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Abstract

We prove a lower bound ρ ≥ 9.001 for the competitive ratio of the so-called online
matching problem on a line. As a consequence, the online matching problem is
revealed to be strictly more difficult than the “cow problem”.
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1 Introduction

We consider a special class of online server problems, where a number of
servers, located on the real line, is to serve a sequence of requests r1, r2, . . . , rk ∈
R. In contrast to classical server problems (cf, e.g. [3]), however, each server
can serve at most one request. So the optimal offline solution is the min cost
matching of the requests into the set of server positions si. The problem is
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therefore also known as the online matching problem on a line [5]. As an appli-
cation, consider a ski rental with different ski lengths s1, s2, . . . at its disposal
to meet requested lengths r1, r2, . . . of entering clients.

For notational convenience, we consider a “universal” instance with infinitely
many servers, one at each integer s ∈ Z. One may equally well consider finite
versions with servers at positions s1, . . . , sn ∈ R, requests r1, . . . rk ∈ R and
k ≤ n (or even k = n). These are, however, easily seen to be of approximately
the same difficulty: Any ρ-competitive algorithm for one version with ρ < ρ̄
implies a ρ̃-competitive version for the other with ρ̃ < ρ̄.

An online matching algorithm is ρ-competitive if, after serving r1, . . . , rt (t ∈
N), the current length L of the online matching constructed so far is at most ρ
times the current optimal matching cost. It is a challenging open question to
prove or disprove the existence of ρ-competitive online algorithms with finite
competitive ratio ρ.

The basic difficulty for an online algorithm is to decide which server to use for
matching a new request r. There are essentially two choices: Either the server
s− that is closest to r from left or the server s+ that is closest to r from right
(among those servers that are currently still unmatched). Indeed, serving r
from a server at s < s− can be interpreted as moving s to s− and serving r
from s−.

Assume, e.g., the first 2m0 requests are at r = 0,±1,±2, . . . ,±(m0−1), 0. The
first 2m0 − 1 requests will then be served from the servers at these positions,
whereas the last request r = 0 will be served, say, from s = −m0. Assume the
following requests r2m0+1, r2m0+2, . . . are then exactly at the positions where a
server has just been moved off to serve the previous request. So r2m0+1 = −m0

etc. In order to stay ρ-competitive, the online algorithm may first serve a
number of requests from left, but must eventually switch to serving some
request r = i ≤ −m0 from right, i.e., from s = m0. (Indeed, |i| ≤ ρ/2m0). It
may then continue to serve a number of requests from right, but eventually it
will have to switch again, serving some request r = j ≥ m0 from left etc. Thus
the online algorithm basically must behave like the famous cow searching for
a bridge to cross the river ([1], [4]). We therefore refer to the request sequence
constructed as above as a cow sequence with parameter m0, started at r = 0.

This analogy yields a lower bound of ρ ≥ 9 for the competitive ratio of any
online algorithm for matching on a line (even for cow sequences), cf. [1] or
section 2. The main purpose of our paper is to slightly improve this bound to
ρ ≥ 9.001. Since a 9-competitive algorithm for the “cow problem” is known,
our result proves the online matching problem to be strictly more difficult
than the cow problem. In Section 4 we analyze online algorithms based on
so-called work functions and show that they have infinite competitive ratio.
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2 Cow Sequences

Consider an online algorithm for the matching problem on a line and assume it
has already served requests r1, . . . , rk ∈ Z. We denote by L the (length of) the
matching constructed so far and refer to it as the current travel length. M∗ de-
notes the (length of) the current optimal matching from R = {r1, . . . , rt} into
Z. In addition, we introduce the current matching M : Assume that the online
algorithm has served the currently known set of requests R = {r1, . . . , rt} from
servers S = {s1, . . . , st}. Then M is the (length of) the optimal matching from
S to R. We stress that, in general, this is different from both L and M∗.

We define a potential function on the sequence of current matchings to analyze
the behaviour of a ρ-competitive algorithm for the matching problem and
provide a new proof for the lower bound ρ ≥ 9 on cow sequences.

3 More Cows

To disprove the existence of a (9+ε)-competitive algorithm for online matching
turns out to be a somewhat more complicated task. The basic idea is to run
two (or more) cow sequences, enforcing additional complications when two
matchings belonging to different cows are merged. First we force two cows
of appropriate size to merge, and afterwards analyze the resulting combined
potential. This analysis yields that a 9.001-competitive algorithm for matching
on a line cannot exist.
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