. A Boolean formula F is a conjunction
of (nonempty) clauses, and it is satisfiable if there is an as-
signment to the variables that satisfies all the clauses. An
empty formula is by definition satisfiable. SAT refers to
the problem of finding a satisfying assignment for a given
formula. If no such assignment exists, the formula is unsat-
isfiable.

The example SAT formula below consists of 5 variables
and 8 clauses. It is satisfiable and (x1, x2, x3, x4, x5) =

(1, 1, 0, 1, 0) is a satisfying assignment:

(x1 + x2 + x̄3)(x̄2 + x4)(x̄1 + x̄5)

(x̄1 + x2 + x3 + x̄4 + x5)(x̄3)(x2 + x5)(x̄5)(x1).

The number of assignments that satisfy a Boolean for-
mula can be anywhere between 0 (unsatisfiable) and 2n

(tautology—satisfied by all assignments), where n is the
number of variables in the formula. #SAT refers to the
problem of finding the number of satisfying assignments
for a given formula.

Both SAT and #SAT are hard problems. SAT is NP-
HARD and indeed it is the first problem known to be NP-
COMPLETE. In general, #SAT represents a harder prob-
lem compared to SAT in the sense that any algorithm that
solves #SAT (exact number of satisfying assignments) can
be used to solve SAT (is there at least one satisfying assign-
ment?). It is #P-complete.

The problem of counting satisfying assignments is of in-
terest in artificial intelligence because it is equivalent to
problems in network reliability (Valiant, 1979) and belief
network inference (Roth, 1996). An algorithm for #SAT
has been used to solve probabilistic planning problems at
state-of-the-art speeds (Majercik & Littman, 1998).

The Davis-Putnam-Logemann-Loveland (DPLL) proce-
dure (Davis et al., 1962) is a search method for solving SAT
problems. DPLL explores the space of partial assignments
in a systematic way that eliminates the ones that lead to
a contradiction, and extends incrementally the promising
ones. A partial assignment can be extended by selecting
an unassigned variable and trying in turn the two possi-
ble assignments (TRUE, FALSE) to that variable (branch-
ing), thus creating two new partial assignments. A reduced
formula is created in each case; a TRUE assignment to
xi eliminates all clauses that contain the literal xi (these
clauses are satisfied) and all appearances of x̄i from the re-
maining clauses. A FALSE assignment has the symmetric
effect. The same procedure is then applied recursively to
each reduced formula.

Two key operations of the DPLL procedure are the unit
propagation and the purification steps. Unit propagation
extends a partial assignment in the presence of unit clauses
(clauses with a single literal). Such clauses can only be sat-
isfied by a specific assignment to the corresponding vari-
able. The complementary assignment would lead to a con-
tradiction and therefore can be safely ignored. The elimi-
nation of a variable can create new unit clauses, and thus
unit propagation eliminates variables by repeated passes
until there is no unit clause in the formula. Purification
applies when a variable xi appears in the formula purely in
positive (xi) or negative (x̄i) form. Such variables can be
safely eliminated by assigning TRUE in the positive case

and FALSE in the negative one. Purification is applied re-
peatedly as pure variables might be created after each pu-
rification pass.

The DPLL procedure is given in a more algorithmic format
below. Notice that purification and branching are imple-
mented by triggering the appropriate unit propagations.

DPLL(F)
if (F contains an empty clause)

return “unsatisfiable”
if (F is empty)

output current assignment
return “satisfiable”

/* Unit Propagation */
if (F contains a unit clause {l})

Create F ′ from F by eliminating all clauses that
contain l and all appearances of l̄

return DPLL(F ′)
/* Purification */
if (F contains a pure literal l)

return DPLL(F ∪ {l})
/* Branching */
*** Select a free literal l ***
if (DPLL(F ∪ {l}) is “satisfiable”)

return “satisfiable”
else

return DPLL(F ∪ {l̄})

The DPLL procedure can be modified to solve the #SAT
problem (Majercik & Littman, 1998; Birnbaum & Lozin-
skii, 1999). For each partial assignment that is found to be
satisfying, there exist 2k possible extensions to a full as-
signment, where k is the number of free variables. Thus,
by exploring the whole space of partial assignments, it is
possible to enumerate all possible satisfying assignments.
Note that purification cannot be used in this case, since
there might be assignments where pure variables can take
either value. The modified DPLL for #SAT is given below.

#DPLL(F)
if (F contains an empty clause)

return 0
if (F is empty)

return 2k, k=number of free variables
/* Unit Propagation */
if (F contains a unit clause {l})

Create F ′ from F by eliminating all clauses that
contain l and all appearances of l̄

return #DPLL(F ′)
/* Branching */
*** Select a free literal l ***
return #DPLL(F ∪ {l}) + #DPLL(F ∪ {l̄})

3. Branching Rules for (#)DPLL

Although the worst-case complexity of the DPLL proce-
dure is exponential, the actual running time can be greatly
affected by the choices of free literals in the branching step.
It is possible to reduce the size of the search tree that DPLL
and #DPLL explore by orders of magnitude if variables are
chosen in the appropriate order.

Despite the fact that finding an optimal ordering is com-
putationally difficult, a significant amount of research has
been devoted to the invention of branching rules that pick
literals in the branching step of DPLL. They work fairly
well in practice compared to a random strategy, but provide
no guarantees of optimality.

The branching rules, in general, compute some a score(l)
for each free literal l and Score(v) for each free variable
v. In most cases, the scores for complementary literals are
combined in some way to balance the two branches of the
search; if one path of search (say, l) is not fruitful, the other
one (l̄) has to be explored1. In our work, we used

Score(x) = score(x) + score(x̄).

The variable x that maximizes the score is selected.
Whether to branch on x or x̄ first is decided in favor of
the literal with the maximum individual score. This last
decision affects only the DPLL procedure—#DPLL has to
explore both branches anyway, so the order does not matter.

In this paper, we make use of seven branching rules, listed
below. Hooker and Vinay (1995) and Li and Anbulagan
(1997) provide extensive reviews of branching rules.

MAXO : This rule selects the literal with the maximum
number of occurrences in the formula:

MAXO(l) = number of occurrences of l in the formula.

The idea is that splitting on such a choice will have a
wide-spread effect in the formula.

MOMS : The MOMS rule is similar to MAXO, but it
counts only occurrences of literals in minimum size
clauses:

MOMS(l) = occurrences of l in minimum size clauses.

The rationale is that minimum size clauses play a more
important role during the search as they can reveal a
contradiction and/or enable unit propagations quickly.

MAMS : This is a novel combination of the previous two
rules:

MAMS(l) = MAXO(l) + MOMS(l̄).

1This is particularly true for #SAT, where both branches must
be explored anyway.

The idea is that it is desirable to satisfy as many
clauses as possible (MAXO(l)), but also to cre-
ate as many clauses of minimum size as possible
(MOMS(l̄)).

JW : The Jeroslaw-Wang rule combines the ideas behind
MAXO and MOMS using exponential weighting:

JW(l) =
∑

j, l∈Cj
2−nj .

where nj is the number of literals in clause Cj .
Smaller clauses have more weight than the larger
ones.

UP : This rule probes the search by making a trial assign-
ment to each free literal and counting the number of
triggered unit propagations due to that assignment:

UP(l) = # of unit props triggered by setting l=TRUE.

The more unit propagations the better, since each unit
propagation eliminates one variable.

GUP : This is a greedy version of the previous rule. Dur-
ing the trial assignments it might be discovered that
some assignment to a literal leads to contradiction or
satisfaction (through the series of triggered unit prop-
agations). If such a literal is found, it is immediately
selected to branch on. Otherwise, GUP scores literals
the same way UP does.

SUP : This is a selective version of UP. Due to the huge
computational cost of the UP rule, SUP runs first the
four inexpensive rules (MAXO, MOMS, MAMS, and
JW), which suggest up to four distinct literals and then
it selects among them using the UP scoring function.
Thus, the cost of trial assignments and unit propaga-
tions is paid only for a fixed number of free literals
(the most promising ones) and not for all of them.

4. Learning to Select Branching Rules

Algorithm selection is the problem of selecting the most ef-
ficient algorithm among equivalent ones for a given prob-
lem instance (Rice, 1976). In its original form, algorithm
selection involves only a one-shot decision—the “best” al-
gorithm is selected and then applied to the instance with no
further decision making. Lagoudakis and Littman (2000)
extended algorithm selection to cases that involve recur-
sive computations. When recursive algorithms are included
in the set, every time a recursive call is made, the algo-
rithm selection process can be invoked to select any of the
available algorithms. A key advantage of this approach is
that the combined (hybrid) algorithm that results from the
multiple decisions has the potential to perform better than

any of the individual algorithms. On the other hand, the
decision-making task becomes harder, as it involves a se-
quence of decisions.

A natural approach to the recursive algorithm selection
problem is to use the Markov decision processes (MDP)
framework and ideas from reinforcement learning (RL).
In this framework, an agent seeks an optimal policy—a
function that selects actions in each possible state of the
process—with the objective of minimizing the total ex-
pected cost. The process evolves over the state space ac-
cording to the dynamics of the system and the actions taken
by the agent. The agent is reinforced by a signal that indi-
cates the immediate cost of each transition.

For the algorithm-selection problem, the state consists of a
description of the current instance (or subinstance) under
consideration in terms of some features (e.g. size). The ac-
tions are the available algorithms for the problem. Choos-
ing a non-recursive algorithm results in a transition to the
final state (problem solved) and the cost for such a choice is
the execution time taken for that transition. On the contrary,
choosing a recursive algorithm results in a transition to one
or more states (one for each recursive call) from where new
decisions can be made. The cost paid is the execution time
taken (excluding time taken in recursive calls). The goal is
to minimize the total expected cost, which by definition is
the total execution time for the particular instance.

The mainstream approach for solving such problems is the
construction (either by computation or learning) of a value
function, such as Q(s, a), which “predicts” the expected
total cost when taking action a in state s and acting opti-
mally thereafter. In most cases, the state space is fairly big
and an explicit (tabular) representation of the value func-
tion would be rather expensive (in terms of both storage
and computation/learning). For that reason, parametric ap-
proximators are often used to represent the value function
and the problem becomes that of finding the set of param-
eters that maximizes the accuracy of the approximator. A
common class of approximators is the so called linear ar-
chitectures, where the value function is approximated as a
linear weighted combination of basis functions (features)
Q(s, a) = φ(s, a)ᵀw, where w are the weights (parame-
ters). Linear architectures are popular as there are several
well-studied methods (e.g. Least-Squares projection) for
determining the appropriate parameters (Bradtke & Barto,
1996; Boyan, 1999).

4.1 Learning Setup for #DPLL branching rules

The branching rules in the #DPLL procedure2 can be
thought of as alternatives available each time the algorithm
must branch. They are equivalent in the sense that success
or failure of the search does not depend on them, but they
can have a tremendous impact on the size of the search tree
and therefore on the running time of #DPLL. None of these
branching rules is best over all classes of SAT problems;
their performance is dependent on the features of the cur-
rent instance and the problem distribution from which they
are drawn. Given that each branching node of #DPLL cor-
responds to a #SAT subinstance, it is plausible to be able
to select the “best” branching rule for that node, based on
features of that particular subinstance.

Therefore, to conform with the MDP terminology, the state
of the process consists of features of the current #SAT
(sub)instance; for example, number of variables, number of
clauses, number of literals, etc. The main requirement on
these features is that they should carry information about
the performance of the branching rules; a varying value of
a feature should result in varying performance for some (or
all) of the branching rules. Further, these features have to
be easily computable to minimize overhead.

All branching rules are available as possible actions at each
branching node. No matter which branching rule is chosen,
search continues in two directions (l and l̄ branches). For
each direction, a series of unit propagations is performed
before arriving at a node of the following kind:

Branching Node : There are no unit clauses and unit prop-
agation cannot continue. This is a new state where a
new decision has to be made.

Contradiction Node : The current partial assignment
causes a contradiction in the formula. Search along
this branch is terminated here. This is an absorbing
state of the MDP.

Satisfaction Node : The current partial assignment satis-
fies the entire formula. Search along this branch is
terminated and the number of satisfying assignments
is computed. This is again an absorbing state of the
MDP.

Therefore, taking an action in a state results in two (possi-
bly absorbing) new states. This one-to-two state transition
violates the standard MDP definition, but it can be thought
of as cloning the MDP and creating one copy for each tran-
sition. The two copies continue independently thereafter.

2From this point on, we focus on the #SAT problem and the
associated #DPLL procedure, as they represent the most general
case and fit within our goal of minimizing the entire search tree.

The immediate cost paid for choosing a branching rule
is computed in two different ways. The total number of
search nodes that results from unit propagations, between
the original and the two new states, is the node cost paid for
the decision at the original node. That is the immediate cost
for choosing the branching rules MAXO, MOMS, MAMS,
and JW. The other three branching rules perform trial par-
tial searches to determine the branching variable. The to-
tal number of nodes created during these trial searches is
added to the above node cost for branching rules UP, GUP,
and SUP. The definition of the cost function implies that the
total accumulated cost after a complete run of the DPLL
procedure will be the size of the entire search tree (in terms
of nodes) plus the total count of nodes created during the
trial searches. Minimizing this total cost is a way to min-
imize the total running time, which is proportional to the
total number of nodes explored.

4.2 State Representation

The state s of the process is a description of the SAT
(sub)instance under consideration, in terms of some easily
computable features. Candidate features include, but are
not limited to, the number of variables, number of clauses,
number of literals, minimum size of clauses, number of
minimum size clauses, ratio of variables to clauses, etc.
Unfortunately, the size of the state space grows exponen-
tially with the number of features used, and, therefore, a
compromise has to be made as to which features are more
informative and will be part of the state. The best we can
hope for is a very abstract characterization of the instance.

A series of experiments and visualizations of gathered data
were performed to determine the relevance of each can-
didate feature to our problem. Different combinations of
features were tried and tests were performed on SAT in-
stances from different classes. These tests suggested that
the only really useful feature is the number of variables n
in the formula. This is not so surprising, considering that
the size of the problem instance is always a crucial factor
in the expected amount of computational resources needed
to solve that instance. In our particular case, even though
the performance of a branching rule is not a pure function
of n, useful information can be gained, like the rate of in-
crease of cost for different sizes. What is surprising is that
adding features in the state representation did not improve,
and sometimes worsened, performance.

For the rest of this paper, our state representation for a given
SAT instance will consist of the number of variables n in
the instance only. Even such a simple representation can
take us a good way toward our goal. Other possibilities are
discussed at the end of the paper.

4.3 Value Function Approximation

To accomplish the goal of minimizing the search tree of the
#DPLL procedure, we seek to learn the state-action value
function Q(n, a) that “predicts” the expected total node
cost when taking action a in state n and acting optimally
thereafter. In general, for any fixed action a, Q(n, a) is ex-
ponential in n. In fact, after extensive experimentation with
learning tabular representations of Q(n, a) under a variety
of problem distributions, we found thatQ(n, a) can be very
well approximated by the following parametric form3:

Q̂(n, a) =

{
0 n = 0,

2p
(d)(n,w(a)) n > 0.

.

Here, p(d)(n,w(a)) is a polynomial in n of degree d with
coefficients w(a) and no constant term:

p(d)(n,w(a)) =
d∑

i=1

w
(a)
i ni

This approximation is certainly nonlinear, but by taking the
logarithm it can be approximated by a linear architecture
(for n > 0)

log2 Q̂(n, a) = p(d)(n,w(a)) =
d∑

i=1

w
(a)
i φi(n),

where the basis functions are φi(n) = ni. Given this ap-
proximation, the goal is to find/learn the best set of param-
eters w(a) that will make the approximation more accurate.

4.4 Learning Algorithm

Our learning algorithm is a combination of Temporal Dif-
ference learning and Least-Squares. For each action a,
a d × d matrix A(a) and a vector b(a) are maintained,
where d is the number of basis functions used. The pa-
rameters w(a) are computed as the solution of the system
A(a)w(a) = b(a). A(a) and b(a) are updated incrementally
in a way that the solution w(a) is the least-squares solu-
tion to our approximation. All entries in A(a) and b(a) are
initially set to 0.

Consider a sample transition (n, a, n1, n2, c)—in state n,
action (branching rule) a was chosen causing transitions
to states n1 and n2 with total node cost c. Note that for
transitions to branching nodes, n1 and/or n2 are greater
than 0, but for contradiction and/or satisfaction nodes, n1

and/or n2 are set to 0 (the absorbing state). The new sam-
ple q̂(n, a) for Q̂(n, a) is then computed using the Bellman
optimality equation

q̂(n, a) = c+ min
a′

{
Q̂(n1, a

′)
}

+ min
a′

{
Q̂(n2, a

′)
}
.

3Note that the base 2 of the exponential is only a convenient
choice. Any other base could be used instead; the net change
would be a multiplicative constant in the coefficients w(a).

The values Q̂(n1, a
′) and Q̂(n2, a

′) are computed straight
from the current approximation. Finally, the new sample
q̂(n, a) is inserted in A(a) and b(a) as follows:

A(a) = A(a) + λ(n) ∗ φ(n)φ(n)ᵀ,

b(a) = b(a) + λ(n) ∗φ(n)q̂(n, a).

λ(n) is a weight factor that is used to determine the im-
portance of each sample in the set. Our reason for us-
ing reweighting is that during a typical run of the #DPLL
procedure there are exponentially more samples from the
region around the leaves of the tree compared to sam-
ples from the region around the root of the tree. This in-
herent weighting can bias the least-squares solution. Our
reweighting scheme attempts to cancel this effect by defin-
ing λ(n) as

λ(n) = 2n/N − 1,

where N is the total number of variables in the original
SAT instance the samples are taken from.

The use of the current approximation in determining new
samples can be problematic, especially at the very begin-
ning of the learning process when the approximator is in-
accurate. A way around this problem is to go through
two learning phases. In the first phase, the value functions
Q̂(a)(n) for each fixed policy consisting of a single branch-
ing rule (action) is learned. In this case, the new samples
are computed as

q̂(a)(n) = c+ Q̂(a)(n1) + Q̂(a)(n2).

The use of the approximation here is not problematic, be-
cause, within any run of #DPLL with a fixed a, the Q̂(a)(n)
values for smaller n are learned first before values for big-
ger n. Since n > n1 and n > n2, Q̂(a)(n1) and Q̂(a)(n2)
will be fairly accurate when they are invoked. In other
words, in learning Q̂(a)(n), all interactions between the
branching rules are ignored and each is evaluated sepa-
rately. In the second phase, the value functions Q̂(a)(n) are
used as a first approximation to Q̂(n, a). Through the use
of the minimum operator in determining the new samples,
all interactions between branching rules are now taken into
account.

4.5 Policy Construction

The policy for selecting branching rules can be constructed
dynamically through the use of the value function. Depend-
ing on how the value function is learned, different policies
may result. In particular, we consider three cases:

IND In state n, select the branching rule a that minimizes
Q̂(a)(n). This is the policy that results from the indi-
vidual value functions for each branching rule.

ALL In state n, select the branching rule a that minimizes
Q̂(n, a). In this case, Q̂(n, a) has been learned using
Q̂(a)(n) as a first approximation (two phases).

SCR Like ALL, in state n, select the branching rule a that
minimizes Q̂(n, a). However, in this case, Q̂(n, a)
has been learned from scratch.

RND In state n, select one of the branching rules uniformly
at random. This is a purely randomized policy and is
used as measure of comparison.

5. Experimental Results

The SAT instances that were used for experimentation fall
into the following classes:

• Graph Coloring: These are SAT encodings of
graph coloring problems available from the on-
line Satisfiability Library (SATLIB)4. We used the
flat050-115 set that encodes problems with 50
nodes, 115 edges, and 3 colors. The SAT encodings
contain 150 variables and 545 clauses.

• Random 3-CNF: These are random satisfiable 3-CNF
instances, generated using the mkcnf generator by
Allen Van Gelder 5.

• Network Reliability: These are SAT encodings of
feed-forward networks. The #SAT solution of such an
instance indicates the number of possible routes from
the source to the sink and therefore provides a mea-
sure of the reliability of the network.

• RDUP: These are “random deep unit propagation” in-
stances with 60 variables and 157 clauses that consist
of two disjoint subinstances. The first subinstance (40
variables) allows for deep unit propagations (chained
clauses) and it is fixed:

(x̄1 + x̄2 + x3)(x̄2 + x̄3 + x4)...(x̄38 + x̄39 + x40)

(x2 + x̄3)(x4 + x̄5)...(x38 + x̄39).

The second (20 variables) is a random 3-CNF gener-
ated by the mkcnf generator. We designed this distri-
bution so it would exhibit different behavior from the
others.

Results are presented from the Graph Coloring and the
RDUP classes only. The results from the other classes are
similar to those from the Graph Coloring class.

4URL: http://www.satlib.org
5Available from ftp://dimacs.rutgers.edu/pub/challenge/

satisfiability/contributed/UCSC/instances/.

10
4

10
5

10
6

A
ve

ra
ge

 N
um

be
r

of
 N

od
es

MAMS MOMS MAXO JW UP GUP SUP IND ALL SCR RND

Figure 1. Performance (nodes) on the Graph Coloring class.

5.1 Methodology

For each class of problems, a set of 100 instances was
used for training. For the two-phase learning, the individ-
ual value functions were learned first by going through the
training set once for each branching rule using solely that
branching rule. Then, in the second phase, 10 more passes
through the set were executed with a 1− ε randomized pol-
icy (ε = 1.0 for the first 7 and ε = 0.4 for the rest), for
a total of 17 passes. When learning from scratch, a total
of 17 passes were performed (14 with ε = 1.0 and 3 with
ε = 0.4). Three sets of learned parameters were stored cor-
responding to the policies IND, ALL, and SCR described
previously. A polynomial of degree 7 was used in the ap-
proximation.

Performance of the learned policies was tested on a sep-
arate test set of 100 instances from the same class. All
instances in the test set were solved and the average num-
ber of nodes, as well as the average running time, were
recorded. The results were compared against the perfor-
mance of each individual branching rules on the test set and
against the purely random policy RND. All code was writ-
ten in C and all experiments were performed on an Alpha
164LX machine. Running times correlated closely with
node counts (at approximately 100k nodes/sec), and are not
reported here.

5.2 Performance Results

Figure 1 shows the performance of all branching rules and
the learned policies on instances taken from the Graph Col-
oring class (error bars indicate the 95% reliability inter-
vals). The learned policies (IND, ALL, SCR) achieve a
performance level equal to that of the best branching rules,
but not better. Nevertheless, they do better than chance,

0 50 100 150
0

5

10

15

Number of Variables

Q
−v

al
ue

s
(lo

g)

UP

GUP

JW

MAXO

SUP

MAMS

MOMS

Figure 2. Learned value function for the Graph Coloring class.

as the RND bar indicates. This behavior can be easily ex-
plained by looking at the learned value function (Figure 2).
Using the number of variables as the state of the process,
the branching rules MOMS, JW, MAMS and MAXO are
almost indistinguishable and clearly dominate the others
(UP, GUP, SUP). In this case, our selection scheme cannot
take advantage of switching to different branching rules,
and the resulting performance matches that of the dominat-
ing branching rule.

Performance results on the RDUP class are shown in Fig-
ure 3. In this case, the learned policies IND and ALL
are statistically better than any of the individual branching
rules. Learning from scratch (SCR) did about as well as
the best individual branching rule; it seems that the two-
phase learning yields better approximations in this case.
What is more interesting is that moving from IND to ALL
did not improve performance, although the corresponding
value functions were quite different.

Looking at the value function for ALL (Figure 4), it is
easy to see that there is no dominating branching rule and
therefore switching between branching rules at run time
can be used to advantage. One can see that in the region
40–60, MAXO is presumably used to solve the 20-variable
subinstance, whereas in the region 0–40, the UP and GUP
branching rules are used for the 40-variable subinstance,
for which they are the most appropriate. In this case, using
size as the single state feature was sufficient to find a cut be-
tween these two regimes and to make a large performance
difference.

6. Limitations and Future Work

The main weakness of this work is clearly the insufficient
state representation. The number of variables provides only

10
3

10
4

10
5

10
6

10
7

10
8

A
ve

ra
ge

 N
um

be
r

of
 N

od
es

MAMS MOMS MAXO JW UP GUP SUP IND ALL SCR RND

Figure 3. Performance (nodes) on the RDUP class.

a coarse partition of the space of possible SAT instances
and throws away much of the structure in the problem.
A good state description would partition the space of in-
stances in a way that different branching rules are best in
different regions of the partition. However, such good state
features for SAT are yet to be discovered. Features such
as the induced graph width might be good candidates, but
they come at a significant computational cost that might
outweigh their usefulness.

Nevertheless, this work demonstrates that some degree of
reasoning, learning, and decision making on top of tradi-
tional search algorithms can improve performance beyond
that possible with a fixed set of hand-built branching rules.

Acknowledgments

Research supported in part by NSF grant IRI-9702576.
The first author was also partially supported by the Lilian-
Voudouri Foundation in Greece. The authors gratefully ac-
knowledge the influence of Don Loveland, Ron Parr, and
Henry Kautz in helping to shape this work.

References

Birnbaum, E., & Lozinskii, E. L. (1999). The good old
Davis-Putnam procedure helps counting models. Jour-
nal of Artificial Intelligence Research, 10, 457–477.

Boyan, J. A. (1999). Least-squares temporal difference
learning. Machine Learning: Proceedings of the Six-
teenth International Conference (pp. 49–56). Morgan
Kaufmann, San Francisco, CA.

Bradtke, S. J., & Barto, A. G. (1996). Linear least-squares
algorithms for temporal difference learning. Machine
Learning, 22, 33–57.

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

Number of Variables

Q
−v

al
ue

s
(lo

g)

UP

GUP

JW

MAXO

SUP

MAMS

Figure 4. Learned value function for the RDUP class.

Davis, M., Logemann, G., & Loveland, D. (1962). A ma-
chine program for theorem proving. Communications of
the ACM, 5, 394–397.

Hooker, J. N., & Vinay, V. (1995). Branching rules for
satisfiability. Journal of Automated Reasoning, 15, 359–
383.

Lagoudakis, M. G., & Littman, M. L. (2000). Algorithm
selection using reinforcement learning. Proceedings of
the Seventeenth International Conference on Machine
Learning (pp. 511–518). Morgan Kaufmann, San Fran-
cisco, CA.

Li, C. M., & Anbulagan (1997). Heuristics based on unit
propagation for satisfiability problems. Proceedings of
the Fifteenth International Joint Conference on Artificial
Intelligence (pp. 366—371). Nagoya, Aichi, Japan.

Majercik, S. M., & Littman, M. L. (1998). MAXPLAN: A
new approach to probabilistic planning. Proceedings of
the Fourth International Conference on Artificial Intelli-
gence Planning (pp. 86–93). AAAI Press.

Rice, J. R. (1976). The algorithm selection problem. Ad-
vances in Computers, 15, 65–118.

Roth, D. (1996). On the hardness of approximate reason-
ing. Artificial Intelligence, 82, 273–302.

Valiant, L. G. (1979). The complexity of enumeration and
reliability problems. SIAM Journal of Computing, 8,
410–421.

