
Performance Ratios for the Karmarkar-Karp
Differencing Method

Wil Michiels1 � 2, Jan Korst2, Emile Aarts1 � 2, and Jan van Leeuwen3

1 Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
2 Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands

3 Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
michiels@natlab.research.philips.com

Abstract. We consider the multiprocessor scheduling problem in which one must
schedule n independent tasks nonpreemptively on m identical, parallel machines,
such that the completion time of the last task is minimal. For this well-studied
problem the Largest Differencing Method due to Karmarkar and Karp outper-
forms other existing polynomial-time approximation algorithms from an average-
case perspective. For m

�
3, its worst-case performance has remained a challeng-

ing open problem. In this paper, we show that its performance ratio is bounded
between 4

3 � 1
3 � m � 1 � and 4

3 � 1
3m . We also analyze the performance ratio if in

addition to the number of machines, the number of tasks n is fixed as well.

1 Introduction
A classical problem in complexity theory is the multiprocessor scheduling problem in
which we have to find a nonpreemptive schedule of n independent tasks on m identical,
parallel machines, such that the completion time of the last task is minimal. Using the
three-field notation introduced by Graham et al. [10] the problem can be written as
P ���Cmax. In the literature, multiprocessor scheduling is also called number partitioning
as it can be viewed as the problem of partitioning a set of n numbers into m subsets,
such that the maximum subset sum is minimal.

For this strongly NP-hard problem [7], the Largest Differencing Method (LDM) of
Karmarkar and Karp [13] outperforms other polynomial-time approximation algorithms
such as Longest Processing Time (LPT) [9] and Multifit [2] from an average-case per-
spective [3, 16, 21]. Surprisingly enough, its worst-case performance has remained open
for several years. Although for the special case that m � 2, Fischetti and Martello [4]
already showed that LDM has a performance ratio of 7

6 , the worst-case performance of
LDM was still unknown for m 	 3. This issue is settled in this paper.

Definition (Multiprocessor Scheduling/ Number Partitioning). A problem instance
I is defined by an integer m and a set A ��
 1 � 2 ������ n � of n items, where each item j � A
has a nonnegative size a j with a1 � a2 ��������� an. Find a partition A ��
 A1 � A2 ������ Am �
of A into m disjoint subsets, such that

fI � A ��� max
1 � i � m

S � Ai �

is minimal, where S � Ai ��� ∑ j � Ai
a j. �

We first explain LDM by means of an example. Consider the problem instance with
m � 2 and items with sizes 4 � 5 � 6 � 7 � and 8. In the first iteration, LDM selects the two
largest item sizes 8 and 7 and commits both item sizes to different subsets. The decision
to which subsets they are actually assigned is equivalent to deciding to which subset
we assign their absolute difference, i.e., 8 � 7 � 1. Therefore, LDM replaces the items
with size 8 and 7 by a new item with size 1. This operation is called differencing. The
described process is now repeated until a single item remains; see Figure 1. This means

iteration
1

2

3

4

654 7 8

1

3

2

1

Figure 1. Visualization of the successive iterations of LDM.

that in the second iteration, LDM replaces the items with size 6 and 5 by an item with
size 1, which leaves the three item sizes 4 � 1 � and 1. In the third and fourth iteration, the
algorithm replaces 4 and 1 by 3 and 3 and 1 by 2, respectively. By backtracing through
the successive differencing operations, we can easily determine the resulting subsets
A1 �
 7 � 5 � 4 � and A2 �
 8 � 6 � that partition the items and for which the difference in
sum equals the size of the last remaining item in the sequence. For clarity, we defined
the subsets A1 and A2 by giving their item sizes instead of their items. In Section 2 we
give a more precise discussion of the algorithm for m 	 2.

In this paper we say that an algorithm has a performance bound U if it always
delivers a solution with a cost at most U times the optimal cost. If bound U is tight,
then U is called a performance ratio.

Related work. For m � 2, Yakir [23] proves that if the item sizes are uniformly dis-
tributed over

�
0 � 1 � , then the expected difference between the sum of the two subsets in

a partition generated by LDM is n � Θ � logn � . This implies that also the expected deviation
of the cost of such a partition from the optimal cost is n � Θ � logn � . Also for m � 2, the
average-case performance of alternative implementations of the differencing method
are studied in [1, 15, 22]. The implementations differ from LDM in the choice of the
items that are selected for differencing.

For given m 	 2, Karmarkar and Karp [13] present a rather elaborate differencing
method. The algorithm uses some randomization in selecting the pair that is to be dif-
ferenced so as to facilitate its probabilistic analysis. For the algorithm, they prove that
the difference between the maximum and minimum subset sum is at most n � O � logn � ,

almost surely, when the item sizes are in
�
0 � 1 � and the density function is reasonably

smooth.
Korf [14] proposes a branch-and-bound algorithm that starts with LDM and then

tries to find a better solution until it ultimately finds and proves the optimal solution.
Although the algorithm is practically useful for m � 2, it is less interesting for m 	 3.
Other extensions of the differencing method are given by Ruml et al. [19] and Storer
et al. [20], who present successful local search heuristics based on the differencing
method.

Balanced number partitioning is defined as multiprocessor scheduling with the ad-
ditional constraint that the cardinality of the subsets is balanced, which means that each
subset contains either k ��� n � m � or � n � m � items. For this problem Yakir [23] proposes
the Balanced Largest Differencing Method (BLDM). For m � 2 the algorithm works as
follows. First, it starts by differencing the largest two items, the third and fourth largest
item, etc. and next it proceeds with LDM. As mentioned, LDM has a better average-
case performance than any other known polynomial-time algorithm for multiprocessor
scheduling. The same can be said for BLDM with respect to balanced number partition-
ing. Michiels, Korst, Aarts, and Van Leeuwen [18] determine the worst-case perfor-
mance of BLDM both as a function of m and as a function of k. Furthermore, for m � 2
Yakir [23] shows that as for LDM, the expected difference between the sum of the two
subsets in a partition generated by BLDM is n � Θ � logn � for some constant c if the item
sizes are uniformly distributed over

�
0 � 1 �

Hochbaum and Shmoys [12] show that Multiprocessor scheduling allows a PTAS [12].
By choosing a sufficiently small precision ε, the PTAS yields a polynomial-time algo-
rithm for which its worst-case performance as well as its average-case performance will
outperform the differencing method. However, as the running time grows exponentially
in 1

ε , the algorithm will not be practically useful. Hence, our claim that the differencing
method is the best polynomial-time algorithm from an average-case perspective has to
be specified to that it is the best practical polynomial-time algorithm. Therefore, it is
interesting to determine its worst-case performance.

Several polynomial-time approximation algorithms exist that are competitive to
LDM. Of those, the two most popular are LPT [9] and Multifit [2]. In the former al-
gorithm the items are assigned in decreasing order to the subset with minimum sum.
Graham [9] proves that the algorithm has a performance ratio of 4

3 � 1
3m . In addition,

Frenk and Rinnooy Kan [5] show that if the item sizes are uniformly distributed over�
0 � 1 � , then the difference between the cost of a partition given by LPT and the optimal

cost is at most O � logn � n � almost surely and O � 1 � n � in expectation. Note that this is
worse than the average case results for LDM.

Multifit, on the other hand, performs a binary search to find the minimum bin-
capacity for which the bin-packing algorithm First Fit Decreasing (FFD) finds a feasible
solution, where FFD assigns the items in decreasing order to the first bin in which they
fit. Coffman, Garey, and Johnson [2] prove that the performance ratio of Multifit is 8

7
for m � 2, 15

13 for m � 3, and 20
17 for m � 4 � 5 � 6 � and 7. For m 	 8, Yue [24] derives a

performance bound of 13
11 and Friesen [6] shows that this bound is tight for any m 	 13.

Finally, we mention recent results on the multiprocessor scheduling problem that
have been inspired by statistical physics. Mertens [17] analyzes the phase boundary

that separates easy problem instances from hard ones for m � 2. The results support
the paper of Gent and Walsh [8], who already gave computational evidence for the
existence of a phase transition. A nice introductory overview on the issue is given by
Hayes [11].

Our results. In Section 2 we discuss LDM for the general case m 	 2. To provide
evidence for the good average-case performance of LDM, we also compare some simu-
lation results of LDM, LPT, and Multifit in Section 2.

In Section 3, we prove that the worst-case performance ratio of LDM is bounded
between 4

3 � 1
3 � m � 1 � and 4

3 � 1
3m . This implies that opposite to its superior average-case

performance, LDM has a worst-case performance that is worse than Multifit, but at least
as good as LPT. We stress that the proof of our results cannot be based on the derivations
given by Graham [9], who proves the 4

3 � 1
3m performance bound for LPT, nor on those

by Fischetti and Martello [4], who analyze the worst-case performance of LDM for
m � 2.

An interesting question is whether these performance results improve if we have
additional information on n, for instance if we are given that we only apply LDM on
problem instances for which the average number of items per subset is small. Section 4
discusses the performance ratio of LDM as a function of both m and n. For m � 2,
the results of Fischetti and Martello [4] imply that LDM is optimal if n � 4 and that it
has a performance ratio of 7

6 , otherwise. For m 	 3, we derive that LDM is optimal for
n � m � 2 and that it has a performance ratio of 4

3 � 1
2 � n � m � 1 � for m � 2 � n � 2m. For

given n � 2m, we prove that the performance ratio is again bounded by 4
3 � 1

3 � m � 1 � and
4
3 � 1

3m .

2 Largest Differencing Method
We first introduce some notational conventions. Next, we discuss LDM for any m 	 2
and we present some simulation results to show its good average-case performance.

When we add a star as superscript to our notation, this indicates optimality. For
example, f �I gives the objective value of an optimal partition A � for a problem instance
I. Furthermore, we represent sets of items by giving a sequence of their sizes. This
means that instead of A �
 1 � 2 � 3 � with ai � 5 � i we write � 6 � 7 � 8 � or A � 6 � 7 � 8, for
short. Moreover, Ai - Ai � 1 - �� - Am denotes the partition
 A1 � A2 ������ Am � in which
A1 � A2 ���� � Ai � 1 are empty and Al

i is a short-hand notation for A j - A j - �� - A j (l
times).

Initially, LDM [13] starts with a sequence L of the n partial solutions A1 � A2 ���� � An,
where each subset in Ai �
 Ai1 � Ai2 ���� � Aim � is empty except for Aim �
 i � . Next, the
algorithm executes n � 1 iterations. In each iteration, it selects the two partial solutions
from L for which d � A � is maximal, where d � A � is defined as the difference between
the maximum and minimum subset sum in A . These two solutions, denoted by A � and
A � � , are combined into a new partial solution A by joining the subset with smallest sum
in A � with the subset with largest sum in A � � , the subset with second smallest sum in
A � with the subset with second largest sum in A � � , and so on. Hence, A is formed by
the m subsets A � j

�
A � �m � j � 1 for 1 � j � m, where the subsets of A � and A � � have been

put in order of non-decreasing sum. Solution A replaces A � and A � � in L. After n � 1 of

iteration
1

2

3

4

5

6

7

A8=5A7=5A6=5

A9=5-5

A10=5-5-5

A11=4-4

A12=3-4-4

A13=4-4-(3,3)

A14=4-(4,1)-(3,3)

ALDM=(5,4)-(5,4,1)-(5,3,3)

A5=4A4=4A3=3A2=3A1=1
55544331

5

0

4

1

2

2

2

Figure 2. Visualization of the successive iterations of LDM. A circle represents a partial
solution A and the number inside the circle equals d � A � .

such so-called differencing operations, only one solution in L remains. This solution is
called A LDM . We illustrate the algorithm, which has a time complexity of O � n logn � , by
means of an example.

Example 1. Let n � 8, m � 3, and the eight item sizes be 1,3,3,4,4,5,5,5. Initially, L
consists of the partial solutions A1 � A2 ������ A8, where d � Ai � equals the size of the only
item in the ith partition, i.e., d � Ai ��� ai. In the first iteration, A7 and A8 are replaced by
A9 � 5 - 5 with d � A9 � � 5; see Figure 2. Next, the algorithm differences A6 and A9.
This yields partial solution A10 � 5 - 5 - 5 with d � A10 � � 0. After five more iterations,
which are depicted in Figure 2, we obtain A LDM � � 4 � 5 � - � 1 � 4 � 5 � - � 3 � 3 � 5 � for which
the maximum subset sum is 11. This partition is not optimal as the maximum subset
sum of optimal partition A � � � 5 � 5 � - � 3 � 3 � 4 � - � 1 � 4 � 5 � is 10. �

Next, we present a number of simulation results of LDM, LPT, and Multifit. Thereby,
it is not our goal to give an elaborate study on the average-case performance of known
polynomial time algorithms for multiprocessor scheduling, but to indicate the good
average-case performance of LDM by comparing its simulation results with those of the
two most popular algorithms for multiprocessor scheduling.

In our first experiment, we study the performance of the three algorithms for m � 10
and for n ranging from 1 to 250. For each n, we generated 10,000 problem instances
with item sizes uniformly distributed over

�
0 � 1 � . Figure 3 depicts the average deviation

of the cost from the obvious lower bound max � an � S � A � � m � . We see that LDM outper-

Multifit
LDM

LPT

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0

0.03

50
0

100 150 200 250

de
vi

at
io

n
fr

om
lo

w
er

bo
un

d

number of items (n)

0.02

0.01

Figure 3. Average deviation of the cost of partitions given by LDM, LPT, and Multifit
from the lower bound max � an � S � A � �

m � , where m � 10 and the item sizes are uniformly
distributed over � 0 � 1 � . For each n, we generated 10,000 problem instances.

forms LPT for all n and that LDM outperforms Multifit from n � 79 in which case on
average 8 items are assigned to each subset. The same trend can be observed for other
m. However, the turnover point from which LDM outperforms Multifit increases with
the average number of items per subset. For m � 2 it is 3, whereas for m � 20 it is 14.

In our second experiment, we consider a positive offset o. This means that we let the
item sizes be uniformly distributed over

�
o � o � 1 � instead of on

�
0 � 1 � for some offset o.

This corresponds to assuming that an
a1

is bounded by 1 � 1
o . In our experiment, we let o

range from 0 to 1 and we let m � 10 and n � 100. The results are given in Figure 4. The
performance of Multifit strongly deteriorates for increasing o. This can be explained as
follows. Each iteration of Multifit consist of an execution of the algorithm FFD for a
given bin capacity. If during the execution of FFD we get a bin in which less than o is
unused, then no items will be assigned to that bin in the remainder of the execution of
FFD as all item sizes are larger than o. Hence, for large o, we have a high probability
that FFD leaves much of the bin capacity unused, which implies a poor performance.

Also for LPT we have a performance that is worse than for LDM. Thereby, we note
that m divides n in this experiment. It can be argued that if this is not the case, then the
performance of LPT gets worse, especially for a small value of n mod m.

3 Performance ratio as a function of m

In the remainder of this paper, we study the worst-case performance of LDM. First, we
analyze the performance ratio as a function of m 	 2. Although Fischetti and Martello [4]
already prove a performance ratio of 7

6 for m � 2, we nevertheless consider the case
m � 2 as this result is also implied by our analysis. For m 	 3, we show that the perfor-
mance ratio is bounded between 4

3 � 1
3m and 4

3 � 1
3 � m � 1 � . However, we first derive some

Multifit

LPT
LDM

0.2

0.25

0.3

0.35

0 0.2 0.4

0.15

0.6
0

0.8 1

de
vi

at
io

n
fr

om
lo

w
er

bo
un

d

offset (o)

0.1

0.05

Figure 4. Average deviation of the cost of partitions given by LDM, LPT, and Multifit
from the lower bound max � an � S � A � �

m � , where m � 10, n � 100, and the item sizes are
uniformly distributed over � o � o � 1 � . We generated 10,000 problem instances for each
choice of offset o.

auxiliary results. The first lemma states that if the item sizes are not too small when
expressed as a fraction of the optimal cost, then LDM is optimal.

Lemma 1. Let I be an instance of multiprocessor scheduling with item sizes ai � f �I � 3.
Then LDM returns an optimal partition.
Proof. If n � m, then LDM returns the optimal partition in which each item is assigned to
a different subset. Suppose, on the other hand, that n � m. As each item size ai � f �I � 3,
at most two items are assigned to the same subset in an optimal partition. Hence, I
contains at most 2m items, i.e., m � n � 2m. Furthermore, it can be verified that an
optimal partition A � is obtained by assigning the largest m items increasingly to the
subsets and the remaining n � m items decreasingly. Thereby, the 2m � n subsets with
the largest items do not get a second item assigned. Formally, A �i �
 n � m � i � n � m �
i � 1 � for 1 � i � n � m and A �i �
 n � m � i � for n � m � i � m. In the remainder of
the proof, we show that this partition A � is obtained by LDM.

It can be verified that the first m � 1 differencing operations of LDM construct
the partial solution An � m � 1 � an � m � 1 - an � m � 2 - �� - an from the initial solutions
An � m � 1 � An � m � 2 ������ An. Now, the so-called first phase of LDM starts. Let t be the
number of iterations it takes LDM before selecting the solution An � m � 1 after it is con-
structed. As I contains at most 2m items, we have t � m. This implies that A � �
an � m � t - an � m � t � 1 - �� - an � m is derived during these iterations. We claim that An � m � 1
is next differenced with A � . For t � m � 1 this is true as An � m � 1 and A � are the only
solutions in L. For 0 � t � m � 1, the statement holds as d � A ��� � an � m � d � An � m � 1 � .
This ends the first phase of LDM. More general, we define a phase as t � 1 successive
iterations of LDM for some t 	 0 in which a partition A � � ai � t - ai � t � 1 - �� - ai is

phase 1

phase 2

iteration
1

2

3

4

5

6

7
ALDM

A1 A2 A8A7A6A4 A5A3

A9

A10

A11

A14

A13

A12

Figure 5. The partition of the last four iterations of LDM into two phases for a possible
run of LDM in the case that m � 4 and n � 8.

constructed and in which A � is differenced with a partition originating from An � m � 1;
see Figure 5. It can be verified that LDM proceeds in phases until A LDM is obtained.

We prove by induction on i that the partial solution A derived in phase i conforms
to A � , which by definition means that A j

�
A � j for all 1 � j � m.

For i � 1, the induction hypothesis trivially holds. Next, assume i 	 2 and let A
be obtained by differencing Aphase determined in the previous phase, i.e., phase i � 1,
and ax � t - ax � t � 1 - �� - ax with n � 2m � x � n � m and t 	 0. As Aphase conforms
to A � by the induction hypothesis, we have that A conforms to A � if ax � t is assigned
to the smallest subset in Aphase containing only one item, ax � t � 1 to the second smallest
subset containing only one item, and so on. This means that the induction hypothesis
is only violated if assigning some item j to a subset in Aphase that already contains two
items larger than j results in a subset V satisfying S � V � � S � A � � j ��� , where A � � j � is the
subset in A � containing item j. However, this would imply that a j � f �I � 3, which yields
a contradiction. Hence, the induction hypothesis holds and therefore the lemma. �

The following result can roughly be interpreted as that in each iteration LDM con-
structs a solution that is better than the worst of the two solutions from which it is con-
structed. The result is already proved by Karmarkar and Karp [13]. For completeness
we include its proof.

Lemma 2. Let partition A be obtained by differencing partitions A � and A � � . We then
have d � A � � max � d � A ��� � d � A � � ��� .
Proof. Let Ai and A j be the subsets in A with maximum and minimum sum, respectively.

Without loss of generality, we assume Ai � A �i
�

A � �i and A j � A � j
�

A � �j . Now,

d � A � � S � A �i � � S � A � �i � � S � A � j � � S � A � �j �
� � S � A �i � � S � A � j ��� � � S � A � �i � � S � A � �j ���

One of the two terms in the last expression is non-negative and the other is non-positive.
Furthermore, the first term is bounded by d � A � � , whereas the second one is bounded by
d � A � ��� . This proves the lemma. �

We use this result to prove the following lemma.

Lemma 3. Let α be the largest item with aα � f �I � 3 for a given multiprocessor schedul-
ing instance I. Partition A LDM is optimal if α does not exist. Otherwise, A LDM is either
optimal or d � A LDM � � aα.
Proof. The case that α does not exist is implied by Lemma 1. Next, assume that α exists.
As a problem instance can have at most 2m items with size larger than f �I � 3, we have
α 	 n � 2m. If at any moment during the execution of LDM list L only contains partial
solutions A with d � A � � aα, then Lemma 2 yields d � A LDM � � aα. In the remainder of
the proof, we show that LDM returns an optimal partition if this is not the case.

Let A � i � be the last solution in L at the start of iteration i, where we assume that
the partial solutions in list L are in non-decreasing order of the value of d. Note that
by assumption d � A � i ��� � aα for all i 	 1. Consider iteration i0 in which solution Aα is
selected. Then the last two solutions in list L are A � i0 � and Aα with d � Aα � � aα. During
the first i0 � 1 iterations, LDM only operates on the initial solutions Aα � 1 � Aα � 2 ���� � An

and on solutions obtained from them. This implies that L still contains the initial so-
lutions A1 � A2 ���� � Aα. As it takes at least m items larger than α to construct a so-
lution A with d � A � � d � Aα � and as α 	 n � 2m, list L contains at most one addi-
tional solution A . This means that we either have L � A1;A2; �� ;Aα � 1;Aα;A � i0 � or
L � A1;A2; �� ;Al � 1;A ;Al ; �� ;Aα � 1;Aα;A � i0 � for some 1 � l � α, where A only con-
tains items larger than α.

Now, LDM proceeds by each time differencing the solution obtained in the last iter-
ation with the last solution in the list as solution A � i � always satisfies d � A � i ��� � aα by
assumption. Remark that LDM finishes after i0 � α or i0 � α � 1 iterations depending on
whether A exists.

Let iend be the last iteration of LDM and let A � iend � 1 � be defined as A LDM . Fur-
thermore, we define W � i � for i0 � i � iend � 1 such that j � W � i � if and only if subset
A j � i � from A � i � is more than aα larger than the minimum subset sum, i.e., S � A j � i ��� �
min j � S � A j � � i ��� � aα. As by assumption d � A � i ��� � aα, set W � i � is not empty.

We prove by induction on i that for all j � W � i � , we have that A j � i � only contains
items at least α � 1 and that S � A j � i ��� � f �I for all j � W � i � . As W � i � contains the subsets
with largest sum and because W � i � is not empty, this proves the optimality of A LDM .

Consider i � i0. LDM does not operate on the initial solutions A1 � A2 ���� � Aα during
the first i0 iterations. Hence, the maximum subset sum in A � i0 � is at most the maximum
subset sum in the partition given by LDM for the instance I � , which by definition is
obtained from I by removing all items with size at most f �I � 3. As f �I � � f �I and by
Lemma 1, we now get that the maximum subset sum in A � i0 � is at most f �I , which
proves the induction hypothesis for i � i0.

Next, assume that i0 � i � iend � 1. First, consider the case that A � i � is obtained by
differencing A � i � 1 � with an initial solution Ap. Then item p is added to the subset
A j � i � 1 � in A � i � 1 � with minimum sum. As a result of this operation, neither subset
j nor any other subset is added to W , since ap � aα. Hence, no items are added to the
subsets in W � i � and W � i � �

W � i � 1 � . The induction hypothesis now follows from the
case i � 1.

Suppose, on the other hand, that A � i � 1 � is differenced with A . The larger the sum
of a subset in A � i � 1 � , the smaller the sum of the subset from A that is added to it.
Furthermore, the difference in subset sum in A is not larger than aα. Hence, W � i � �

W � i � 1 � . By definition, the subsets in W � i � 1 � are the subsets from A � i � 1 � with
largest sum. Furthermore, as by the induction hypothesis only items at least α � 1 are
assigned to these subsets, we have that they are also contained in A � i0 � . Hence, each
subset A j � i � from A � i � with j � W � i � �

W � i � 1 � is also present in the solution obtained
by differencing A � i0 � with A . Now, Lemma 1 yields S � A j � i ��� � f �I � , where again I �
is as defined above. As f �I � � f �I , we get S � A j � i ��� � f �I , which proves the induction
hypothesis. �

Using Lemmas 1 and 3, we can prove bounds on the performance ratio of LDM as a
function of m. Note that the upper bound given for m equals the lower bound for m � 1.

Theorem 1. The performance ratio R of LDM is 7/6 for m � 2. For m 	 3, it satisfies

4
3

� 1
3 � m � 1 � � R � 4

3
� 1

3m

Proof. First, we show that 4 � 3 � 1 � � 3m � is a performance bound for any m 	 2. Note
that for m � 2 this implies a performance bound of 7 � 6. Consider an arbitrary problem
instance I of multiprocessor scheduling and assume that A LDM is not optimal. We have

f �I 	 1
m

m

∑
j � 1

S � ALDM
j � 	 min

1 � j � m
S � ALDM

j � �
d � A LDM �

m

and thus
fI � A LDM � � min1 � j � m S � ALDM

j � � d � A LDM �
� f �I � d � ALDM �

m � d � A LDM �
Furthermore, as by assumption A LDM is not optimal, Lemma 3 gives d � A LDM � � aα,
where aα � f �I � 3. Combining these results yields the performance bound.

The lower bound 7 � 6 on the performance ratio for m � 2 holds as LDM may return
the partition 3 � 2 � 2 - 3 � 2 with objective value 7, while the optimal partition 3 � 3 - 2 � 2 � 2
only has cost 6. This problem instance is also used by Fischetti and Martello [4].

For the lower bound 4 � 3 � 1 � � 3 � m � 1 ��� when m 	 3 consider the problem instance
for which the optimal partition with objective value 3 � m � 1 � is given by A �1 � 3 � m � 1 � ,
A �2 � � m � 1 � m � 1 � m � 1 � , A �2 j � 1 � � 2 � m � 1 � � j � 1 � m � j � 2 � with 2 � j � � m � 1 � � 2
and A �2 j � � 2 � m � 1 � � j � 1 � m � j � 2 � with 2 � j � m � 2; see Figure 6. Note that the
sum of each subset is 3 � m � 1 � . We now derive A LDM , where we assume that m is odd.
The case that m is even can be handled similarly. In the first m � 1 iterations LDM

18

6

6

11 10 9

876

11 10

7

9

8

18

6

6
11 10 9

876

10

98

11

7

ALDM

A*

Figure 6. Instance with a performance ratio of 4
�
3 � 1

� � 3 � m � 1 � � � 23
�
18 for m � 7.

constructs the partial solution A with the largest m items all assigned to a different
subset, i.e., A � 3 � m � 1 � - 2 � m � 1 � � 1 - 2 � m � 1 � � 1 - 2 � m � 1 � � 2 - 2 � m � 1 � �
2 - �� - 3 � 2 � m � 1 � . Note that d � A � � 3 � 2 � m � 1 � . In the next iteration, LDM dif-
ferences A and Am, where Am with d � Am � � 3 � 2 � m � 1 � � 1 contains the next largest
item, i.e., item m with size 3 � 2 � m � 1 � � 1. The differencing operation adds item m to
the subset containing 3 � 2 � m � 1 � resulting in a subset with sum 3 � m � 1 � � 1.

This process is repeated in the last m � 1 iterations. More precisely, since at the start
of each of the following iterations i � m � 1 � m � 2 ������ 2m � 2 we have d � A � � d � Ai � �
1, where A is the solution obtained in iteration i � 1 and Ai is the initial solution only
containing item i, LDM differences A with Ai in iteration i. This is also the case in the
last iteration i � 2m � 1 as then only two solutions remain. As a result, ALDM

1 � 3 � m � 1 � ,
ALDM

2 � � 2 � m � 1 � � 1 � m � 1 � m � 1 � , ALDM
3 � � 2 � m � 1 � � 1 � m � 1 � and ALDM

2 j and ALDM
2 j � 1

are both given by � 2 � m � 1 � � j � � m � 1 � � j � 1 � with 2 � j � � m � 1 � � 2. Hence, the
sum of the first two subsets is 3 � m � 1 � and 4 � m � 1 � � 1, respectively, whereas the sum
of each other subset is 3 � m � 1 � � 1. Consequently, fI � A LDM � � 4 � m � 1 � � 1 implying
a performance ratio of 4 � 3 � 1 � � 3 � m � 1 ��� . �
4 Performance ratio as a function of both m and n

In this section, we consider the question whether we can improve the performance guar-
antee of LDM if we have additional information about the number of items. For m � 2
the question is answered in Theorem 2, whereas Theorem 3 settles the case m 	 3. Fig-
ure 7 shows the result of Theorem 3 for m � 10. The results show that if we cannot
exclude the possibility that the subsets in a partition contain more than two items on
average, the performance guarantee cannot be improved.

upper bound

lower bound

1.15

1.2

1.25

1.3

1.35

5

1.1

10

1

15 20 25 30
number of items (n)

1.05

Figure 7. Performance results stated by Theorem 3 for m � 10.

Theorem 2. Let m � 2. Then LDM is optimal for n � 4 and LDM has performance ratio
of 7 � 6 for any given n 	 5.
Proof. Fischetti and Martello [4] prove that LDM is optimal for n � 4. Next, let n 	 5
be given. In the proof of Theorem 1 we give an instance consisting of five items for
which the performance ratio is 7 � 6. Furthermore, adding n � 5 items with size zero
to this instance does not affect its performance ratio. Hence, 7 � 6 is a lower bound on
the performance ratio. As Theorem 1 states that 7 � 6 is also a performance bound, we
conclude that 7 � 6 is a performance ratio for any given n 	 5. �
Theorem 3. For given m 	 3, the performance ratio R of LDM satisfies

R � 1 if n � m � 2
R � 4

3 � 1
3 � n � m � 1 � if m � 2 � n � 2m

4
3 � 1

3 � m � 1 � � R � 4
3 � 1

3m if n � 2m.

Proof. LDM is optimal for n � m as it returns the optimal partition in which each item
is assigned to a different subset. The algorithm is also optimal for n � m � 1 as in that
case only the two smallest items are in the same subset. The optimality for n � m � 2
is implied by the claimed performance ratio for m � 2 � n � 2m as it equals 1 for this
case. Before proving the case m � 2 � n � 2m, we first consider n � 2m. Then, the upper
bound on R follows directly from Theorem 1. Consider the claimed lower bound on R.
As the problem instance presented in the proof of Theorem 1 with performance ratio
4 � 3 � 1 � � 3 � m � 1 ��� consists of 2m items, the lower bound holds for n � 2m. Further-
more, since adding items with zero size does not change the performance ratio of the
instance, we get that the lower bound holds for any n 	 2m.

In the remainder of the proof we focus on the case that m � 2 � n � 2m. Consider
again the problem instance I given in the proof of Theorem 1 for the case that we
have to partition the items into m � � n � m subsets. Note that m � � m. Then I consists

of 2m � items and it has a performance ratio of 4 � 3 � 1 � � 3 � m � � 1 ��� . Adding n � 2m �
items with size 3 � m � � 1 � to the instance results in an instance with n items and with
the same performance ratio of 4 � 3 � 1 � � 3 � m � � 1 ��� . As m � � n � m, this proves that
4 � 3 � 1 � � 3 � n � m � 1 ��� is a lower bound on R.

We now prove that 4 � 3 � 1 � � 3 � n � m � 1 ��� is also an upper bound on R by showing
that it is a performance bound for an arbitrary problem instance I for which LDM does
not return an optimal partition. Note that by Lemma 1, we can assume that a1 � f �I � 3.
We first derive an upper bound on fI � A LDM � and next we derive a lower bound on f �I .
Combining these results yields the claimed performance bound.

During the first m iterations, LDM constructs solution A � am � � 1 - am � � 2 - �� an in
which the largest m items are each assigned to a different subset. As n � 2m, LDM next
proceeds in phases as described in the proof of Lemma 1. By induction on the number
of executed phases, we can easily prove the following properties.
– Only the subsets A1 � A2 ���� � Am � in A containing one of the smallest m � items can

receive additional items.
– The only situation in which Am � receives more than one item is when the m � smallest

items are decreasingly assigned to the subsets A1 � A2 ���� � Am � , i.e., item i with 1 �
i � m � is assigned to Am � � i � 1. As a result, each of the subsets A1 � A2 ���� � Am � has a
cardinality of two.

Let the subsets in A LDM be numbered, such that A j
�

ALDM
j for all 1 � j � m. As by

assumption LDM does not return an optimal partition, the sum of a subset in A LDM

containing only one item is not maximal. Hence, if no second item is assigned to Am � ,
then

fI � A LDM � � min
1 � j

�
m �

S � ALDM
j � � max � dm � � 1

1 � A LDM ��� � (1)

where dm � � 1
1 � A LDM � is defined as the difference between the minimum and maximum

subset sum of the subsets ALDM
1 � ALDM

2 ���� � ALDM
m � � 1. Next, assume that a second item is

assigned to Am � , i.e., ALDM
m � contains the items 2m � and 1. Then

fI � A LDM � � min
1 � j

�
m �

S � ALDM
j � � max � dm � � 1

1 � A LDM � � a1 � (2)

holds if a2m � is at most the sum of any other subset in A LDM to which two items are
assigned. Formally,

ax � min
1 � j

�
m �

S � ALDM
j � (3)

Before using Equations 1 and 2 to prove that 4 � 3 � 1 � � 3 � n � m � 1 ��� is a performance
bound, we prove (3).

Clearly, item 1 is added to the subset containing item 2m � by LDM during the last
phase of its execution, where solution A � containing Am � � a2m � is differenced with A � � �
a1 - a2 - �� - al for some l � m. If l � 1 then A LDM is obtained from A � by assigning
a1 to the subset with minimum sum. As by assumption this is the subset containing am � ,
we get (3). Suppose, on the other hand, that l � 1 and that (3) does not hold. We show
that this yields a contradiction. As for A LDM , let the subsets in A � be numbered such
that A j

�
A � j. As (3) does not hold, we have min1 � j � m � S � A � j � � al � a2m � . Furthermore,

since S � A �m � � � a2m � , we have that d � A ��� 	 a2m � � min1 � j
�

m � S � A � j � . Combining these

observations yields that al � d � A ��� . However, this implies that LDM does not add item
l to A � via A � � , but directly via the initial solution Al , which gives a constradiction. This
proves (3) and consequently also (2).

We now derive a lower bound on f �I . Consider an optimal partition A � . Without
loss of generality, we can assume that A �m � � 1 � A �m � � 2 ������ A �m each contain exactly one
item and that these are the largest n � 2m � items. The other 2m � items are assigned to
the subsets A �1 � A �2 ������ A �m � . If each of these latter subsets contains two items, than A � is
obtained by assigning the largest m � items increasingly to the subsets and the remaining
m � items decreasingly. Along the same lines as in the proof of Lemma 1, it can be shown
that in this case LDM returns an optimal partition.

Assume that at least one of the subsets A �1 � A �2 ������ A �m � contains only one item. With-
out loss of generality, we assume that this is A �m � and that it contains the largest item not
already assigned to A �m � � 1 � A �m � � 2 ���� � A �m. Now, the subsets A �1 � A �2 ������ A �m � � 1 contain the
items from ALDM

1 � ALDM
2 ������ ALDM

m � minus item 2m � . As a result,

f �I 	 min
1 � j

�
m �

S � ALDM
j � �

dm � � 1
1 � A LDM � � a1

m � � 1

if ALDM
m � contains item 1 and

f �I 	 min
1 � j

�
m �

S � ALDM
j � �

dm � � 1
1 � A LDM �

m � � 1
�

otherwise. As mentioned above, a1 � f �I � 3. Furthermore, we have by Lemma 3 that
dm � � 1

1 � A LDM � � f �I � 3. Combining these results with (2) and (1) gives that fI � A LDM � �
� 4 � 3 � 1 � � 3m � � 1 ��� f �I , which proves the theorem. �
References
1. E.G. Coffman Jr., G.N. Frederickson, and G.S. Lueker. A note on expected makespans for

largest-first sequences of independent tasks on two processors. Mathematics of Operations
Research, 9:260–266, 1984.

2. E.G. Coffman Jr, M.R. Garey, and D.S. Johnson. An application of bin-packing to multipro-
cessor scheduling. SIAM Journal on Computing, 7(1):1–17, 1978.

3. E.G. Coffman Jr. and W. Whitt. Recent asymptotic results in the probabilistic analysis of
schedule makespans. In P. Chretienne, E.G. Coffman Jr., J.K. Lenstra, and Z. Liu, editors,
Scheduling Theory and its Applications, pages 15–31. Wiley, 1995.

4. M. Fischetti and S. Martello. Worst-case analysis of the differencing method for the partition
problem. Mathematical Programming, 37:117–120, 1987.

5. J.B.G. Frenk and A.H.G. Rinnooy Kan. The rate of convergence to optimality of the LPT
rule. Discrete Applied Mathematics, 14:187–197, 1986.

6. D.K. Friesen. Tighter bounds for the multifit processor scheduling algorithm. SIAM Journal
on Computing, 13(1):170–181, 1984.

7. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

8. I.P. Gent and T. Walsh. Phase transitions and annealed theories: Number partitioning as a
case study. In Proceedings of the 12th European Conference on Artificial Intelligence, pages
170–174, Denver, Colorado, 1996.

9. R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied
Mathematics, 17(2):416–429, 1969.

10. R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization and approx-
imation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathe-
matics, 5:287–326, 1979.

11. B. Hayes. The easiest hard problem. American Scientist, 90:113–117, 2002.
12. D.S. Hochbaum and D.B. Shmoys. Using dual approximation algorithms for scheduling

problems: Theoretical and practical results. Journal of the ACM, 34:144–162, 1987.
13. N. Karmarkar and R.M. Karp. The differencing method of set partitioning. Technical Report

UCB/CSD 82/113, University of California, Berkeley, 1982.
14. R.E. Korf. A complete anytime algorithm for number partitioning. Artificial Intelligence,

106:181–203, 1998.
15. G.S. Lueker. A note on the average-case behavior of a simple differencing method for parti-

tioning. Operations Research Letters, 6(6):285–287, 1987.
16. S. Mertens. A complete anytime algorithm for balanced number partitioning, 1999. preprint

xxx.lanl.gov/abs/cs.DS/9903011.
17. S. Mertens. A physicist’s approach to number partitioning. Theoretical Computer Science,

265:79–108, 2001.
18. W. Michiels, J. Korst, E. Aarts, and J. van Leeuwen. Performance ratios for the differencing

method applied to the balanced number partitioning problem. In Proceedings of the 20th

International Symposium on Theoretical Aspects of Computer Science, Berlin, 2003.
19. W. Ruml, J.T. Ngo, J. Marks, and S. Shieber. Easily searched encodings for number parti-

tioning. Journal of Optimization Theory and Applications, 89(2):251–291, 1996.
20. R.H. Storer, S.W. Flanders, and S.D. Wu. Problem space local search for number partition-

ing. Annals of Operations Research, 63:465–487, 1996.
21. L.H. Tasi. The modified differencing method for the set partitioning problem with cardinality

constraints. Discrete Applied Mathematics, 63:175–180, 1995.
22. L.H. Tsai. Asymptotic analysis of an algorithm for balanced parallel processor scheduling.

SIAM Journal on Computing, 21(1):59–64, 1992.
23. B. Yakir. The differencing algorithm LDM for partitioning: A proof of Karp’s conjecture.

Mathematics of Operations Research, 21(1):85–99, 1996.
24. M. Yue. On the exact upper bound for the multifit processor scheduling algorithm. Annals

of Operations Research, 24:233–259, 1990.

	1. Introduction
	2. Largest differencing method
	3. Performance ratio as a function of m
	4. Performance ratio as a function of both m and n
	References

